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The mathematical formalism of quantum theory has been known for almost a century, 
but its physical foundation has remained elusive. In recent decades, many physicists have 
noted connections between quantum theory and information theory. In this study, we 
present a physical account of the derivation of quantum theory's mathematical formalism 
based on information considerations in physical systems. We postulate that quantum 
systems are physical systems with only one independent adjustable variable. Using this 
physical postulate along with the conservation of the total probability, we derive the 
standard Hilbert space formalism of quantum theory, including the Born probability rule. 
Our complete derivation of quantum theory provides a clear and concise physical 
foundation for the mathematical formalism of quantum mechanics. 

1  Introduction 
Quantum theory has been a successful mathematical framework for describing the behavior 

of quantum systems. It was developed almost a century ago mainly by Dirac and von Neumann 

and is based on Hermitian operators and their eigenvectors and eigenvalues [1, 2].  Despite its 

success, a fundamental physical foundation for quantum theory is still lacking.  Since its 

development, numerous attempts have been made to derive the formalism of quantum theory 

from physical axioms or first principles [3-20]. However, these attempts have either been 

incomplete or based on abstract mathematical assumptions that lack a clear physical basis.  

In the last few decades, there has been a growing interest in using an information-theoretic 

approach to quantum theory. This is partly due to the advocacy of John Wheeler for the relevance 

of information theory for understanding quantum physics [21-23], as well as the developments in 

the field of quantum information. Some efforts involve analyzing the internal structure and logic 

of the theory to identify its cornerstones. Others have looked to gain new insights into the 

characteristics that shape quantum theory by examining the relationships between the various 

features of quantum systems. For example, Clifton, Bub, and Halvorson [17] used a C*-algebraic 

formalism to demonstrate how certain information-theoretic constraints on physical systems, 

namely, no superluminal information transfer, no perfect broadcasting, and no bit commitment, 

can lead to other features of quantum theory such as kinematic independence, noncommutativity, 

and nonlocality. Another approach, initiated by Hardy [16], focuses on the general properties of 

probability theories and discusses the criteria that distinguish quantum theory from classical 

probability theories.  
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In this report, we present a derivation of the standard formalism of quantum theory based on 

a clear physical foundation. The fundamental concept we employ is the limited information 

capacity of quantum systems: quantum systems are those physical systems that can hold only a 

single physical message (a piece of information) at a time, as formalized in the complementarity 

principle. This contrasts with classical systems, which can hold multiple messages simultaneously. 

The limits on the information capacity of a physical system can be understood as each 

independently adjustable variable of the system can physically represent one independent piece 

of information at a time. For physical systems with only one adjustable variable, this constraint 

prevents them from carrying more than one piece of information (one message) at a time.  

A range of factors can restrict the adjustable variables of physical systems. For example, the 

adjustable variables can be confined by the screenings in the experimental setup, such as in the 

double-slit experiment where the use of a coherent beam of photons determines their energy and 

direction, leaving their polarization as the only adjustable variable. Alternatively, the adjustable 

variables of physical systems can be constrained under extreme high pressures, low 

temperatures, or intense electromagnetic fields, such as in laser-cooled trapped ions or 

superconductivity. And in some cases, the other independent adjustable variables of a system may 

be abstracted away, as the specified property of the system (e.g., the electron spin) can be 

considered isolated and entirely separate from the rest. In this report, we demonstrate that the 

standard formalism of quantum mechanics (the Hilbert space and the Born probability rule) can 

be explicitly and systematically derived as the theory of the physical systems with a single 

adjustable variable. 

2 Single Variable Systems: Information-Theoretic 

Considerations 
Several information-theoretic definitions of a quantum system have been proposed in the 

literature as potential foundations for the derivation of quantum theory. For instance, Rovelli 

proposed the axiom that “there is a maximum amount of relevant information that can be 

extracted from a [quantum] system” [12]. Similarly, Zeilinger suggested “a foundational principle 

for quantum mechanics” that states a quantum system is “an elementary system [that] carries 1 

bit of information” [14]. While these axioms offer some interesting explanations for certain 

quantum phenomena, such as randomness and entanglement [24-28], or a framework for 

reconstructing the formalism [12], they were not successful in deriving the full formalism of 

quantum theory. 

Here, we present a mathematical theory that describes the behavior of systems with a single 

adjustable variable under measurements. Several information-theoretic considerations affect the 

properties of such systems. Since these systems have no more than one adjustable variable, they 

can contain only one message (i.e., one piece of information) at a time. We refer to these systems 

as Single Message (SM) systems. Since an SM system contains only a single piece of information, 

its state can be defined by the outcome of the last measurement performed on it. Note that 

performing a measurement always produces an outcome, even if the outcome is a zero reading. 
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The unique property of SM systems is that when the information content of an SM system is 

determined via a measurement, performing any subsequent independent measurement (which 

measures an independent proposition) must yield a result with zero informational gain, that is, a 

random outcome. The equivalence of randomness and zero information gain is well established 

through Shannon’s information measure [29]. This means that in SM systems, performing 

independent measurements leads to random transformations of the system into new 

unpredictable states. In other words, performing measurements on SM systems generally involves 

an element of randomness since the system cannot hold more than one piece of information at 

any time.  

In short, due to the single messaging capacity of the SM systems, performing independent 

measurements does not yield deterministic results, but rather involves elements of 

unpredictability and randomness, as in measuring the X component of an electron spin that is in 

the Z+ state. This constraint also implies that performing independent measurements on an SM 

system results in completely random changes in the system’s state, making it impossible to 

predict the outcomes of measurements with certainty. However, if measurements are not entirely 

independent, the future states of the SM system can be predicted probabilistically based on the 

outcome of the last measurement performed on the system. Therefore, the dynamics of the SM 

system can be described probabilistically.  

3 Construction of the Formalism 
In analyzing the possible outcomes of an SM system in a given measurement scenario, it is 

crucial to examine the relationship between two measurements: the last measurement performed 

on the system (which has defined the state of the system) and the measurement for which we 

want to calculate the probabilities of its outcomes. These two measurements can either be 

dependent or independent. In the case of independent measurements, the outcome of the first 

measurement does not influence the outcome of the second, while for dependent measurements, 

certain outcomes of the second measurement can happen less or more likely based on the 

outcome of the first. A dependent measurement, for example, would be measuring the spin of an 

electron in the direction that is tilted 20 degrees from the z-axis in the zx-plane when it is in Š+
z  

state.  

Consider an SM system in a certain state. The aim is to determine the probabilities of the 

system to end up in each of the outcomes of a measurement, 𝑀̂, to be performed on it. Without 

loss of generality, we consider measurements with 𝑁 distinguishable outcomes (generalization to 

the infinite case is straightforward). In what follows this notation is used: a measurement type 𝐾 

is represented as 𝑀̂𝐾 , with possible outcomes M̌1
K, M̌2

K, . . , M̌N
K that are independent members of the 

set 𝑆(𝑀̂𝐾) defined as:  

 𝑆(𝑀̂𝐾) = {M̌1
K, . . , M̌N

K} (1) 

The probabilities of the SM system for the outcomes of this measurement can be represented as:  
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 𝑃(𝑀̂𝐾) = {𝑃1
𝐾 , . . , 𝑃𝑁

𝐾} (2) 

Since performing the measurement eventually results in an outcome, it follows that:  

 ∑ 𝑃𝑗
𝐾

𝑁

𝑗=1

= 1 (3) 

In certain cases, the probabilities, 𝑃𝑗
𝐾 , are easily determinable. For example, if the SM system 

has just undergone the measurement 𝑀̂𝑄  and the outcome M̌i
Q

 is resulted, then repeating the 

same measurement 𝑀̂𝑄  will not change the state of the system. Therefore, in the case that the next 

measurement is 𝑀̂𝑄 , the probabilities of the system for the measurement outcomes are: 

 𝑃𝑗
𝑄 = 𝛿𝑗,𝑖  (4) 

On the other hand, in the case that the next measurement is an independent measurement 𝑀̂𝑅 , 

then the outcomes {M̌1
R, . . , M̌N

R} are all equally likely: 𝑃1
𝑅 = 𝑃2

𝑅 = 𝑃⋯
𝑅 = 𝑃𝑁

𝑅 . Hence, the probabilities 

of the system for the outcomes of the measurement can be written as:  

 𝑃𝑗
𝑅 =

1

𝑁
 , ∀𝑗 ∈ {1, ⋯ , 𝑁}  (5) 

where 𝑁 is the total number of the outcomes. 

Besides these two cases, an extensible framework is required to evaluate the probabilities of 

the SM system for the outcomes of a general type of measurement, i.e., for measurements that are 

neither the same as the previous one nor fully independent of it. Consider two measurements, 

𝑀̂𝐾& 𝑀̂𝐿 , which are not fully independent, meaning certain outcomes of the second measurement 

can happen less or more likely based on the outcome of the first. The interdependence between 

the outcomes of the measurements can be defined as:  

 𝑇𝑗,𝑖
𝐿,𝐾 = 𝑃(M̌j

L|M̌i
K) (6) 

which represent the probability of obtaining the jth outcome in measurement 𝑀̂𝐿 , given the ith 

outcome of measurement 𝑀̂𝐾 . These interdependences can be framed in an 𝑁 × 𝑁 

“interdependence matrix” of the two measurements.  

The interdependence matrix has several properties. For example, for any fixed 𝑖 

 ∑ 𝑇𝑗,𝑖
𝐿,𝐾

𝑗
= 1  (7) 



5 
 

as the 𝑀̂𝐿 measurement ultimately produces an outcome, and the probabilities should add up to 1. 

Representing the probabilities of the SM system for the measurement 𝑀̂𝐾 as 𝑃𝑖
𝐾 , the probabilities 

of the system for the measurement 𝑀̂𝐿 is determined as 

 𝑃𝑛
𝐿 = ∑  𝑃(M̌n

L|M̌i
K)𝑃𝑖

𝐾

𝑖
= ∑  𝑇𝑛,𝑖

𝐿,𝐾𝑃𝑖
𝐾

𝑖
  (8) 

This is the sum over all possible ways that the system can result in M̌n
L. The interdependence 

matrices need to conserve the total probability, i.e., ∑ 𝑃𝑛
𝐿

𝑛 = 1. This is ensured by: 

 ∑ 𝑃𝑛
𝐿

𝑛
= ∑ ∑   𝑇𝑛,𝑖

𝐿,𝐾𝑃𝑖
𝐾

𝑖
=

𝑛
∑ 𝑃𝑖

𝐾 ∑   𝑇𝑛,𝑖
𝐿,𝐾

𝑛𝑖
= 1 (9) 

based on (3) & (7). 

Alternatively, 𝑀̂𝐿 can be taken as the first measurement, in which the system has the probabilities 

of 𝑃𝑖
𝐿 . Then the probabilities of the system for the second dependent measurement 𝑀̂𝐾 , can be 

evaluated as above using the interdependence matrix of: 

 𝑆𝑗,𝑖
𝐾,𝐿 = 𝑃(M̌j

K|M̌i
L). (10) 

The interdependence matrices represent the probabilistic correlations between the outcomes 

of two measurements. Functionally, they map the probabilities of the system for one 

measurement to that of the other as shown in (8). In general, these mapping matrices should have 

certain properties. Firstly, the components represent probabilities, therefore they are positive 

numbers not greater than 1:  

 

0 ≤ 𝑇𝑗,𝑖 ≤ 1 

0 ≤ 𝑆𝑗,𝑖 ≤ 1 

(11) 

Additionally, they must obey: 

 

∑ 𝑇𝑗,𝑖

𝑗

= 1 

∑ 𝑆𝑗,𝑖

𝑗

= 1 

(12) 

for any fixed 𝑖, as measurements necessarily produce an outcome (cf. (7)). 

The interdependence matrices map the probabilities of the SM system from one 

measurement-space to another according to (8): 
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𝑃𝑗
𝐿 = ∑ 𝑇𝑗,𝑖𝑃𝑖

𝐾

𝑖

 

𝑃𝑗
𝐾 = ∑ 𝑆𝑗,𝑖𝑃𝑖

𝐿

𝑖

 

(13) 

Therefore, the consecutive application of these reciprocal maps should take any initial state back 

to itself, which means the following identity must hold for the interdependence matrices:  

 𝑇𝑆 = 𝑆𝑇 = 𝑰 (14) 

in which 𝑰 is the identity matrix. However, the current construction of the interdependence 

matrices does not satisfy this property in general since the components are positive probability 

value that do not sum up to zero for the non-diagonal components of the 𝑇𝑆 and 𝑆𝑇 matrices. And 

the only instance where 𝑆 = 𝑇 = 𝑰 is the trivial scenario of identical measurements.  

To accommodate this issue, a different probability measure is needed for determining the 

probabilities in the mappings between various measurement types. A probability measure that is 

a continuous function, accepting non-positive inputs and yielding values in the interval [0,1], with 

𝑃(0) = 0 and 𝑃(1) = 1. These attributes lead to the probability measures in the form of: 

 𝑃(M̌j
K|M̌i

L) = |𝜌𝑗,𝑖
 𝐾,𝐿|

𝑎
, 𝑎 ∈ ℝ+ (15) 

defined based on the probability-intensities, 𝜌𝑗,𝑖 , of events. The probability-intensities in these 

probability measures can be negative or complex, as long as their resulting probabilities fall 

within the unit interval [0,1]. Among these probability measures, imposing the conservation of the 

total probability between the mappings leads to the probability measure with 𝑎 = 2 (see 

Appendix A for proof). Therefore, in the final analysis, the only probability measure that results in 

consistent mappings between different measurements probability spaces is: 

 𝑃(M̌j
K|M̌i

L) = |𝜌𝑗,𝑖
 𝐾,𝐿|

2
 (16) 

which defines probabilities based on probability-amplitudes.  

Following the same procedure as before and conforming to the above probability measure, 

the revised interdependence matrices 

 

Γ𝑗,𝑖
𝐿,𝐾 = 𝜌𝑗.𝑖

𝐿,𝐾  

 

 Δ𝑗,𝑖
𝐾,𝐿 = 𝜌𝑗.𝑖

𝐾,𝐿 

(17) 

have the following properties. Parallel to (12), for any fixed 𝑖 the probabilities should add up to 1: 

 ∑|Γ𝑗,𝑖|
2

𝑗

= 1  (18) 
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∑|Δ𝑗,𝑖|
2

𝑗

= 1 

and parallel to (11), the components are confined according to: 

 

0 ≤ |Γ𝑗,𝑖|
2

≤ 1 

0 ≤ |Δ𝑗,𝑖|
2

≤ 1 

(19) 

which grants that the components can have negative or complex values. Analogous to the earlier 

construct, these interdependence matrices can be used to pursue the SM system’s probabilities. 

However, instead of acting on the SM system probabilities, 𝑃𝑗
𝐼 , these mappings act on the SM 

system probability-amplitudes, σ𝑗
𝐼 , defined as: 

 𝑃𝑗
𝐼 = |σ𝑗

𝐼|
2

 (20) 

with the following property: 

 ∑|σ𝑗
𝐼|

2

𝑗

= ∑ 𝑃𝑗
𝐼

𝑗

= 1 (21) 

With these adjustments, the adapted interdependence matrices can be used as before to 

determine the probabilities of the system for a second measurement. The interdependence 

matrices Γ𝐿,𝐾 an Δ𝐾,𝐿  transform the SM system’s probability-amplitudes between the two 

measurements 𝐿̂ and 𝐾. Γ𝐿,𝐾 maps the probability-amplitudes from measurement 𝐾 to 

measurement 𝐿̂, and Δ𝐾,𝐿 maps them from measurement 𝑀̂𝐿 to measurement 𝐿̂,  according to: 

 

σ𝑗
𝐿 = ∑ Γ𝑗,𝑖σ𝑖

𝐾

𝑖

 

σ𝑗
𝐾 = ∑ Δ𝑗,𝑖σ𝑖

𝐿

𝑖

 

(22) 

The mappings should conserve the total probability, i.e., 

 ∑|σ𝑗
𝐿|

2

𝑗

= ∑|σ𝑗
𝐾|

2

𝑗

= 1 (23) 

which indicates that Γ and Δ matrices are unitary. (The antiunitary case is not considered since 

these matrices describe continuous transformations between the probability-amplitudes; see also 

(18)).  

The second property of these interdependence matrices stems from the fact that they are 

reciprocal mappings between the two measurement probability spaces, and their consecutive 

actions should map any state back to itself (cf. (14)): 



8 
 

 ΓΔ = ΔΓ = 𝑰 (24) 

This indicates that these unitary matrices are conjugate transposes of each other: 

 

Δ = Γ−1 = Γ∗  

Γ = Δ−1 = Δ∗ 

(25) 

In other words, the interdependence matrices between two measurements are conjugate 

transposes of each other, which means that for SM systems, the probability-amplitudes between 

any pair of measurement  𝐼 and 𝐼𝐼 outcomes are related as follows:  

 𝜌(M̌b
II|M̌a

I ) = 𝜌∗(M̌a
I |M̌b

II). (26) 

In summary, in the above analysis by investigating the constraints on transforming 

probabilities of SM systems between measurements, the characteristics of probability mappings 

in SM systems were derived. The standard probability measure used in classical physics was 

found to be inadequate for determining probabilities in SM system mappings. To address this, 

consistent probability measures were sought that could accommodate negative or complex 

probability-intensities while conserving total probability, leading to the probability measure 

based on probability-amplitudes and consequently the unitarity of the interdependence matrices. 

Throughout the analysis, the conservation of total probability in mappings was the primary 

constraint, and the transformation properties adhered to this consistency requirement. 

 State Vectors, Operator Algebra, Hilbert Space Representation, and the 

Probability Rule 
The Hilbert-space formalism of SM systems theory is easily recognizable in the above 

construct, with clear denotations of its elements. The probability-amplitude of the SM system, 

denoted as 𝜎𝐼 , can be regarded as a vector of length 1 in the N-dimensional space defined by the N 

independent outcomes of the measurement 𝑀̂𝐼 , namely M̌1
I , M̌2

𝐼 , . . , M̌N
𝐼  (as in (1)). Employing the 

conventional bra-ket notation, the state-vector of the SM system can be expressed as |𝜎𝐼⟩ =

∑ σ𝑖
𝐼|M̌i

I⟩𝑖  with the following normalization from (2121): 

 〈𝜎𝐼|𝜎𝐼〉 = 1. (27) 

With this representation of the SM states as unit vectors in the complex vector space of the 

probability-amplitudes, the algebraic structure of SM systems is apparent. Once a measurement 

basis is chosen to represent the SM state, e.g., |𝜎𝐼⟩, the probability-amplitude of the system for 

another measurement can be expressed as a linear combination of those bases, using the 

interdependence of the two measurements, according to (22) as:  

 |𝜎𝐼𝐼⟩ = 𝜌𝐼𝐼,𝐼|𝜎𝐼⟩ (28) 
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in which 𝜌𝐼𝐼,𝐼 is the unitary transformation portrayed in (26). In other words, mappings of the 

state of SM systems between measurements are carried out by the interdependence matrices of 

the measurements. The logic is simple: the dependence of the states can be determined by the 

dependence of the measurements that would produce those states since SM states are defined by 

the outcome of measurements. 

The Born rule for calculating probabilities is also clear in this representation. The probability-

amplitude of a measurement outcome, M̌b
II, given the initial state of the SM system, 𝜎𝐼 = M̌a

I , 

determined from (28) is 

 𝜌𝑏,𝑎
𝐼𝐼,𝐼 = 〈𝜎𝑎

𝐼 |𝜎𝑏
𝐼𝐼〉 = 〈M̌a

I |M̌b
II〉 (29) 

and applying (16) leads to the probability of the described event as: 

 𝑃𝑏,𝑎
𝐼𝐼,𝐼 = |𝜌𝑏,𝑎

𝐼𝐼,𝐼|
2

= |〈𝜎𝑎
𝐼 |𝜎𝑏

𝐼𝐼〉|2 = |〈M̌a
I |M̌b

II〉|
2

 (30) 

This result is the Born probability rule; it is a built-in part of the theory rooted in the conservation 

of total probability in transformations. 

In summary, the Hilbert space formalism of SM systems theory allows us to represent the 

state of the system as a unit vector in the complex vector space of probability-amplitudes. The 

state-vector can be expressed in terms of a chosen measurement basis and can be transformed 

between measurements probability spaces using the unitary interdependence matrices. The Born 

rule for calculating probabilities is naturally derived from the probability-amplitudes, and total 

probability is conserved in all transformations. Overall, this formalism provides a clear and 

powerful framework for understanding the behavior of SM systems. 

Superposition of Possibilities and the Interference Effect 
 In the above formulation, the transformation of the system probability-amplitudes under a 

series of measurements can be described by consecutively applying the interdependence matrices 

of those measurements, as expressed in: 

 
|𝜎𝐼𝐼𝐼⟩ = 𝜌𝐼𝐼𝐼,𝐼𝐼|𝜎𝐼𝐼⟩ = 𝜌𝐼𝐼𝐼,𝐼𝐼𝜌𝐼𝐼,𝐼|𝜎𝐼⟩ 

           = 𝜌𝐼𝐼𝐼,𝐼|𝜎𝐼⟩ 
(31) 

where 

 𝜌𝑓,𝑖
𝐼𝐼𝐼,𝐼 = ∑ 𝜌𝑓,𝑛

𝐼𝐼𝐼,𝐼𝐼𝜌𝑛,𝑖
𝐼𝐼,𝐼

𝑛

 (32) 

describes the relationship between the interdependence matrices of the measurement.  

This chain rule allows the determination of the system’s probability-amplitude for a 

measurement based on the interdependencies of measurements. Importantly, this sum accounts 

for the interference effects: the probability of events, calculated according to: 
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 𝑃(M̌f
III|M̌i

I) = 𝑃𝑓,𝑖
𝐼𝐼𝐼,𝐼 = |𝜌𝑓,𝑖

𝐼𝐼𝐼,𝐼|
2

= |∑ 𝜌𝑓,𝑛
𝐼𝐼𝐼,𝐼𝐼𝜌𝑛,𝑖

𝐼𝐼,𝐼

𝑛

|

2

 (33) 

can include extra terms, “the interference terms,” that lead to results different from what the 

classical method of calculating probabilities predicts. For example, using the above relation, the 

interference in the double-slit experiment follows as the photons have two options (slit1 and 

slit2) to go from the source (O) to the screen (S): 

 

𝑃(M̌S
Screen|M̌O

Source) = |𝜌S,O
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑜𝑢𝑟𝑐𝑒|

2

= |𝜌S,slit1
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌slit1,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒 + 𝜌S,slit2
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌slit2,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2

 (34) 

This differs from the classical method of calculating probabilities, which predicts: 

 

𝑃(M̌S
Screen|M̌O

Source) = 𝑃(S|slit1)𝑃(slit1|O) + 𝑃(S|slit2)𝑃(slit2|O)

≡ |𝜌S,slit1
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌slit1,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2

+ |𝜌S,slit2
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌slit2,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2

 (35) 

The transformation of the probability-amplitudes between the measurements, as described 

by the chain rule in (31), highlights interference as a fundamental characteristic of SM systems. It 

can be seen that it is the connection between the probability-amplitudes of the outcomes of 

different measurements, rather than their probabilities, that modifies the result from classical 

probability. The above derivation provides a clear understanding of the basis of interference and 

demonstrates the essential role of the presence of the intermediate measurement. In the physics 

of SM systems, interference results from the superposition of possible outcomes of the 

intermediate measurement, indicating that the presence of intermediate non-performed 

measurements (the “interaction-free” measurements) cannot be neglected. It is also evident that 

interference results from the mathematical record-keeping of SM systems’ probability-amplitudes 

for possible outcomes of intermediate measurements rather than the physical occurrence of those 

outcomes. 

Time Evolution and Derivation of the Schrödinger Equation 
The analysis of the mappings between the probability spaces of different measurements for 

SM systems led to the algebraic structure of their state-space, specifically, the Hilbert space and 

the Born probability rule. Incorporating time evolution in this framework is a straightforward 

process, as discussed in various mathematical physics textbooks (see for example [30] Sec. 3.3). 

A measurement can be labeled by the time variable 𝑡, denoting the time at which it is 

performed. Since the relationship between measurements does not depend on time, their 

interdependence matrices must maintain the same structure at different times; hence, there must 

exist a unitary transformation 𝕋(𝑡2 − 𝑡1) such that: 
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 𝜌(𝑡2) =  𝕋−1(𝑡2 − 𝑡1) 𝜌(𝑡1)𝕋(𝑡2 − 𝑡1) (36) 

Under common assumptions about time evolution, the transformation can be written as:  

 𝕋(𝑡2 − 𝑡1) = e−𝑖𝐻(𝑡2−𝑡1) (37) 

where 𝐻 is a self-adjoint matrix that defines the Hamiltonian in the Hilbert space. Borrowing 

conventional quantum terminology, thus far, our discussion was in the “Heisenberg picture,” in 

which the states of isolated systems remain fixed, but the interdependence matrices that 

represent the observables change with time. Transposing to the “Schrödinger picture” shifts the 

focus to the time evolution of the state, and the Schrödinger equation is obtained as follows:  

 𝑖
𝑑

𝑑𝑡
|𝜎𝐼(𝑡)⟩ = 𝐻|𝜎𝐼(𝑡)⟩ (38) 

******* 

Here, we have shown how the analysis of the constraints imposed by the probabilistic nature 

of SM systems under measurements leads to the derivation of the standard Hilbert-space 

formalism of quantum mechanics, as well as the Born probability rule. The full framework of 

quantum theory emerged from studying the general properties of the mappings that transform 

the state of the SM system from one measurement probability-space to another. Using this 

perspective, the elements of the theory can be properly understood. 

The state-vector, 𝜎𝐼 , contains information about the outcome of the last measurement 

performed on the system. The interdependence matrices, 𝜌𝐼𝐼,𝐼 , are unitary matrices that transform 

the system state-vector, 𝜎𝐼 , between different measurements’ probability spaces. These matrices 

embody information on how the outcomes of distinct types of measurements correlate with one 

another probabilistically. Accordingly, the state-vector can be mapped into different 

measurements’ probability spaces via the interdependencies of the measurements. The 

transformed state-vectors represent the probability-amplitudes of the system for those 

measurements. The construct of the theory ensures that the total probability is conserved in these 

transformations. Finally, when a measurement is performed, the state of the system adjusts 

accordingly to reflect the result of the observation.  

4 Discussion and Conclusion 
In this report, we have presented a systematic derivation of the standard formalism of 

quantum theory from a physical foundation. The underlying physical idea in our derivation is the 

recognition of physical systems with a single adjustable variable and their inherently probabilistic 

nature due to their limited capacity to carry messages. This is whence the indeterministic nature 

of quantum mechanics arises. Based on this physical foundation, we have derived quantum theory 

in a transparent and intuitive manner. Similar postulates have been suggested in the past [12, 14], 

however, they did not succeed in deriving the full formalism of the theory.  
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This derivation shows that quantum mechanics describes the physics of systems that possess 

only a single adjustable variable. The theory describes the transformations of the probability-

amplitudes of such systems for different measurements, with the algebraic structure of the theory 

rooted in the conservation of total probability in these transformations. The current derivation of 

the quantum formalism for finite-dimensional individual systems can easily be extended to the 

general case. It is worth noting that this derivation places the ensemble interpretation of quantum 

mechanics [31] as a secondary interpretation of the theory, rather than its primary one. 

In addition, this derivation clarifies the fundamental concept of state in quantum theory. The 

state of a quantum system is a mathematical representation of the physical state of the system, 

determined by the outcome of the most recent measurement performed on it. The theory 

provides a way to calculate the system’s probabilities for future measurement outcomes from its 

current state, taking into account the interdependencies of the measurements. This perspective 

resolves misconceptions about the state of a quantum system, namely that it stores all 

information about the system's representations in various measurements [32]. Rather, this 

information is contained in the interdependencies of measurements, not in the quantum system 

itself. 

The interpretation of quantum mechanics becomes clear from our derivation. The foundation 

of quantum theory lies in the concept that a quantum system is a physical system with no more 

than one independent adjustable variable. Since such systems can only contain one proposition of 

objective reality, the theory is inherently probabilistic rather than deterministic. At its essence, 

quantum theory is a mathematical framework for calculating the probabilities of a measurement’s 

outcomes. It describes how the probabilities of single-variable systems transform among different 

measurements probability spaces. Rather than describing the measurement process, the theory 

focuses on what can be known about the potential results of measurements.  

Our work does not change the existing formalism of quantum theory. Instead, it provides a 

comprehensive framework for interpreting quantum phenomena and represents a significant step 

towards a deeper understanding of the theory. Quantum mechanics is the probability theory for 

physical systems that possess a single adjustable variable. The core mathematical structure of the 

theory is based on consistent record-keeping of probabilities between different measurements. 

Understanding the physical foundation of quantum theory allows us to revisit the phenomena 

described by conventional quantum mechanics and gain deeper insights into the nature of our 

world.  
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Appendix A: Deriving the Probability Measure that Conserves Total 

Probability in Mappings 
To determine the appropriate probability measure for transforming the SM system 

probabilities via interdependence matrices, we obtained probability measures in the form of (15): 

𝑃(M̌j
K|M̌i

L) = |𝜌𝑗,𝑖
 𝐾,𝐿|

𝑎
, which allow for non-positive probability-intensity values as inputs. To find 

the probability measures that transform the probabilities consistently between mappings, we first 

consider those in the form of: 

 𝑃(𝑀̌𝑗
𝐾|𝑀̌𝑖

𝐿) = (𝜌𝑗,𝑖
 𝐾,𝐿)

2𝑛
, 𝑛 ∈ ℕ (39) 

The interdependence matrices can be constructed in accord to these probability measures as: 

 

Γ𝑗,𝑖
𝐿,𝐾 = 𝜌𝑗.𝑖

𝐿,𝐾  

 Δ𝑗,𝑖
𝐾,𝐿 = 𝜌𝑗.𝑖

𝐾,𝐿 

(40) 

These matrices are subject to the constraints: 

 

∑ (Γ𝑗,𝑖)
2𝑛

𝑗
= 1  

∑ (Δ𝑗,𝑖)
2𝑛

𝑗
= 1 

(41) 

based on the logic that a measurement ultimately results in one outcome, and the probabilities 

should add up to 1 (cf. (7)). Additionally, the components of these matrices, akin to (11) are 

confined within the limits: 

 0 ≤ (Γ𝑗,𝑖)
2𝑛

≤ 1 (42) 
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0 ≤ (Δ𝑗,𝑖)
2𝑛

≤ 1 

which allows for the components to have negative or complex values. 

To calculate the probabilities of the SM system, we accordingly define the probability-

intensities of the SM system, σ𝑗
𝐼 , in terms of its probabilities, 𝑃𝑗

𝐼 , as:  

 𝑃𝑗
𝐼 = (σ𝑗

𝐼)
2𝑛

 (43) 

where σ𝑗
𝐼  represents the probability-intensity of the SM system for the outcome M̌j

I in the 

measurement 𝑀̂𝐼 . The total sum of the system probabilities must equal 1, hence for the 

probability-intensities we get: 

 ∑ (σ𝑗
𝐼)

2𝑛

𝑗
= ∑ 𝑃𝑗

𝐼

𝑗
= 1 (44) 

The interdependence matrices Γ𝐿,𝐾 an Δ𝐾,𝐿 map the probability-intensities of the system between 

the two measurements 𝑀̂𝐿 and 𝑀̂𝐾 . Γ𝐿,𝐾 maps the probability-intensities from measurement 𝑀̂𝐾 

to measurement 𝑀̂𝐿 , and Δ𝐾,𝐿 maps them from measurement 𝑀̂𝐿 to measurement 𝑀̂𝐾 , according 

to: 

 

σ𝑗
𝐿 = ∑ Γ𝑗,𝑖

𝑖
σ𝑖

𝐾 

σ𝑗
𝐾 = ∑ Δ𝑗,𝑖

𝑖
σ𝑖

𝐿  

(45) 

These mappings should conserve the total probability, i.e.,  

 ∑ (σ𝑗
𝐿)

2𝑛

𝑗
= ∑ (σ𝑗

𝐾)
2𝑛

𝑗
= 1 (46) 

This is a necessary condition for the consistency of the mappings between measurements and it 

specifies the value of 𝑛 required for the consistent probability measure, as will be shown below. 

Substituting the probability-intensities from (45) returns: 

 

∑ (σ𝑗
𝐿)

2𝑛

𝑗
= ∑ (∑ Γ𝑗,𝑖

𝑖
σ𝑖

𝐾)
2𝑛

𝑗
 

                      = ∑ (σ𝑗
𝐾)

2𝑛

𝑗
 

(47) 

which means we should have: 
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 ∑ (∑ Γ𝑗,𝑖σ𝑖
𝐾

𝑖

)

2

𝑗

= ∑ (∑ Γ𝑗,𝑚
∗ σm

∗𝐾

𝑚

) (∑ Γ𝑗,𝑙σ𝑙
𝐾

𝑙

)

𝑗

       

= ∑ σm
∗𝐾σ𝑙

𝐾

𝑚,𝑙

∑ Γ𝑗,𝑚
∗ Γ𝑗,𝑙

𝑗

 

                             = ∑(σ𝑗
𝐾)

2

𝑗

 

(48) 

The above relation holds if: 

 ∑ Γ𝑗,𝑚
∗ Γ𝑗,𝑙

𝑗

= 𝛿𝑚,𝑙  (49) 

Summing over 𝑚 for a fixed 𝑙 leads to: 

 

∑ ∑ Γ𝑗,𝑚
∗ Γ𝑗,𝑙

𝑗𝑚

= ∑ Γ𝑗,1
∗ Γ𝑗,𝑙

𝑗

+ ∑ Γ𝑗,2
∗ Γ𝑗,𝑙

𝑗

+ ⋯ + ∑ Γ𝑗,𝑁
∗ Γ𝑗,𝑙

𝑗

= 𝛿1,𝑙 + 𝛿2,𝑙 + ⋯ + ∑ Γ𝑗,𝑙
∗ Γ𝑗,𝑙

𝑗

+ ⋯ + 𝛿1,𝑁 

= ∑ Γ𝑗,𝑙
∗ Γ𝑗,𝑙

𝑗

= ∑(Γ𝑗,𝑙)
2

𝑗

 

= ∑ 𝛿𝑚,𝑙

𝑚

= 1 

(50) 

which compared to (41) gives 𝑛 = 1.  

To complete this analysis of the proper probability measures, in addition to the ones defined 

in (39), we should consider all the other possible probability measures that allow non-positive 

components, i.e., 𝑃(M̌j
K|M̌i

L) = |𝜌𝑗,𝑖
 𝐾,𝐿|

𝑎
, 𝑎 ∈ ℝ+. For even values of 𝑎, these measures are the same 

as the ones already discussed above. For other values of 𝑎, a relationship similar to (47) results in 

Γ𝑗,𝑖 = ±𝛿𝑗,𝑖  indicating that these measures only conserve probabilities in the mappings for the 

trivial case of identical measurements.  

Therefore, the only consistent probability measure that conserves the total probability in the 

mappings for general cases of measurements is: 

 𝑃(M̌j
K|M̌i

L) = (𝜌𝑗,𝑖
 𝐾,𝐿)

2
 (51) 

which defines the probabilities based on probability-amplitudes. 
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