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Abstract
Microbial biofilm created huge burden in treatment of both community and hospital infections. A biofilm is complex 
communities of bacteria attached to a surface or interface enclosed in an exopolysaccharide matrix and protected from 
unfavorable conditions such as presence of antibiotics, host defense or oxidative stresses. Biofilms are often considered 
hot spot for horizontal gene transfer among same or different bacterial species. Furthermore, bacteria with increased 
hydrophobicity facilitate biofilm formation by reducing repulsion between the extracellular matrix and the bacterium. 
There is a marked increase in the rate of persons nonresponsive to antibiotic therapy for infections of the Urinary Tract 
(UTIs), burns and upper respiratory tract due to biofilm formations. It is estimated that 90% of nosocomial infections are 
mediated by biofilm. The role of biofilm in infections has become so great that the treatment of such antibiotic resistance 
infections is proving difficult and costly to health care systems. The biofilm related infections varied from dental plaque, 
destruction of prosthetic valve to death of cystic fibrosis patients. This review aims to provide a summary of role of bacterial 
biofilm and its clinical implications for the patients.
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Introduction
Bacteria can be found in natural ecosystem in two 

forms, planktonic cells; better freedom of migration, more 
prone to mutation, sensitivity to environment, more ac-
tive metabolically, sensitive to antibiotics and other anti-
microbial agents and biofilm form; better protection, less 
subjects to mutation, are resistance to antibiotics and dis-
infectants and are less active metabolically. Biofilms are 
surface attached communities of bacteria, encased in an 
extracellular matrix of secreted proteins, carbohydrates, 
and/or eDNA, that creates phenotypes distinct from those 
of planktonic cells [1]. Microbes form a biofilm in response 
to various different factors which may include cellular rec-
ognition of specific or non-specific attachment sites on 
a surface, nutritional scarcity, or exposure of planktonic 
cells to subinhibitory concentrations of antibiotics or dis-
infectants [2]. When a cell switches to the biofilm mode 
of growth, it undergoes a phenotypic shift in behavior in 
which large number of genes are differentially regulated 
[3]. For example, biofilm formation in Escherichia coli 

was shown to involve the differential expression of 230 
genes, including those encoding proteins associated with 
adhesion and auto-aggregation, outer membrane proteins 
(OmpC, OmpF, OmpT, and Slp), and proteins involved 
in lipid A biosynthesis [4]. Modarressi, et al. showed RND 
efflux pump and quorum sensing genes influenced by iron 
limitation in biofilm Acinetobacter baumannii [5].

Places in Which the Biofilms are Mostly Form
Nearly 80% of bacteria in natural environment can 
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fection [11]. Recurring tonsil infections and sore throats 
are a fact of life for many children. The pediatrician pre-
scribes antibiotics, and they help for a while, but the in-
fection returns. The pattern repeats itself until the doctor 
or the frustrated parents finally decide that the wrinkly 
olive-sized ovals of inflamed tonsil tissue must come out. 
Why, they wonder, can’t the body eliminate these infec-
tions, even with the help of antibiotics? This question 
later resolved by discovery of biofilm and its clinical im-
plications. Sanclement, et al. [12] reported that biofilms 
are prevailed on the removed tissue of 80% of patients 
had surgery for chronic sinusitis. Infections associated 
with the biofilm growth usually are difficult to eradicate 
and has several implications on our life, for example, dis-
ease prolongation, collapse of antibiotic therapy, prolong 
hospital stay and increase in severity of infections [13]. 
In ecosystems biofilm has positive role in acceleration of 
natural cycles of biogenic elements like C, N2, P, S, O2 
[14].

Steps in Biofilm Formation
Biofilm formation is initiated by interaction of cells 

with a surface or with each other. It is thought that the 
planktonic bacteria adhere to the surface initially through 
weak, reversible adhesion via van der Waals forces and 
hydrophobic effects aggregate, then the cells form an ex-
tracellular matrix. This matrix encases the cells within 
it and facilitates communication among them through 
biochemical signals as well as genetic exchange. It con-
tained the microbial cells, exopolysaccharide and water 

form biofilm, recent studies indicated biofilms can grow 
in the most extreme environments from the extremely 
hot, briny waters of hot springs ranging from very acidic 
to very alkaline, to frozen glaciers [6]. However, a de-
tailed examination of biofilms would await the electron 
microscope, which allowed high-resolution scanning 
electron microscopy (SEM) at much higher magnifica-
tions than did the light microscope [7]. Most places that 
biofilm are formed in hospitals are medical devices on 
catheters, ventilators or other hospital devices [8]. In ad-
dition, biofilm can form on teeth, middle ear, GI, and 
respiratory tract (cystic fibrosis patients). Biofilms also 
form on soft tissue surfaces in living organisms or at liq-
uid-air interfaces [9].

The biofilms on teeth can either be in an uncalcified 
state that can be removed by dental instruments, or a 
calcified state which is more difficult to remove. On the 
surface of teeth, they frequently subject to oxidative and 
acid stresses. Dietary carbohydrates can cause a dramatic 
decrease in pH in oral biofilms to values of 4 and below 
(acid stress). A pH of 4 at body temperature of 37 °C 
causes depurination of DNA, leaving apurinic (AP) sites 
in DNA especially loss of guanine [10].

Biofilms Impacts
Richard Chole, Washington University School of 

Medicine in St. Louis was the first who discovered that 
bacteria often form biofilms in the wet and warm folds of 
the tonsils, and that these may serve as reservoirs of in-
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Figure 1: Steps in biofilm formation.



• Page 47 •

Citation: Shakibaie MR (2018) Bacterial Biofilm and its Clinical Implications. Ann Microbiol Res 2(1):45-50
SCHOLARLY  PAGES

Shakibaie. Ann Microbiol Res 2018, 2(1):45-50

tobacter baumannii [21]. Analysis of bap expression by 
rqRT-PCR revealed five isolates with four-fold bap over-
expression in the presence of low iron concentration (20 
µM) [21]. Similarly, the ability of A. baumannii to form 
biofilms is also largely dependent on pili, which mediate 
attachment and biofilm formation. In addition, csuE, is 
a member of the usher-chaperone assembly system. The 
genes are cluster together in form of the csu operon, the 
products of which form a pilus-like bundle structure in 
this bacterium. This gene has proved to be an important 
factor of A. baumannii biofilm formation [22].

Role of Plasmids in Bacterial Biofilms
It is well established that the biofilm is an important 

niche for horizontal gene transfer (HGT) by transfor-
mation in naturally competent bacteria and that biofilm 
development and competence are mediated and regulat-
ed by many of the same gene products [23,24]. Plasmid 
transfer has been shown to occur in many natural bio-
film communities, such as soil, water, plant leaves, riv-
er rocks, biofilm reactors and mouse intestines [25]. In 
situ surveys of plasmid transfer in biofilms grown in flow 
cells have also shown that plasmid invasion in an estab-
lished biofilm was detected only at the interfaces, where 
bacteria were most metabolically active and dividing 
[26]. The role of plasmids in biofilm formation described 
the effects of the well-studied conjugative F plasmid of E. 
coli biofilms. The experiments demonstrated that addi-
tion of the F plasmid to E. coli cells greatly increased their 
ability to form biofilms a conjugation-independent and 
plasmid-encoded pilus-dependent fashion [24]. Most 
published studies of plasmid biology and conjugation 
in biofilms have focused on Gram negative spp. such as 
Pseudomonas aeruginosa and E. coli. Many chromosom-
al genes have now been shown to be involved in different 

[15]. Other substances often found in the biofilm in-
clude extracellular DNA, RNA, and proteins reaching 
approximately 2% in total [16]. Dispersion is final state 
in biofilm, at the time of dispersal, microcolonies under-
go cell death and lysis along with active dispersal of mo-
tile bacteria to leave behind hollow colonies. A biofilm 
is thought to maintain equilibrium via growth and dis-
persal. Dispersal is believed to occur either as single cells 
or as small microcolonies [17]. Dispersion help the bio-
film producing bacteria to detach from biofilm body and 
form another biofilm microcolonies spread to the envi-
ronment. It should be noted that structure of biofilms 
is dramatically different due to the specific organisms in 
the film and environmental conditions. Steps in biofilm 
formation are illustrated in Figure 1. The in-vitro obser-
vations available today suggest that it is more likely that 
biofilm formation proceeds through a series of temporal 
events that reflect adaptation to nutritional and environ-
mental conditions [18].

Hydrophobicity and electro kinetic potential of bacte-
rial cells depend on their surface composition and struc-
ture, where lipopolysaccharide, in Gram-negative bac-
teria, may affect the ability of bacteria to form biofilms. 
Bacteria with increased hydrophobicity have reduced 
repulsion between the extracellular matrix and the bac-
terium [19]. Some bacteria species are not able to attach 
to a surface on their own due to their limited motility but 
are instead able to anchor themselves to the matrix or 
directly to other, earlier bacteria colonists. Non-motile 
bacteria cannot recognize surfaces or aggregate togeth-
er as easily as motile bacteria [20]. Figure 2 shows the 
mechanism of interaction, hydrophobicity and charges 
play in biofilm matrix formation. Further studies re-
vealed that iron play an important role in biofilm for-
mation and expression of biofilm related genes in Acine-
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Figure 2: Interaction between charges and amount of chemotactic signals such as pheromones involve in matrix formation.
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In most of the studies conducted to date host-patho-
gen interactions concern bacteria in planktonic state, 
however, recent studies have begun to investigate im-
mune response to biofilms. Their tolerance of host de-
fences is dramatically increased [34]. This definition dif-
fers in one respect from most other biofilm definitions 
because it no longer requires that a biotic or abiotic sur-
face is a hallmark. Antimicrobial factors such as lacto-
ferrin and the human cationic host defense peptide LL-
37 found at mucosal surfaces or in secondary granules 
of PMN, when used in vitro at very low concentrations, 
strongly inhibit formation of pseudomonas aeruginosa 
biofilm. However, bacteria are known to counter such 
host defense by secreting protease able to degrade both 
lactoferrin and LL-37 [35]. Recent research adds further 
aspects to this phenomenon because phagocytes do come 
in contact with the bacteria in biofilms and they can even 
penetrate biofilms. However, the bacteria in the biofilms 
are not killed [36].

Biofilm and Antibiotic Resistance
Tolerance to antimicrobial agents is common feature 

of microbial biofilm formation. Biofilm reduced suscep-
tibility to antibiotics in quantified by a tolerance factor, 
TF, defined as: TF = (LRP × tB × CB/LRB × tP × CP).

Where CP and CB shows planktonic and biofilm dose 
concentration, respectively. tP and tB indicate plankton-
ic and biofilm dose duration and LRp and LRB show the 
measured log reduction in planktonic and biofilm pop-
ulations, respectively. TF compares the rate of killing in 
planktonic and biofilm states. TF = 10 means that biofilm 
killing is 10 times slower than in planktonic condition.

Biofilm are 1000-1500 times more resistant to antibi-
otics than planktonic state. Treatment of infections with 
biofilm forming bacteria is extremely difficult, requires 
higher doses or combination of antibiotics, and removal 
of foreign bodies when implicated in device related infec-
tions [37]. In biofilms, poor antibiotic penetration, nutri-
ent limitation and slow growth, adaptive stress respons-
es, and formation of persister cells are hypothesized to 
constitute a multi-layered defense. Recent report suggest 
that the biofilm matrix can act as a barrier to delay the 
diffusion of antibiotics into biofilms because antibiotics 
may either react chemically with biofilm matrix compo-
nents or attach to anionic polysaccharides [2]. It must 
to be noted that biofilm antibiotic tolerance should not 
be confused with antibiotic resistance because, although 
bacteria within a biofilm tend to survive antibiotic treat-
ment, they become susceptible to the treatment when the 
biofilm is disrupted [38]. In study conducted by my re-
search group on 85 isolates of K. pneumoniae from four 
hospitals in Kerman, Iran. The antibiotic susceptibility 
under biofilm and planktonic growths was compared by 

stages of biofilm development. By contrast, the contri-
bution of the plasmid gene pool (representing as much 
as 10-20% of total bacterial DNA) to biofilm biology is 
poorly understood. As a consequence, with the excep-
tion of biotechnology application and antibiotic resis-
tance spread, the role of plasmids in bacterial ecology has 
been largely overlooked. Conjugative plasmids of E. coli 
including pOLA52 and pMAS2027 have been shown to 
enhance biofilm formation through type 3 fimbriae [27]. 
The pOLA52 plasmid can also be transferred to a variety 
of organisms and retains its ability to induce biofilm for-
mation in Salmonella typhimurium, Kluyvera spp. and 
Enterobacter aerogenes [28]. Co-culture studies with P. 
putida, E. coli, and Kluyvera spp. also demonstrated the 
impact of conjugative plasmids on biofilm development. 
In these experiments, the conjugative plasmid pKJK5, an 
IncP-1 plasmid [29].

Role of Biofilm in Microbial Infections
Increasing evidence suggests that the chronicity of 

persistent bacterial infections is due to bacterial biofilm 
formation, which contrasts with the planktonic bacteria 
found in acute infections [17]. It is more often that in-
fectious biofilm form in a host that is in a compromised 
state due to immune deficiency, drug treatment, trauma, 
tissue damage (burns and surgery) or has an underlying 
physiological diseases such as cystic fibrosis or diabetes 
[30]. Cystic fibrosis is the most common lethal inherited 
disease in Caucasians. It is a monogenic, autosomal re-
cessive multi-organ disease with a worldwide incidence 
of gene defects in the range of 1: 32000 to 1: 2000 live 
births. It is proved that biofilm play vital role in this syn-
drome and increases mortality of the patients consider-
ably [18]. In this case, formation of immune complexes 
stimulates release of proteolytic enzymes that destroy ad-
jacent tissues causing more damage than the invading P. 
aeruginosa [31]. Biofilm related infections are primarily 
caused by opportunistic pathogens, once, having access 
to a host, are able to evade the immune system by sur-
rounding themselves in an exopolymer matrix or glycoc-
alyx [32]. For example, Proteus mirabilis inhabits the en-
vironment and causes a number of infections including 
catheter related urinary tract through biofilm formation. 
Factors relevant to P. mirabilis biofilm formation include 
adhesion factors, proteins involved in LPS production, 
transporters, transcription factors, two component sys-
tems, and communication factors [33]. Scanning elec-
tron microscopy has revealed the rough, irregular nature 
of catheter surfaces, Latex-based catheters have partic-
ularly uneven surfaces facilitate attachment of P. mira-
bilis on catheters [32]. It is important to note that, the 
exopolysaccharides that cover biofilm bacteria have been 
found to be less immunogenic, thus hiding the proteins 
and lipopolysaccharides on bacteria surfaces.
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microdilution method. A considerable increase in MIC 
to piperacillin/tazobactam, tetracycline and cefotax-
ime occurred for the cells taken from 24 h biofilm but 
all were sensitive to colistin and tigecycline [39]. Rodri-
guez-Baño, et al. [40] showed that biofilm-forming A. 
baumannii isolates were more susceptible to imipenem 
and ciprofloxacin than non-biofilm-forming counter-
parts, which suggests that the survival of these isolates in 
the hospital environment was less dependent on antibi-
otic resistance than on biofilm formation. In a study car-
ried out on biofilm production and antibiotic resistance 
in Proteus spp. out of 88 patients infected by Proteus, 
81 isolates were identified as P. mirabilis and 7 identi-
fied as P. vulgaris. 17% [n = 15] of the isolates exhibited 
strong biofilm and showed high resistance to ceftriaxone, 
chloramphenicol, ciprofloxacin, tetracycline and tri-
methoprim- sulfamethoxazole [41]. Furthermore, recent 
study by my research group [42] on effect of nano-silver, 
nano-copper, deconex and benzalkonium chloride on 
biofilm formation and expression of transcription reg-
ulatory quorum sensing gene (rh1R) in drug-resistance 
P. aeruginosa burn isolates showed that Ag NPs exerted 
highest antibiofilm activity, follow by deconex and ben-
zalkonium chloride and Benzalkonium chloride, Ag NPs 
and deconex increased the expression of rhlR gene 64, 
2 and 7 folds, respectively. Results suggested that, there 
is direct relationship between decrease in antibiofilm ac-
tivity and increase in expression of the rhlR gene in the 
presence of benzalkonium chloride [42].

Conclusion
From above results it can be concluded that biofilms 

play an important role in survival of bacteria under nat-
ural harsh condition and protecting them from antimi-
crobial agents and toxic compounds. In medicine, bio-
film forming bacteria are responsible for chronic and 
persistence infections. They are especially important in 
hospitals where most of the hospital acquired infecting 
bacteria are capable of producing biofilm. The biofilm 
can tolerate high concentrations of antibiotics because 
antibiotics may either react chemically with biofilm ma-
trix components or attach to anionic polysaccharides. 
The antibiotic resistant biofilm producing bacteria are 
responsible for major death among patients with adverse 
conditions such as immune deficiency or cancer.
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