
1

Bertrand’s Paradox and the Maximum Entropy Principle

January 2019
Nicholas Shackel and Darrell Rowbottom1

Forthcoming in Philosophy and Phenomenological Research
Online early here: DOI:10.1111/phpr.12596

Abstract: An important suggestion of objective Bayesians is that the maximum entropy
principle can replace a principle which is known to get into paradoxical difficulties: the
principle of indifference. No one has previously determined whether the maximum
entropy principle is better able to solve Bertrand’s chord paradox than the principle of
indifference. In this paper I show that it is not. Additionally, the course of the analysis
brings to light a new paradox of the chords that is unique to the maximum entropy
principle.

1. Introduction

An important suggestion of objective Bayesians is that the maximum entropy principle
can replace a principle which is known to get into paradoxical difficulties: the principle of
indifference. The maximum entropy principle can be considered as a refinement and
generalisation of the principle of indifference: they agree on cases to which the latter
principle applies whilst the former can yet be used where the latter has no purchase.

Bertrand constructed his chord paradox to pose a challenge to the principle of
indifference by showing that it led to inconsistent probabilities. Despite an extensive
literature aimed at resolution, Bertrand’s chord paradox continues to undermine the
principle of indifference (Shackel 2007).

There is no such literature examining whether the maximum entropy principle is able to
resolve Bertrand’s paradox. Indeed, there is no literature even showing how the maximum
entropy principle can get a purchase on the paradox. In this paper I show that even under
the most favourable assumptions allowing for that purchase, Bertrand’s chord paradox
undermines the maximum entropy principle. Additionally, the course of the analysis
brings to light a new paradox of the chords that is unique to the maximum entropy
principle.

2. The maximum entropy principle

Salmon’s Ascertainability criterion requires ‘that there be some method by which, in
principle at least, we can ascertain values of probabilities’ (Salmon 1967:64). Classical
probabilists such as Bernoulli (1713) and Laplace (1814/1995)2 and logical probabilists
such as Keynes (1921/2014) have used as their method the principle of indifference:

The theory of chance consists in reducing all the events of the same kind to

a certain number of cases equally possible, that is to say, to such as we may
be equally undecided about in regard to their existence, and in determining
the number of cases favourable to the event whose probability is sought. The
ratio of this number to that of all the cases possible is the measure of this
probability (Laplace 1814/1995:6-7)

1 Author’s contributions: Shackel 90%, Rowbottom 10%. In memoriam Michael Clark 1940-2019,
who shared our delight in the philosophical problems posed by paradoxes.
2 Mathematicians may think of classical probabilism as identifying probability with a normalized
measure as axiomatized by Kolmogorov, but this is not what is meant philosophically.
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if there is no known reason for predicating of our subject one rather than
another of several alternatives, then relative to such knowledge… these
alternatives have an equal probability. (1921/2014: 45).

The mathematical theory of probability alone tells me nothing of the probability of heads,
but because I have no reason to expect either side of the coin, heads has the probability of
one half.

Unfortunately the principle of indifference falls afoul of a number of paradoxes, most
famous of which is Bertrand’s chord paradox. When the principle of indifference is
applied to the paradox it results in three different probabilities for one and the same event.
This non-uniqueness was taken to be a refutation of classical probabilism (Bertrand’s own
target in constructing the paradox) and has also been taken to be a refutation of logical
probabilism.

Objective Bayesians such as Jaynes (2003), Rosenkrantz (1977) and Williamson (2010)
have suggested that the maximum entropy principle can replace the principle of
indifference.

The maximum entropy principle…the prior probability assignment should
be the one with the maximum entropy consistent with the prior knowledge.
(Jaynes 1968:229)

Jaynes proposes this because the maximum entropy probability function is ‘maximally
non-committal with regard to missing information’ (Jaynes 1957a:620) and ‘the most
unbiased representation of our knowledge’ (Jaynes 1957a:171). Jaynes reiterates this
thought with slight variation through his papers (Jaynes 1957a, b, 1963, 1968, 1985). In
his book (2003) he explicitly joins it up with Shannon’s development of entropy in
information theory. 1814/1995

The reason entropy helps Jaynes here is the thought that bias is a kind of unwarranted
lack of uncertainty, so being maximally unbiased would be maximising uncertainty, and
Shannon’s suggestion (1948) that entropy can be understood as a measure of uncertainty.3

Here are some platitudes deploying our pre-theoretical concepts of uncertainty and
probability:

1. uncertainty depends on how likely events are and is entirely absent if all but one

have no chance at all,

2. we are most uncertain when possibilities are equally likely,

3. uncertainty does not change if we add events with no chance of happening and

4. adding new events with some chance of happening makes us more uncertain in a

way that depends on the uncertainty of the events added. 4

Shannon gave initial proofs that his entropy satisfies mathematical requirements we can
see as capturing much of these platitudes (1948:10 & 28). Khinchin shows more
rigorously (Khinchin 1957:9 Thm 1) that Shannon entropy satisfies Khinchin’s three
axioms for uncertainty,5 axioms that we might reasonably take to be the mathematical

3 Clearly nothing turns on whether we formulate this in terms of certainty instead of uncertainty. It
is done this way because Shannon entropy increases with increasing uncertainty, i.e. increases
with decreasing certainty.
4 The use of ‘chance’ here is colloquial rather than a deployment of the term stipulated by
philosophers to mean objective probability.

5 ‘1. For given n and for 1
1




n

k
kp , the function H(p1,p2,…pn) takes its largest value for p= 1/n (k

=1, 2, …n). 2. H(AB) = H(A) + H(B). 3. H(p1,p2,…pn, 0)= H(p1,p2,…pn).’ (Khinchin 1957:9)
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equivalents of the first three platitudes above (Khinchin 1957:9 and Beck and Schlögl
1993:47).

So Shannon’s entropy is a reasonable measure of our intuitive notion of uncertainty.
Taking the probability function compatible with information possessed that otherwise
maximizes uncertainty is a way to minimize bias in representing our knowledge. Hence
using the maximum entropy principle seems to be a way of satisfying the Ascertainability
criterion that fits with Jaynes’ claims for the principle. In capturing the second platitude
the maximum entropy principle can be regarded as a generalization of the principle of
indifference.

The maximum entropy principle has been applied to some of the paradoxes that trouble
the principle of indifference and it has been claimed to resolve some of them.6 So it may
well appear that the maximum entropy principle is a good prospect for solving Bertrand’s
paradox (indeed, there is an impression that Jaynes (1973) did exactly that, see more
below). In fact, and perhaps surprisingly given the extensive literature on Bertrand’s
paradox and the principle of indifference, nowhere in the literature has there been an
analysis of applying the maximum entropy principle to Bertrand’s paradox. By an
analysis, I mean showing whether the mathematics of entropy, when applied to Bertrand’s
paradox, determines a unique probability function with maximum entropy. I demonstrate
here that it does not.

Although this result may have been suspected by some, it has not previously been
proved. To put it crudely, absent this paper, for all we know the maximum entropy
principle might yet solve Bertrand’s chord paradox. This paper proves it does not.
Moreover, the course of the analysis exhibits a further problem for the maximum entropy
principle: I present a new paradox of the chords that arises only for the maximum entropy
principle.

Having proved all this, the work of the paper is done. We have, of course, brought into
view a further question, namely, what kind of a problem is non-uniqueness for proponents
of the maximum entropy principle? Before saying more on that, we need to dispel the
impression that prior literature has analysed the application of the maximum entropy
principle to Bertrand's paradox.

The source for this impression is the existence of the paper on Bertrand’s paradox by
the original proponent of the maximum entropy principle, namely, Jaynes (1973).
Rosenkrantz explicitly treats Bertrand’s paradox in his book (1977:73), but whilst the
context may give the impression that he is applying the maximum entropy principle, in
fact he is expounding Jaynes’ paper.

Jaynes’ abstract for his paper is misleading: it speaks of the maximum entropy principle
but the paper itself does not apply the maximum entropy principle to Bertrand’s paradox.
Instead it makes use of the well-posed/ill-posed distinction and then applies Jaynes’
symmetry invariance principle and the principle of indifference. The question of what it is
for something to be ill-posed is analysed in Shackel (Shackel 2007), where it is shown
that Jaynes’ solution does not work. In our opinion Shackel has refuted Jaynes’ paper.

H(p1,p2,…pn) is defined to be ‘a quantity that measures the amount of uncertainty’ (Khinchin
1957:3).
6 The book paradox, for example. Under the principle of indifference, probability of book being
colourful = ½ or 7/9 (or…) depending on how fine grained one takes the ignorance (colourful
versus not-colourful, one of seven colours versus black or white,…). Paris and Vencovská 1997
claim that correct application of the maximum entropy principle defeats this paradox. For a recent
summary of Paris’s solutions see Paris 2014.
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Some may claim that Jaynes’ view of the maximum entropy principle as a
generalization of the principle of indifference means there is a sense in which Jaynes’
paper ‘applies’ the maximum entropy principle to Bertrand’s paradox by applying the
principle of indifference to Bertrand’s paradox. This thought is tempting7 but too quick
when we are talking about infinite event spaces, although that will only be evident after
we have plowed through the work herein. What we can do for now is to show that this
thought is a distraction.

First, if Jaynes was in some sense ‘applying’ the maximum entropy principle in his
paper, Shackel’s refutation means that it was not done successfully. Second, the
mathematics of entropy are not actually used in Jaynes’ paper.8 No equations for the
entropies of any probability functions are given and nowhere does the paper make any
attempt to show that the probability function derived is the one with maximum entropy.
Neither entropy itself nor the criterion of having maximum entropy do any work in the
paper. Consequently, whilst Shackel’s refutation of Jaynes’ paper shows that this special
sense of ‘applying’ the maximum entropy principle is unsuccessful, it does not show that
the maximum entropy principle itself cannot solve Bertrand’s paradox. For all we know,
then, were we to actually use the mathematics of entropy, the maximum entropy principle
might yet solve Bertrand’s paradox. It is only the work herein that proves it does not.

Insofar as Williamson discusses Bertrand’s paradox and the maximum entropy principle
(2010:152), he merely mentions it, mentions Jaynes’ (1973) paper and perhaps endorses
it. He makes no attempt to apply the maximum entropy principle to Bertrand’s paradox
nor does he make any statement on whether doing so would result in unique probabilities.
Instead he moves on immediately to indicating that he is untroubled by non-uniqueness in
general. That, however, takes us to the further question.

Now there is no doubt that this is an important question in the philosophy of
probability. It should, of course, be remembered that precisely this failure of uniqueness
for Bertrand’s paradox on the part of the principle of indifference was taken to be a
refutation of classical and logical probabilism—the reason being that non-uniqueness,
absent additional and substantive philosophical theory, is a polite term for inconsistency.9

That is why Jaynes originally intended that the maximum entropy principle should result
in unique probabilities (see Jaynes 1968). So plainly there is a threat to objective
Bayesianism in our result. Some modern objective Bayesians such as Williamson, on the
other hand, claim that non-uniqueness is not a problem, but whether that is mere whistling
past the graveyard depends on the answer to the further question.

Addressing this question would involve considering whether and what substantive
philosophical theory has been offered to avoid non-uniqueness being inconsistency, what
kind of restriction on event spaces that would amount to, what theoretical costs are
acceptable in that restriction, where all this would have to be examined in the light of the
broader epistemic principles that ground our philosophical interest in probability. The
further question is hence part of a general question in epistemology over uniqueness

7 Tempting because of the second platitude above and because for finite event spaces it is easy to
prove that the uniform probability function is the function with maximum entropy.
8 An examination of the appendix herein will show what would have been necessary for the
mathematics of entropy to have been used.
9 It may appear that we need to prove the non-unique probabilities for Bertrand’s paradox arise
from equivalent descriptions of the same random phenomenon to move from non-uniqueness to
inconsistency. This is a version of what Shackel calls the distinction strategy, whose failure as an
avoidance of inconsistency when used in this way for Bertrand’s paradox is shown in Shackel
2007:§10.
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versus permissivism.10 For all their whistling, by the very name by which they distinguish
themselves from subjective Bayesians, the objective Bayesians place themselves on the
side of uniqueness against permissivism and, furthermore, to be on that side was indeed
the intention of Jaynes in so naming it.11

Unfortunately, none of this can be addressed briefly. It merits its own full treatment (see
Shackel MS-b). So for reasons of space we have had to eschew the further question that
arises from our results for proponents of the maximum entropy principle.

Finally, the interaction of the maximum entropy principle and Bertrand’s paradox has
not been previously examined by philosophers perhaps in part because entropy can
involve highly abstract mathematics. On the other hand, some proponents of the
maximum entropy principle are mathematicians and physicists who are uninterested in or
intolerant of the philosophical issues, and consequently, some of its specialist literature
does the maths whilst discarding awkward philosophical problems as mere matters of
convention, or alternatively, burying them in the maths. This is off-putting for
philosophers and I have sought to do the opposite. It turns out that although we need to
take the output of the relevant mathematics as premisses, the central philosophical issues
do not depend much on why those premisses are true. For this reason, whilst I have
included the mathematics sufficient to the latter question in an appendix, I have been able
to articulate the philosophical import of the problems without requiring the reader to
plough through that mathematics.

3. Bertrand’s Paradox12

Bertrand posed his paradox thus:

We trace at random a chord in a circle. What is the probability that it would

be [longer] 13than the side of the inscribed equilateral triangle? (Bertrand
1888: 4)

As is well known, applying the principle of indifference in three different ways gives
three different answers for the probability of longer (as we shall hereafter call the
probability of getting a chord longer than the side of the inscribed equilateral triangle).14

Of course, if we specify a particular way of choosing chords at random we can avoid this,
but doing so is merely an evasion of the generality of the problem posed by Bertrand’s
paradox.15

10 E.g. see White 2005; Greco and Hedden 2016
11 See Jaynes 1968
12 This section draws in part on material from Shackel 2007.
13 Bertrand himself said shorter, but the literature has used longer ever since so we stick with this.
14 The probability of longer is ¼, 1/3 and ½. For reasons of space I do not here show the
application of the principle of indifference to Bertrand’s paradox. For details see Clark 2002:18 or
Shackel 2007
15 For in depth discussion on this point, see Shackel 2007:164-9, and also van Fraassen 1989:305.
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Prior work (Shackel 2007 sections 5-8) shows that for our analysis we need only the
most fundamental features of the standard measure theoretic formulation of probability.
For reasons of space we offer here a summary rather than a recapitulation of that prior
work. A probability space is an ordered triple X, , P, where X is the space of ‘events’, 
is a -algebra on X and P is a measure on  for which P(X) = 1.16 Being such a measure is
sufficient for satisfying Kolmogorov’s original probability axioms (Capinski and Kopp
2004, 46 Remark 2.33).17

Let C be the set of chords with which we are concerned. We must not let C’s close

association with the Euclidean plane, ℝ2, blind us to the fact that C is not a subset of ℝ2.

Rather, because each chord is a subset of ℝ2, C is a subset of the power set of ℝ2, ℙ(ℝ2).

-algebras of intervals of ℝ2 and the measures on ℝ2 are not -algebras and measures of

C. Unlike ℝ2 and other cases we are used to dealing with, there is no ‘natural’ prior

measure18 on C: C lacks a measure of its own. Consequently to get a probability measure
on C we need to use Shackel’s

Theorem of Induced  and : Given a set, Y, with a -algebra, A, and a
measure, m, we can use a suitable19 function f:XY (a bijection is sufficient
but not necessary) to induce a measure on the set X. We define  to be the
set of pre-images of members of A, and define the measure under  of an
element in  to be the measure under m of its image set in A.2021(Shackel
2007:160)

We can then use the induced sigma algebra and measure to construct the probability
function by setting P(x) = (x)/(X) for all x in  whenever (X) is bounded.

So we must make use of functions from C into measurable sets, and that is what
Bertrand is seeking to do when, in his original presentation, he equates measures on C

with measures on ℝ in two cases and a measure on ℝ2 in the third. But of course, there

16 We shall continue to speak in terms of events, but X can just as well be a mathematical space or
set of possible worlds or propositions or outcomes, according to taste. A -algebra is a set, A , of

subsets of a set, S, (so A⊆ℙ(S)) that contains S and , and is closed under complementation and

countable union. A measure for A is a non-negative function :Aaℝ such that () = 0 and  is
countably additive.
17 So far as the concerns of this paper go, alternate axiomatizations by subjectivists such as
Ramsey, de Finnetti and Savage make no difference. See Fishburn: ‘The theory of subjective
probability attempts to make precise the connection between coherent dispositions toward
uncertainty and quantitative probability as axiomatized by Kolmogorov’ (Fishburn 1986:353).
Ramsey, for example, proves that his definition of rational degrees of belief as betting odds
satisfies the standard measure theoretic axioms for his sigma algebra of beliefs.
18 The contrast is with, for example, the ‘naturalness’ of taking the measure of a line segment to be
the distance between its ends.
19 For anyone stumped by ‘we can use a suitable function f:XY to induce’, read ‘a function
f:XY induces’.
20 This theorem is easily proved by elementary methods and more concisely from the fact that a
map between sets yields a morphism of set systems (See Jost 2015:Lemma 4.3.1). Then,
obviously, (X)≠0 and showing countable additivity is fairly trivial. For a simple example, 
suppose f:XY is a bijection. Let f(S) = {yY: y = f(x) for some xS}; then S is the pre-image of
f(S) and we define  and  thus: S iff f(S)A and (S)=m(f(S)).
21 Use of this theorem need not be explicit. Any probability function assigned to C will determine
a class of functions each of which can perform the role of the function in the theorem. See Shackel
2007:160-1 for how Bertrand is making implicit use of the theorem.
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are infinitely many such functions, and it is clear that for any x[0,1] we can induce a
measure that gives us P(longer) = x.22

4. The maximum entropy principle applied to Bertrand’s Paradox

The essential problem of Bertrand’s paradox for the principle of indifference is that the set
of chords, C, lacks a measure of its own by which to define equi-probability for equal
ignorance over C; instead there is only an infinity of measures we might induce on C and
no principled way of picking among them. This lack of a measure of its own and the
necessity to use the Theorem of Induced  and  is also why Bertrand’s paradox is richer
than other paradoxes and, because there are many such sets, the source of its significance
as an example of a pervasive problem.23

The apparent virtue of applying the maximum entropy principle is that, rather than
ignoring the infinitude of inducible probability functions (between which nothing we
know gives us reason to discriminate), taking the probability function with maximum
entropy amounts in this case to exercising what we might call meta-indifference over that
infinitude. Taking the one with maximum entropy is a way of choosing the maximally
ignorant one, the least biased of that infinitude.

For this to work requires that

1. there is a correct measure of entropy and it can be applied to Bertrand’s paradox

2. each probability function in the set of probability functions inducible on C by the

Theorem of Induced  and  has a unique entropy,

3. we can identify at least one function with maximum entropy,

4. and if there is more than one function with maximum entropy they all agree on

the probability of the longer chord.
There are some significant technical difficulties that stand in the way of the first two of

these, and some of those difficulties, if not resolved, do reinstate the paradox. However, I
have traced a path through the difficulties, making use of Shannon’s differential entropy,
that a proponent of the maximum entropy principle may reasonably take. For that reason,
and to avoid obstructing the flow of argument, I have described those difficulties and a
path through them in the appendix to this paper.

As I shall now show, Bertrand’s paradox exhibits serious obstructions that lie in the
way of fulfilling the other conditions (3 and 4 of our list). I now demonstrate three

22 Proof: for any x[0,1], in the Theorem of Induced  and  we can use any function from C to
[0,1] for which the image of {longer chords} is [0, x] and the image of {not-longer chords}is (x,
1].
23 A recent paper claims to ‘interpret’ Bertrand’s chord paradox in a way that ‘does not undermine
the principle of indifference’ (Gyenis and Rédei 2015:349). The relation of Gyenis and Rédei’s
treatment to the analysis here is rather complex, including substantive disagreements about the
nature of the principle of indifference and how Bertrand’s paradox does its damage, and obscurity
in the relation of Bertrand’s actual chord paradox to what Gyenis and Rédei call their ‘General
Bertrand’s paradox: Let (X, S, pH) and (X′, S′, p′H) be probability spaces with compact topological
groups X and X′ having an infinite number of elements and pH , p′H being the respective Haar
measures on the Borel -algebras S and S′ of X, and X′.’(2015:359). Gyenis and Rédei do not
explain the relation. With the tool used herein we can get to such a pair of probability spaces by
two applications of the Theorem of Induced  and  from a pair of compact topological groups
and define correlate compact topologies on C by the same function that induces the measure. But
now we are well down stream of Bertrand’s paradox. The status of this interpretation and the other
issues that arise are the subject of an entire paper, Shackel MS-a, so for reasons of space I do not
attempt to address them further here.
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obstructions, each of which, if correct, shows that the maximum entropy principle fails to
determine a unique probability for being longer.

5. Unknowable maximum entropy probability functions are not acceptable.

Bertrand’s paradox brings into view the danger that spaces without measures of their
own pose to knowing the maximum entropy probability function. If there are cases in
which we cannot know, then the principle fails to satisfy Salmon’s ascertainability
criterion. We do not know the maximum entropy probability function over the set of
chords and, as I shall now show, we have good reason to think we cannot know it.

Many integrals are not analytically solvable—call these obstinate integrals.24 If the
integrals are obstinate, we don’t know if the integrals are numerically tractable
(approximately solvable in reasonable time using numerical methods), and we do know

there are serious difficulties in evaluating continuous entropies even just for ℝn.25 This is

a neglected issue because physicists are used to finding methodological tweaks to get
round obstinacy and their empirical focus means they do not attend to the fully general
problem that concerns us as philosophers of probability.

One route to knowing the maximum entropy probability function would be to evaluate
entropies. Unfortunately, this is blocked by obstinate integrals leading to numerical
intractability. The necessity of using the Theorem of Induced  and  means we know that
there will be functions from C, onto codomains with measures giving rise to obstinate
integrals, that induce measures on C resulting in obstinate integrals for defining entropy
for probability functions over C. Since we cannot solve analytically for their entropy,
solving for the probability function with maximum entropy over C may require numerical
methods. However, many such will not be numerically tractable and that would mean we
won’t be able to know the maximum entropy probability function in this way.

Numerical intractability, it might be objected, poses a merely practical problem. In
principle, numerical evaluation is possible and the intractability is just a matter of it taking
a very long time to do the figuring. This, it must be conceded, is certainly true of each
individual obstinate integral. Unfortunately, since there are infinitely many such integrals,
this does not offer an in principle defence of knowability. The problem is that to
determine the maximum entropy principle in this way would require performing infinitely
many numerical evaluations and this we cannot do.

The other route we might take to knowing the maximum entropy probability function
would be having a constructive existence proof of which one it is that does not depend on
evaluating entropies. The necessity of using the Theorem of Induced  and  means the
set of probability functions over which we seek the one with maximum entropy, PFC, is
both enormous26 and essentially unrestricted.27 The size of PFC means, absent relevant

24 Roughly, lack a solution expressible as a formula not involving differential or integral
equations, power series or limits. If a solution is expressible in closed form it is possible to
evaluate in finitely many steps and for that reason called tractable. Analytically solvable is slightly
wider than closed form solvable by allowing some special functions such as the gamma function
and some infinite expressions.
25 See Pearl (1988 chapter 9) who objects to the maximum entropy principle on the grounds of
computational intractability.
26 Take a probability space (C, S, P) where P is an induced probability function on C for which the
subset of the sigma algebra, S, having non-zero probabilities is continuum sized, with continuum
many distinct probabilities. Any permutation of S corresponds to a distinct probability function on
C. Any such distinct probability function, P, on C, can be induced on C using the Theorem of
Induced  and  (take any continuum sized set, X, and use a bijection f:XC to induce from the
given P a measure on X, (X, T, M), and now, using f--1 to induce a probability function on C from
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proofs, there is no reason to expect such a constructive proof would be available. Since it
is unrestricted, that there are some sets of probability functions for which such
constructive proofs are available, which sets will be subsets of PFC, tells us very little.
There are, after all, also sets of probability functions for which there are no such
constructive proofs and they, too, will be subsets of PFC. So consider the union of a set for
which there is a constructive proof and a set for which there isn’t, and for which the
entropies of the first are all less than those of the second. There will be no constructive
proof for such a union and the union will be a subset of PFC. This counts against such a
constructive proof being available for PFC.

It is true that there may be specific empirical situations whose modelling sufficiently
restricts the set of probability functions induced on C to one for which no entropy is
defined by an obstinate integral or one for which there is a non-evaluative constructive
proof. But that is not the general case.

Although these several points do not constitute a conclusive proof that (if there is one)
the unique maximum entropy probability function for Bertrand’s paradox is unknowable,
they are good reason to think that it is not. We need to be clear why not knowing or being
unable to know amounts to a failure. After all, many problems in real analysis are
intractable. The nature of the problem here depends on whether the maximum entropy
principle is taken to be a purely metaphysical principle or whether it is in part or wholly
an epistemic principle. 28

If the maximum entropy principle is taken to be a purely metaphysical principle, in the
sense that it determines a single correct probability function for Bertrand’s paradox,
whether or not we are able to know which it is, then perhaps this is not a failure. There
just has to be a unique function with maximum entropy. Nevertheless, in this case the
proponents of the principle owe us a general existence proof since otherwise they are
merely claiming that the principle will solve the paradox. No such proof has ever been
offered for Bertrand’s paradox. Shortly I show that there is a function for Bertrand’s
paradox with maximum entropy, but not in a way that will help proponents.

If, however, the principle is in part or purely an epistemic principle then this is a serious
problem. The role of the principle in, for example, objective Bayesianism is epistemic.
Indeed, among Jaynes’ philosophical reasons for advancing the principle was to solve the
problem of justifying applying statistical mechanics to a deterministic physical system.
Jaynes considered that standard explanations of statistical mechanics involved
objectionable obscurities whereas:

[the] independence [of Jaynes’ derivation of the Boltzmann distribution]

from difficult and dubious physical assumptions like ergodicity, and its
avoidance of fictions like ‘virtual ensemble’ have impressed many students
of statistical mechanics and inductive logic. (Shimony 1985:38)

Jaynes gains this independence because he bases the derivation on an application of the
maximum entropy principle. This allows probabilistic properties of statistical mechanics

(X, T, M) will induce the given probability function, P). The cardinality of the set of such
permutations = 2|S| = Beth2 > cardinality of the continuum= Beth1. Hence the set of all probability
functions inducible on C is at least as big. (Relation to Aleph cardinals: BethnAlephn. The
general continuum hypothesis implies equality.)
27 Since |C| = |continuum|, for any continuum sized space, X, there is a bijection from it to C and
so for any bounded measure on X that bijection can be used with that measure in the Theorem of
Induced  and .
28 For discussion on the same point as it arises for the principle of indifference, see Shackel
2007:161-2
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to be understood in epistemic terms rather than requiring them to be physically real.
Consequently, statistical mechanics is not a purely physical theory but is instead an
epistemic theory of our knowledge of thermodynamic systems. Clearly all this requires
taking the maximum entropy principle to be an essentially epistemic principle.

Finally, the very fact that the principle is supposed to address the Ascertainability
criterion shows it to be at least in part an epistemic principle. The whole point of the
principle is to produce determinate probabilities when we do not know, without restriction
on the extent of our ignorance. Even if the principle succeeds in determining that there are
such probabilities, if we cannot know what they are because we cannot know which
probability function has maximum entropy, then it has failed at the point of that point,
namely, to be the method by which we can satisfy Salmon’s Ascertainability criterion.

Some Bayesians countenance the axioms of probability as regulative ideals that we
cannot know whether we meet because our finitude entails lack of logical omniscience
and probabilistic completeness. It might then be argued that the maximum entropy
principle could function similarly despite the unknowability of the function with
maximum entropy (provided we had an existence proof). The question then would be how
well it could function as such. It might give some local direction when one function had
higher entropy than another, but we shall be seeing below that in general there will be too
many functions with the same entropy and sometimes unbounded entropies for that to
help. I shall see below that Bertrand’s paradox is a case in point and hence the principle
does not solve the paradox even when taken as a regulative ideal.

6. Either Bertrand’s paradox returns or we have a new paradox of chords

There is an important difference between entropy for discrete and continuous event
spaces: entropy can be unbounded for continuous distributions (more loosely put, can be
infinite). We seek the maximum entropy over all probability functions that could be
induced on C. Since entropy can be unbounded for continuous distributions there will be
probability functions of that type that can be induced on C. Indeed, there will be infinitely
many probability functions of that type that can be induced on C. The fact that they might
not be well motivated geometrically is beside the point of the strategy of going for the
maximum entropy probability function. Therefore there will be no single maximum
entropy probability function. So for the maximum entropy principle to solve Bertrand’s
paradox would require all the probability functions for which entropy is unbounded to
agree on the probability of longer. Given the lack of structure in C, provided there is just
one such for which the probability of longer > ½ there will be another that is its dual29

giving the probability of longer < ½. That would immediately give rise to Bertrand’s
paradox. So for this strategy to work would require that all the probability functions, P,
for which entropy is unbounded give the probability of longer, P(L) = ½.

Now consider the following events whose disjunction is the same as not being longer:
being less than half the length of the inscribed equilateral triangle; being between half the
length and the length of the inscribed equilateral triangle. The first partitions C into sets
H and ¬H and the second into G and ¬G. The duality explained in footnote 29 applies to
these sets also and hence so does the reasoning just given about the event of being longer.
Hence, on pain of the immediate recurrence of Bertrand’s paradox, all the probability

29 Since longer and not longer partition C into sets L and ¬L, a suitable dual will be got from the
function, f, inducing probability of longer> ½ by way of the Theorem of Induced  and  (Shackel
2007:160), by taking any function, g, such that g (L) = X iff f(¬L) = X. So in this case the measure
of f(L)> ½  (C) iff the measure of g(L)< ½  (C) (because (C)= ( f(L))+ (f(¬L))= ( f(L))+
( g(L))).
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functions, P, for which entropy is unbounded must give P(H) = ½ and P(G)= ½. Now we
have a new paradox of the chords:

½= P(L)

= P(¬L)

= P(H or G)

=P(H) + P(G) (by additivity of measures, since HG=)

=½ +½ =1

So, on the assumption that, despite unbounded entropies, there is a solution to
Bertrand’s paradox furnished by the maximum entropy principle, a new chord paradox
appears.

The only way out of this is to exclude probability functions with unbounded entropies.
Yet the reason grounding the maximum entropy principle is that by rejecting those with
less than maximum entropy we reject all probability functions that are more biased than is
warranted by our state of knowledge. Consequently it is very difficult to see how we
could justify excluding such functions.

I am therefore confident that this challenge is correct and conclusive. There is no
unique maximum entropy probability function for the set of chords, but infinitely many
which have unbounded entropies and are therefore equally maximal. Either they do not
agree on a unique probability of longer or they do. If they don’t we have Bertrand’s
paradox again, but if they do then we end up in the new paradox.

7. Coda: collapse into the original Bertrand’s paradox

Since I see no prospect for a principled exclusion of probability functions with
unbounded entropies, I believe that at this point I have established the result of the paper.
We continue with a coda only for the sake of demonstrating that even if someone were to
come up with such a principled exclusion, its effect would not save the maximum entropy
principle from Bertrand’s paradox but result in it collapsing into a version of the original
Bertrand’s paradox.

So now we exclude the induced probability functions on C with unbounded entropies.

With this exclusion another problem comes into view: that although all probability
functions left have finite entropies the set of entropies need not have a maximum. So we
shall also have to assume that problem away. We shall now see quite directly that there
will still be more than one probability function with maximum entropy and those
probability functions will disagree on the probability of the longer chord. Furthermore,
despite the apparent simplicity of the route now taken, the tactics applied by proponents
of the maximum entropy principle to simpler paradoxes cannot get a grip just because of
the richness of Bertrand’s paradox. Any such attempt will amount to a covert restriction
rather than comprehension of the case and be thereby an evasion of the general problem
posed by Bertrand’s paradox.

Shannon entropy satisfies Khinchin’s second axiom, that entropy is maximum iff the
probability function is uniform.30 This is no accident. Khinchin’s second axiom effectively
captures one of the central simple truths about uncertainty, that we are most uncertain
when possibilities are equally likely. Consequently, if a measure of entropy does not
satisfy Khinchin’s second axiom then that brings into question the use of that measure for

30 Shannon asserts the truth of this when the underlying event space has bounded volume but does
not address the completely general case. Shannon 1948:35
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applying the maximum entropy principle. It means that the argument I gave above
defending the maximum entropy principle on the grounds of platitudes about uncertainty
would not apply to that measure. It would mean that the measure fails to satisfy
Williamson’s equivocation norm (Williamson 2010:28). It would be contrary to what
Jaynes requires when he says the maximum entropy principle reduces to ‘the principle of
insufficient reason…in case no information is given except enumeration of the
possibilities’ (Jaynes 1957a:623), since to do this the principle must give the uniform
distribution in the case of complete ignorance.

From this it follows (under the assumptions made at the beginning of this section) that
the maximum entropy probability functions on C are uniform distributions when not
constrained by further information. In Bertrand’s paradox we are not constrained.
Uniform distributions on C are defined, via the Theorem of Induced  and , by uniform
distributions on the inducing space. From the original version of Bertrand’s Paradox we
know of two inducing spaces whose uniform distributions induce uniform distributions on
C, say P1 and P2.

31 By the measure satisfying Khinchin’s second axiom, entropies of both
P1 and P2 are equal and maximum. P1 and P2 give contrary probabilities for the longer
chord. Therefore Bertrand’s Paradox returns under the maximum entropy principle.

8. Conclusion

There are some assumptions about the maximum entropy principle in the air: that
whether it can solve Bertrand’s chord paradox is not interesting, that it is not a surprise if
it can’t, that Jaynes used it to solve the paradox and in any case the need for uniqueness
must be proven before anyone should care about this so any analysis of the question lacks
a target. No doubt such rhetoric is useful for those who wish to whistle past graveyards. I,
however, contend that these assumptions are erroneous.

The relation of the principle of indifference and Bertrand’s paradox has given rise to an
extensive analytical literature. There is not a single paper that has conducted an analysis
of the relation of the maximum entropy principle and Bertrand’s paradox. Assumptions
about the interest or surprise in the absence of such analysis are prejudices. Jaynes did not
even attempt to use the principle to solve the paradox, but did want uniqueness. The
suggestion that the large question of uniqueness must be settled before anyone should care
about such analysis is a mere evasion.

In this paper I have rectified the error. I conduct the needed analysis and prove that the
maximum entropy principle cannot solve Bertrand’s chord paradox. The wider
significance of this is part of the entire stream of debate surrounding the question of
uniqueness versus permissivism. Although we cannot address this further question here,
our result cannot be ignored as lacking a target merely because some proponents of the
principle seek to ignore the problem of uniqueness. This is especially so when its
originator intended that the ‘objective’ in ‘objective Bayesianism’ should distinguish it
from subjective Bayesianism’s rejection of uniqueness.

I have shown that applying the maximum entropy principle to Bertrand’s paradox faces
grave difficulties. The first obstruction is damaging because the Bertrand’s chord set
shows a significant narrowing of the extent to which the maximum entropy function is
knowable. This has been neglected because physicists have applied the maximum entropy
principle to event spaces with sufficient empirical constraints to be within that narrowed
extent. Of course, when you have suitable further information you can avoid the problem

31 For example, take P1 to be that induced by considering the angle at the vertex of the triangle, P2

to be that induced by where on the radius the centre of a chord lies. Details in Clark 2002 and
Shackel 2007.
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here: but this is why I drew attention to the generality of the problem that a claimed
solution to Bertrand’s paradox faces. The fact that some empirically constrained cases do
not fall to this obstruction is not a resolution of it. The second, which I regard as
conclusive, shows that the maximum entropy principle falls to Bertrand’s paradox or faces
a new chord paradox that is structurally similar to, and familiar from, a simple source of
paradox for the principle of indifference. The third, a coda based on the supposition that
the previous obstructions can be avoided in a principled way, shows that the maximum
entropy principle collapses into the original Bertrand’s paradox.

In conclusion, then, I have proved that Bertrand’s paradox remains the exemplar it has
always been. The problem is not confined to probabilities for chords. The obstructions I
have shown are a lurking threat for the application of the maximum entropy principle to
any continuum sized event space lacking a natural measure.

Appendix

I include this appendix (1) for the benefit of those who wanted to check that I haven’t
concealed philosophically significant moves in the presupposed mathematical results; (2)
to demonstrate the status of those presupposed results, including where there are
mathematical burdens of proof that a proponent of the MEP32 faces, some of which I
fulfil, or sketch a fulfilment. Despite some difficulties I mention about such burdens, the
appendix is not intended as a further line of argument against the MEP. [Could be omitted
if editor or referee think the appendix safely dispensable.]

1. We need a definition of continuous entropy

Shannon entropy is defined only for discrete spaces, spaces that are finite or countable.
But C is continuum sized and since Shannon entropy is not defined for it we need a
definition of continuous entropy. Unfortunately there is not a simple definition of
continuous entropy that can be considered the limiting case of discrete entropy.3334

Consequently, scientists have found a variety of definitions of continuous entropy worth
using depending on the empirical situation. There is no reason to expect those definitions
to agree on the function with maximum entropy, nor to expect the various functions that
have maximum entropy under the various definitions to agree on the probability of the

longer chord, and hence Bertrand’s Paradox recurs immediately.
Nevertheless, there is a definition of continuous entropy, a definition that Shannon

offered in an appendix of his original paper (1948:35), which has some claim to be
considered standard, namely, differential entropy. It is at least possible that good grounds
could be found for this being the uniquely correct definition. For example, if we follow
Williamson in seeking the function with minimum Kullback-Leibler divergence from the
equivocator function, in finite state spaces this is provably the maximum entropy function
(Williamson 2010:28-9). Possibly something similar could be proved for continuous state
spaces.35

32 Maximum entropy principle.
33 see Jaynes 1968: 235.
34 Nor will Kullback’s principle of minimum discrimination information, using Kullback-Leibler
divergence, help here. Although it is sometimes advanced as a natural extension of the maximum
entropy principle to continuous spaces, it only tells us to use the nearest posterior distribution
given new information to a prior probability distribution, whereas our problem is that we have no
prior to start with.
35 Williamson addresses Kullback-Leibler divergence for continuous spaces at Williamson
2010:154 but does not consider to what extent the result for the finite spaces may carry over.
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2. The entropy measure depends on a prior definition of the probability density function

Differential entropy for C is given by

dcpcpCentropy
Cc

R )(log)()(  

where CR is a random variable taking values in C, c is a member of C,  is the probability
measure induced on C by an application of the Theorem of Induced  and , and p is not a
probability function over C but a probability density function.36 The entropy measure for
C therefore depends on the prior definition of the probability density function p. Having
induced a measure of C and constructed a probability measure, P, that measure must now
be used to define the probability density function by

 





c
Pdcp )()(

where . So these two integrals together are what are required in order to define the
entropy of a probability function induced on C by an application of the Theorem of
Induced  and .

3. The integrals need to be well-defined

When we recall that C is not a subset of ℝ2 but of ℙ(ℝ2), we need to check whether the

integrals defining the entropy are well-defined. Of course, to prove that they are well-
defined is not our burden, but that of those defending the MEP. Nevertheless, I shall now
exhibit a plausible route to showing that they are well-defined in standard measure theory.

Recall how Lebesgue integration is defined37 in terms of a logically prior measure over

intervals of ℝn: for example, the measure of the interval [a,b] in ℝ is |b-a|, and of

[a,b][c,d] in ℝ2 is |(b-a)(d-c)| (where a, b, c and d ℝ). Measurable sets are then defined

in terms of that measure, then measurable functions in terms of all preimages of all
intervals of the function codomain being measurable sets38, and finally the Lebesgue
integral is defined as
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where :Sℝ being a simple function means that its range is a finite set of non-negative
reals {x1, x2,…, xn} for which the preimage, Ai , of each xi is a measurable set and where
for a simple function

)(
1



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n

i Axd

This carries over quite directly to more abstract measure spaces where we are integrating
a function, f, which takes real values over a member of the relevant sigma algebra to
define the integral. That is the case for the integrals defining entropy for C. We thereby
get the probability density function defined by:

36 Strictly speaking p takes members of  for its arguments, which are subsets of C, so here we
define p(c)=p({c}).
37 See, e.g., Capinski and Kopp 2004, Chapter 4.
38 Given a measurable set, E, the function f:Eℝ is measurable iff for any Iℝ, f -1(I)={x:
f(x)I} is a measurable subset of E.
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On this basis it is reasonable to suppose that the integrals defining differential entropy for
C are well-defined, and hence that entropy for C is defined. We shall therefore assume
that entropy for C is defined. That being said, if what we have here is correct it establishes
nothing more than the existence of the entropies. It is evident that evaluating any such
entropies and determining maxima are further non-trivial tasks. Having done this much in
aid of the proponents of the MEP I do not feel I am obliged to evaluate any entropies or
exhibit any maximal functions.

4. The danger of non-unique probability density functions entailing non-unique entropies

To get the entropy we first require a probability density function to be integrated over,
which in turn is implicitly defined by an integral relating it to the probability function,

which last is logically prior and has been induced on C by the Theorem of Induced  and
. Absent a uniqueness proof, there is a danger that the probability density function is not
uniquely defined for each probability function. This would arise if two measures on C
induced the same probability function whilst producing distinct probability density
functions.

An illustration of the kind of thing I mean is this. Take the state space [0,2] and the
sigma algebra {, [0,1), [1,2], [0,2]}. Let p(x) = ½ for x in [0,2] and p(x)= 1 for x in
[1/2,3/2] (both zero elsewhere). Then both p and p agree on the probabilities for events in
the sigma algebra but they are distinct probability density functions. Moreover, they give
distinct entropies, for p it is log 2 and for p it is 0. Although in this illustration the state
space is discrete and finite, the relevant parallel is when our interest is in a discrete set of
events that are determined by an underlying continuous space. Because {longer chords}
and [1,2], and {not-longer chords] and [0,1), are equinumerous, there are bijections that
we can compound to give a bijection from C to [0,2] to use in the Theorem of Induced 
and .39 This will then give a probability function for C with two different entropies
(although perhaps with a somewhat restricted, if still infinite, algebra of events for C, see
potential significance of this below). The example is very simple but it makes clear the
general danger. If non-uniqueness of obtains for any functions on any measure space that
is the same size as C, then because of the Theorem of Induced  and , there will be non-
uniqueness of this kind for Bertrand’s paradox.

Just to be clear of the dangers here, non-uniqueness of probability density function can
entail accompanying non-unique entropy for the corresponding probability function.
Recalling that the entropy is supposed to measure the presumption of a probability

39 If g is a bijection from {not-longer chords] to [0,1) and h is a bijection from {longer chords} to
[1,2], define f :C[0,2] by f|[0,1)= g and f|[1,2]= h. A similar construction for p’(x)= 1 for x in
[1/2,3/2] and p’’(x)= 1 for x in [1/4,5/4] foreshadows the return of Bertrand’s paradox itself. These
pdfs give rise by the same indirect route just articulated to two distinct probability functions on C,
P’ and P’’, having the same entropy and with P’(longer) = ¼ or P’’(longer)=½. This specific
problem is forestalled by these entropies not being maximal, which is why our the arguments in
the body of the paper do not rest on this simple example.
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function, non-uniqueness in that measure is itself intolerable for the philosophical reasons
motivating the MEP in the first place. This amounts to a subtle, interesting and logically
prior occurrence of the kind of non-uniqueness that Bertrand’s paradox poses. Bertrand’s
paradox usually undermines by non-unique probabilities: here it undermines earlier by
non-unique entropies themselves being objectionable and by them blocking the route to
the MEP furnishing probabilities at all.

If there is a way out of this it is that the algebra of events induced on C (by the Theorem
of Induced  and ) in these problematic cases is objectionably restricted. What needs to
be done, therefore, is state what are philosophically objectionable restrictions, formulate
that condition mathematically and then, under that condition, give a uniqueness proof for
the probability density function determined by the formula in section 2 of this appendix.

The burden of providing a uniqueness proof lies on the proponent of the MEP.
Nevertheless, on their behalf I offer the following: 

Suppose we have two probability density functions, p and p, defined as above and
suppose that for all ,  p d=  p d. Then by theorem 4.22 (Capinski and Kopp
2004:90), p = p almost everywhere. It follows that p log p = p log p almost everywhere.
Supposing each of log p and log p is measurable, then each of p log p and p log p is
measurable (Capinski and Kopp 2004:60 theorem 3.5). Consequently by proposition 4.9
(Capinski and Kopp 2004:81)

C p log p d = C p log p d.

and hence

entropy (CR)= - C p log p d = -C p log p d..

So whenever the presuppositions of this proof are satisfied, although we may not have
uniqueness of p.d.f.s, their equality almost everywhere ensures uniqueness of entropy.
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