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Abstract: Saul Kripke once noted that there is a tight connection between computation and de re
knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can
produce knowledge of which number is the greatest common divisor of two numbers. Arguably,
algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via
how the numbers are represented. So we broach matters of notation. The purpose of this article is to
explore the relationship between the notations acceptable for computation, the usual idealizations
involved in theories of computability, flowing from Alan Turing’s monumental work, and de re
propositional attitudes toward numbers and other mathematical objects.
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1. Introduction

Saul Kripke [1] (p. 344) noted that there is a tight connection between computability
and de re knowledge of natural numbers:

“. . . the notion of computability is best seen as providing a procedure for knowing
which number is the value of the function.” (emphasis added)

The purpose of, say, the Euclidean algorithm is to determine the identity of the greatest
common divisor of two given numbers. A use of the algorithm to determine which number
is the greatest common divisor of twelve and sixty-four seems to presuppose some sort
of de re knowledge of the input numbers (twelve and sixty-four) and it produces de re
knowledge that the result (four) is the greatest common divisor of those two numbers.

We thus broach issues related to two of the most vexed matters in philosophy. One
is the so-called access problem for abstract objects, such as numbers. This is often traced to
Paul Benacerraf [2]. If numbers are abstract, then how can we know anything about them?
The issue is usually cast in terms of mathematical truths, and thus knowledge de dicto
How do we manage to know that every number has a successor, that there is no largest
prime number, etc.? Hartry Field [3] puts this as a problem for accounting for a (supposed)
correlation between our mathematical beliefs and the (alleged) truth of those beliefs. Our
problem here is not exactly that, but rather how we manage to have de re knowledge
of particular numbers, such as twelve, sixty-four, and four. We clearly do have such
knowledge, Field-style fictionalism aside. We seem to know which number is the greatest
common divisor of twelve and sixty-four. How do we manage this? One would think
that we can, and indeed we have, characterized computability, through the pioneering
work of Alan Turing citeTuring, Alonzo Church [4], and others in the 1930s, without
general solutions to these deep metaphysical and epistemological problems concerning
mathematics.

The other vexed matter concerns de re propositional attitudes generally. Consider the
question of what it is to know who a given person is. W. V. O. Quine [5,6], among others,
pointed out that, in general, such matters are highly context-sensitive, and, in particular,
interest-relative. For example, in asking who someone is, we sometimes know the name

Philosophies 2022, 7, 20. https://doi.org/10.3390/philosophies7010020 https://www.mdpi.com/journal/philosophies

https://doi.org/10.3390/philosophies7010020
https://doi.org/10.3390/philosophies7010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/philosophies
https://www.mdpi.com
https://orcid.org/0000-0003-1490-8194
https://doi.org/10.3390/philosophies7010020
https://www.mdpi.com/journal/philosophies
https://www.mdpi.com/article/10.3390/philosophies7010020?type=check_update&version=1


Philosophies 2022, 7, 20 2 of 10

and are asking for the face: “Which of these people is Susan?”. Other times, we know
the face and want the name: “Who is the person sitting over there, eating an apple?”.
Sometimes, we know what a person did, and want a name: “Who stole all that the money
from the train?”. Sometimes, we know the name and the face, and want something else:
“See that woman over there; her name is Sally Brown. Who is she?”. Possible answers, in
various contexts, might be “Pat’s partner”, “a professor of music at a local college”, etc.

Quine is famously skeptical that a fruitful account of de re propositional attitudes is
even possible. Kripke [1] suggests that Quine overstates the case. And, to be sure, there are
serviceable accounts of de re propositional attitudes in linguistic semantics. The accounts
all allow for context sensitivity, and interest relativity, in the indicated ways. It is generally
recognized that context sensitivity is a fact of linguistic life, and a large number of tools have
been developed to accommodate this feature of natural languages. But the Turing-Church
notion of computability in place today is not context sensitive, let alone interest relative,
in these ways, or at least it is not usually taken to be. There is, for example, no context
sensitivity in the notion of a Turing computable or recursive function, and these notions
are taken to be extensionally equivalent to computability, via the co-called Church-Turing
Thesis (or Theses).

De re propositional attitude reports concern ways that ordinary objects and people
are represented, in language or in thought (if those are different). And here we encounter
another vexed matter, this time in cognitive science and the philosophy of mind. What is
representation, and how is it accomplished? In the present case, the issues concern how
natural numbers are represented. Extreme (epistemic) Platonism aside, we have de re
knowledge or belief about particular numbers only after we manage to represent them in
language or thought. We thus broach matters of notation.

2. Notation

Shapiro [7] (p. 14) argues that computability applies directly only to functions on
syntactic entities, such as strings on an alphabet:

“Mechanical devices engaged in computation and humans following algorithms
do not encounter numbers themselves, but rather physical objects such as ink
marks on paper. As strings are the relevant abstract forms of these physical
objects, algorithms should be understood as procedures for the manipulation
of strings, not numbers. Furthermore, mathematical automata, such as Turing
machines, which are the abstract forms of computation devices, have only ap-
propriately constituted strings for inputs and outputs. It follows that, strictly
speaking, computability applies only to string-theoretic functions and not to
number-theoretic functions.”

To be sure, the general notion of computability does apply to number-theoretic func-
tions. This invokes a notation, a function from a (presumably decidable) set of strings
onto numbers. Typical presentations of Turing machines (including that of Turing [8]) use
so-called unary notation, where a given number n is denoted by a sequence of n, or some-
times n + 1, strokes. Other common notations are binary, decimal, hexadecimal, Roman
numerals, scientific notation, etc.

Shapiro [7] points out that not any notation—not any function from strings to numbers—
will do. For example, let X be any non-recursive set of numbers, say the set of codes of
truths of first-order arithmetic. Intuitively, the characteristic function of X should not be
computable.1 Let the members of X be:

{a0, a1, . . . },

in any particular order. And let the members of the complement of X be

{b0, b1, . . . },
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again, in any particular order. Now define a notation dX as follows: if n is any natural
number, then let the decimal numeral for 2n denote an, and let the decimal numeral for
2n + 1 denote bn.

The characteristic function for X is computable via the notation dX. The usual al-
gorithm that determines whether a given numeral denotes an even number in the deci-
mal notation also determines whether the number denoted by that numeral via dX is a
member of X.

At this point, one option is to concede that the notion of computability, as applied
to number-theoretic functions, is relative to a notation, a kind of context-sensitivity. The
characteristic function for X is computable via dX but not computable via unary notation,
decimal notation, etc., while the even numbers are computable via unary notation, decimal
notation, and the like, but not via dX (see [9]).

A better option, we submit, is to follow standard practice and resist this context-
sensitivity, and thus to find fault with the notation dX. The burden of Shapiro [7] is to
articulate and defend a notion of acceptable notation, one that sanctions unary notation
and decimal notation, but does not allow dX. Along the way, an informal criterion is
proposed, one that invokes the notion of de re knowledge of numbers. If a given notation
is acceptable, then:

1. “The [agent] should be able to write numbers in the notation. If he has a particular
number in mind, he should (in principle) be able to write and identify tokens for the
corresponding numeral;”

2. “The [agent] should be able to read the notation. If . . . given a token for a numeral,
[the agent] should (in principle) be able to determine what number it denotes” [7]
(p. 18).

Michael Rescorla [10] (p. 254) takes issue with the claim that, primarily, computability
applies to syntactic entities, but we need not engage that matter here.2 He defined a
“semantics” for a set of symbols to be “a bijective mapping . . . from the symbols [on]to the
natural numbers.” A “semantics” is thus what we call a “notation”. Rescorla insists that an
acceptable “semantics” must itself be “computable”, despite the fact that a “semantics” is a
function onto the natural numbers. The notion of a computable “semantics” is then glossed
in terms of de re knowledge of numbers:

“A semantics for some set of symbols is computable just in case there exists a
mechanical procedure for computing what number a given symbol denotes . . .
[The] procedure succeeds only when the [agent] can understand the symbolic
representations he manipulates. The [agent] need not know in advance which
number a given symbol represents, but he must be capable, in principle, of de-
termining which number the symbol represents . . . [And if an agent] manipulates
syntactic items that possess a noncomputable semantics, then he cannot mechan-
ically determine which number a given symbol denotes” [10] (pp. 260–262, first
and last two emphases added).

So we now turn to matters de re.

3. De re Attitudes toward Numbers

Kripke’s Whitehead lectures [12] deal with de re propositional attitudes toward natural
numbers. He calls a term t denoting a given quantity a buck-stopper, for a given person
(at a given time), if the question “How much is t?” makes no sense, for that person (at
that time). It is not merely a matter of not being able to give an answer that is any more
informative than the buck-stopper. The idea is that if a speaker asserts or hears a sentence
using a buck-stopper, for that person, then she knows which quantity is being considered.
That is why it makes no sense to ask “But how much is that?”, in that context, for that
person. In the case of quantities, buck-stoppers thus appear to be what David Kaplan [13]
calls “vivid designators”.3



Philosophies 2022, 7, 20 4 of 10

Clearly, the the notion of “buck-stopper” is context-sensitive if anything is. What
counts as a ‘buck-stopper’, in a given context, depends both on the quantity it denotes and
the state of the person at the time. Consider terms for distance. Suppose that someone is in
Paris, during the pandemic, and is chatting over the phone with a friend in Kansas. Her
friend asks about the social distancing conventions in place in Paris, and she tells him that
people are to stay two meters apart from each other. He might then ask “How far apart
is that?”, and she might answer “A little over 6 and a half feet”. In all likelihood, further
inquiry on the part of the friend in Kansas is silly. The final statement in the dialogue
contains a buck-stopper for him. He now knows de re what the relevant distance is. Of
course, it could go in the other direction, if someone else is in the U.S. speaking to someone
else in Paris, and the latter does not know how far “six feet” is. Something similar applies
to currency (US Dollars, Euros) and temperature (Fahrenheit, Celsius), weight, volume, etc.

There are also buck-stoppers and non-buck-stoppers concerning ordinary numbers,
independent of their use to measure distance, currency, temperature, etc. Indeed, there are
buck-stoppers for pure arithmetic. And the context sensitivity is manifest. For someone
who is taught it, unary notation is fine as a buck-stopper for sufficiently small natural
numbers, say those less than 5. But if given a unary numeral for a larger number, say
||||||||||||||||||||||||, it would be fair for an interlocutor to ask, “What number is that?” For
most educated folks, from Western societies, decimal notation would do as a buck-stopping
answer here: 24.

Rescorla [14] (pp. 201–202) argues:

“Unary notation is a poor vehicle for numerical computation. For instance, if
forced to compute over a large number as presented in unary notation, any normal
human would immediately translate into some more legible notation, such as
Arabic decimal notation, scientific notation, etc., . . . [U]nary representation is
basically useless for normal computation involving large numbers.

Unary notation is inefficient, because its demands upon storage space rise alarm-
ingly with the size of numerical inputs. Other notations allow the thinker to
represent large numbers much more efficiently.”

For ordinary human beings, of course, Rescorla’s observations are correct. No one
would try to compute, say, 524 in unary notation. The answer is 7,311,616, and so the result
of the computation would have (exactly) that many strokes. The same goes (or almost goes)
for Roman numerals: the result would be 7311 M’s followed by DCXVI. In both cases, it is
surely reasonable to ask, “but what number is that?”.

Tyler Burge [15] (p. 73) points out that even decimal notation will not work for
sufficiently large numbers: “One needs to do some figuring, calculating, grouping, or
simplifying of a thirty-seven figure numerical name to grasp which number it names.” The
following is an approximation for Avogadro’s number: 602214090000000000000000.

It seems fair for someone to ask: “What number is that?”. So the buck has not
stopped. As Burge notes, it helps a bit, in this case, to group the digits in the usual manner:
602, 214, 090, 000, 000, 000, 000, 0004.

But scientific notation is better: 6.0221409× 1023. For those familiar with this notation,
the buck is perhaps stopped.

We might add that some numbers do not have buck-stopping notations at all. Consider
a product of two primes, each with sixty digits. A (representation of a) number such as that
might be sent from one computer to another to set up a secure digital transaction. Even
if one were to gaze at a page that contained a decimal numeral for that number, it seems
sensible to ask “But what number is this?” And no answer seems to be forthcoming, at
least none that stops the buck—given that we need the exact number here, and not an
approximation. Even scientific notation would have to list all of the 119 or 120 digits, as
every one of them is relevant for the task at hand.

Rescorla [14] (p. 201) also points out that the standard notations, scientific, decimal,
unary, etc., will not do for agents that do not know those notations:
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“Someone might be familiar with unary notation but not Roman numeral no-
tation. Thus, someone might believe that numerical function f [is computable
relative to unary notation] without having the conceptual resources to contem-
plate [whether it is computable relative to Roman notation]. Even if one has
the requisite conceptual resources, one might rationally believe that f [is com-
putable relative to unary notation] while doubting that it [is computable relative
to Roman], or vice versa.”

These observations are all correct, and they do point to an interesting batch of ques-
tions concerning the semantics of reports of de re propositional attitudes about numbers.
However, as above, we might be loath to conclude, against standard practice nowadays,
that computability itself is relative to notation (against [9]).

4. Idealization

We submit that the the usual idealizations involved in theorizing about computability,
along with what is known about the semantics of numerical terms, provide the key to
resolving these issues.

From the beginning—that is, from the 1930s—theorists have focused on human com-
putation, people calculating functions by following algorithms.4 Only later was attention
turned to machine or physical computation. And from the beginning, the focus has always
been on idealized human agents. This is made manifest by speaking of what our agents can
do “in principle”.

Without these idealizations, there are many recursive functions that are not computable
in any realistic sense. For example, a standard Ackermann function (defined via a double
recursion) is not computable: one cannot compute its value at, say 〈5, 5〉, for the simple
reason that (so far as can be determined) the entire physical universe does not contain
enough material to express this output, let alone compute it.5

The idealizations are familiar: we assume that the (human) agent will not run out of
time, attention, or material, and will follow the instructions faithfully and accurately. We
imagine agents that are immortal and infallible, but otherwise human (whatever that might
mean). Similarly, we assume that each Turing machine has a (potentially) infinite tape, and
that there are no bounds on the number of states it can have.6

Similar idealizations are standard in mathematics, and have been well before Turing,
Church, and others started pondering the limits of computability. The first postulate of
Euclid’s Elements is: “A straight line segment can be drawn joining any two points”, and
the third is: “Given any straight line, a circle can be drawn having the segment as radius
and one endpoint as center”. No limits are specified on how far apart the endpoints might
be from each other. The geometer does not worry about whether it is possible to draw a
line between two points that are so far apart that no one can connect them in her lifetime,
nor whether it is physically possible to build a straightedge that is big enough to draw the
given line (say one from the center of gravity of the solar system to the center of gravity
of a distant star). Our focus here is on what sorts of notations are acceptable for our ideal
agents, those not encumbered with limits in attention span, lifetime, materials, and the like.

This shows that for present purposes—determining the limits of what is computable—
matters of feasibility and efficiency raised by Rescorla, Burge, and others are simply not
relevant. We cannot very well care at all about the demands of storage space if we are
to declare the Ackermann function computable. As noted above, the universe does not
contain enough storage space to compute this function for even small inputs.

The conclusion of Shapiro [7] is that a given notation N for natural numbers is “ac-
ceptable” just in case the successor function, given that notation, is computable. That is,
a notation N is acceptable if and only if there is an algorithm on strings such that, given
a numeral in N for a natural number n, produces the N-numeral for n + 1. Equivalently,
the proposal is that N is acceptable just in case the following set of pairs of strings is
effectively decidable: {〈n, m〉| m is the N-numeral for the successor of the number denoted
by N-numeral n}.
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The usual suspects—unary, decimal, binary, hexadecimal, and Roman numerals—are
all acceptable, in this sense. And, of course, the above notation dX is not.

Jack Copeland and Diane Proudfoot [17] (p. 251) give pride of place to unary notation,
proposing “Turing’s Notational Thesis”:

“Any job of work that can be done by a human computer engaged in numerical
calculation can be carried out equivalently by a human computer employing
[unary] notation.”

In light of the standard idealizations, Turing’s Notational Thesis is equivalent to the
proposition that computations use a notation that is acceptable in the sense of Shapiro [7].

5. Connecting the Dots

It remains to show that the main proposal of Shapiro [7] and what Copeland and
Proudfoot [17] call “Turing’s Notational theses” are correct, in the relevant sense. Given the
idealizations, do algorithms using stroke notation, or an acceptable notation in the sense of
Shapiro [7], deliver knowledge of which number is the output of the given function for the
given inputs?

We noted that, in general, de re propositional attitudes are context sensitive and
interest relative, at least for for ordinary humans. We do not propose a counterfactual
analysis of what sort of goals and desires our ideal agents would have, given that they
follow algorithms flawlessly and have no finite bounds on their time, attention spans, and
storage, and yet are still human—whatever that might mean. Indeed, one might think
that idealized agents such as these are not even the sorts of creatures that can have de re
propositional attitudes.7

We suggest that, in the case of natural numbers, one can still make sense of a buck-
stopping notation for our ideal agents. This would be a notation in which, for a given
numeral M, the identity of the number denoted by M flows directly and (more or less)
immediately from the structure of M and the nature of the natural numbers themselves. If
that holds, then, given the idealizations in place, it does not make sense to go on and ask
“But which number is that?”.

Settling this, however, requires insight into what the natural numbers are, and so we
encounter yet another vexed philosophical issue, one that has troubled philosophers since
ancient times. We submit, however, that for present purposes, the idealizations make the
issue tractable and do indeed privilege unary notation, as well as acceptable notations in
the sense of Shapiro [7]. Our modest proposal is to examine the role of number expressions
in ordinary contexts, and then invoke the idealizations.

It is generally recognized that there are three primary uses for numerals. There are
interesting empirical and conceptual questions concerning how these uses are learned, in
what order, and how the various semantics for the different uses relate to each other, but we
need not engage those issues here (see, for example, [18,19]). In the context of the standard
idealizations, all three of these primary uses suggest a special or privileged role for unary
notation and for the successor function on strings that denote numbers, the central item in
acceptable notations according to Shapiro [7].

One use for numerals is to specify cardinalities, as in “Jupiter has four moons” and “A
baseball defense consists of nine players”. A cardinal number canonically answers a “How
many?” question. An expression such as “the (cardinal) number of” expresses a function
that takes a set, group, concept, property, plurality—anything with elements or members—
and delivers the the size of that set, group, concept, property, plurality, etc. A cardinal
number is the value of this function for some set, group, concept, property, plurality, etc.
Frege’s [20,21] logicist account of arithmetic takes natural numbers to be (finite) cardinals,
as does the abstractionist program of Bob Hale and Crispin Wright (e.g., [22]), Neil Ten-
nant’s [23] neo-logicism, and many others. The cardinal notion also seems to be the one
that children learn first, via counting (to the delight of their parents and grandparents).

With unary notation, the numeral for each number n is a sequence of n (or sometimes
n + 1) vertical strokes. So the connection between each numeral and the corresponding
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cardinality is directly displayed. With the usual idealizations in place, there is no serious
question about which number a given unary numeral denotes. Surely, if we are putting
aside questions of time, space, memory, and the like, then unary notation is a buck-stopper
for cardinal numbers. If one wants to know which cardinal number a given unary numeral
denotes, just look at the number of strokes it contains (or one less than the number of
strokes it contains).

It might be added that the typical way that we determine the cardinality of a small (but
not too small) collection is to count it, using what Paul Benacerraf [24] dubbed “transitive
counting”. One recites numerals, typically decimal numerals, while pointing to each item
in the collection being counted. This suggests a central role for the successor function on
the numerals. To engage in transitive counting, one must have a way of reciting the next
numeral after any given one. In other words, the agent must deploy the successor function
on the numerals being used.

Rescorla [10] (p. 269) concedes this:

“This proposal [from Shapiro [7]] receives powerful support from the crucial
role the natural numbers play in counting. Typically, we measure cardinalities
by enumerating elements of some numerical notation in ascending order. This
procedure only works if the successor operation is computable relative to the
notation . . . [This] reflects an inherently desirable property of notations.”

In sum, given that we are invoking the idealizations and setting aside matters of
lifetime, attention span, and memory, if the successor function is computable for a given
notation, and the agent knows the procedure for (transitive) counting, then numerals in
that notation are buck-stoppers. There is no serious question concerning which number a
given numeral in that notation denotes.

A second use of numerals, in ordinary language, is as an ordinal. In English, ordinals
are denoted with expressions such as “third”, “ninth”, and “sixty-fourth”. Sometimes,
ordinary numerals are used, as in “Jack is contestant four”, and “Bachelor number three”.

One can think of “the ordinal number of” as a function, albeit one a little more complex
than “the cardinal number of”. It applies to an object with respect to a (finite) linear ordering
that includes the object. It delivers the place of the object in the ordering. So to say that Joe is
one’s sixth child is to say that Joe occupies the sixth position among the indicated children,
in birth-order. An ordinal number is the value of the function for some object-ordering pair.8

Again, a numeral in unary notation is a sequence of strokes. The strokes display an
ordering, say left to right. So each unary numeral directly represents the corresponding
ordinal. The last (i.e., rightmost) stroke in the numeral is in the requisite position in the
displayed ordering for the corresponding ordinal. So, imposing the standard idealizations,
unary numerals are buck-stoppers for ordinal numbers as well.

It is often noted that the procedure of (transitive) counting also invokes an ordinal.
When someone counts a collection, she, in effect, imposes an ordering on it, given by the
order in which the objects are counted. The last numeral mentioned is thus the ordinal
of the last object counted, within the imposed order. Of course, that same numeral also
designates the cardinality of the collection. To be sure, the particular order chosen for the
count does not matter—every ordering (of the right kind) will produce the same result9—
but any use of transitive counting does invoke an order, and thus an ordinal. And, as noted,
counting presupposes the successor relation on the numerals: the agent must always know
how to determine the next numeral. So here, too, we have a special role for the successor
function on the notation used in the procedure.

The third use of numerals may be called numerical. It is used to talk about numbers
themselves. Consider statements such as:

• Six is a number;
• Five is prime;
• The first four perfect numbers are 6, 28, 496, and 8128;
• Nine is Susan’s favorite number;
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• There is a lot of folklore concerning the number seven.

The natural numbers satisfy the Dedekind–Peano axioms. These are often character-
ized in a formal language with a symbol ‘0’ for zero and one-place function symbol ‘s’ for
the successor function.

1. N0;
2. ∀m(Nm→ Nsm);
3. ∀m∀n((sm = sn ∧ Nm ∧ Nn)→ m = n);
4. ∀m(Nm→ sm 6= 0);
5. For any property F of numbers, if F holds of zero, and for any natural number n,

if F’s holding of n implies that F holds of the successor of n, then F holds of all
natural numbers.

The first axiom is that zero is a natural number; the second is that every number has a
unique successor; the third is that the successor function is one-to-one; the fourth is that
zero is not the successor of a natural number; and the fifth is the induction principle.

Taken together, the Dedekind–Peano axioms characterize the natural numbers as
forming an ω-sequence. Arguably, these are the central features involved in the numerical
uses of numerals (if not also the cardinal and ordinal uses). So here, too, we see a privileged
role for the successor function. From this perspective, a natural number just is either zero
or the result of applying the successor function to zero a finite number of times.

The formal languages for arithmetic contain what can be taken as a canonical notation
for the numbers. A number n is denoted by a string of n s’s, followed by a 0. This is clearly
a variant on unary notation, using the sign for the successor function instead of a stroke.
So the canonical numeral for a number n directly displays which number n denotes—the
canonical numeral displays just how many times one applies the successor function to zero
in order to arrive at the indicated number. And, given the idealizations, this numeral is a
buck-stopper.10

6. Beyond the Natural Numbers

We close with brief accounts of other mathematical domains. A buck-stopping notation
for an integer, at least for our ideal agents, would be a buck-stopping notation for a natural
number, together with a sign, ‘+’ or ‘−’. So there seems to be nothing further to making
sense of matters of computation, and de re propositional attitudes for those mathematical
entities. Similarly, a rational number is a ratio of integers. So a suitably idealized buck-
stopping notation for a given rational number is m

n , where m is a buck-stopper for an
integer, n a buck-stopper for a natural number other that zero, and the two numbers are
relatively prime. One can perhaps develop a buck-stopping notation for finite sets or finite
sequences of natural numbers, using common coding techniques.

After this, however, things do not go nearly as smoothly. Within mathematics, the
natural numbers, the integers, the rational numbers, and finite sets or sequences of those,
are more the exception than the rule. For this reason, philosophy of mathematics should
not focus exclusively on these systems.

Consider the real numbers. There is no hope for a canonical notation for real numbers.
Indeed, no language with a finite (or countable) alphabet can contain a name for every real
number, let alone a canonical name, let alone a buck-stopping name, even allowing the
idealizations. Even the languages of our idealized agents contain only countably many
denoting expressions. Yet there does seem to be an intuitive sense of a given function
being computable, and for even actual humans to have de re propositional attitudes toward
at least some real numbers. We seem to know de re, for example, that the volume of a
(Euclidean) sphere with a radius of one meter is 4π

3 cubic meters.
One might begin by restricting attention to so-called recursive real numbers. But how

are those denoted? One might think of a (recursive) real number as given by a Turing
machine that prints its decimal expansion on an initially blank tape. Using this notation,
however, the addition function, on recursive real numbers, is not itself recursive. So,
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via Church’s Thesis, addition in not computable. Indeed, the addition function on such
numbers is equivalent to the halting problem.11One might bite this bullet, and declare that
addition, on these real numbers, is not computable, but one might wonder if there are any
non-trivial computable functions.

In treatments of computation over real numbers, it is more common to think of a (recur-
sive) real number as given by an effective Cauchy sequence of rational numbers. Then there
are indeed straightforward algorithms for addition, multiplication, exponentiation, and
the like—in most cases, the operations can be performed pointwise, on the corresponding
rational numbers in the sequences. However, with both decimal expansions and Cauchy
sequences, it is not at all clear that we are gaining de re knowledge of individual (recursive)
real numbers, as it is not decidable whether two different Turing machines (say) converge to
the same number. If we agree on a canonical notation for Turing machines (or recursive
function), then we may be gaining de re knowledge of Turing machines, but that is hardly
a gain, since, for these purposes, Turing machines are equivalent to natural numbers.

In the usual presentations of the complex numbers, as the algebraic closure of the real
numbers, a complex number is indiscernible from its conjugate. Anything true of a + bi will
also be true of a− bi. So there does not seem to be any sense to be made of de re knowledge
of one of the square roots of −1, as opposed to the other one (i.e., i vs. −i, see [27]).

Things are even worse in Euclidean geometry. The space is entirely homogeneous:
every point is indiscernible from every other point; every line is indiscernible from every
other line; every line segment from any congruent line segment, etc. There simply is no
way to single out a given point, line, or segment and thus denote it. So it would seem that
there just is no de re knowledge of individual points, lines, line segments, etc., at least not
in the language of geometry.

However, it does seem intuitive to think of, say, Euclidean construction, invoking an
unmarked straightedge and a compass, as a kind of computation, a sort of algorithm. And
so, as above, it is natural to think of a given construction as telling us, say, which point is
the midpoint of a given line segment, or which which line passes through a given point and
is parallel to a given line.

Perhaps the best way to look at this is a kind of relative de re attitude. If we are
somehow given a line segment, then we can locate (de re) the midpoint of that line segment.
We draw two circles from what we are given (each with the radius of the given line segment
and each with an endpoint as center) and then draw a line connecting the points where the
circles intersect. The midpoint is the intersection of that line with the given one.

This, however, is not the place to make progress on this relative notion of de re
knowledge. We rest content with noting the success in the case of natural numbers (and
the like), via the longstanding idealizations.
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Notes
1 The characteristic function fX of a set X is a function f such that f n = 1 if n ∈ X and f n = 0 otherwise. It is a corollary of the

usual proof of the incompleteness theorem that the characteristic function of the set of arithmetic truths is not recursive.
2 Rescorla [11] (p. 338) later concedes that “Turing computation over a non-linguistic domain presupposes a notation for

the domain”.
3 Quine [6] (p. 9) suggests that a vivid designator “is the analogue, in the logic of belief, of a rigid designator”.
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4 See, for example, Turing [8] and Church [4].
5 See [16] for an amusing thought experiment involving an Ackermann-style function.
6 When machine computation was brought into the picture, similar idealizations were assumed for the “machines”. It is assumed,

for example, that they do not decay or otherwise break down.
7 We are indebted to an anonymous referee for pressing this issue.
8 Øystein Linnebo [25] provides an abstraction principle for ordinals, in this sense, and argues that it occupies a fundamental

role in cognitive architecture. In logic and mathematics generally, an “ordinal” is sometimes taken to be the order-type of a
well-ordering (or a surrogate for this, in set theory). That is a generalization of the usage of the term in focus here.

9 Gelman and Gallistel [26] label this the “Order-Irrelevance Principle”.
10 In rigorous axiomatizations of arithmetic, it is, of course, common to add symbols for addition and multiplication, along with

recursive axioms for those functions. This leads to non-canonical ways to denote individual numbers. For example, ssss0× ssssss0
denotes twenty-four, or ssssssssssssssssssssssss0.

11 Suppose, for example, that one of the inputs starts 0.333 . . . and the other starts 2.666 . . . . The sum of those two numbers will
start with either a 2 or a 3 depending on whether there is a digit of the inputs that adds up to 10 or more. And, short of solving
the halting problem, there is no way to know that (see [11]).
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