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Abstract A comprehensive review of diamonds, in the sense of Scholze, is pre-
sented. The diamond formulations of the Fargues-Fontaine curve and 𝐵𝑢𝑛𝐺 are
stated. Principal results centered on the diamond formalism in the global Langlands
correspondence and the geometrization of the local Langlands correspondence are
given. We conclude with a discussion of future geometrizations, and conjecture a
diamond reformulation of quantum computational complexity towards a diamond
ER = EPR.
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1 Introduction

A diamond [17] is a functorial-geometric construction with an incredibly rich struc-
ture and equally elegant formalism, whose arithmetic-geometric foundations live in
rigid analytic geometry. The sophisticated definition of the diamond itself is com-
mendable, let alone its principal utility in the Langlands Program, which is often,
informally, claimed to be a “Grand Unified Theory” of mathematics. The notion of
a diamond makes its first appearance in the Berkeley Lectures on p-adic Geometry
[21]. A six operations formalism is then constructed in the Étale cohomology of di-
amonds [17] (See Appendix). Diamonds are like bridges between objects that admit
universal constructions.

The foundation of diamonds abides in nonarchimedean geometry; namely in adic
spaces. An adic space is a particular geometric object that resembles a scheme.
The adic form of “locally ringed space” is constructed as a “topologically ringed
topological space equipped with valuations” [21]. Specifically, let 𝐴 be a Huber ring,
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and 𝐴+ a ring of integral elements. The pair (𝐴, 𝐴+) is called a “Huber pair” ([21]
Definition 2.2.12). We have the following definition of the adic spectrum.

Definition 1. ([21] Definition 2.3.2) The adic spectrum 𝑆𝑝𝑎(𝐴, 𝐴+) is the set of
equivalence classes of continuous valuations | ∗ | on 𝐴 such that |𝐴+ | ≤ 1 for a
sheafy Huber pair (𝐴𝑖 , 𝐴+𝑖 ).

An adic space is formally defined as follows.

Definition 2. ([21] Definition 3.2.1) We define a category (V) as follows. The
objects are triples (𝑋,O𝑋, ( | ∗ (𝑥) |)𝑥∈𝑋), where 𝑋 is a topological space, O𝑥 is a
sheaf of topological rings, and for each 𝑥 ∈ 𝑋 , | ∗ (𝑥) | is an equivalence class of
continuous valuations on O𝑋,𝑥 . (Note that this data determines O+

𝑋
). The morphisms

are maps of toplogically ringed topological spaces 𝑓 : 𝑋 → 𝑌 (so that the map
O𝑌 (𝑉) → O𝑋 ( 𝑓 −1 (𝑉)) is continuous for each open 𝑉 ⊂ 𝑌 ) that make the following
diagram commute up to equivalence for all 𝑥 ∈ 𝑋 :

O𝑌, 𝑓 (𝑥) //

��

O𝑋,𝑥

��
Γ 𝑓 (𝑥) ∪ {0} // Γ𝑥 ∪ {0}

Fig. 1 Commutative diagram for adic space construction.

An adic space is an object (𝑋,O𝑋, ( | ∗ (𝑥) |)𝑥∈𝑋) of (𝑉) that admits a covering by
spaces𝑈𝑖 such that the triple (𝑈𝑖 ,O𝑋 |𝑈𝑖

, ( |∗ (𝑥) |)𝑥∈𝑈𝑖
) is isomorphic to 𝑆𝑝𝑎(𝐴𝑖 , 𝐴+𝑖 )

for a sheafy Huber pair (𝐴𝑖 , 𝐴+𝑖 ).
For sheafy (𝐴, 𝐴+), the topological space 𝑋 = 𝑆𝑝𝑎(𝐴, 𝐴+) together with its struc-

ture sheaf and continuous valuations is an affinoid adic space, which we continue to
write as 𝑆𝑝𝑎(𝐴, 𝐴+).

The “intuitive definition of diamonds [21]” centers around certain adic spaces
called perfectoid spaces [14], and the tilting functor, which is a “functor from per-
fectoid spaces to perfectoid spaces of characteristic 𝑝 [21].” The notion of perfectoid
space is first introduced in Scholze’s manuscript Perfectoid Spaces [14].

Definition 3. ([21] Definition 6.1.1) A complete Tate ring 𝑅 is perfectoid if 𝑅 is
uniform and there exists a pseudo-uniformizer �̄� ∈ 𝑅 such that �̄�𝑝 |𝑝 holds in 𝑅◦,
and such that the 𝑝th power Frobenius map

Φ : 𝑅◦/�̄�→ 𝑅◦/�̄�𝑝

is an isomorphism.

Let 𝑅+ denote a perfectoid ring of integral elements [17]. A perfectoid space is
formally defined as follows.
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Definition 4. ([21] Definition 7.1.2) A perfectoid space is an adic space covered by
affinoid adic spaces Spa(𝑅, 𝑅+) with 𝑅 perfectoid.

A few examples of Perfectoid spaces are:

• The perfectoid shimura variety used in studying “torsion in the cohomology of
compact unitary Shimura varieties [18]”;

• Any completion of an “arithmetically profinite extension,” in the sense of Fontaine
and Wintenberger [14]; and

• The Lubin Tate tower at infinite level [20].

We briefly recall the tilting operation.

Definition 5. ([21] Definition 6.2.1) Let 𝑅 be a perfectoid Tate ring. The tilt of 𝑅 is

𝑅𝑏 = 𝑙𝑖𝑚
←

𝑥→𝑥𝑝
𝑅, given the inverse limit topology.

If 𝑅◦ is the subring of power bounded elements, we have the following lemma:

Lemma 1. ([21] Lemma 6.2.5). The set of rings of integral elements 𝑅+ ⊂ 𝑅◦ is in
bijection with the set of rings of integral elements 𝑅𝑏+ ⊂ 𝑅𝑏◦, via 𝑅𝑏+ = 𝑙𝑖𝑚

← 𝑥→𝑥𝑝
𝑅+.

Also, 𝑅𝑏+/�̄�𝑏 = 𝑅+/�̄�.

The following theorem highlights the utility of the tilting operation.

Theorem 1. ([21] Theorem 6.2.7) Let 𝑅 be a perfectoid ring with tilt 𝑅𝑏. Then
there is an equivalence of categories between perfectoid 𝑅-algebras and perfectoid
𝑅𝑏-algebras, via 𝑆 → 𝑆𝑏.

The tilting functor has an inverse functor called the untilt, which is a certain sheaf.

Lemma 2. ([21] Lemma 6.2.8). Let (𝑅#, 𝑅#+) be an untilt of (𝑅, 𝑅+), i.e. a perfectoid
Tate ring 𝑅# together with an isomorphism 𝑅#𝑏 → 𝑅 such that 𝑅#+ and 𝑅+ are
identified under Lemma 6.2.5.

1. There is a canonical surjective ring homomorphism

𝜃 : 𝑊 (𝑅+) → 𝑅#+

Σ
𝑛≥0
[𝑟𝑛]𝑝𝑛 → Σ

𝑛≥0
𝑟#
𝑛𝑝

𝑛.

2. The kernel of 𝜃 is generated by a nonzero divisor 𝜉 of the form 𝜉 = 𝑝 + [�̄�]𝛼
where �̄� ∈ 𝑅+ is a pseudo-uniformizer, and 𝛼 ∈ 𝑊 (𝑅+).

As explained in ([21] Section 8.1 Diamonds: Motivation), the construction of a
diamond mirrors the construction of an algebraic space, classically formed by taking
a quotient of a scheme by an étale equivalence relation. To wit, the motivation of
diamonds is the construction of a functor

• {analytic adic spaces over 𝑍𝑝 } → {diamonds}
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• {𝑋} → {𝑋⋄ }
that “forgets the structure morphism to 𝑍𝑝 [21]. ”

The tilting functor 𝑋 → 𝑋𝑏 exhibits this property, when 𝑋 is a perfectoid space
[21]. This idea can be generalized. Notice that for any analytic adic space 𝑋/𝑍𝑝 ,

𝑋 is pro-étale locally perfectoid:

𝑋 = Coeg(�̃� ×𝑋 �̃� ⇒ �̃�) ,

where �̃� → 𝑋 is a pro-étale perfectoid cover;...the equivalence relation 𝑅 = �̃� ×𝑋 �̃� is also
perfectoid (as it is pro-étale over �̃�) , at least after passing to a uniform completion [21].

Let 𝑅𝑏 be the tilt of 𝑅 and �̃�𝑏 be the tilt of �̃� . Then, the desired functor above
should take 𝑋 to Coeg(𝑅𝑏 ⇒ �̃�𝑏). However, two questions immediately arise:
Question 1. What category does this object live in [21]?

Question 2. There is also the question of whether this construction depends on the choices
made. Whatever this object is, it is pro-étale under a perfectoid space in characteristic 𝑝,
namely �̃�𝑏 [21].

The following example provides the needed clarification.

Example 1. ([17] Example 8.1.1) If 𝑋 = 𝑆𝑝𝑎(𝑄𝑝), then a pro-étale perfectoid
cover of 𝑋 is �̃� = 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 ). Thus 𝑅 = �̃� ×𝑋 �̃� is essentially �̃� × 𝑍 𝑥𝑝 . This is
a perfectoid space, and so 𝑋⋄ should be the coequalizer of �̃�𝑏 × 𝑍 𝑥𝑝 ⇒ �̃� , which
comes out to be the quotient 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )𝑏)/𝑍 𝑥𝑝 , whatever this means.

It turns out that the quotient 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )𝑏/𝑍 𝑥𝑝 lives in a “category of sheaves
on the site of perfectoid spaces with pro-étale covers [21].” Once formalized, this
quotient will be our principal example of a diamond, discussed in Section 2.1.

A diamond takes the form of a Grothendieck functor of points [9], that maps in
perfectoid spaces. In particular, a diamond is an “algebraic space for the pro-étale
topology in Perf” ([5] Definition 1.12), where Perf denotes the category of perfectoid
spaces of characteristic 𝑝, which is the full subcategory of the 𝜅-small category of
perfectoid spaces. Specifically, diamonds are particular “pro-étale sheaves on Perf
[17].”

Diamonds are so named because their properties reflect certain properties of min-
eralogical diamonds. In particular, their geometric points are, informally, a mathe-
matical representation of mineralogical impurities. To wit, let 𝐶 be an algebraically
closed affinoid field and D a diamond.

A geometric point 𝑆𝑝𝑎 (𝐶 ) → D is something like an impurity within a gem which
produces a color. This impurity cannot be seen directly, but produces many reflections
of this color on the surface of the diamond. Likewise, the geometric point cannot be
seen directly, but when we pull it back through a quasi-pro-étale cover 𝑋 → D, the
result is profinitely many copies of 𝑆𝑝𝑎 (𝐶 ) . Often one can produce multiple such
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covers 𝑋 → D, which result in multiple descriptions of the geometric points of D
([21] Figure 9.1).

A diamond is formally defined as follows:

Definition 6. ([21] Definition 1.3) Let Perfd be the category of perfectoid spaces.
Let Perf be the subcategory of perfectoid spaces of characteristic 𝑝. Let 𝑌 be a
pro-étale sheaf on Perf. Then𝑌 is a diamond if𝑌 can be written as the quotient 𝑋/𝑅
with 𝑋 a perfectoid space of characteristic 𝑝 and 𝑅 a pro-étale equivalence relation
𝑅 ⊂ 𝑋 × 𝑋 .

The meaning of the pro-étale equivalence relation is developed in the following
proposition.

Proposition 1. ([21] Proposition 11.3) Let 𝑋 be a perfectoid space of characteristic
𝑝, and let R be a perfectoid space with two pro-étale maps 𝑠, 𝑡 : 𝑅 → 𝑋 such that
the induced map 𝑅 → 𝑋 × 𝑋 is an injection making 𝑅 an equivalence relation on 𝑋 .
Then 𝐷 = 𝑋/𝑅 is a diamond and the natural map 𝑅 → 𝑋 × 𝑋 is an isomorphism.

Diamonds appear in the global Langlands correspondence for function fields
and in Scholze and Fargues’ exceptional geometrization of the local Langlands
correspondence [7]. The motivation of diamonds in the geometrization of the local
Langlands correspondence is referenced in the following remark [7]:

The local Langlands conjecture, including its expected functorial behavior with
respect to passage to inner forms and Levi subgroups, then still predicts that for any
irreducible sheaf F - necessarily given by an irreducible representation 𝜋𝑏 of𝐺𝑏 (𝐸 )
for some 𝑏 ∈ 𝐵(𝐸, 𝐺) - one can associate an 𝐿-parameter 𝜙F : 𝑊𝐸 → �̌� (C) .
To go further, we need to bring geometry into the picture. Indeed, it will be via
geometry that (sheaves on the groupoid of) G-torsors on 𝑆𝑝𝑒𝑐�̌�/𝜙Z will be related
to the fundamental group𝑊𝐸 of 𝑆𝑝𝑒𝑐�̌�/𝜙Z. The key idea is to study a moduli stack
of 𝐺-torsors on 𝑆𝑝𝑒𝑐�̌�/𝜙Z. [7]

Indeed the geometry needed is precisely that of the diamond formalism.
Diamonds have many incarnations. Principal examples of diamonds are discussed

in Section 2.2. Two of the incarnations are:

Example 2. 𝑆𝑝𝑑𝑄𝑝 = 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )𝑏/𝑍×𝑝 ; “a sheaf for the pro-étale topology on
Perf” ([21]Definition 9.4.1).

Example 3. Y⋄
𝑆,𝐸

= 𝑆 × (SpaO𝐸)⋄: the diamond relative Fargues-Fontaine curve
in the geometrization of the local Langlands correspondence [5].

In [21], it is explained that the underlying topological space of a diamond “can
be quite pathological. It may not even be 𝑇0.” Consider the following example:
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Fig. 2 Representation of Figure 9.1 [21]. Diamond D with geometric point Spa 𝐶 → D pulled
back through a quasi-pro-étale cover 𝑋 → D, the result of which is “profinitely many copies of
Spa 𝐶[21].” [Image @ShannaDobson.]

Example 4. ([21])

The quotient of the constant perfectoid space 𝑍𝑝 over a perfectoid field by the equivalence
relation “congruence modulo 𝑍” produces a diamond with underlying topological space
𝑍𝑝/𝑍 .

A special class of diamonds, qcqs diamonds, are𝑇0. (See [21] Proposition 10.3.4).

A diamond is further categorized as a 𝑣-sheaf, which is “a sheaf for the 𝑣-topology
on Perfd, [21]” the category of perfectoid spaces. The following Proposition gener-
alizes the diamond formalism so that “all diamonds are 𝑣-sheaves [21],” mirroring
Gabber’s result that “algebraic spaces are fpqc sheaves[21].”

Proposition 2. (Proposition 11.9) Let 𝑌 be a diamond. Then 𝑌 is a 𝑣-sheaf.

Two powerful descent results follow:

Proposition 3. ([17] Proposition 9.3) The functor which assigns to a totally discon-
nected affinoid perfectoid 𝑋 the category {𝑌/𝑋 affinoid perfectoid} is a stack for the
𝑣-topology.

Lemma 3. ([17] Lemma 17.1.8) The fibered category sending any 𝑋 ∈ Perfd to the
category of locally finite free O𝑋-modules is a stack on the 𝑣-site on Perfd.

𝑣-sheaves are further classified as “small” and “spatial”, which we discuss in
detail below. Using the 𝑣-topology, one can show that “certain pro-étale sheaves on
Perf are diamonds without finding an explicit pro-étale cover [21].” In particular,
it is explained that ”the more general formalism of 𝑣-sheaves makes it possible to
consider not only analytic adic spaces as diamonds, but also certain non-analytic
objects as 𝑣-sheaves [21].” The following is an example of a 𝑣-sheaf that is not a
diamond.

Let X be any pre-adic space over Zp. Consider the presheaf 𝑋⋄ on Perf whose 𝑆-valued
points for 𝑆 ∈ 𝑃𝑒𝑟 𝑓 are given by the untilts 𝑆# of 𝑆 together with a map 𝑆# → 𝑋. If
𝑋 = 𝑆𝑝𝑎F𝑝 , this is the trivial functor, sending any 𝑆 to a point [21].
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This is encapsulated in the following lemma:
Lemma 4. ([21] Lemma 18.1.1) For any pre-adic space X over 𝑍𝑝 , the presheaf 𝑋⋄
is a 𝑣-sheaf.

As our aim is a comprehensive and complete review of diamonds, we exclude
proofs of the constructions and key results, and direct the reader to the original
articles for further detail. As the diamond construction is extremely technical, our
survey consists of a review of fundamental definitions, followed by a collection of
principal results. The elegance of the diamond formalism is reflected in its many
incarnations.

It is hoped that our comprehensive review will illuminate the importance of the
diamond as a very powerful construction used in arithmetic geometry, the future
forms of which are promising. While our focus is to illuminate the idea that to
geometrize the local Langlands correspondence is to use the diamond formalism to
construct the geometric Langlands correspondence over the Fargues-Fontaine curve,
it is hoped that our survey, which takes the form of a small compendium, can inspire
others to develop further incarnations of diamonds.

2 Diamonds

We commence our review with a comprehensive overview of diamonds and 𝑣-
sheaves. First, we discuss the pro-étale topology and the 𝑣-topology, which is a “big
topology” on Perfd that is subcanonical and “finer than the pro-étale topology [17].”
We then summarize principal results.

2.1 Pro-étale topology and 𝒗-topology

Definition 7. ([17] Definition 8.1) Let Perfd be the category of 𝜅-small perfectoid
spaces.

• The big pro-étale site is the Grothendieck topology on Perfd for which a collection
{ 𝑓𝑖 : 𝑌𝑖 → 𝑋}𝑖∈𝐼 of morphisms is a covering if all 𝑓𝑖 are pro-étale, and for
each quasicompact open subset 𝑈 ⊂ 𝑋 , there exists a finite subset 𝐽 ⊂ 𝐼 and
quasicompact open subsets 𝑉𝑖 ⊂ 𝑌𝑖 for 𝑖 ∈ 𝐽, such that𝑈 =

⋃
𝑖∈𝐽 𝑓𝑖 (𝑉𝑖).

• Let 𝑋 be a perfectoid space. The small pro-étale site of 𝑋 is the Grothendieck
topology on the category of perfectoid spaces 𝑓 : 𝑌 → 𝑋 pro-étale over 𝑋 , with
covers the same as in the big pro-étale site.

• The 𝑣-site is the Grothendieck topology on Perfd for which a collection { 𝑓𝑖 : 𝑌𝑖 →
𝑋}𝑖∈𝐼 of morphisms is a covering if for each quasicompact open subset 𝑈 ⊂ 𝑋 ,
there exists a finite subset 𝐽 ⊂ 𝐼 and quasicompact open subsets𝑉𝑖 ⊂ 𝑌𝑖 for 𝑖 ∈ 𝐽,
such that𝑈 =

⋃
𝑖∈𝐽 𝑓𝑖 (𝑉𝑖).

The 𝑣-topology is subcanonical.
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Theorem 2. ([17] Theorem 1.2) The 𝑣-topology on Perf is subcanonical, and for
any affinoid perfectoid space 𝑋 = 𝑆𝑝𝑎(𝑅, 𝑅+), 𝐻0

𝑣 (𝑋,O+𝑋) = 𝑅+ and for 𝑖 >
0, 𝐻𝑖𝑣 (𝑋,O𝑋) = 0 and 𝐻𝑖𝑣 (𝑋,O+𝑋) is almost zero.

There is a promising result that “the structure sheaf is a sheaf for the 𝑣-topology
on Perfd [21].”

Theorem 3. ([17] Theorem 8.7, Proposition 8.8) The functors 𝑋 → 𝐻0 (𝑋,O𝑋) and
(𝑋,O𝑋) and 𝑋 → 𝐻0 (𝑋,O+

𝑋
) are sheaves on the 𝑣-site. Moreover if 𝑋 is affinoid

then 𝐻𝑖𝑣 (𝑋,O𝑋) = 0 for 𝑖 > 0, and 𝐻𝑖𝑣 (𝑋,O+𝑋) is almost zero for 𝑖 > 0.

The Corollary immediately follows:

Corollary 1. ([21] Corollary 17.1.5) Representable presheaves are sheaves on the
𝑣-site.

We now review affinoid pro-étale morphisms.

Definition 8. ([21] Definition 8.2.1) A morphism 𝑓 : 𝑆𝑝𝑎(𝐵, 𝐵+) → 𝑆𝑝𝑎(𝐴, 𝐴+)
of affinoid perfectoid spaces is affinoid pro-étale if

• (𝐵, 𝐵+) = 𝑙𝑖𝑚
→

ˆ(𝐴𝑖 , 𝐴+𝑖 ) is a completed filtered colimit of pairs (𝐴𝑖 , 𝐴+𝑖 ) with 𝐴𝑖
perfectoid, such that

• 𝑆𝑝𝑎(𝐴𝑖 , 𝐴+𝑖 ) → 𝑆𝑝𝑎(𝐴, 𝐴+) is étale.

A morphism 𝑓 : 𝑋 → 𝑌 of perfectoid spaces is pro-étale if it is locally on the source
and target affinoid pro-étale.

Nice properties of pro-étale morphisms include the following.

Proposition 4. ([21] Proposition 8.2.5)

1. Compositions of pro-étale maps are pro-étale.
2. Pullbacks of pro-étale morphisms are pro-étale.

Example 5. ([21] Example 8.2.2) If 𝑋 is any perfectoid space and 𝑆 is a profinite
set, we can define a new perfectoid space 𝑋 × 𝑆 as the inverse limit of 𝑋 × 𝑆𝑖 , where
𝑆 = 𝑙𝑖𝑚

←
𝑆𝑖 is the inverse limit of finite sets 𝑆𝑖 . Then 𝑋 × 𝑆 → 𝑋 is pro-étale. This

construction extends to the case that 𝑆 is locally profinite.

2.2 Examples of Diamonds

2.2.1 𝑺 𝒑𝒅𝑸𝒑

We first discuss 𝑆𝑝𝑑𝑄𝑃 , the principal example of a diamond.

Example 6. 𝑆𝑝𝑑𝑄𝑝 is “a sheaf for the pro-étale topology on Perf [21].” It is defined
twice:
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Definition 9. ([21] Section 8.4 The Example of 𝑆𝑝𝑑𝑄𝑝).

𝑆𝑝𝑑𝑄𝑝 = 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )𝑏/𝑍×𝑝 = 𝑆𝑝𝑎(𝐹𝑝 ((𝑡
1

𝑝∞ )))/𝑍×𝑝 ,

where 𝑍×𝑝 acts on 𝐹𝑝 ( (𝑡
1

𝑝∞ ) ) via 𝛾 (𝑡 ) = (1 + 𝑡 )𝛾 − 1 for all 𝛾 ∈ 𝑍×𝑝 .

This notation is explained as follows:
If 𝑋 is a perfectoid space and 𝐺 is a profinite group, then one can define what it means
for 𝐺 to act continuously on 𝑋; cf [Sch18]. Equivalently, this is an action of the pro-étale
sheaf of groups 𝐺 on 𝑋, where 𝐺 (𝑇 ) is the set of continuous maps from |𝑇 | to 𝐺, for any
𝑇 ∈ 𝑃𝑒𝑟 𝑓 . In particular, given a continuous action of 𝐺 on 𝑋, one can define 𝑅 = 𝑋 × 𝐺
(which agrees with the previous definition of 𝑋 × 𝑆 for a profinite set 𝑆), which comes with
two maps 𝑅 ⇒ 𝑋, given by the projection to the first component, and the action map. If the
induced map 𝑅 → 𝑋 × 𝑋 is an injection, then 𝑋/𝑅 is a diamond that we also denote by
𝑋/𝐺 [21].

𝑆𝑝𝑑𝑄𝑝 is further described by the following Proposition.
Proposition 5. ([21] Proposition 8.4.1). If 𝑋 = 𝑆𝑝𝑎(𝑅, 𝑅+) is an affinoid perfectoid
space of characteristic 𝑝, then (𝑆𝑝𝑑𝑄𝑝) (𝑋) is the set of isomorphism classes of data
of the following shape.
• A 𝑍 𝑥𝑝-torsor 𝑅 → �̃�; that is, �̃�= ˆ(𝑙𝑖𝑚

←
𝑅𝑛), where 𝑅𝑛/𝑅 is finite étale with Galois

group (𝑍/𝑝𝑛𝑍)× .
• A topologically nilpotent element unit 𝑡 ∈ �̃� such that for all 𝛾 ∈ 𝑍×𝑝 , 𝛾(𝑡) =
(1 + 𝑡)𝛾 − 1.

Definition 10. ([21]Definition 9.4.1) 𝑆𝑝𝑑𝑄𝑝 = 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )𝑏/𝑍×𝑝 . That is, 𝑆𝑝𝑑𝑄𝑝
is the coequalizer of

𝑍×𝑝 × 𝑆𝑝𝑎(𝑄
𝑐𝑦𝑐𝑙
𝑝 )♭ ⇒ 𝑆𝑝𝑎(𝑄𝑐𝑦𝑐𝑙𝑝 )♭,

where one map is the projection and the other is the action.
Per the lemma and corollary below, this construction is well-defined.

Lemma 5. ([21] Lemma 9.4.2). Let 𝑔 : 𝑍×𝑝 × 𝑆𝑝𝑑𝑄
𝑐𝑦𝑐𝑙
𝑝 → 𝑆𝑝𝑑𝑄

𝑐𝑦𝑐𝑙
𝑝 × 𝑆𝑝𝑑𝑄𝑐𝑦𝑐𝑙𝑝

be the product of the projection onto the second factor and the group action. Then 𝑔
is an injection.

Corollary 2. ([21] Corollary 9.4.3). The map 𝑆𝑝𝑎𝑄𝑐𝑦𝑐𝑙𝑝 → 𝑆𝑝𝑑𝑄𝑝 is a 𝑍×𝑝 -torsor
and the description of 𝑆𝑝𝑑𝑄𝑝 in Proposition 8.4.1 holds true.

The following theorem and lemma result.
Theorem 4. ([21] Theorem 9.4.4) The following categories are equivalent:

• Perfectoid spaces over 𝑄𝑝 .
• Perfectoid spaces 𝑋 of characteristic 𝑝 equipped with a “structure morphism”
𝑋 → 𝑆𝑝𝑑𝑄𝑝 .
Let Untilt be the presheaf on Perf which assigns to 𝑋 the set of pairs (𝑋#, 𝜄) , where 𝑋# is a
perfectoid space (of whatever characteristic), and 𝜄 : 𝑋#𝑏 � 𝑋 is an isomorphism. Then

Lemma 6. ([21] Lemma 9.4.5, [17] Lemma 15.1 (i)) Untilt is a sheaf on Perf.
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2.2.2 Other Key Examples

We now summarize other examples of diamonds.

Example 7. ([21] Definition 15.5). Let 𝑌 be an analytic adic space over 𝑍𝑝 . The
diamond associated to 𝑌 is the 𝑣-sheaf defined by

• 𝑌 ⋄ : 𝑋 → {((𝑋#, 𝜄), 𝑓 : 𝑋# → 𝑌 )}/≃,
• where 𝑋# is a perfectoid space with an isomorphism 𝜄 : (𝑋#)𝑏 ≃ 𝑋 .

Example 8. ([21] Theorem 10.1.5) Let 𝑋 be an analytic pre-adic space over 𝑆𝑝𝑎𝑍𝑝 .
The presheaf 𝑋⋄ is a diamond.

Example 9. For 𝑋 = 𝑆𝑝𝑎(𝑅, 𝑅+), 𝑆𝑝𝑑 (𝑅, 𝑅+) = 𝑆𝑝𝑎(𝑅, 𝑅+)⋄ [21].

Example 10. Spd𝑄𝑝 ×⋄ Spd𝑄𝑝 = Y⋄(0,∞)/𝐺𝑄𝑝
: the diamond self product [21];

Example 11. “Every connected component of a spatial 𝑣-sheaf F is a geometric
point Spd(𝐶,𝐶+), for 𝐶 an algebraically closed nonarchimedean field and 𝐶+ ⊂ 𝐶
an open and bounded valuation subring [17]”;

Example 12. Spd𝑄𝑝 = Spa(𝑄cycl
𝑝 )/𝑍 𝑥𝑝 for 𝑍 𝑥𝑝 the profinite group 𝐺𝑎𝑙 (𝑄cycl

𝑝 /
𝑄𝑝) [21];

Example 13. “All diamonds are 𝑣-sheaves” in the 𝑣-topology [17];

Example 14. Diamond functor ([9],[?] Proposition 6.11) For an analytic adic
space 𝑋/𝑍𝑝 , the diamond functor 𝑋⋄ : 𝑆 ∈ 𝑃𝑒𝑟 𝑓 → {𝑆#/𝑍𝑝 untilts of 𝑆 plus map
𝑆# → 𝑋} defines a locally spatial diamond.
Example 15. The Fargues-Fontaine Curve 𝑋𝐹𝐹 is a regular noetherian scheme of Krull

dimension 1 which is locally the spectrum of a principal ideal domain. The set of closed
points of 𝑋𝐹𝐹 is identified with the set of characteristic 0 untilts of 𝐶𝑏 modulo Frobenius.
For 𝐶 an algebraically closed perfectoid field of characteristic 𝑝 > 0 and 𝜙 the Frobenius
automorphism of 𝐶 we have

• 𝑋⋄
𝐹𝐹
� (𝑆𝑝𝑑𝐶 × 𝑆𝑝𝑑𝑄𝑝 )/(𝜙 × 𝑖𝑑) [21].

Example 16. The “mirror curve:” 𝐷𝑖𝑣1 = (𝑆𝑝𝑎�̌�)⋄/𝜙Z [7].

Example 17. Y⋄
𝑆,𝐸

= 𝑆 × (SpaO𝐸)⋄: the diamond relative Fargues-Fontaine curve
in the geometrization of the local Langlands correspondence [5];

Example 18. ([21] Proposition 8.3.7). LetD andD′ be diamonds. Then the product
sheaf 𝐷 ×⋄ 𝐷′ is also a diamond. [21].

Example 19. 𝑆𝑝𝑑𝑄𝑝 = 𝑆𝑝𝑑 (𝑄𝑐𝑦𝑐𝑙𝑝 )/𝑍 𝑥𝑝 where 𝑍 𝑥𝑝 is the profinite group𝐺𝑎𝑙 (𝑄𝑐𝑦𝑐𝑙𝑝 /
𝑄𝑝) [21].

Example 20. 𝑆𝑝𝑑𝑄𝑝 ×⋄ 𝑆𝑝𝑑𝑄𝑝 [21].

Example 21. The moduli space ShtG,𝑏,{𝜇𝑖 }: “the moduli space of mixed-characteristic
local 𝐺-shtukas is a locally spatial diamond [21]” fibered over the 𝑚-fold product
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• 𝑆𝑝𝑎𝑄𝑝 × 𝑆𝑝𝑎𝑄𝑝 × · · ·𝑚 × 𝑆𝑝𝑎𝑄𝑝;

Example 22. 𝜋1 ((Spd𝑄𝑝)𝑛/𝑝.𝐹𝑟.) ≃ 𝐺𝑚
𝑄𝑝

: the diamond version of Drinfeld’s
lemma for the 𝑛 = 2 case for global Langlands for function fields [21];

Example 23. All Banach-Colmez spaces are diamonds [21].

Example 24. Any closed subset of a diamond is a diamond [21].

Example 25. ([17] Proposition 11.5). A pro-étale sheaf 𝑌 on Perf is a diamond if
and only if there is a surjective quasi-pro-étale map 1 𝑋 → 𝑌 from a perfectoid
space 𝑋 .

2.2.3 𝒗-sheaves

Recall that “all diamonds are 𝑣-sheaves [21].”
Proposition 6. ([17] Proposition 11.9) Let 𝑌 be a diamond. Then 𝑌 is a sheaf for
the 𝑣-topology.

𝑣-sheaves are classified as small and spatial.

2.3 Small 𝒗-Sheaves

Definition 11. ([21] Definition 17.2.1) A 𝑣-sheaf F on Perf is small if there is a
surjective map of 𝑣-sheaves 𝑋 → F from the sheaf represented by a perfectoid space
𝑋 .

Any small 𝑣-sheaf admits geometric structure.
Proposition 7. ([21] Proposition 17.2.2 (Sch17, Proposition 12.3). Let F be a small
𝑣-sheaf, and let 𝑋 → F be a surjective map of 𝑣-sheaves from a diamond 𝑋 (e.g., a
perfectoid space). Then 𝑅 = 𝑋 ×F 𝑋 is a diamond, and F = 𝑋/𝑅 as 𝑣-sheaves.

Remark 1. ([21] Remark).
So to access 𝑣-sheaves takes two steps. First, we analyze diamonds as quotients of perfectoid
spaces by representable equivalence relations. Second, then we analyze small 𝑣-sheaves as
quotients of perfectoid spaces by diamond equivalence relations [21].

We define the underlying topological space of a small 𝑣-sheaf.
Definition 12. ([21] Definition 17.2.3). Let F be a small 𝑣-sheaf, and let 𝑋 → F
be a surjective map of 𝑣-sheaves from a diamond 𝑋 , with 𝑅 = 𝑋 ×F 𝑋 . Then
the underlying topological space of F is |F | = |𝑋 |/|𝑅 |. This is well-defined and
functorial by Proposition 12.7.

1 ([17] Definition 9.2.2). Consider the site Perf of perfectoid spaces of characteristic 𝑝 with the
pro-étale topology. A map 𝑓 : F → G of sheaves on Perf is quasi-pro-étale if it is locally separated
and for all strictly totally disconnected perfectoid spaces 𝑌 with a map 𝑌 → G (i.e., an element of
G(𝑌 ) ) , the pullback F ×G 𝑌 is representable by a perfectoid space 𝑋 and 𝑋 → 𝑌 is pro-étale.
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There exists a restricted class of diamonds, called spatial 𝑣-sheaves, with |F | well-
behaved. We discuss these spatial diamonds and summarize their main properties.

2.3.1 Spatial 𝒗-sheaf

Diamonds for which |F | is well-behaved are defined as follows.

Definition 13. ([21] Definition 17.3.1). A 𝑣-sheaf F is spatial if

• 1. F is qcqs (in particular, small), and
• 2. |F | admits a neighborhood basis consisting of |G|, where G ⊂ F is quasicom-

pact open.

We say F is locally spatial if it admits a covering by spatial open subsheaves [21].

Remark 2. ([21] Remark 17.3.2).

• For algebraic spaces, (1) implies (2); however (1) does not imply (2) in the context
of small 𝑣-sheaves, or even diamonds. See Remark 17.3.6 below.

• If F is quasicompact, then so is |F |. Indeed, any open cover of |F | pulls back to
a cover of F . However, the converse need not hold true, but it does when F is
locally spatial; cf. [Sch17, Proposition 12.14 (iii)].

• If F is quasiseparated, then so is any subsheaf of F . Thus if F is spatial, then so
is any quasicompact open subsheaf.

Remark 3. [21]

We demand maps to be representable in locally spatial diamonds so that 𝑅 𝑓! (from the six
operations in étale cohomology of diamonds) commutes with all direct sums.

We summarize key examples and results of spatial diamonds.

Example 26. ([21] Example 17.3.3). Let 𝐾 be a perfectoid field in characteristic 𝑝,
and let F = 𝑆𝑝𝑎𝐾/𝐹𝑟𝑜𝑏𝑍 , so that |F | is one point. Then F is not quasiseparated.
Indeed if 𝑋 = 𝑌 = 𝑆𝑝𝑎𝐾 (which are quasicompact), then 𝑋 ×F 𝑌 is a disjoint
union of 𝑍 copies of 𝑆𝑝𝑎𝐾 . So 𝑋 ×F 𝑌 is not quasicompact. While F is not spatial,
F × 𝑆𝑝𝑎𝐹𝑝 ((𝑡

1
𝑝∞ )) = (𝐷∗

𝐾
/𝐹𝑟𝑜𝑏𝑍 )⋄ is spatial.

Proposition 8. ([21] Proposition 17.3.4) Let F be a spatial 𝑣-sheaf. Then |F | is
a spectral space, and for any perfectoid space 𝑋 with a map 𝑋 → F , the map
|𝑋 | → |F | is a spectral map.

We use the following proposition to check if a small 𝑣-sheaf is spatial.

Proposition 9. ([21] Proposition 17.3.5). Let 𝑋 be a spectral space, and 𝑅 ⊂ 𝑋 ×𝑋
a spectral equivalence relation such that each 𝑅 → 𝑋 is open and spectral. Then
𝑋/𝑅 is a spectral space, and 𝑋 → 𝑋/𝑅 is spectral.
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Remark 4. ([21] Remark 17.3.6). It is important to note that counterexamples to
Proposition 17.3.5 exist for the case that 𝑅 → 𝑋 is generalizing but not open. For an
example, take 𝑋 and 𝑅 are profinite sets. Then one can produce any compact Haus-
dorff space as 𝑋/𝑅. For 𝑇 any compact Hausdorff space, we can find a surjection
𝑋 → 𝑇 from a profinite set 𝑋 (e.g., the Stone-Cech compactification of 𝑇 considered
as a discrete set). Then, 𝑅 ⊂ 𝑋 × 𝑋 is closed and therefore profinite. If we repeat
this construction in the world of diamonds, taking 𝑆𝑝𝑎𝐾 × 𝑋/𝑆𝑝𝑎𝐾 × 𝑅, the result
is a qcqs diamond D with |D| = 𝑇 .

The corollary is immediate.

Corollary 3. ([21] Corollary 17.3.7). Let F be a small 𝑣-sheaf. Assume there exists
a presentation 𝑅 ⇒ 𝑋 → 𝐹, for 𝑅 and 𝑋 spatial 𝑣-sheaves (e.g., qcqs perfectoid
spaces), and each 𝑅 → 𝑋 is open. Then F is spatial.

Proposition 10. ([21] Proposition 17.3.8). If 𝑋 is a qcqs analytic adic space over
𝑆𝑝𝑎𝑍𝑝 , then 𝑋⋄ is spatial.

We arrive at a culminating theorem. As we stated in the introduction, using the 𝑣-
topology, one can show that “certain pro-étale sheaves on Perf are diamonds without
finding an explicit pro-étale cover [21].” This means that a spatial 𝑣-sheaf is actually
a diamond “as soon as its points are sufficiently nice [21].”

Theorem 5. ([21] Theorem 17.3.9 [17] Theorem 12.18). Let F be a spatial 𝑣-sheaf.
Assume that for all 𝑥 ∈ |F |, there is a quasi-pro-étale map 𝑋𝑥 → F from a perfectoid
space 𝑋𝑥 such that 𝑥 lies in the image of |𝑋𝑥 | → |F |. Then F is a diamond.

Additionally, there exists the following characterization and important example
of a spatial diamond.

Definition 14. ([17] Definition 1.4) A diamond𝑌 is spatial if it is quasicompact and
quasiseparated (qcqs), and |𝑌 | admits a basis for the topology given by |𝑈 |, where
𝑈 ⊂ 𝑌 ranges over quasicompact open subdiamonds. More generally, 𝑌 is locally
spatial if it admits an open cover by spatial diamonds.

Example 27. ([17] Remark)

Any perfectoid space 𝑋 defines a locally spatial diamond. This diamond is spatial precisely
when 𝑋 is qcqs. We see this as follows. If 𝑋 is a (locally) spatial diamond, then |𝑋 | is
a (locally) spectral topological space, and 𝑋 is quasicompact (resp. quasiseparated) as a
𝑣-sheaf precisely when |𝑋 | is quasicompact (resp. quasiseparated) as a topological space.
Now, if 𝑋 is a locally spatial diamond, we define 𝑋ét as consisting of (locally separated)
étale maps D → 𝑋 from diamonds D (automatically locally spatial).

Lemma 7. ([17] Lemma 11.27) Let 𝑌 be a spatial diamond. Assume that every
connected component of 𝑌 is representable by an affinoid perfectoid space. Then 𝑌
is representable by an affinoid perfectoid space.

We have two permanence properties.

Corollary 4. ([17] Corollary 11.28) Let𝑌 be a locally spatial diamond, and𝑌 ′ → 𝑌

a quasi-pro-étale map of pro-étale sheaves. Then 𝑌 ′is a locally spatial diamond.
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Corollary 5. ([17] Corollary 11.29) A fibre product of (locally) spatial diamonds
is (locally) spatial.

We have two further characterizations of spatial diamonds.

Proposition 11. ([17] Proposition 11.26) Let 𝑌 be a spatial diamond. Assume that
any surjective étale map 𝑌 → 𝑌 that can be written as a composite of quasicompact
open immersions and finite étale maps splits. Then𝑌 is a strictly totally disconnected
perfectoid space.

Proposition 12. ([17] Proposition 13.6). Let 𝑓 : 𝑌 ′ → 𝑌 be a separated map
of 𝑣-stacks. Then 𝑓 is quasi-pro-étale if and only if it is representable in locally
spatial diamonds and for all complete algebraically closed fields 𝐶 with a map
𝑆𝑝𝑎(𝐶,O𝐶 ) → 𝑌 , the pullback 𝑌 ′ ×𝑌 𝑆𝑝𝑎(𝐶,O𝐶 ) → 𝑆𝑝𝑎(𝐶,O𝐶 ) is pro-étale.

Spatial morphisms are now discussed.

Definition 15. ([17] Definition 13.1) A map 𝑓 : 𝑌 ′ → 𝑌 of 𝑣-stacks is representable
in diamonds if for all diamonds 𝑋 with a map 𝑋 → 𝑌 , the fibre product 𝑌 ′ ×𝑌 𝑋 is
a diamond. This notion is well-behaved.

Proposition 13. ([17] Proposition 13.2) Let 𝑓 : 𝑌 ′ → 𝑌 and 𝑌 → 𝑌 be maps of
𝑣-stacks, with pullback 𝑓 : 𝑌 ′ = 𝑌 ′ ×𝑌 𝑌 → 𝑌 .

• If 𝑌 is a diamond, then 𝑓 is representable in diamonds if and only if 𝑌 ′ is a
diamond.

• If 𝑓 is representable in diamonds, then 𝑓 is representable in diamonds.
• If 𝑌 → 𝑌 is surjective as a map of pro-étale stacks and 𝑓 is representable in

diamonds, then 𝑓 is representable in diamonds.

The definition of locally spatial morphisms follows.

Definition 16. ([17] Definition 13.3) A map 𝑓 : 𝑌 ′ → 𝑌 of 𝑣-stacks is representable
in (locally) spatial diamonds if for all (locally) spatial diamonds 𝑋 with a map
𝑋 → 𝑌 , the fibre product 𝑌 ′ ×𝑌 𝑋 is a (locally) spatial diamond.

We compare the pro-étale and 𝑣-topology.

Definition 17. ([17] Definition 14.1). Assume that 𝑌 is a diamond.

• The quasi-pro-étale site 𝑌qproét is the site whose objects are (locally separated)
quasi-pro-étale maps 𝑌 ′ → 𝑌 , with coverings given by families of jointly surjec-
tive maps.

• The 𝑣-site 𝑌𝑣 is the site whose objects are all maps 𝑌 ′ → 𝑌 from small 𝑣-sheaves
𝑌 ′, with coverings given by families of jointly surjective maps.

We conclude with a characterization of the topoi 𝑌ét.

Proposition 14. ([17] Proposition 14.2) The topoi 𝑌ét respectively, 𝑌qproét respec-
tively𝑌𝑣 for a locally spatial diamond respectively diamond respectively small 𝑣-stack
𝑌 are algebraic. If𝑌 is 0-truncated (i.e., if𝑌 is a small 𝑣-sheaf ), then an object is qua-
sicompact (respectively quasiseparated) if and only if it quasicompact (respectively
quasiseparated) as a small 𝑣-stack on Perf.
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3 Diamonds in Global Langlands Correspondence

We now review the use of diamonds in the global Langlands Correspondence, and
a diamond reformulation of Drinfeld’s lemma [21]. We recall the global Langlands
correspondence over number fields.

Conjecture 1. ([16] Conjecture I.1. Global Langlands (Clozel-Fontaine-Mazur)
Conjecture)). Let 𝐹 be a number field, 𝑝 some rational prime, and fix an isomorphism
C ≃ Q̄𝑝 . Then for any 𝑛 ≥ 1 there is a unique bijection between the set of 𝐿-algebraic
cuspidal automorphic representations of 𝐺𝐿𝑛 (A𝐹), and the set of (isomorphism
classes of) irreducible continuous representations 𝐺𝑎𝑙 (�̄�/𝐹) → 𝐺𝐿𝑛 (Q̄𝑝) which
are almost everywhere unramified, and de Rham at places dividing 𝑝, such that the
bijection matches Satake parameters with eigenvalues of Frobenius elements 2.

Drinfeld studies the moduli spaces of “𝑋-shtukas” to obtain the 𝑛 = 2 contribution
to the global Langlands Correspondence over function fields, where 𝑋/𝐹𝑝 is a
smooth projective curve and 𝐾 is a function field ([Dri80] [21]). To wit, Scholze
studies the moduli space of “mixed-characteristic local 𝐺-shtukas,” 𝑆ℎ𝑡 (G,𝑏,{𝜇𝑖 }) ,
which Scholze identifies as a locally spatial diamond.

To formally define 𝑆ℎ𝑡 (G,𝑏,{𝜇𝑖 }) , we first recall the definition of the adic space
𝑆
·
× 𝑆𝑝𝑎𝑍𝑝 .

Proposition 15. ([21] Proposition 11.2.1) If 𝑆 = Spa(𝑅, 𝑅+) is an affinoid perfectoid
space of characteristic 𝑝, we can define an analytic adic space 𝑆

·
× Spa𝑍𝑝 such that

there is a natural isomorphism

• (𝑆
·
× Spa𝑍𝑝)⋄ = 𝑆 × Spd𝑍𝑝 .

Proposition 16. ([21] Proposition 11.3.1) Let 𝑆 ∈ 𝑃𝑒𝑟 𝑓 . The following sets are
naturally identified:

• Sections of 𝑆
·
× Spa𝑍𝑝 → 𝑆.

• Morphisms 𝑆 → Spd𝑍𝑝 , and
• Untilts 𝑆# of 𝑆.

Moreover, given these data, there is a natural map

• 𝑆# ↩→ 𝑆
·
× Spa𝑍𝑝 of adic spaces over 𝑍𝑝

that is the inclusion of a closed Cartier divisor.

A shtuka over a perfectoid space takes the following form [21]:

For an object 𝑆 ∈ 𝑃𝑒𝑟 𝑓 , a shtuka over 𝑆 should be a vector bundle over an adic space
𝑆 × 𝑆𝑝𝑎𝑍𝑝 together with a Frobenius structure, where the product is a fiber product...It’s
associated diamond is the product of sheaves on 𝑃𝑒𝑟 𝑓 𝑑.

2 Recall, A𝐹 =
∏′

𝑣
𝐹𝑣 denotes the adeles of 𝐹, which is the restricted product of the completions

𝐹𝑣 at all finite or infinite places of 𝐹.
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The definition of a “mixed-characteristic shtuka of rank 𝑛 over 𝑆 with legs 𝑥1, · ·
·, 𝑥𝑚 [21]” follows.

Definition 18. ([21] Definition 11.4.1) Let 𝑆 be a perfectoid space of characteristic
𝑝. Let 𝑥1, · · ·, 𝑥𝑚 : 𝑆 → Spd𝑍𝑝 be a collection of morphisms. For 𝑖 = 1, · · ·, 𝑚 let

• Γ𝑥𝑖 : 𝑆#
𝑖
→ 𝑆

·
× Spa𝑍𝑝

be the corresponding closed Cartier divisor. A mixed-characteristic shtuka of rank
𝑛 over 𝑆 with legs 𝑥1, · · ·, 𝑥𝑚 is a rank 𝑛 vector bundle E over 𝑆

·
× Spa𝑍𝑝 together

with an isomorphism

• 𝜙E : (𝐹𝑟𝑜𝑏∗
𝑆
E)|

𝑆
·
×Spa𝑍𝑝\

⋃𝑚
𝑖=1 Γ𝑥𝑖

→ E|
𝑆
·
×Spa𝑍𝑝\

⋃𝑚
𝑖=1 Γ𝑥𝑖

that is meromorphic along
⋃𝑚
𝑖=1 Γ𝑥𝑖 .

This formalism is extended to the moduli space of mixed-characteristic local
𝐺-shtukas.

Definition 19. ([21] Definition 23.1.1.) Let 𝐺 be a reductive group over 𝑄𝑝 . 𝐺
does not live over 𝑍𝑝 in the mixed characteristic setting. So we choose a smooth
group scheme G over 𝑍𝑝 with generic fiber 𝐺 and connected special fiber. Now
let 𝑆 = Spa(𝑅, 𝑅+) be an affinoid perfectoid space of characteristic 𝑝, with pseu-
douniformizer �̂�. Take a discrete algebraically closed field, and 𝐿 = 𝑊 (𝑘) [1/𝑝].
Let

(G, 𝑏, {𝜇𝑖})

be a triple consisting of a smooth group scheme G with reductive generic fiber 𝐺
and connected special fiber, an element 𝑏 ∈ 𝐺 (𝐿), and a collection 𝜇1, · · ·, 𝜇𝑚 of
conjugacy classes of cocharacters 𝐺𝑚 → 𝐺𝑄𝑝

. For 𝑖 = 1, · · ·, 𝑚, let 𝐸𝑖/𝑄𝑝 be the
field of definition of 𝜇𝑖 , and let 𝐸ˆ

𝑖
= 𝐸𝑖 · 𝐿. The moduli space

ShtG,⌊,{𝜇⟩ → Spd�̂�1 ×𝑆𝑝𝑑𝑘 · · · ×𝑆𝑝𝑑𝑘 𝑆𝑝𝑑�̂�𝑚

of shtukas associated with (G, 𝑏, {𝜇𝑖}) is the presheaf on 𝑃𝑒𝑟 𝑓𝑘 sending 𝑆 =

Spa(𝑅, 𝑅+) to the set of quadruples (P, {𝑆#
𝑖
}, 𝜙P , 𝜄𝑟 } where:

• P is a 𝐺-torsor on 𝑆
·
× Spa𝑍𝑝 ,

• 𝑆#
𝑖

is an untilt of 𝑆 to �̂�𝑖 for 𝑖 = 1, · · ·, 𝑚,

• 𝜙P is an isomorphism 𝜙P : (𝐹𝑟𝑜𝑏∗
𝑆
P)| (𝑆×𝐹𝑞𝑋)\⋃𝑚

𝑖=1 Γ𝑥𝑖

˜→ P| (𝑆×𝐹𝑞𝑋)\⋃𝑚
𝑖=1 Γ𝑥𝑖

and finally
• 𝜄𝑟 is an isomorphism 𝜄𝑟 : P|Y[𝑟,∞) (𝑆)

˜→ 𝐺 ×Y[𝑟 ,∞) (𝑆) for large enough 𝑟 , under
which 𝜙P gets identified with 𝑏 × 𝐹𝑟𝑜𝑏𝑆 .

The culminating result follows:
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Theorem 6. ([21] Theorem 23.1.4.) The moduli space (G, 𝑏, {𝜇𝑖}) is a locally
spatial diamond.

A further powerful result is that Drinfeld’s lemma has a diamond reformulation,
the consequence of replacing with the diamond Spd𝑄𝑝 all the connected schemes
𝑋𝑖 . The following is Drinfeld’s lemma for diamonds:

Theorem 7. ([21] Theorem 16.3.1) (𝜋1 ((Spd𝑄𝑝)𝑛/p.Fr.) ≃ 𝐺𝑚
𝑄𝑝

.

4 Diamonds in the Geometrization of the Local Langlands
Correspondence

We now review diamonds in the Geometrization of the local Langlands correspon-
dence [7][?]. In [7], the authors construct the foundational tools for a geometrization
of the local Langlands correspondence. Specifically, the authors prove many appli-
cations and

define a category of ℓ-adic sheaves on the stack 𝐵𝑢𝑛𝐺 of𝐺-bundles on the Fargues-Fontaine
curve, prove a geometric Satake equivalence over the Fargues-Fontaine curve, and study the
stack of 𝐿-parameters.

Recall the local Langlands correspondence. Let 𝐺 be a split reductive group and
let 𝐸 be a non-archimedean local field, such as 𝐹𝑞 ((𝑡)) or a finite extension of 𝑄𝑝 .

Conjecture 2. ([?] Local Langlands correspondence (Conjecture 1.6)). Consider
representations over 𝐿 = C. There exists a natural map

• Irrep(𝐺, 𝐸))/∼→ Hom(𝑊𝐸 , �̂� (C))/ ˆ𝐺 (C)

where �̂� is the Langlands dual group,𝑊𝐸 is the Weil group of 𝐸 which is surjective
with finite fibers (called L-packets) defined as the pre-image of 𝑍 ⊂ �̂� under the
surjection 𝐺𝑎𝑙 (�̄�/𝐸) → �̄� corresponding to the maximal unramified extension of
𝐸 .

Recall the geometric Langlands correspondence.

Conjecture 3. ([12] Geometric Langlands Correspondence (Geometric Langlands
Duality)). For𝐺 a reductive group, 𝐿𝐺 the Langlands dual group, and

∑
an algebraic

curve, there is an equivalence of derived categories of𝐷-modules on the moduli stack
of 𝐺-principal bundles on 𝜎 and quasi-coherent sheaves on the 𝐿𝐺-moduli stack of
local systems on 𝜎:

• O𝑀𝑜𝑑 (𝐿𝑜𝑐𝐿𝐺 (
∑) ≃→ D𝑀𝑜𝑑 (Bun𝐺 (

∑)).
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4.1 History and Motivation

We first highlight aspects of the motivation and historical account for diamonds and
their use in the geometrization of the local Langlands correspondence, as given in
([7] Section I.11. The origin of the ideas and [7] Section I.2. The big picture). Then
we summarize key results of diamonds in the Fargues-Fontaine curve and 𝐵𝑢𝑛𝐺 .

A key question is:

Question 3. What does it mean to geometrize the local Langlands correspondence?

After all, the authors reveal that the idea was a “completely unexpected conceptual
leap [7].” Simply stated, though the construction is anything but simple, to geometrize
the local Langlands correspondence is

to view the local Langlands correspondence as a geometric Langlands correspondence on
the Fargues–Fontaine curve [7].

The notion of geometrizing a Langlands correspondence is not novel. In [3],
Fargues proved a version of local Langlands that is produced “in the cohomology of
basic Rapoport-Zink spaces for𝐺𝐿𝑛 (and𝑈 (3) and general miniscule cocharacters)”
[7]. Additionally, in [4] Fargues proved that the Lubin-Tate Tower and the Drinfeld
Tower exhibit a duality isomorphism, which was a version of geometrizing the
Jacquet-Langlands correspondence ([4] Préambule Theorem 2). Moreover, in [15],
Scholze constructed a new proof of the local Langlands correspondence for the case
of 𝐺𝐿𝑛, the results of which illuminated “the idea that there ought to exist certain
sheaves on the moduli stack of 𝑝-divisible groups, giving a certain geometrization
of the local Langlands correspondence, then formulated as a certain character sheaf
property [7].” 3 Then, Fargues pursued the construction of “𝑝-adic Hodge theory
without Galois actions, i.e. for fields like C𝑝 ,” while Scholze constructed perfectoid
spaces to provide results on the Weight-monodromy conjecture. From the realization
that the Lubin-Tate tower at infinite level is a perfect space, came the idea that the
duality isomorphism was an isomorphism between perfectoid spaces [21]. During
this time, the importance of the Fargues-Fontaine Curve took center stage, and the
duality isomorphism was realized as

two dual descriptions of the space of miniscule modifications O𝑛
𝑋
→ O𝑋 ( 1

𝑛
) on the Fargues-

Fontaine curve, depending on which bundle is fixed and which bundle is the modification.
This was the first clear connection between local Langlands (as encoded in the cohomology of
the Lubin-Tate and Drinfeld space) and the theory of vector bundles on the Fargues-Fontaine
curve.

Eventually, there was a realization that the Hodge-Tate period map “gives a
substitute for the map from the moduli space of elliptic curves to the moduli space of
𝑝-divisible groups [7].” In [5], Fargues conjectured to geometrize the local Langlands

3 The authors state that

Scholze was always uneasy with the very bad geometric properties of the stack of 𝑝-divisible
groups [7].
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correspondence over the Fargues-Fontaine curve, with a diamond reformulation of
Bun𝐺 . Namely,

Proposition 17. ([5] Proposition 2.2). Bun𝐺 is a stack on Perf𝐹𝑞 .

Conjecture 4. ([5] Hope 2.3). Bun𝐺 is a ”smooth diamond stack.”

The notion of diamonds readily developed by

Increasingly, taking the perspective of studying all geometric objects by mapping only
perfectoid spaces in, including the possibility of getting several copies of 𝑆𝑝𝑒𝑐Q𝑝 , and of
defining general moduli spacess of 𝑝-adic shtukas. 4

Additionally, there was a concern that the Geometric Langlands Program was not
able to include the “subtle arithmetic properties of supercuspidal representations of
𝑝-adic groups [7].” The ideas to formulate Fargues’ conjecture congealed upon the
following realizations, which gave a “compelling geometric origin” of the internal
structure of 𝐿-packets. In [6], Fargues proved the classification of 𝐺-torsors on the
Fargues-Fontaine curve. Then, Fargues aimed to construct

for any (discrete) 𝐿-parameter 𝜙 an associated Hecke eigensheaf 𝐴𝜙 on 𝐵𝑢𝑛𝐺 with eigen-
value 𝜙. This should define a functor 𝜙 → 𝐴𝜙 , and thus carry an action of the centralizer
group 𝑆𝜙 ⊂ �̌� of 𝜙, and the corresponding 𝑆𝜙-isotypic decomposition of 𝐴𝜙 should realize
the internal structures of the 𝐿-packets. Moreover, the Hecke eigensheaf property should
imply the Kottwitz conjecture on the cohomology of local Shimura varieties [7].

Fargues’ conjecture, while having issues which needed to be addressed 5, was
promising because if Fargues’ conjecture could be formulated, then Lafforgue’s
ideas [Laf18] could be applied to obtain the “automorphic-to-Galois” direction
and define (semisimple) L-parameters (as Genestier-Lafforgue [GL17] did in equal
characteristic”), which was not unlike an arduous task 6.

Notably, developing a “good definition of the category of geometric objects rele-
vant to this picture, i.e. diamonds [7] ” is the crucial first step in solidly formulating
Fargues’ conjecture. In order to prove that “the relevant affine Grassmannians have
this property” 𝑣-sheaves and the property of 𝑣-descent were developed. Next, a six
functor formalism was developed for the étale cohomology of diamonds [17] (See
Appendix), where a

central technique of [17] is pro-étale descent, and more generally 𝑣-descent. In fact,
virtually all theorems of [17] are proved using such descent techniques, essentially
reducing them to profinite collections of geometric points. It came as a surprise to

4 The authors state that “the earliest published incarnation of this idea is [Wei17].
5 Namely, it assumed that the moduli stack 𝐵𝑢𝑛𝐺 could be handled with the canonical techniques
of algebraic geometry, and it supposed that there existed a geometric Satake equivalence.
6 The authors poignantly state that

Since then, it has been a long and very painful process [7].
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Scholze that this process of disassembling smooth spaces into profinite sets has any
power in proving geometric results, and this realization gave a big impetus to the
development of condensed mathematics (which in turn fueled back into the present
project).

4.2 Fargues-Fontaine Curve

The Fargues-Fontaine curve is defined and main results are summarized. We follow
the conventions of [7]. The set up is the following:

Set up. Let 𝐸 be a nonarchimedean local field (i.e. 𝐸 = 𝐹𝑞 ((𝑡)) or a finite extension
of 𝑄𝑝) with residue field F𝑞 of characteristic 𝑝. Let O𝐸 ⊂ 𝐸 be the ring of integers
and 𝜋 be a uniformizing element in 𝐸 . Let 𝑆 be a perfectoid space over F𝑞 . The idea
of the curve is conveyed as follows:
Remark 5. For any perfectoid space 𝑆 over F𝑞 , we introduce a curve Y𝑆 to be thought

of as the product 𝑆 ×𝑆𝑝𝑎F𝑞 𝑆𝑝𝑎O𝐸 , together with an open subset 𝑌𝑆 ⊂ Y𝑆 given by the
locus where 𝜋 ≠ 0. This carries a Frobenius 𝜙 induced from the Frobenius on 𝑆, and 𝑋𝑆

is the quotient 𝑌𝑆/𝜙Z [7].

Additionally, let𝐶 be a complete algebraically closed nonarchimedean field𝐶 |F𝑞.
Let 𝑆 = 𝑆𝑝𝑎𝐶. Then Y𝐶 denotes the curve on 𝑆. Y𝐶 is an adic space.

Theorem 8. ([7] Theorem II.0.1 (Proposition II.1.11, Corollary II.1.12, Def-
inition/Proposition 11.1.22). The adic space Y𝐶 is locally the adic spectrum
𝑆𝑝𝑎(𝐵, 𝐵+), where 𝐵 is a principal ideal domain; the classical points of 𝑆𝑝𝑎(𝐵, 𝐵+) ⊂
Y𝐶 are in bijection with the maximal ideals of 𝐵. For each classical point 𝑥 ∈ Y𝐶 ,
the residue field of 𝑥 is an untilt 𝐶# of 𝐶 over O𝐸 , and this induces a bijection of the
classical points of Y𝐶 with untilts 𝐶# of 𝐶 over O𝐸 . A similar result holds true for
𝑌𝐶 ⊂ Y𝐶 , and the quotient 𝑋𝐶 = 𝑌𝐶/𝜙Z.
Definition 20. Allowing general 𝑆 ∈ 𝑃𝑒𝑟 𝑓 ¯F𝑄 , we define the moduli space of degree

1 Cartier divisors as 𝐷𝑖𝑣1 = 𝑆𝑝𝑑�̌�/𝜙Z. Given a map 𝑆 → 𝐷𝑖𝑣1, one can define an
associated closed Cartier divisor 𝐷𝑆 ⊂ 𝑋𝑆; locally this is given by an untilt 𝐷𝑆 = 𝑆#
⊂ 𝑋𝑆 of 𝑆 over 𝐸, and this embeds 𝐷𝑖𝑣1 into the space of closed Cartier divisors on 𝑋𝑆

[7].

The Banach-Colmez space is defined as a locally spatial diamond.

Definition 21. ([7] Definition I.3.5) Let E be a vector bundle on 𝑋𝑆 . The Banach-
Colmez space BC(E) associated with E is the locally spatial diamond over 𝑆 whose
𝑇-valued points, for 𝑇 ∈ 𝑃𝑒𝑟 𝑓𝑆 , are given by

BC(E)(𝑇) = 𝐻0 (𝑋𝑇 , E|𝑋𝑇 ).

Similarly, if E is everywhere of only negative Harder-Narasimhan slopes, the
negative Banach-Colmez space BC(E[1]) is the locally spatial diamond over 𝑆
whose 𝑇-valued points are
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BC(E[1]) (𝑇) = 𝐻1 (𝑋𝑇 , E|𝑋𝑇 ).

Remark 6. Implicit here is that this functor actually defines a locally spatial diamond
[7].

The Fargues-Fontaine curve is constructed in three steps:

1. First, one constructs a curve Y𝑆 , an adic space over O𝐸 which carries a Frobenius action
𝜙.

2. Pass to the locus 𝑌𝑆 = Y𝑆 \ {𝜋 = 0}, i.e. the base change to 𝐸, the action of 𝜙 is free
and totally discontinuous, so that one can

3. Pass to the quotient 𝑋𝑆 = 𝑌𝑆/𝜙Z, which will be the Fargues-Fontaine curve [7].

We quickly discuss Y𝑆 in the affinoid case.
Remark 7. If 𝑆 = 𝑆𝑝𝑎 (𝑅, 𝑅+ ) is an affinoid perfectoid space over F𝑞 and �̄� ∈ 𝑅+ is a

pseudouniformizer (i.e. a topologically nilpotent unit of 𝑅), we let

Y𝑆 = 𝑆𝑝𝑎𝑊O𝐸 (𝑅+ ) \ 𝑉 ( [ �̄� ] ) [7].

Proposition 18. ([7] Proposition II.1.1) The above defines an analytic adic space
Y𝑆 over O𝐸 . Letting 𝐸∞ be the completion of 𝐸 (𝜋

1
𝑝∞ ) , the base change

Y𝑆 ×𝑆𝑝𝑎O𝐸 𝑆𝑝𝑎O𝐸∞
is a perfectoid space, with tilt given by

𝑆 ×F𝑞 𝑆𝑝𝑎F𝑞 [[𝑡
1

𝑝∞ ]] = 𝐷𝑆,𝑝𝑒𝑟 𝑓

a perfectoid open unit disc over 𝑆.

Proposition 19. ([7] Proposition II.1.2) For any perfectoid space 𝑇 over F𝑞 , giving
an untilt 𝑇# of 𝑇 together with a map 𝑇# → Y𝑆 of analytic adic spaces is equivalent
to giving an untilt 𝑇# together with a map 𝑇# → 𝑆𝑝𝑎O𝐸 , and a map 𝑇 → 𝑆. In other
words, there is a natural isomorphism

Y⋄
𝑆
� 𝑆𝑝𝑑O𝐸 × 𝑆.

Remark 8. In particular, there is a natural map

|Y𝑆 | � |Y⋄𝑆 | � | (𝑆𝑝𝑎O𝐸 )
⋄ × 𝑆 | → |𝑆 | [7].

Remark 9. ([7] Proposition II.1.3) ensures that we may glue Y𝑆 for general 𝑆,
i.e. for any perfectoid space 𝑆 there is an analytic adic space Y𝑆 equipped with an
isomorphism

Y⋄
𝑆
� 𝑆𝑝𝑑O𝐸 × 𝑆

(and in particular a map |Y𝑆 | → |𝑆 |) such that for 𝑈 = 𝑆𝑝𝑎(𝑅, 𝑅+) ⊂ 𝑆 an
affinoid subset, the corresponding pullback of Y𝑆 is given by Y𝑈 .



22 Shanna Dobson

Example 28. ([7] Example II.1.6) Assume that 𝐸 = F𝑞 ((𝑡)) is of equal character-
istic. Then Y𝐶 = D𝐶 is an open unit disc over 𝐶, with coordinate 𝑡. In particular,
inside |Y𝐶 |, we have the subset of classical points |Y𝐶 |𝑐𝑙 ⊂ |Y𝐶 |, which can be
identified as

|Y𝐶 |𝑐𝑙 = {𝑥 ∈ 𝐶 | |𝑥 | < 1}. Note that these classical points are in bijection with
maps O𝐸 → 𝐶 (over F𝑞), i.e. with “untilts of 𝐶 over O𝐸 .

There is a similar result when 𝐸 has mixed characteristic.

Proposition 20. ([7] Proposition II.1.7/Definition) Any untilt 𝐶# of 𝐶 over O𝐸
defines a closed Cartier divisor 𝑆𝑝𝑎𝐶# ↩→ Y𝑆 , and in particular a closed point
of |Y𝐶 |. This induces an injection from the set of such untilts to |Y𝐶 |. The set of
classical points |Y𝐶 |𝑐𝑙 ⊂ |Y𝐶 | is defined to be the set of such points.

We are now ready to state our culminating definition of the Fargues-Fontaine
curve.

Definition 22. ([7] Definition II.1.15) For any perfectoid space 𝑆 over F𝑞 , the
relative Fargues-Fontaine curve is

𝑋𝑆 = 𝑌𝑆/𝜙Z

where

𝑌𝑆 = Y𝑆 ×𝑆𝑝𝑎O𝐸 𝑆𝑝𝑎𝐸 = Y𝑆 \𝑉 (𝜋),

which for affinoid 𝑆 = 𝑆𝑝𝑎(𝑅, 𝑅+) with pseudouniformizer �̄� is given by

𝑌𝑆 = 𝑆𝑝𝑎𝑊O𝐸 (𝑅+) \𝑉 (𝜋[�̄�]).

For the case when 𝑆 = 𝑆𝑝𝑎𝐶 a geometric point, there exists a bijection between
the classical points of 𝑋𝑆 and the untilts 𝑆# of 𝑆 “together with a map 𝑆 → 𝑆𝑝𝑎𝐸 ,
modulo the action Frobenius [7].” Recall that for 𝑍 an adic space over𝑊 (F̄𝑞) 7 there
exists a functor

𝑍 ⋄ : Perf→ Sets: 𝑆 ↦−→ {𝑆#, 𝑓 : 𝑆# → 𝑍}
sending a perfectoid space 𝑆 over F̄𝑞 to pairs 𝑆# of an untilt of 𝑆, and a map 𝑆# → 𝑍 . If
𝑍 is an analytic adic space, then 𝑍 ⋄ is a diamond, that is a quotient of a perfectoid space
by a pro-étale equivalence relation. Then the classical points of 𝑋𝑆 are in bijection with the
𝑆-valued points of the diamond

(𝑆𝑝𝑎�̌� )⋄/𝜙Z.

This can be generalized.

For any 𝑆 ∈ 𝑃𝑒𝑟 𝑓 , maps 𝑆 → (𝑆𝑝𝑎�̌� )⋄𝜙Z are in bijection with degree 1 Cartier
divisors 𝐷𝑆 ⊂ 𝑋𝑆 , so we define

7 If 𝑅 is a perfect F𝑞-algebra, then 𝑊 (𝑅) denotes the “𝑝-typical Witt vectors” and 𝑊O𝐸 (𝑅)
denotes the “unramified Witt vectors [7].”
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𝐷𝑖𝑣1 = (𝑆𝑝𝑎�̌� )⋄/𝜙Z [7].

The diamond formulation of the relative Fargues-Fontaine curve follows:

Proposition 21. ([7] Proposition II.1.17) There is a natural isomorphism

𝑌 ⋄
𝑆
� 𝑆 × 𝑆𝑝𝑑 (𝐸),

descending to an isomorphism

𝑋⋄
𝑆
� (𝑆 × 𝑆𝑝𝑑 (𝐸))/𝜙Z× id.

This is formalized in the following:

Proposition 22. ([7] Proposition II.1.18) The following objects are naturally in
bijection.

1. Sections of 𝑌 ⋄
𝑆
→ 𝑆;

2. Maps 𝑆 → 𝑆𝑝𝑑 (𝐸);
3. Untilts 𝑆# over 𝐸 of 𝑆.

It is further stated that

...Any map 𝑆 → 𝑆𝑝𝑑 (𝐸 )/𝜙Z defines a closed Cartier divisor 𝐷 ⊂ 𝑋𝑆; this gives an
injection of 𝑆𝑝𝑑 (𝐸 )/𝜙Z into the space of closed Cartier divisors on 𝑋𝑆 [7].

Definition 23. ([7] Definition II.1.19) A closed Cartier divisor of degree 1 on 𝑋𝑆
is a closed Cartier divisor 𝐷 ⊂ 𝑋𝑆 that arises from a map 𝑆 → 𝑆𝑝𝑑 (𝐸)/𝜙Z.
Equivalently, it arises locally on 𝑆 from an untilt 𝑆# over 𝐸 of 𝑆.
Remark 10. In particular we see that the moduli space 𝐷𝑖𝑣1 of degree 1 closed Cartier

divisors is given by

𝐷𝑖𝑣1 = 𝑆𝑝𝑑 (𝐸 )/𝜙Z [7].

We conclude our review of the Fargues-Fontaine curve with the following:

Proposition 23. ([7] Proposition II.1.21) The map 𝐷𝑖𝑣1 → ∗ is proper, repre-
sentable in spatial diamonds, and cohomologically smooth.
Remark 11. In particular, the map

|𝑋𝑆 | = |𝐷𝑖𝑣1 × 𝑆 | → |𝑆 |

is open and closed. We can thus picture 𝑋𝑆 as being “a proper and smooth family over 𝑆
[7]. ”

In summary, the Fargues-Fontaine curve has the following key incarnations, the
culmination of which is the diamond formulation ([7] 1.2. The big picture):

1. For any complete algebraically closed nonarchimedean field 𝐶 |F̄𝑞 , the curve 𝑋𝐶 =

𝑋𝐶,𝐸 is a strongly noetherian adic space over 𝐸, locally the adic spectrum of a principal
ideal domain. One can also construct a schematic version 𝑋𝑎𝑙𝑔

𝐶
, with the same classical

points and the same category of vector bundles. The classical points are in bijection with
untilts 𝐶# |𝐸 of 𝐶, up to Frobenius.
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2. More generally, for any perfectoid space 𝑆 ∈ Perf, the “family of curves” 𝑋𝑆 , again an
adic space over 𝐸, but no longer strongly noetherian. If 𝑆 is affinoid, there is a schematic
version 𝑋𝑎𝑙𝑔

𝑆
, with the same category of vector bundles.

3. The “mirror curve” 𝐷𝑖𝑣1 = (𝑆𝑝𝑎�̌� )⋄/𝜙Z, which is only a diamond. For any 𝑆 ∈ Perf,
this parametrizes “degree 1 Cartier divisors on 𝑋𝑆 [7].”

4.3 𝑩𝒖𝒏𝑮

We now review the diamond formulation of 𝐵𝑢𝑛𝐺 and summarize main results. Our
notation and convention follows ([7] Chapter III. 𝐵𝑢𝑛𝐺).

Set up. Let 𝐸 be a nonarchimedean local field (i.e. 𝐸 = 𝐹𝑞 ((𝑡)) or a finite extension
of 𝑄𝑝). Let 𝐺 be a reductive group over 𝐸 . Let 𝑘 be a complete algebraically closed
field over F𝑞 . The Galois group 𝐺𝑎𝑙 ( �̄�/𝑘) is denoted 𝐺 (𝑘). Let 𝑆 be a perfectoid
space over 𝑆𝑝𝑑𝑘 . Denote by 𝑃𝑒𝑟 𝑓𝑘 the category of perfectoid spaces over 𝑆𝑝𝑑𝑘 .

Definition 24. ([7] Definition III.0.1) Let 𝐵𝑢𝑛𝐺 be the prestack taking a perfectoid
space 𝑆 ∈ 𝑃𝑒𝑟 𝑓𝑘 to the groupoid of 𝐺-bundles on 𝑋𝑆 .

The following theorem summarizes the main results of ([7] Chapter III. 𝐵𝑢𝑛𝐺).

Theorem 9. ([7] Theorem III.0.2 (Proposition III.1.3; Theorem III.2.2; Theorem
III.2.3 and Theorem III.2.7; Theorem III.4.5; Proposition III.5.3). The prestack 𝐵𝑢𝑛𝐺
satisfies the following properties.

1. The prestack 𝐵𝑢𝑛𝐺 is a small 𝑣-stack.
2. The points |𝐵𝑢𝑛𝐺 | are naturally in bijection with Kottwitz’ set 𝐵(𝐺) of 𝐺-

isocrystals.
3. The map

𝜈 : |𝐵𝑢𝑛𝐺 | → 𝐵(𝐺) → (𝑋∗ (𝑇)+Q)
Γ

is semicontinuous, and

𝜅 : |𝐵𝑢𝑛𝐺 | → 𝐵(𝐺) → 𝜋1 (𝐺 �̄�)Γ

is locally constant. Equivalently, the map |𝐵𝑢𝑛𝐺 | → 𝐵(𝐺) is continuous when
𝐵(𝐺) is equipped with the order topology.

4. The semistable locus 𝐵𝑢𝑛𝑠𝑠
𝐺

is open, and given by

𝐵𝑢𝑛𝑠𝑠
𝐺
�

⊔
𝑏∈𝐵(𝐺)𝑏𝑎𝑠𝑖𝑐

[∗/𝐺𝑏 (𝐸)]8

5. For any 𝑏 ∈ 𝐵(𝐺), the corresponding subfunctor

𝑖𝑏 : 𝐵𝑢𝑛𝑏
𝐺
= 𝐵𝑢𝑛𝐺 × |𝐵𝑢𝑛𝐺 | {𝑏} ⊂ 𝐵𝑢𝑛𝐺

8 [7] (Theorem I.2.1) 𝐺𝑏 (𝐸 ) is a locally profinite group.
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is locally closed, and isomorphic to [∗/𝐺𝑏] where𝐺𝑏 is a 𝑣-sheaf of groups such
that 𝐺𝑏 → ∗ is representable in locally spatial diamonds with 𝜋0𝐺𝑏 = 𝐺𝑏 (𝐸).
The connected component �̃�◦

𝑏
⊂ �̃�𝑏 of the identity is cohomologically smooth of

dimension < 2𝜌, 𝜈𝑏 >.

It is stated that “there is a good notion of 𝐺-torsors in 𝑝-adic geometry 9.”

Proposition 24. ([7] Definition/Proposition III.1.1 ([21] Proposition 19.5.1) Let
𝑋 be a sousperfectoid space over 𝐸 . 10 The following categories are naturally
equivalent.

1. The category of adic spaces 𝑇 → 𝑋 with a 𝐺-action such that étale locally on 𝑋 ,
there is a 𝐺-equivariant isomorphism 𝑇 � 𝐺 × 𝑋 .

2. The category of étale sheaves Q on 𝑋 equipped with an action of 𝐺 such that
étale locally, Q � 𝐺.

3. The category of exact ⊗-functors

𝑅𝑒𝑝𝐸𝐺 → 𝐵𝑢𝑛(𝑋)

to the category of vector bundles on 𝑋 .
A 𝐺-bundle on 𝑋 is an exact ⊗-functor

𝑅𝑒𝑝𝐸𝐺 → 𝐵𝑢𝑛(𝑋);

by the preceding, it can equivalently be considered in a geometric or cohomolog-
ical manner.

As 𝐺-torsors up to isomorphism are classified by 𝐻1
�́�𝑡
(𝑋, 𝐺), we have by ([7]

Proposition II.2.1), the following generality:

Definition 26. ([7] Definition III.1.2) Let 𝐵𝑢𝑛𝐺 be the 𝑣-stack taking a perfectoid
space 𝑆 ∈ 𝑃𝑒𝑟 𝑓𝑘 to the groupoid of 𝐺-bundles on 𝑋𝑆 .

4.4 Geometry of Diamonds

Chapter IV of [7] is devoted entirely to the Geometry of Diamonds, where results
from the étale cohomology of schemes are reformulated in terms of diamonds. We
summarize the principal results.

Example 29. ([7] Example IV.1.7 ) Any locally spatial diamond is an Artin 𝑣-stack
[7] 11.

9 See Appendix for a review of 𝐺-torsors.
10 [21] “𝑋 is locally of the form 𝑆𝑝𝑎 (𝑅, 𝑅+ ) with 𝑅 sousperfectoid, cf. Definition 6.3.1.

Definition 25. ([7] Definition 6.3.1) Let𝑅 be a complete Tate-Z𝑝-algebra. Then𝑅 is sousperfectoid
if there exists a perfectoid Tate ring �̃�with an injection𝑅 ↩→ �̃� that splits as topological𝑅-modules.

11 ([7] Definition IV.1.1). An Artin 𝑣-stack is a small 𝑣-stack 𝑋 such that the diagonal Δ𝑋 : 𝑋 →
𝑋 × 𝑋 is representable in locally spatial diamonds, and there is some surjective map 𝑓 : 𝑈 → 𝑋

from a locally spatial diamond𝑈 such that 𝑓 is separated and cohomologicaly smooth.
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Proposition 25. ([7] Proposition IV.1.8).

• Any fibre product of Artin 𝑣-stacks is an Artin 𝑣-stack.
• Let 𝑆 → ∗ be a pro-étale surjective, representable in locally spatial diamonds,

separated and cohomologically smooth morphism of 𝑣-sheaves. The 𝑣-stack 𝑋 is
an Artin 𝑣-stack if and only if 𝑋 × 𝑆 is an Artin 𝑣-stack.

• If 𝑋 is an Artin 𝑣-stack and 𝑓 : 𝑌 → 𝑋 is representable in locally spatial
diamonds, then 𝑌 is an Artin 𝑣-stack.

Example 30. ([7] Example IV.1.9).

• (i) According to point (ii) of Proposition IV.1.8, the 𝑣-stack 𝑋 is an Artin 𝑣-stack
if and only if 𝑋 × 𝑆𝑝𝑑𝐸 , resp. 𝑋 × 𝑆𝑝𝑎(F𝑞 ((𝑡

1
𝑝∞ ))), is an Artin 𝑣-stack. To check

that 𝑋 is an Artin 𝑣-stack we can thus replace the base point ∗ by 𝑆𝑝𝑑𝐸 , resp.
𝑆𝑝𝑎(F𝑞 ((𝑡

1
𝑝∞ ))).

• (ii) Any small 𝑣-sheaf 𝑋 such that 𝑋 → ∗ is representable in locally spatial
diamonds is an Artin 𝑣-stack; e.g. 𝑋 = ∗.

• (iii) Using point (iii) of Proposition I.V.1.8 and [[17], Proposition 11.20 [17]],
we deduce that any locally closed substack of an Artin 𝑣-stack is an Artin 𝑣-stack.

• (iv) Let 𝐺 be a locally profinite group that admits a closed embedding into
𝐺𝐿𝑛 (𝐸) for some 𝑛. Then the classifying stack [∗/𝐺] is an Artin 𝑣-stack. For
this it suffices to see that [𝑆𝑝𝑑𝐸/𝐺] = Spd 𝐸 × [∗/𝐺] is an Artin 𝑣-stack.
Now let 𝐻 = 𝐺𝐿⋄

𝑛,𝐸
; then there is a closed immersion 𝐺 × 𝑆𝑝𝑑𝐸 ↩→ 𝐻. The

map 𝐻 → 𝑆𝑝𝑑𝐸 is representable in locally spatial diamonds, separated, and
cohomologically smooth; hence so is 𝐻/𝐺 → [𝑆𝑝𝑑𝐸/𝐺] (by [[17], Proposition
13.4 (iv), Proposition 23.15 [17]]), and 𝐻/𝐺 is a locally spatial diamond (itself
cohomologically smooth over 𝑆𝑝𝑑𝐸 by [[17], Proposition 24.2 [17]] since this
becomes cohomologically smooth over the separated étale cover 𝐻/𝐾 → 𝐻/𝐺
for some compact open pro-𝑝 subgroup 𝐾 of 𝐺). It is clear that the diagonal of
[∗/𝐺] is representable in locally spatial diamonds.

Theorem 10. ([7] Theorem IV. 1.19). The stack 𝐵𝑢𝑛𝐺 is a cohomologically smooth
Artin 𝑣-stack of ℓ-dimension 0. The Beauville-Laszlo map defines a separated coho-
mologically cover

⊔
�̃�∈𝑋∗ (𝑇 )+/Γ

[𝐺 (𝐸)\𝐺𝑟𝐺,�̃�] → 𝐵𝑢𝑛𝐺 .

Definition 27. ([7] Definition IV.1.15). Let 𝑓 : 𝑌 → 𝑋 be a cohomologically
smooth map of Artin 𝑣-stacks. The functor 𝑅 𝑓 ! : 𝐷 �́�𝑡 (𝑋,Λ) → 𝐷 �́�𝑡 (𝑌,Λ) is given
by 𝑅 𝑓 ! = 𝑅 𝑓 ! ⊗L

Λ
𝑓 ∗.

Definition 28. ([7] Definition IV.3.1) Let 𝑓 : 𝑌 → 𝑋 be a map of 𝑣-stacks. Then f
is formally smooth if for any affinoid perfectoid space 𝑆 of characteristic 𝑝 with a
Zariski closed subspace 𝑆0 ⊂ 𝑆, and any commutative diagram

there is some étale map 𝑆′ → 𝑋 containing 𝑆0 in its image and a map 𝑔 : 𝑆′ → 𝑌

fitting in a commutative diagram

Corollary 6. ([7] Corollary IV.3.4). If 𝑓 : 𝑌 → 𝑋 is a smooth morphism of analytic
adic spaces over 𝑍𝑝 , then 𝑓 ⋄ : 𝑌 ⋄ → 𝑋⋄ is formally smooth.
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𝑆0
𝑔0 //

��

𝑌

𝑓

��
𝑆

ℎ // 𝑋,

Fig. 3 Commutative diagram for formal smoothness ([7] Definition IV.3.1).

𝑆′ ×𝑆 𝑆0 //

��

𝑆0
𝑔0 //

��

𝑌

𝑓

��
𝑆′ //

𝑔

66

𝑆
ℎ // 𝑋.

Fig. 4 Commutative diagram for formal smoothness ([7] Definition IV.3.1).

Example 31. ([7] IV.3.2 Examples and basic properties (iv))

For morphisms of locally spatial diamonds, formal smoothness is étale local on the source
and the target [7].

Proposition 26. ([7] Proposition IV.3.5). If 𝑓 : 𝑌 → 𝑋 is a formally smooth and
surjective map of 𝑣-stacks, then 𝑓 is surjective as a map of étale stacks. Equivalently,
in case 𝑋 is a perfectoid space, the map 𝑓 splits over an étale cover of 𝑋 .

Example 32. The stack 𝐵𝑢𝑛𝐺 → ∗ is formally smooth [7].

Theorem 11. ([7] Theorem IV.4.2). Let 𝑆 be a perfectoid space and let 𝑍 → 𝑋𝑆
be a smooth map of sous-perfectoid spaces12 such that 𝑍 admits a Zariski closed
immersion into an open subset of (the adic space) P𝑛

𝑋𝑆
for some 𝑛 ≥ 0. Then 𝑀𝑍

is a locally spatial diamond, the map 𝑀𝑍 → 𝑆 is compactifiable, and 𝑀𝑠𝑚
𝑍
→ 𝑆

is cohomologically smooth13. Moreover, for a geometric point 𝑥 : 𝑆𝑝𝑎𝐶 → 𝑀𝑠𝑚
𝑍

given by a map 𝑆𝑝𝑎𝐶 → 𝑆 and a section 𝑠 : 𝑋𝐶 → 𝑍 , the map 𝑀𝑠𝑚
𝑍
→ 𝑆 is at 𝑥 of

ℓ-dimension equal to the degree of 𝑠∗𝑇𝑍/𝑋𝑆
.

We note that Theorem IV.4.2 is regarded as

the most profound in the theory of diamonds so far: While we cannot control much of the
geometry of these diamonds, in particular we have no way to relate them to (perfectoid)
balls in any reasonable way, we can still prove relative Poincare’ duality for them [7].

12 ([7] Definition). Recall that an adic space 𝑋 is sous-perfectoid if it is analytic and admits an open
cover by𝑈 = 𝑆𝑝𝑎 (𝑅, 𝑅+ ) where each 𝑅 is a sous-perfectoid Tate algebra, meaning that there is
some perfectoid 𝑅-algebra �̃� such that 𝑅 → �̃� is a split injection in the category of topological
𝑅-modules.
13 “Let 𝑆 be a perfectoid space and let 𝑍 → 𝑋𝑆 be a smooth map of sous-perfectoid adic spaces
[7].” 𝑀𝑍 is the 𝑣-sheaf of “sections of 𝑍 → 𝑋𝑆 , sending any perfectoid space 𝑆′ → 𝑆 to the set of
maps 𝑋𝑆

′ → 𝑍 lifting 𝑋𝑆
′ → 𝑋𝑆 [7].” (Definition IV.4.1) Let𝑀𝑠𝑚

𝑧 ⊂ 𝑀𝑍 be the open subfunctor
of all sections 𝑠 : 𝑋𝑆

′ → 𝑍 such that 𝑠∗𝑇𝑍/𝑋𝑆
has everywhere positive Harder-Narasimhan slopes.
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Lemma 8. ([7]Lemma IV.3.28). Let 𝑆 be a perfectoid space over F𝑞 and let E be a
vector bundle on 𝑋𝑆 that is everywhere of nonnegative Harder-Narasimhan slopes.
There is a perfectoid space 𝑇 → 𝑆 that is locally Zariski closed in a perfectoid ball
B̃𝑛
𝑆

over 𝑆 and that admits a surjective map

𝑇 → (BC(E) \ {0})/𝐸×

over 𝑆 that is separated, representable in locally spatial diamonds, cohomologi-
cally smooth, and formally smooth.

Theorem 12. ([7] Theorem IV.6.5) Braden’s Theorem on hyperbolic localization
reformalized in diamonds.

Example 33. ([7]Section IV.7). Drinfeld’s Lemma.

Example 34. ([7]) 𝐷■ (𝑋). The six functor formalism in [17] is extended to the
larger class of solid pro-étale sheaves.

Lemma 9. ([7] Lemma VII.1.5). Any torsion constructible étale sheaf on the spatial
diamond 𝑋 is represented by a spatial diamond.

Example 35. ([7] Section VII.2). Four functors are constructed on solid sheaves.

Definition 29. ([7] Definition VII.6.1). Let 𝑋 be an Artin 𝑣-stack. The full sub-
category 𝐷𝑙𝑖𝑠 (𝑋,Λ) ⊂ 𝐷■ (𝑋,Λ) is the smallest triangulated subcategory stable
under all direct sums that contains 𝑓#Λ for all maps 𝑓 : 𝑌 → 𝑋 that are separated,
representable in locally spatial diamonds, and ℓ-cohomologically smooth.

5 Future Geometrizations

Diamonds have recast the local Langlands Program in the framework of nonar-
chimedean geometry. The significant results on representability in locally spatial
diamonds highlight the utility of diamonds for universal constructions. Moreover,
the presence of diamonds in the Langlands Program exemplifies how they are like
geometric bridges between objects that admit universal properties. From these ob-
servations, three questions immediately arise:

Question 4. What else could and should be geometrized?

Question 5. In addition to the Jacquet-Langlands correspondence and the local
Langlands correspondence, could the global Langlands correspondence and/or
Langlands Functoriality be geometrized over a suitable adic space?

Question 6. Can the diamond formalism be extended across disciplines?
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5.1 Diamond ER = EPR

Regarding Question 6, it would be interesting to explore the application of diamonds
across other 𝑝-adic disciplines; namely, in 𝑝-adic quantum mechanics. We are par-
ticularly interested in a diamond reformulation of Susskind’s excellent ER = EPR
conjecture [22], which resituates quantum entanglement (EPR) in terms of geometry
(ER) and quantum computational complexity. Leonard Susskind explains the curious
nature of entanglement, which mirrors the mineralogical properties of a diamond,
where the impurities are never directly visible, but only indirectly so via the colored
reflections:

The peculiar thing about entanglement is that knowing the quantum state in this form is
everything that can possibly be known about those two qbits. There is no more to be known.
A quantum state like this is the fullest possible description of the two q-bits, and yet it says
nothing whatever about what either one of them is doing. It is equally likely that the first
qbit is up as that it is down. So, it is a state of being which is absolutely the maximal you can
know about the system, and yet you know nothing about the individual constituents [23].

The possible connection between diamonds - geometrization of local langlands -
ER = EPR, is important for two significant reasons:

1. Inserting diamonds into particular principles of quantum mechanics could lead to
a functorial-geometric version of computational complexity and/or entanglement;
i.e. making entanglement “more geometric.”

2. As ER = EPR is often called a conjectural GUT for physics, formulating diamonds
in ER = EPR could lay the foundations for a possible link between the two GUTs.

We state our conjecture as follows:

Conjecture 5. Diamond ER = EPR. Quantum computational complexity is locally
representable in spatial diamonds.

6 Conclusion

We have presented a current and comprehensive review of diamonds, and presented
their extensive results in the Langlands Program. Studying diamonds’ many math-
ematical guises all at once, similar to studying the profinite 𝐺𝑎𝑙 (�̄�/𝑄) [15], may
give us new representations of diamonds. In particular, future work could consist
of exploring the universal constructions that diamonds admit. A key question is
whether diamonds could be used across disciplines due to their universal properties.
Perhaps one could construct a notion of a diamond holography, or a diamond version
of the extraordinary ER = EPR conjecture [22], with a diamond-equivalent notion
of computational complexity. In any case, diamonds are an extraordinarily powerful
and versatile construction, the future use of which is bright and promising.
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Appendix

7.1 Six Functor Formalism of Diamonds

In [17], Scholze constructs a six functor formalism on the étale cohomology of
diamonds. We summarize key points of the construction.

The set up is the following: A prime 𝑝 is fixed. 𝑋 is an analytic adic space “on
which 𝑝 is topologically nilpotent [17].” 𝑋�́�𝑡 is an étale site.

For any ring Λ such that 𝑛Λ = 0 for some 𝑛 prime to 𝑝, we get a (left-completed) derived
category D�́�𝑡 (𝑋,Λ) of étale sheaves of Λ-modules on 𝑋�́�𝑡 .

Definition 30. ([17] Definition 1.7) Let 𝑋 be a small 𝑣-stack, and consider the site
𝑋𝑣 of all perfectoid spaces over 𝑋 , with the 𝑣-topology. Define the full subcategory

D�́�𝑡 (𝑋,Λ) ⊂ D(𝑋𝑣,Λ)
as consisting of all 𝐴 ∈ D(𝑋𝑣,Λ) such that for all (equivalently, one surjective)

map 𝑓 : 𝑌 → 𝑋 from a locally spatial diamond 𝑌 , 𝑓 ∗𝐴 lies in D̂(𝑌�́�𝑡 ,Λ).
Now we can state that we have the following operations.

1. A (derived) tensor product

-
⊗L

Λ - : 𝐷�́�𝑡 (𝑋,Λ) × 𝐷�́�𝑡 (𝑋,Λ) → 𝐷�́�𝑡 (𝑋,Λ) .

This is compatible with the inclusions into 𝐷 (𝑋𝑣 ,Λ) and the usual derived tensor
product on 𝑋𝑣.

2. An internal Hom

𝑅H𝑜𝑚Λ (−, −) : 𝐷�́�𝑡 (𝑋,Λ)𝑜𝑝 × 𝐷�́�𝑡 (𝑋,Λ) → 𝐷�́�𝑡 (𝑋,Λ) .

characterized by the adjunction

𝑅 Hom𝐷�́�𝑡
(𝑋,Λ) (𝐴, 𝑅H𝑜𝑚Λ (𝐵, 𝐶 ) ) = 𝑅 Hom𝐷�́�𝑡 (𝑋,Λ) (𝐴 ⊗LΛ 𝐵, 𝐶 )

for all 𝐴, 𝐵, 𝐶, ∈ 𝐷�́�𝑡 (𝑋,Λ) . In particular, for 𝐴 = Λ,

𝑅Γ (𝑋, 𝑅H𝑜𝑚Λ (𝐵, 𝐶 ) ) = 𝑅 Hom𝐷�́�𝑡 (𝑋,Λ) (𝐵, 𝐶 ) .

In general, the formation of 𝑅H𝑜𝑚Λ does not commute with the inclusion𝐷�́�𝑡 (𝑋,Λ) ⊂
𝐷 (𝑋𝑣 ,Λ) .

3. For any map 𝑓 : 𝑌 → 𝑋 of small 𝑣-stacks, a pullback functor

𝑓 ∗ : 𝐷�́�𝑡 (𝑋,Λ) → 𝐷�́�𝑡 (𝑌,Λ) .

This is compatible with the inclusions into𝐷 (𝑋𝑣 ,Λ) resp.𝐷 (𝑌𝑒𝑣,Λ) , and the pullback
functor 𝐷 (𝑋𝑣 ,Λ) → 𝐷 (𝑌𝑣 ,Λ) .

4. For any map 𝑓 : 𝑌 → 𝑋 of small 𝑣-stacks, a pushforward functor

R 𝑓∗ : 𝐷�́�𝑡 (𝑌,Λ) → 𝐷�́�𝑡 (𝑋,Λ)
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which is right adjoint to 𝑓 ∗. In general, formation of 𝑅 𝑓∗ does not commute with the
inclusions into 𝐷 (𝑋𝑣 ,Λ) resp. 𝐷 (𝑌𝑣 ,Λ) , but this holds true if 𝑓 is qcqs and one starts
with an object of 𝐷+.

5. For any map 𝑓 : 𝑌 → 𝑋 of small 𝑣-stacks that is compactifiable (cf. Definition 22.2),
representable in locally spatial diamonds (cf. Definition 13.3), and with (locally) dim.trg
𝑓 < ∞ (cf. Definition 21.7), a functor

R 𝑓! : 𝐷�́�𝑡 (𝑌,Λ) → 𝐷�́�𝑡 (𝑋,Λ) .

6. For any map 𝑓 : 𝑌 → 𝑋 of small 𝑣-stacks that is compactifiable, representable in locally
spatial diamonds, and with (locally) dim.trg 𝑓 < ∞, a functor

R 𝑓 ! : 𝐷�́�𝑡 (𝑋,Λ) → 𝐷�́�𝑡 (𝑌,Λ)

that is right adjoint to 𝑅 𝑓!.

The above constructions are upgraded to “functors of∞-categories [17].”

Lemma 10. ([17] Lemma 17.1) There is a (natural) presentable stable∞-category
𝐷 ét (𝑌,Λ) whose homotopy category is 𝐷 ét (𝑌,Λ). More precisely, the ∞-derived
category 𝐷 (𝑌𝑣,Λ) of Λ-modules on 𝑌𝑣 is a presentable stable ∞-category, and
𝐷 ét (𝑌,Λ) is a full presentable stable∞-subcategory closed under all colimits.

Proof [17]

First, 𝐷 (𝑌𝑣 ,Λ) is a presentable stable∞-category, as this is true for any ringed topos. Next,
we check that the full∞-subcategory 𝐷ét (𝑌,Λ) , with objects those of 𝐷ét (𝑌,Λ) , is closed
under all colimits in𝐷 (𝑌𝑣 ,Λ) . This is clear for cones, so we are reduced to filtered colimits.
Those commute with canonical truncations, and filtered colimits of étale sheaves are still
étale sheaves, as desired.
By [Lur09, Proposition 5.5.3.12][11], it is enough to prove the claim if𝑌 is a disjoint union
of strictly totally disconnected perfectoid spaces. In that case,𝐷ét (𝑌,Λ) = 𝐷 (𝑌ét,Λ) (as the
functor of stable∞-categories𝐷 (𝑌ét,Λ) → 𝐷 (𝑌𝑣 ,Λ) is fully faithful (as it is on homotopy
categories), and has the same objects as 𝐷ét (𝑌,Λ) , which is a presentable∞-category. □

7.2 𝑮-torsor

In order to understand the important diamond examples 𝑆𝑝𝑑𝑄𝑝×𝑆𝑝𝑑𝑄𝑝 andY⋄(𝑆,𝐸 ) ,
we follow the excellent exposition in [21] and review their notions of a 𝐺-torsor and
a 𝐺-torsor.

Definition 31. ([21] Definition Section 9.3)

If𝐺 is a finite group, we have the notion of𝐺-torsor on any topos. This is a map 𝑓 : F′ → F
with an action 𝐺 × F′ → F′ over F such that locally on F, one has a 𝐺-equivariant
isomorphism F′ ≃ F × 𝐺.

Definition 32. ([21] Discussion Section 9.3)
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There is another notion if 𝐺 is a group object in a topos, for example in the category of
pro-étale sheaves on Perf [21]. For any topological space 𝑇 , we can introduce a sheaf 𝑇 on
Perf, by 𝑇 (𝑋) = 𝐶0 ( |𝑋 | , 𝑇 ) . As proétale covers induce quotient mappings by Proposition
4.3.3, we see that 𝑇 is a pro-étale sheaf. If 𝑇 is a profinite set, this agrees with the definition
of 𝑇 given earlier [in Example 8.2.2]. If now𝐺 is a topological group, then 𝐺 is a sheaf of
groups. If 𝐺 = 𝑙𝑖𝑚

←𝑖
𝐺𝑖 is a profinite group, then in fact 𝐺 = 𝑙𝑖𝑚

←𝑖
𝐺𝑖 .

Note that 𝐺 is not representable, even if 𝐺 is finite. The problem is that Perf lacks a final
object 𝑋 (in other words, a base). If it had one, then for finite 𝐺, the sheaf 𝐺 would be
representable by 𝐺 copies of 𝑋. And indeed, 𝐺 becomes representable once we supply the
base. If 𝑋 is a perfectoid space and 𝐺 a profinite group, then 𝑋 × 𝐺 is representable by a
perfectoid space, namely

𝑋 × 𝐺 = 𝑙𝑖𝑚
←
𝑋 × 𝐺/𝐻,

where 𝑋 × 𝐺/𝐻 is just a finite disjoint union of copies of 𝑋 [21].

Remarkably, if 𝐺 is rather a profinite set, the same conclusions hold. A 𝐺-torsor
is defined as follows.

Definition 33. ([21] Discussion Section 9.3)

A 𝐺-torsor is a morphism 𝑓 : F′ → F with an action 𝐺 × F′ → F′ such that locally on
F we have a 𝐺-equivariant isomorphism F′ ≃ F × 𝐺.

There exists the following general result for torsors under locally profinite groups
𝐺.

Lemma 11. ([17] Lemma 10.13) Let 𝑓 : F ′ → F be a 𝐺-torsor, with 𝐺 profinite.
Then for any affinoid 𝑋 = 𝑆𝑝𝑎(𝐵, 𝐵+) and any morphism 𝑋 → F , the pullback
F ′ ×F 𝑋 is representable by a perfectoid affinoid 𝑋 ′ = 𝑆𝑝𝑎(𝐴, 𝐴+). Furthermore,
𝐴 is the completion of 𝑙𝑖𝑚

→𝐻
𝐴𝐻 , where for each open normal subgroup 𝐻 ⊂ 𝐺, 𝐴𝐻/𝐵

is a finite étale 𝐺/𝐻-torsor in the algebraic sense.

7.3 G-torsors

Our brief review of G-torsors follows ([17] (Appendix to Lecture 19)).
The discussion is motivated by the following problem:

There is the problem that in general, if 𝑋 is an adic space over 𝑍𝑝 , it is not clear whether
G × 𝑋 is also an adic space. For this reason, we restrict to one class of spaces where this
happens, at least when G is smooth.

The set up is the following. Let G be smooth, and let 𝑋 be a sousperfectoid
analytic adic space over 𝑍𝑝 .

G denotes the adic space Spa(𝑅, 𝑅+ ) if G = Spec𝑅 and 𝑅+ ⊂ 𝑅 is the integral closure of
𝑍𝑝 . For every adic space 𝑆 over 𝑍𝑝 , one has G(𝑆) = G(O𝑆 (𝑆) ) .

A G-torsor takes either a geometric, cohomological, or Tannakian form.
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Definition 34. ([17] Discussion Appendix to Lecture 19)

• (Geometric) A geometric G-torsor is an adic space P → 𝑋 over 𝑋 with an action of G
over 𝑋 such that étale locally on 𝑋, there is a G-equivariant isomorphism P ≃ G × 𝑋.

• (Cohomological) A cohomological G-torsor is an étale sheaf Q on 𝑋 with an action of
G such that étale locally on 𝑋, there is a G-equivariant isomorphism Q ≃ G.

• (Tannakian) A Tannakian G-torsor is an exact ⊗-functor 𝑃 : Rep G → 𝐵𝑢𝑛(𝑋) , where
𝐵𝑢𝑛(𝑋) is the category of vector bundles on 𝑋.

Theorem 13. ([17] Theorem 19.5.2) The categories of geometric, cohomological,
and Tannakian G-torsors on 𝑋 are canonically equivalent.

We conclude with the following descent result.

Proposition 27. ([17] Proposition 19.5.3) Let 𝑆 ∈ Perf be a perfectoid space of
characteristic 𝑝 and let 𝑈 ⊂ 𝑆

·
× Spa𝑍𝑝 be an open subset. The functor on Perf𝑆

sending any 𝑆′ → 𝑆 to the groupoid of G-torsors on

𝑈 ×
𝑆
·
×Spa𝑍𝑝

𝑆′
·
× Spa𝑍𝑝

is a 𝑣-stack.

7.3.1 Étale Locus

Following the exposition in [21] we highlight a few results concerning vector bundles
on the relative Fargues-Fontaine curve X𝐹𝐹,𝑆 ,

which are also studied via 𝜙-modules on subspaces of Y(0,∞) (𝑆) [21].

Two foundational theorems about vector bundles onX𝐹𝐹,𝑆 are proved by Kedlaya-
Liu:

The first concerns the semicontinuity of the Newton polygon; the second the open locus
where the Newton polygon is 0.
The set up is the following: Let 𝑆 be a perfectoid space of characteristic 𝑝, and let E be a
vector bundle on X𝐹𝐹,𝑆 . Passing to an open and closed cover of 𝑆, we assume that the rank
of E is constant. For any 𝑠 ∈ 𝑆, we choose a geometric point

• 𝑠 = Spa(𝐶, 𝐶+ ) → 𝑆

whose closed point maps to 𝑠, and pullback E to a vector bundle E�̄� on X𝐹𝐹,𝐶 [21].

Theorem 14. ([21] Theorem 22.2.1 [KL15]) The map 𝜈E is upper semicontinuous.

To construct examples of the open locus where the Newton polygon is 0, we take a pro-étale
𝑄𝑝-local system L on 𝑆 and look at

• E = L ⊗𝑄𝑝
OX𝐹𝐹,𝑆

.

Using the pro-étale or even 𝑣-descent of vector bundles on Y(0,∞) (𝑆) , and thus on X𝐹𝐹,𝑆

([21] Proposition 19.5.3), we have a vector bundle on X𝐹𝐹,𝑆 , upon descending to the case
where L is trivial [21].
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We now have the second theorem of Kedlaya-Liu.

Theorem 15. ([21] Theorem 22.3.1 [KL15) This construction defines an equivalence
between the category of pro-étale 𝑄𝑝-local systems on 𝑆 and the category of vector
bundles E on X𝐹𝐹,𝑆 which are trivial at every geometric point of 𝑆 (which is to say,
the function 𝜈E is identically 0).

For the link to isocrystals and further discussion, see [21] Corollary 22.3.3,
Definition 22.4.1, and Remark 22.4.2.
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