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Abstract
Recently, we have proposed quantum language ( or the linguistic Copenhagen interpretation of quantum
mechanics). Quantum languages describe both classical and quantum systems and therefore have great power
to solve almost all philosophical problems. Thus, we believe that quantum language can be regarded as the
language of science. Therefore, it makes sense to study Wittgenstein’s picture theory within the framework
of quantum language, since Wittgenstein’s language (i.e., the language that he supposed, but didn’t define
in his book ”Tractatus Logico-Philosophicus”) may be a particular subclass of quantum language. In this
paper, we show that a class of binary projective measurements in classical quantum language has a logical
structure. And thus, the proposition that Wittgenstein studied in his book can be regarded as a binary
projective measurement in classical quantum language. Therefore, we conclude that Wittgenstein’s language
is realized as the central part of classical quantum language. If so, we think that his picture theory should
be praised not only from a philosophical point of view but also from a scientific point of view.
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in which I proposed the quantum linguistic understanding of Wittgenstein’s picture theory ( which is the

main theory in Wittgenstein’s book ”Tractatus Logico-Philosophicus” ( in short, ”TLP”; ref. [32])).

TLP is surely one of the most important philosophical books of the 20th century. However, there are

various opinions about his picture theory. For example, some people have even declared his picture theory

to be nonsensical(cf. refs. [1, 28]). Therefore, I don’t think the evaluation of his theory is yet settled from

the scientific point of view. Wittgenstein said, in the (6.53)-th sentence of TLP, that

[a ](6.53): The correct method in philosophy is to say nothing but what can be said (i.e., propositions of

the natural sciences).

Therefore, he must have been thinking about the language of science to answer ”what is a scientific propo-

sition?” If so, his picture theory may be rewritable in scientific terms ( and not philosophical terms).

For almost 30+ years, I’ve been studying quantum language (abbreviated and cited as QL) (or, ”measure-

ment theory”, ”the linguistic Copenhagen interpretation of quantum mechanics”, ”the linguistic Copenhagen

interpretation of dualistic idealism”, ”the quantum mechanical worldview”), which was proposed by myself

( cf. refs. [8–15] ).

I think that the location of quantum language in the history of world-description:

Figure 0 [The location of quantum language in the history of world-description (cf. ref. [16, 25]) ]
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Figure 0: The history of the world-descriptions
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As seen in the above figure, roughly speaking, QL has five aspects such as
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[b ]



7O: the linguistic turn of quantum mechanics (cf. refs. [15, 20, 21]),

8O: the scientific turn of Descartes=Kant philosophy (cf. refs. [16, 22, 23]),

10O: the measurement theoretical aspect of logic (cf. ref. [24, 27]),

11O: the quantitative turn of Saussure’s linguistics (cf. Sec.11.5 in ref. [26]),

12O: the dualistic turn of statistics (cf. refs. [11, 14, 17–19,24]) ,

where, you can think of ”dualism = measurement theory (= dualism consisting of a measurer and a mea-

surement object”, ”idealism = metaphysics (= a discipline dealing with things that cannot be settled by

experiments)”.

As shown in Figure 0, note that

[c ] QL is a kind of language of science such as statistics, Newtonian mechanics, the theory of relativity

and so on

( where Newtonian mechanics, the theory of relativity are realistic, QL and statistics are idealistic). If the

above [b] is true, it must solve almost all philosophical unsolved problems (e.g., Zeno’s paradox, Hume’s

problem of induction, Hempel’s raven problem, etc.) as mentioned in Sec. 6 later.

Wittgenstein’s picture theory in TLP is philosophical and unscientific. However I think that attempts to

understand this theory from a scientific point of view must not be stopped. Do not stop research, concluding

that it is scientific nonsense.

In Sec. 4, I propose my understanding of Wittgenstein’s picture theory in the framework of QL. This

is reasonable since both Wittgenstein’s picture theory and QL are closely related to propositions of science.

That is, we devote ourselves to [a; 10O]. i.e.,
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in Figure 0

where [mathematical logic]
9O

−−→ [philosophical logic]
10O,13O
−−−−→ [scientific logic]. That is, we consider that Wittgen-

stein was the first philosopher to try to make a clear distinction between mathematical logic and scientific

logic. And this clarification is completed in QL (cf. Sec. 3).

In section 2, I review measurement theory (=QL), which is composed from Axiom 1(Measurement), Axiom

2 (Causality) and the linguistic Copenhagen interpretation. In section 3, I discuss ”Why does logic arise in

science ?”, and assert that a class of binary projective measurements in classical quantum language has a

logical structure, i.e.,

[e ] ”Logic comes from measurement”. (i.e., dualistic idealism is hidden behind Wittgenstein’s picture

theory)

( where it should be noted that I am not concerned with logic in mathematica but logic in science).
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In section 4, I study Wittgenstein’s picture theory, which is constructed on inspiration from the results

obtained in section 3. After all, I conclude that the proposition Wittgenstein studied in his TLP can

be regarded as a binary projective measurement in classical quantum language. Therefore, we think that

Wittgenstein’s language (i.e., the language that he supposed, but didn’t define in TLP) is realized by a class

of binary projective measurements in classical quantum language.

That is, I show that:

QL
classical QL

Wittgenstein’s language

Figure 1: Wittgenstein’s language(in which scientific logic holds)

= a class of binary projective measurements in classical quantum language

In addition, in Sec. 6, I add the list of my solutions of philosophical unsolved problems in QL. From the

scientific point of view, I think that there is only one philosophical unsolved problem:

[e ] Complete the scientific dualistic idealism!

This is realized by QL as I have shown in Figure 0 before. And so, the other philosophical unsolved problems

concerning dualistic idealism, which stem from an inadequate understanding of our dualistic idealism, should

be clarified in QL. And thus, I conclude that Wittgenstein’s picture theory should be located in the central

part of science.

2 Review: Quantum language (= QL = Measurement theory )

In this section, we shall review quantum language ( i.e., the linguistic Copenhagen interpretation of quantum

mechanics, or measurement theory ), which has the following form:

Quantum language

(= measurement theory)

= measurement
(Axiom 1)

+ causality
(Axiom 2)

+
�� ��linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

(1)

My all results concerning QL are summarized in Research report ( Keio University): [25, 26]. Also, the

sections 4.3 and 11.6 in ref. [26] should be regarded as the preprint of this paper.

2.1 Mathematical Preparations

Consider an operator algebra B(H) (i.e., an operator algebra composed of all bounded linear operators on

a Hilbert space H with the norm ∥F∥B(H) = sup∥u∥H=1 ∥Fu∥H , [29]. [30], [34]. ), and consider the pair
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[A,N ]B(H) ( or, the triplet [A ⊆ N ⊆ B(H)] ), called a basic structure. Here, A(⊆ B(H)) is a C∗-algebra,

and N (A ⊆ N ⊆ B(H)) is a particular C∗-algebra (called a W ∗-algebra) such that N is the weak closure

of A in B(H).

QL (= quantum language = measurement theory ) is classified as follows.

(A) QL =

 (A1): quantum QL (when A = C(H))

(A2): classical QL (when A = C0(Ω))

That is, when A = C(H), the C∗-algebra composed of all compact operators on a Hilbert space H, the

quantum QL (A1) is also called quantum measurement theory (or, quantum system theory), which can be

regarded as the linguistic aspect of quantum mechanics. Also, when A is commutative (that is, when A is

characterized by C0(Ω), the C∗-algebra composed of all continuous complex-valued functions vanishing at

infinity on a locally compact Hausdorff space Ω (cf. refs. [30], [34])), the classical QL (A2) is also called

classical measurement theory.

Also, note that, when A = C(H), i.e., quantum cases,

(i) A∗ = Tr(H) (=trace class), N = B(H), N∗ = Tr(H) (i.e., pre-dual space),

thus,
Tr(H)

(
ρ, T

)
B(H)

= Tr
H
(ρT ) (ρ ∈ Tr(H), T ∈ B(H)).

Also, when A = C0(Ω), i.e., classical cases,

(ii) A∗ = M(Ω)(=“the space of all signed measures on Ω)”, N = L∞(Ω, ν)(⊆ B(L2(Ω, ν))), N∗ = L1(Ω, ν),

where ν is some measure on Ω, thus,
L1(Ω,ν)

(
ρ, T

)
L∞(Ω,ν)

=
∫
Ω
ρ(ω)T (ω)ν(dω) (ρ ∈ L1(Ω, ν), T ∈

L∞(Ω, ν)) (cf. ref. [30]).

Let A(⊆ N ⊆ B(H)) be a C∗-algebra, and let A∗ be the dual Banach space of A. That is, A∗

= {ρ | ρ is a continuous linear functional on A }, and the norm ∥ρ∥A∗ is defined by sup{|ρ(F )| | F ∈

A such that ∥F∥A(= ∥F∥B(H)) ≤ 1}. Define the mixed state ρ (∈ A∗) such that ∥ρ∥A∗ = 1 and ρ(F ) ≥ 0

for all F ∈ A such that F ≥ 0. And define the mixed state space Sm(A∗) such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.

A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈

Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space. It is well known (cf. ref. [30]) that Sp(C(H)
∗
) = {|u⟩⟨u| (i.e., the Dirac

notation) | ∥u∥H = 1}, and Sp(C0(Ω)
∗
) = {δω0

| δω0
is a point measure at ω0 ∈ Ω}, where

∫
Ω
f(ω)δω0

(dω)

= f(ω0) (∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
) can be also identified with Ω (called a spectrum

space or simply spectrum) such as

Sp(C0(Ω)
∗
)

(state space)

∋ δω ↔ ω ∈ Ω
(spectrum)

5



Thus, ω and Ω is also called a state and state space respectively.

For instance, in the above (ii) we must clarify the meaning of the “value” of f(ω0) for f ∈ L∞(Ω, ν) and

ω0 ∈ Ω. An element f(∈ L∞(Ω, ν)) is said to be essentially continuous at ω0(∈ Ω), if there uniquely exists

a complex number α such that

• if ρ (∈ L1(Ω, ν), ∥ρ∥L1(Ω,ν) = 1, ρ ≥ 0 ) converges to δω0(∈ M(Ω)) in the sense of weak∗ topology of

M(Ω), that is,

ρ(G) −−→ G(ω0) (∀G ∈ C0(Ω)(⊆ L∞(Ω, ν))),

then ρ(f)(=
∫
Ω
f(ω)ρ(ω)ν(dω) converges to α.

And the value of f(ω0) is defined by the α.

Definition 1. [Observable] According to the noted idea (cf. ref. [2], [5]), an observable O :=(X,F , F ) in

N is defined as follows:

(i) [σ-field] X is a set, F(⊆ 2X , the power set of X) is a σ-field of X, that is, “Ξ1,Ξ2, ... ∈ F ⇒ ∪∞
n=1Ξn ∈

F”, “Ξ ∈ F ⇒ X \ Ξ ∈ F”.

(ii) [Countable additivity] F is a mapping from F to N satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-

negative element in N such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the

0-element and the identity in N respectively. (c): for any countable decomposition {Ξ1,Ξ2, . . . ,Ξn, ...}

of Ξ
(
i.e., Ξ,Ξn ∈ F (n = 1, 2, 3, ...), ∪∞

n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i ̸= j)
)
, it holds that F (Ξ) =∑∞

n=1 F (Ξn) in the sense of weak∗ topology in N .

Let (Y,G) be a measurable space, and let Θ : X → Y be a measurable map. Then, Θ(O) :=(Y,G, F (Θ−1(·))

in N is also an observable in N ( which is called an image observable). If F (Ξ) = F (Ξ)2 (∀Ξ ∈ F), then

O :=(X,F , F ) in N is a projective observable O :=(X,F , F ) in N is also called an X-valued observable. I

will devote myself to binary valued ( i.e., {1, 0}-valued ) projective observables in most of the cases in this

paper.

2.2 Axiom 1 [Measurement] and Axiom 2 [Causality]

Measurement theory (A) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S,

a basic structure [A,N ]B(H) can be associated in which the measurement theory (A) of that system can

be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and an observable is

represented by an observable O :=(X,F , F ) in N . Also, the measurement of the observable O for the system

S with the state ρ is denoted by M(O, S[ρ])
(
or more precisely, MN (O, S[ρ]), MN (O :=(X,F , F ), S[ρ])

)
. An

observer can obtain a measured value x (∈ X) by the measurement M(O, S[ρ]).

The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-

tation of quantum mechanics. And thus, it is a statement without reality.
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Now we can present Axiom 1 in the W ∗-algebraic formulation as follows.

Axiom 1 [ Measurement ]. Consider a basic structure [A ⊆ N ⊆ B(H)]. The probability that a measured

value x (∈ X) obtained by the measurement MN (O :=(X,F , F ), S[ρ]) belongs to a set Ξ(∈ F) is given by

ρ(F (Ξ)) if F (Ξ) is essentially continuous at ρ(∈ Sp(A∗)).

Remark 2. Recall that a statement whose truth or falsity is determined is called a proposition. Also, Axiom

1 says that a measured value is determined by a measurement MN (O :=(X,F , F ), S[ρ]). Therefore, there

is a point in thinking that ”measured value” is a generalization of ”truth value”. That is, we can regard

”measurement” as a kind of generalizations of ”proposition”. This idea is essential to Sec. 3.

Next, we explain Axiom 2 ( which is not used in this paper). Let [A1,N1]B(H1) and [A2,N2]B(H2) be

basic structures. A continuous linear operator Φ1,2 : N2 (with weak∗ topology) → N1(with weak∗ topology)

is called a Markov operator, if it satisfies that (i): Φ1,2(F2) ≥ 0 for any non-negative element F2 in N2, (ii):

Φ1,2(I2) = I1, where Ik is the identity in Nk, (k = 1, 2). In addition to the above (i) and (ii), we assume

that Φ1,2(A2) ⊆ A1 and sup{∥Φ1,2(F2)∥A1
| F2 ∈ A2 such that ∥F2∥A2

≤ 1} = 1.

It is clear that the dual operator Φ∗
1,2 : A∗

1 → A∗
2 satisfies that Φ∗

1,2(S
m(A∗

1)) ⊆ Sm(A∗
2). If it holds

that Φ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2), the Φ1,2 is said to be deterministic. If it is not deterministic, it is said to

be non-deterministic. Also note that, for any observable O2 :=(X,F , F2) in N2, the (X,F , Φ1,2F2) is an

observable in N1.

Definition 3. [Sequential causal operator; Heisenberg picture of causality] Let (T,≤) be a tree like

semi-ordered set such that “t1 ≤ t3 and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. The family {Φt1,t2 :

Nt2 → Nt1}(t1,t2)∈T 2
≦
is called a sequential causal operator, if it satisfies that

(i) For each t (∈ T ), a basic structure [At ⊆ Nt ⊆ B(Ht)] is determined.

(ii) For each (t1, t2) ∈ T 2
≦, a causal operator Φt1,t2 : Nt2 → Nt1 is defined such as Φt1,t2Φt2,t3 = Φt1,t3

(∀(t1, t2), ∀(t2, t3) ∈ T 2
≦). Here, Φt,t : Nt → Nt is the identity operator.

Now we can propose Axiom 2 (i.e., causality). (For details, see ref. [25].)

Axiom 2[Causality]; For each t(∈ T=“tree like semi-ordered set”)), consider the basic structure:

[At ⊆ Nt ⊆ B(Ht)]

Then, the chain of causalities is represented by a sequential causal operator {Φt1,t2 :Nt2 → Nt1}(t1,t2)∈T 2
≦
.

2.3 The linguistic Copenhagen interpretation (= the manual to use Axioms 1
and 2)

Since so-called Copenhagen interpretation is not firm (cf. ref. [6] ), we propose the linguistic Copenhagen

interpretation in what follows. In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic

words, metaphysical statements), and thus, it is nonsense to verify them experimentally. Therefore, what we
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should do is not “to understand” but “to use”. After learning Axioms 1 and 2 by rote, we have to improve

how to use them through trial and error.

The most important statement in the linguistic Copenhagen interpretation is as follows.

(B) Only one measurement is permitted. Thus, Axiom 1 can be used only once. And therefore,

the state after a measurement is meaningless since it can not be measured any longer. That is, the

state is only one.

Referring ref. [25], we have the following definition:

Definition 4. [(i;a)] Simultaneous observable]: Let Oi :=(Xi,Fi, Fi) (i = 1, 2, ..., N) be commutative pro-

jective observables in N . Let (×N
i=1 Xi,⊠N

i=1Fi) is a product measurable space of {(Xi,Fi)}Ni=1. Then,

there uniquely exists a projective observable ×N
i=1 Oi = (×N

i=1 Xi,⊠N
i=1Fi,×N

i=1 Fi) such that

[
N

×
i=1

Fi](X1 ×X2 × ...×Xj−1 × Ξj ×Xj+1 × ...×XN ) = Fj(Ξj) (∀Ξj ∈ Fi, j = 1, 2, ..., N)

This ×N
i=1 Oi is called a simultaneous observable (or, product observable) of {Oi | i = 1, 2, ..., N}. Note that

the existence and uniqueness is guaranteed (cf., ref. [25]).

[(i;b)] Simultaneous measurement]: A measurement MN ( ×N
i=1 Oi = (×N

i=1 Xi,⊠N
i=1Fi,×N

i=1 Fi) , S[ρ]) is

called a simultaneous measurement concerning commutative Oi (i = 1, 2, ..., N) in N .

[(ii; a)] Parallel observable]: Let Oi :=(Xi,Fi, Fi) be a projective observable in Ni (i = 1, 2, ..., N). Let

(×N
i=1 Xi,⊠N

i=1Fi) is a product measurable space of {(Xi,Fi)}Ni=1. Then, there uniquely exists an observable⊗N
i=1 Oi = (×N

i=1 Xi,⊠N
i=1Fi,

⊗N
i=1 Fi) in a tensor algebra

⊗N
i=1 Ni such that

[

N⊗
i=1

Fi](X1 ×X2 × ...×Xj−1 × Ξj ×Xj+1 × ...×XN ) =I1 ⊗ I2 ⊗ ...⊗ Ij−1 ⊗ Fi(Ξj)⊗ Ij+1 ⊗ ...⊗ IN

(∀Ξj ∈ Fj , j = 1, 2, ..., N)

This
⊗N

i=1 Oi is called a parallel observable (or, tensor observable) of {Oi | i = 1, 2, ..., N} in a tensor algebra⊗N
i=1 Ni

[(ii; b)] Parallel measurement]: A measurement M⊗N
i=1 Ni

(
⊗N

i=1 Oi , S[
⊗N

i=1 ρi]
) is called a parallel measure-

ment concerning { MNi(Oi :=(Xi,Fi, Fi), S[ρi]) }Ni=1.

3 Why does logic arise in science ?

It is well-known that logic holds in the class of mathematical propositions. However, it should be noted that

it is not guaranteed that logic holds among non-mathematical propositions. Thus, the question ”Why does

logic arise in science?” is significant.

From here, we devote ourselves to classical QL ( in the classical basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆

B(L2(Ω, ν)] ) and not quantum QL ( in the quantum basic structure [C(H) ⊆ B(H) ⊆ B(H)] ).

The close relationship between measurement and logic was first discussed in ref. [8]. The argument in

this section are regarded as a slight variation of the argument in ref. [8].
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3.1 Logic (i.e., ¬, ∧, ∨, →) in classical QL

We have the following theorem:

Theorem 5. In a class of binary projective measurements in classical QL, measurement has properties like

logic:

In this section we will devote ourselves to the above proof as follows.

Consider a classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν)]

Here, assume that Ω is a locally compact space with a Borel measure ν on Ω such that ν(D) > 0 ( for

any open set D (⊆ Ω, D ̸= ∅). Also, without loss of generality, we assume that ν(Ω) = 1. Consider many

tomatoes, that is, roughly speaking, consider T as the set of all tomatoes. Assume that any tomato t(∈ T )

is represented by a state ω, which is an element of the state space Ω. Thus, we have the map ω̂ : T → Ω.

That is, the quantitative property of a tomato t is represented by ω̂(t). For example, it suffices to consider Ω

such that Ω ⊆ RN (= N -dimensional real space), where N is sufficiently large natural number ( or, N = ∞).

That is,

Ω ∋ ω =
(
ω(1)(= weight), ω(2)(= diameter), ω(3)(= diameter), ω(4)(= color value),

ω(5)(= calorie), ω(6)(= sugar content), ..., ω(N)(= ...)
)
∈ RN

Consider a binary projective observable (i.e., {1, 0}-valued projective observable, or {x1, x0}-valued pro-

jective observable ) O ≡ (X, 2X , F) in L∞(Ω, ν), where X = {1, 0} ( or, X = {x1, x0}) and F (Ξ) = [F (Ξ)]2

(∀Ξ ∈ F).

Further, as shown in Figure 2 below, we, for the sake of simplicity, assume that {ω ∈ Ω | [F ({1})](ω) =

1, a.e.}(≡ Γ) is an open set such that

Γ = [Γ]◦, ν(Ω \ (Γ ∪ [Γc]◦)) = 0

where Dc is the complement of D, i.e., Ω \D, D =”the closure of D”, D◦ =”the interior of D”. Note that

we can assume that Γc = [Γc]◦ in the sense of ”almost everywhere concerning ν” ( i.e., ”ν(Γc \ [Γc]◦) = 0”)

, which will be frequently used without refusal in this paper. The {1, 0}-valued projective observable O ≡

(X, 2X , F) in L∞(Ω, ν) is also denoted by

OΓ ≡ (X, 2X , FΓ) (2)

9



Figure 2: Venn diagram: Γ ⊆ Ω

Remark 6. (i): Someone might say that the term ”the set of all tomatoes” is as ambiguous as ”the set of

all dinosaurs”. However, for the sake of convenience, here we use the term ”the set of all tomatoes”. TLP

begins with the following sentence:

(♯) 1: The world is everything that is the case.

1.1: The world is the totality of facts, not of things.

This means that ”Consider Ω(=the state space of tomatos), and not T (=the set of all tomatos) !”. This

problem is the same as that of the Hempel’ raven paradox (i.e., ”the set of all ravens” leads to contradiction).

For further discussion about this, see ref. [24], [26].

(ii): If we want to both tomato’s world Ω1 and apple’s world Ω2, it suffices to start from the product space

Ω1 × Ω2. Thus, in general we consider the world also is represented by a large state space Ω̂.

Definition 7. [Measured value] Consider a measurementML∞(Ω,ν)(O
Γ, S[ω]), where O

Γ ≡ (X(= {1, 0}), 2X , FΓ)

is a binary projective observable in L∞(Ω, ν). Denote the measured value of ML∞(Ω,ν)(O
Γ, S[ω])

by [MV](ML∞(Ω,ν)(O
Γ, S[ω])). Then, we see that

[MV](ML∞(Ω,ν)(O
Γ, S[ω])) =

{
1 (ω ∈ Γ)
0 (ω /∈ Γ)

(with probability 1)

Let X = {1, 0}, Ω and ω̂(t) be as before. Put Γ =RD, or Γ =SW in the formula (2) ( see Figure 3

below). Consider a binary projective observables ORD ≡ (X(= {1, 0}), 2X , FRD) and OSW ≡ (X, 2X , F SW)

in L∞(Ω, ν). Consider a measurement ML∞(Ω,ν)(O
RD, S[ω̂(t)]). That is, we consider that the following three

are equivalent (i.e., Axiom 1 ( measurement) says that (C1) ⇔ (C2). Also, (C3) is the expression of (C1) in

ordinary language):

(C1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(O
RD, S[ω̂(t)])

(
i.e., [MV]

(
ML∞(Ω,ν)(O

RD,

S[ω̂(t)])) = 1
)
( strictly speaking, the probability that a measured value 1 is obtained by the measure-

ment ML∞(Ω,ν) (O
RD, S[ω̂(t)]) is equal to 1. )

(C2) ω̂(t) ∈ RD(≡ {ω ∈ Ω | [FRD({1})](ω) = 1})

(C3) A tomato t is ”red”.
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Similarly, as shown in Figure 3 below, consider a measurement ML∞(Ω,ν)(O
SW, S[ω̂(t)]). That is, we consider

that the following three are equivalent:

(C′
1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(O

SW, S[ω̂(t)])
(
i.e., [MV]

(
ML∞(Ω,ν)(O

SW,

S[ω̂(t)])) = 1
)
.

(C′
2) ω̂(t) ∈ SW(≡ {ω ∈ Ω | [F SW({1})](ω) = 1})

(C′
3) A tomato t is ”sweet”.

Figure 3: Venn diagram: RD, SW ⊆ Ω

[ Not]

It is clear that the following four are equivalent:

(D0) [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])
)
= 0.

(D1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(Θ¬(O
SW), S[ω̂(t)]) ( which is also denoted

by ¬ML∞(Ω,ν)(O
SW, S[ω̂(t)]) ), where Θ¬ : {1, 0} → {1, 0} is defined by Θ¬(1) = 0, Θ¬(0) = 1 (cf.

Definition 1; image observable ). Thus, [MV]
(
¬ML∞(Ω,ν)(O

SW, S[ω̂(t)])
)
= 1.

(D2) ω̂(t) ∈ [SW]c(≡ {ω ∈ Ω | [F SW({0})](ω) = 0})

(D3) A tomato t is not ”sweet”.

[And]

We see that the following four are equivalent:

(E0) A measured value (1, 1) is obtained by the measurement ML∞(Ω,ν)(O
SW×ORD, S[ω̂(t)]).

(E1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(Θ∧(O
SW×ORD), S[ω̂(t)]) ( which is also

denoted by ML∞(Ω,ν)(O
SW, S[ω̂(t)])∧ML∞(Ω,ν)(O

RD, S[ω̂(t)]) ), where Θ∧ : {1, 0}2 → {1, 0} is defined by

Θ∧(1, 1) = 1, Θ∧(1, 0) = Θ∧(0, 1) = Θ∧(0, 0) = 0 (cf. Definition 1; image observable ).

Thus, [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])∧ML∞(Ω,ν)(O
RD, S[ω̂(t)])

)
= 1.

(E2) ω̂(t) ∈ SW(≡ {ω ∈ Ω | [F SW({1})](ω) = 1})
⋂
RD(≡ {ω ∈ Ω | [FRD({1})](ω) = 1})

(E3) A tomato t is ”sweet” and ”red”
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Remark 8. When ω1 ̸= ω2, it should be noted that the simbol ”ML∞(Ω,ν)(O
SW, S[ω1])∧ML∞(Ω,ν)(O

RD, S[ω2])”

is not yet defined. Recall the linguistic Copenhagen interpretation ”Only one measurement is permitted”.

Thus, ”there is only one state”. Therefore, this should be defined by the parallel ML∞(Ω,ν)⊗L∞(Ω,ν)(Θ∧(O
SW⊗

ORD), S[(ω1,ω2)]). More generally, the simbol ”∧λ∈ΛML∞(Ωλ,νλ)(O
Γλ , S[ωλ])” is defined by

M⊗
λ∈Λ L∞(Ωλ,νλ)(

⊗
λ∈Λ

OΓλ , S[(ωλ)λ∈Λ])

[Or]

We see that the following four are equivalent:

(F0) A measured value (x1, x2) obtained by the measurement ML∞(Ω,ν)(O
SW×ORD, S[ω̂(t)]) belongs to

{(1, 1), (1, 0), (0, 1)}

(F1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(Θ∨(O
SW×ORD), S[ω̂(t)]) ( which is also

denoted by ML∞(Ω,ν)(O
SW, S[ω̂(t)])∨ML∞(Ω,ν)(O

RD, S[ω̂(t)]) ), where Θ∨ : {1, 0}2 → {1, 0} is defined by

Θ∨(1, 1) = Θ∨(1, 0) = Θ∨(0, 1) = 1, Θ∨(0, 0) = 0.

Thus, [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])∨ML∞(Ω,ν)(O
RD, S[ω̂(t)])

)
= 1.

(F2) ω̂(t) ∈ SW(≡ {ω ∈ Ω | [F SW({1})](ω) = 1})
⋃
RD(≡ {ω ∈ Ω | [FRD({1})](ω) = 1})

(F3) A tomato t is ”sweet” or ”red”

[Implication]

We see that the following four are equivalent:

(G0) A measured value (x1, x2) obtained by the measurement ML∞(Ω,ν)(O
SW×ORD, S[ω̂(t)]) belongs to

{(1, 1), (0, 1), (0, 0)}

(G1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(Θ→(OSW×ORD), S[ω̂(t)]) ( which is also

denoted by ML∞(Ω,ν)(O
SW, S[ω̂(t)])→ML∞(Ω,ν)(O

RP, S[ω̂(t)]) ), where Θ→ : {1, 0}2 → {1, 0} is defined

by Θ→(1, 1) = Θ→(0, 1) = Θ→(0, 0) = 1, Θ→(1, 0) = 0. Thus, [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])→ML∞(Ω,ν)

(ORD, S[ω̂(t)])
)
= 1.

(G2) ω̂(t) ∈ SWc(≡ {ω ∈ Ω | [F SW({1})](ω) = 0}) ∪ RD(≡ {ω ∈ Ω | [FRD({1})](ω) = 1})

(G3) A tomato t is not ”sweet”, or it is ”red”

Summing up the above, we have the following theorem:

Theorem 9. We see that for each ω ∈ Ω,

(a) [MV]
( ¬ML∞(Ω,ν)(O

Γ, S[ω̂(t)])
)
= 1 -[MV]

(
ML∞(Ω,ν)(O

Γ, S[ω̂(t)])
)

(b) [MV]
(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])∧ML∞(Ω,ν) (O
Γ2 , S[ω̂(t)])

)
= min

{
[MV]

(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])
)
, [MV]

(
ML∞(Ω,ν) (O

Γ2 , S[ω̂(t)])
) }
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(c) [MV]
(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])∨ML∞(Ω,ν) (O
Γ2 , S[ω̂(t)])

)
= max

{
[MV]

(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])
)
, [MV]

(
ML∞(Ω,ν) (O

Γ2 , S[ω̂(t)])
) }

(d) [MV]
(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])→ML∞(Ω,ν) (O
Γ2 , S[ω̂(t)])

)
= max

{
1− [MV]

(
ML∞(Ω,ν)(O

Γ1 , S[ω̂(t)])
)
, [MV]

(
ML∞(Ω,ν) (O

Γ2 , S[ω̂(t)])
) }

Therefore, we can expect that a class of binary projective measurements in classical quantum language has

a logical structure. In this sense, this class can be regarded as a class of ”propositions”.

Remark 10. Note that propositional logic (i.e., ¬, ∧, ∨, →) and predict logic (i.e., ¬, ∧, ∨, →, ∀, ∃) are

essentially the same since P1 ∧ P2 ∧ P3 ∧ ... = (∀n)[Pn] and P1 ∨ P2 ∨ P3 ∨ ... = (∃n)[Pn]. Thus, this paper

does not distinguish propositional logic and predict logic.

3.2 Syllogism

Further, consider a measurement ML∞(Ω,ν)(O
RP, S[ω̂(t)]). That is, we consider that the following three are

equivalent:

(H1) A measured value 1 is obtained by the measurement ML∞(Ω,ν)(O
RP, S[ω̂(t)]).

(H2) ω̂(t) ∈ RP(≡ {ω ∈ Ω | [FRP({1})](ω) = 1})

(H3) A tomato t is ”ripe”.

Theorem 11. [Syllogism]:
Let t be a tomato, and let ω̂(t)(∈ Ω) be the state of t. Assume the followings:

(I0) A measured value (x1, x2) obtained by the measurement ML∞(Ω,ν)(O
SW×ORP, S[ω̂(t)]) belongs to

{(1, 1), (0, 1), (0.0)}

which is equivalent to

(I1) [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])→ML∞(Ω,ν)(O
RP, S[ω̂(t)])

)
= 1

(I2) ω̂(t) /∈ SW(≡ {ω ∈ Ω | [F SW({1})](ω) = 1}) ∨ ω̂(t) ∈ RP(≡ {ω ∈ Ω | [FRP({1})](ω) = 1})

(I3) A tomato t is not ”sweet”, or it is ”ripe”.

and

(I′0) A measured value (x2, x3) obtained by the measurement ML∞(Ω,ν)(O
RP×ORD, S[ω̂(t)]) belongs to

{(1, 1), (0, 1), (0.0)}

which is equivalent to

(I′1) [MV]
(
ML∞(Ω,ν)(O

RP, S[ω̂(t)])→ML∞(Ω,ν)(O
RD, S[ω̂(t)])

)
= 1

which is equivalent to

(I′2) ω̂(t) /∈ RP(≡ {ω ∈ Ω | [FRP({1})](ω) = 1}) ∨ ω̂(t) ∈ RD(≡ {ω ∈ Ω | [FRD({1})](ω) = 1})

(I′3) A tomato t is not ”ripe”, or it is ”red”.

Then the following holds:
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(J0) A measured value (x1, x3) obtained by the measurement ML∞(Ω,ν)(O
SW×ORD, S[ω̂(t)]) belongs to

{(1, 1), (0, 1), (0.0)}

(J1) [MV]
(
ML∞(Ω,ν)(O

SW, S[ω̂(t)])→ML∞(Ω,ν)(O
RD, S[ω̂(t)])

)
= 1

(J2) ω̂(t) /∈ SW(≡ {ω ∈ Ω | [FRD({1})](ω) = 1}) ∨ ω̂(t) ∈ RD(≡ {ω ∈ Ω | [FRP({1})](ω) = 1})

(J3) A tomato t is not ”sweet”, or it is ”red”.

[Proof]: Recalling the linguistic Copenhagen interpretation ”Only one measurement is permitted” ( in

Sec. 2.3), we have enough to see the simultaneous observable OSW × ORP × ORD, which uniquely exists (cf.

Definition 4 (i) ). Thus, we have the measurement ML∞(Ω,ν)(O
SW × ORP × ORD, S[ω̂(t)]). Let (x1, x2, x3) be

the measured value. We easily see that (x1, x3) belongs to {(1, 1), (0, 1), (0.0)}. Thus, (J) holds.

However, we should add the following. This proof is not self-evident since the existence and uniqueness of

the simultaneous observable OSW × ORP × ORD is not trivial (cf. Definition 4 (i)). Also, see Sec. 5 (i.e.,

Syllogizm does not always hold in quantum sistems).

3.3 Elementary measurements

Consider the state space Ω, which is finite ( or, countable ) with a metric d (i.e., d(ω1, ω2) = 1 (ω1 ̸= ω2),

= 0 (ω1 = ω2).

Definition 12. Let λ be any element of Ω. Putting Γ = {λ} in the formula (2), define the elementary

binary projective observable O{λ} = (X(= {1, 0}), 2X , F {λ}) in L∞(Ω, ν) such that

[F {λ}({1})](ω) =
{

1 (if ω = λ)
0 (if ω ̸= λ)

, [F {λ}({0})](ω) = 1− [F{λ}({1})](ω)

(∀ω ∈ Ω)

The measurement ML∞(Ω,ν)(O
{λ}, S[ω]) (λ, ω ∈ Ω) is called an elementary measurement.

It is clear that it holds that

(K1 ) A measured value 1 is obtained by the elementary measurement ML∞(Ω,ν)(O
{λ}, S[ω])

⇐⇒ λ = ω

(K2 ) A measured value 1 is obtained by the elementary measurement ML∞(Ω,ν)(O
{λ}, S[ω])

⇐⇒ λ ̸= ω

Under the above preparation, the following theorem is clear

Theorem 13. Let Γ be a subset of Ω. And let ω ∈ Ω. Then we see that

ML∞(Ω,ν)(O
Γ, S[ω]) =∨λ∈ΓML∞(Ω,ν)(O

{λ}, S[ω])
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Remark 14. In this section, I devoted myself to the classical cases. Our arguments in this section are

invalid in quantum cases. Consider a binary projective observable O = ({1, 0}, 2{1,0}, F ) in B(H), where

F ({1}) = P (= projection), F ({0}) = I −P . Define the state ρ by |e⟩⟨e| (where e ∈ H such that ||e||H = 1).

Axiom 1 say that

• The probability that a measured value 1 (∈ X = {1, 0}) is obtained by the measurementM(O :=(X, 2{1,0},

F ), S[ρ]) is given by Tr[ρF ({1})](= ||Pe||H)

Thus, if e /∈ PH ∪ (1− P )H (i.e., in most case) the ”probability” belongs to the open interval (0, 1). That

is, in quantum cases, the probability concept cannot be covered up. Thus, the arguments in this section are

invalid in quantum cases.

Remark 15. Many readers may not consider the above theorem to be particularly important. I have the

same view. However, this theorem was prepared in preparation for Sec.4 (Theorem 23). Of course, the

spirit of expressing complex observables in simple observables is quite important. In quantum language,

this spirit is realized by von Neumann’s spectral decomposition theorem (cf. ref. [29]) and Holevo’s theorem

(cf. ref. [5]), that is, ”Any observable can be represented by the product of commutative binary projective

observables in QL (i.e., both classical and quantum QL)”. In this sense, we say that

(♯) as far as classical QL, a class of binary projective measurements is fundamental.

4 My understanding of Wittgenstein’s picture theory

In Wittgenstein’s book ”Tractatus Logico-Philosophicus” (cf. [32]), he studies the following:

(L1) Assume a certain language L. Then, the following problems are essential:

(i) What is a proposition in the language L? Or, why does logic (i.e., ¬, ∧, ∨,,...) arise in the

language L?

(ii) Everyone knows that complex propositions can be created by logically combining simple proposi-

tions. Now, let’s think about the opposite. Is there a class of ”simplest propositions (or, elemen-

tary propositions)” in the language L? Or, can any proposition be constructed from elementary

propositions?

I think that the above is quite important. However, Wittgenstein’s answer is not sufficient, since he did not

answer ”What is the language L?”

In the preface of Wittgenstein’s book ”Tractatus Logico-Philosophicus” (cf. [32]), he said that

(L2) This book will perhaps only be understood by those who have themselves already thought the thoughts

which are expressed in it — or similar thoughts.
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This is a very significant sentence for me. That is because, as I answered in the previous section 3, I already

know the answers to question (L1) before reading this TLP ( if the language L = classical QL).

In this section, I propose my understanding of Wittgenstein’s picture theory, which is inspired from

the arguments in the previous section. The following table will promote the reader’s understanding of the

arguments in this section.

Table 16. [Logic in quantum language (Sec. 3) vs. logic in Wittgenstein’s picture theory (this section)]

Logic in quantum language (Sec. 3) Logic in Wittgenstein’s theory (Sec.4)

Axiom 1 in Section 2.2 (what is a measurement?))
the linguistic Copenhagen interpretation in Sec. 2.3

Definition 17 (what is a proposition?)
Naive set theory (≈ Venn diagram: Fig. 4 )

system, particle, object, tomato object, thing, tomato
state space ( state ) logical space ( case, fact,, atomic fact )

[MV], measured value {1, 0} [TV], truth value {T,F}
classical binary projective measurement

ML∞(Ω,ν)(O
Γ ≡ (X(= {1, 0}), 2X , FΓ), S[ω̂(t)])

proposition
PΩ(Γ, S[ω̂(t)])

Theorem 11 (Syllogism in measurements) Theorem 19 (Syllogism in propositions)
elementary measurement elementary proposition
Theorem 13 ( Remark 15)

Elementary measurements are not fundamental
Theorem 23 ( Remark 24)

Elementary propositions are fundamental

I encourage you to read the following, referring to the above table. If you understand Sec. 3, you should

be able to understand this section immediately. Using the above table, we can translate the language of

Wittgenstein’s theory into quantum language.

♠Note 1. In TLP, many important concepts are not clearly defined. In particular, he may use the

word ”logical space” in a different sense than the above table. However, if ”logical space” is the most

important concept in Wittgenstein’s picture theory, it must mean ”state space”.

4.1 Logic (i.e., ¬, ∧, ∨, →) in my understanding of Wittgenstein’s picture theory

The question ”What is a proposition?” is easy in mathematics. However, outside of mathematics, this

question is not easy. Wittgenstein’s purpose is to clarify ”proposition” in science.

Let Ω, Γ, ω, ω̂(t), SW,RP,RD, ... be the same as in the previous section. Let us start from the following

definition.

Definition 17. [Proposition, Truth value] A pair (Γ, ω) (Γ ⊆ Ω, ω ∈ Ω) is called a proposition in Ω (i.e.,

”a system with a state ω has Γ-property”), which is denoted by PΩ(Γ, S[ω]). Define the truth value of the

proposition PΩ(Γ, S[ω]) (which is denoted by [TV]
(
PΩ(Γ, S[ω])

)
) by

[TV]
(
PΩ(Γ, S[ω])

)
=

{
T (true) ( if ω ∈ Γ)
F (false) ( if ω /∈ Γ)
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That is, truth values {T,F}(= X) correspond to measured values {1, 0}(= X) (or, X = {x1, x0} ). Thus, I

think that the above is essentially the same as naive set theory (cf. ref. [4]).

If [TV]
(
PΩ(Γ, S[ω̂(t)])

)
= ”T”, we may say that

(M) a tomato t has Γ-property.

As shown in Figure 4 below, consider a proposition PΩ(RD, S[ω̂(t)]). Thus, the following three are

equivalent (i.e., (N1) ⇔ (N2). Also, (N3) is the expression of (N1) in ordinary language):

(N1) [TV]
(
PΩ(RD, S[ω̂(t)])

)
= ”T”.

(N2) ω̂(t) ∈ RD

(N3) A tomato t is ”red”.

Similarly, consider a proposition PΩ(SW, S[ω̂(t)]). Thus, we see that the following three are equivalent:

(O1) [TV]
(
PΩ(SW, S[ω̂(t)])

)
= ”T”.

(O2) ω̂(t) ∈ SW

(O3) A tomato t is ”sweet”.

Figure 4 (= Figure 3) Venn diagram: RD, SW ⊆ Ω

[ Not]

It is clear that the following three are equivalent:

(R1) [TV]
(
PΩ(SW

c, S[ω̂(t)])
)
= ”T”.

( Here, PΩ(SW
c, S[ω̂(t)]) is also denoted by¬PΩ(SW, S[ω̂(t)]) ), Thus, [TV]

(
¬PΩ(SW, S[ω̂(t)])

)
= ”T”.

(R2) ω̂(t) ∈ [SW]
c

(R3) A tomato t is not ”sweet”.

[And]

We see that the following three are equivalent:
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(S1) A truth value of the proposition PΩ(SW
⋂
RD), S[ω̂(t)]) is equal to ”T” ( which is also denoted by

PΩ(SW, S[ω̂(t)])∧PΩ(RD, S[ω̂(t)]) ).

Thus, [TV]
(
PΩ(SW, S[ω̂(t)])∧PΩ(RD, S[ω̂(t)])

)
= ”T”.

(S2) ω̂(t) ∈ SW
⋂
RD

(S3) A tomato t is ”sweet” and ”red”

[Or]

We see that the following three are equivalent:

(T1) A truth value of the proposition PΩ(Θ∨(SW
⋃

RD), S[ω̂(t)])

( which is also denoted by PΩ(SW, S[ω̂(t)])∨PΩ(RD, S[ω̂(t)]) ) is equal to ”T”)

That is, [TV]
(
PΩ(SW, S[ω̂(t)])∨PΩ(RD, S[ω̂(t)])

)
= ”T”.

(T2) ω̂(t) ∈ SW
⋃
RD

(T3) A tomato t is ”sweet” or ”red”

[Implication]

We see that the following three are equivalent:

(U1) A truth value of the proposition PΩ(SW
c ⋃RD, S[ω̂(t)]) ( which is also denoted by

PΩ(SW, S[ω̂(t)])→PΩ(RP, S[ω̂(t)]) ) is equal to ”T”,

That is, [TV]
(
PΩ(SW, S[ω̂(t)])→PΩ(RD, S[ω̂(t)])

)
= ”T”.

(U2) ω̂(t) ∈ SWc ⋃RD

(U3) a tomato t is not ”sweet”, or it is ”red”

Remark 18. Note that the above is essentially the same as logical operation ( Boolean algebra; [¬,∧,∨,→]).

However, it should be noted that Definition 17 is essential to the above argument.

4.2 Syllogism

Further, consider a proposition PΩ (RP, S[ω̂(t)]). That is, we consider that the following three are equivalent:

(V1) [TV]
(
PΩ(RP, S[ω̂(t)])

)
= ”T”.

(V2) ω̂(t) ∈ RP

(V3) A tomato t is ”ripe”.

Theorem 19. [Syllogism]:
Let t be a tomato, and let ω̂(t)(∈ Ω) be the state of t. Assume the followings:

(W1) [TV]
(
PΩ(SW, S[ω̂(t)])→PΩ(RP, S[ω̂(t)])

)
= ”T”.

which is equivalent to
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(W2) [ω̂(t) /∈ SW] ∨ [ω̂(t) ∈ RP]

(W3) A tomato t is not ”sweet”, or it is ”ripe”.

And further, assume

(W′
1) [TV]

(
PΩ(RP, S[ω̂(t)])→PΩ(RD, S[ω̂(t)])

)
= ”T”.

which is equivalent to

(W′
2) [ω̂(t) /∈ RP] ∨ [ω̂(t) ∈ RD]

(W′
3) A tomato t is not ”ripe”, or it is ”red”.

Then the following holds:

(X1) [TV]
(
PΩ(SW, S[ω̂(t)])→PΩ(RD, S[ω̂(t)])

)
= ”T”.

(X2) [ω̂(t) /∈ SW] ∨ [ω̂(t) ∈ RD]

(X3) A tomato t is not ”sweet”, or it is ”red”.

[Proof using Definition 17]

A simple calculation shows that

[SWc ∪ RP] ∩ [PRc ∪ RD] = [SWc ∩ PRc] ∪ [SWc ∩ RD] ∪ [RP ∩ PRc] ∪ [RP ∩ RD]

=[SWc ∩ PRc] ∪ [SWc ∩ RD] ∪ [RP ∩ RD] ⊆ SWc ∪ RD

Recalling (W2) and (W′
2), we immediately see (X2). and thus, (X1), (X3).

Remark 20. Note that the proof of this theorem ( due to Definition 17) is simple compared to Theorem 11

( using Axiom 1 and the linguistic Copenhagen interpretation in Sec. 2.3). That is, in the proof of Theorem

19 we do not need to check the existence and uniqueness of the simultaneous observable OSW × ORP × ORD,

The following exercise will promote the reader’s understanding of ”proposition”.

Exercise 21. Let Γ ⊆ Ω and Λ ⊆ Ω. Then, we have the following question.

• Is the statement ”Λ ⊆ Γ” a proposition?

[Answer]:

Λ ⊆ Γ

⇐⇒(∀λ ∈ Λ)[λ ∈ Γ]

⇐⇒(ωλ)λ∈Λ ∈ ×
λ∈Λ

Γλ (where ωλ := λ (∀λ ∈ Λ)), Γλ := Γ (∀λ ∈ Λ))

⇐⇒PΩΛ [×
λ∈Λ

Γλ, S[(ωλ)λ∈Λ]] (where ΩΛ is Λ-dimensional product space)

Thus, the statement ”Λ ⊆ Γ” is a proposition in ΩΛ.
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4.3 Elementary propositions

Consider the state space Ω, which is finite ( or, countable ) with a metric d (i.e., d(ω1, ω2) = 1 (ω1 ̸= ω2),

= 0 (ω1 = ω2). Further, assume that the Borel measure ν is defined by the point measure, i.e., ν({ω}) =

1 (∀ω ∈ Ω).

Definition 22. Let λ be any element of Ω. Putting Γ = {λ}, define the proposition PΩ({λ}, S[ω]), which is

called an elementary proposition.

It is clear that it holds that

• A truth value of the elementary proposition PΩ({λ}, S[ω]) is equal to ”T”

⇐⇒ λ = ω

• A truth value of the elementary proposition PΩ({λ}, S[ω]) is equal to ”F”

⇐⇒ λ ̸= ω

Theorem 23. Let Γ be a subset of Ω. And let ω ∈ Ω. Then we see that

PΩ(Γ, S[ω]) =∨λ∈ΓPΩ({λ}, S[ω])

That is, every proposition can be represented by the sum of elementary propositions. This is not trivial

since Exercise 21 is not trivial.

[Proof].

We see that

The true value of PΩ(Γ, S[ω]) is equal to ”T”

⇐⇒ω ∈ Γ

⇐⇒∃λ(∈ Γ)[ω ∈ {λ}]

⇐⇒The true value of ∨λ∈ΓPΩ({λ}, S[ω]) is equal to ”T”

Remark 24. I believe that the above is the main assertion in Wittgenstein’s picture theory. However many

readers may not consider the above theorem to be particularly important. I have the same view. In fact,

this theorem holds only in special cases such as Ω is a finite (or more generally, Ω has a discrete topology).

Thus, as mentioned in Table 16, I think that Wittgenstein’s language is esentially the same as naive set

theory (≈ Cantor’s set theory, cf. ref. [4]).

5 Supplement: Syllogism does not always hold in quantum sys-
tems

I was devoted to classical systems in sections 3 and 4, in which logic holds. However, as mentioned in Remark

14, the arguments in Sec. 3 are invalid in quantum systems. Further, I can say as follows.
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(Y) syllogism does not always hold in quantum systems

The proof is a slightly modification of the argument about EPR-paradox and Heisenberg’s uncertainty

relation (cf [7], [3]). The (Y) is shown in Sec. 4 of the following paper:

• Ref, [27]: Ishikawa, S. (2020) Wittgenstein’s picture theory in the quantum mechanical worldview

JQIS,Vol. 10, No.4 ,104-125 DOI:10.4236/jqis.2020.104007

(https://www.scirp.org/journal/paperinformation.aspx?paperid=106233)

Thus, in this paper, the proof of the (Y) is omitted.

6 Supplement: Almost all philosophical unsolved problems are
solved in QL

6.1 Why are almost all unsolved philosophical problems solved in QL?

In the case of mathematics, it’s easy to tell whether an unsolved problem or not. Thus, everyone who solves

the famous mathematical unsolved problems (e.g. Fermat’s problem, Poincará’s problem) is, of course,

praised.

On the other hands, the meaning of unsolved problems in philosophy is not simple. For example, speaking

of ”Wittgenstein’s paradox” or ”Hume’s induction problem”, some people are impressed with them even if

they are non-sense as philosophical problems. Also, there is no consensus among philosophers whether Zeno’s

paradox is a paradox. Thus, the meaning of unsolved problems in philosophy is not simple.

I think, from the scientific point of view, that there is only one unsolved philosophical problem:

• Complete the scientific dualistic idealism!

This is realized by QL as I have shown in Figure 0 before. And so, the other philosophical unsolved problems

concerning dualistic idealism, which stem from an inadequate understanding of our dualistic idealism, should

be clarified in QL.

Thus, there is a reason to consider that QL is located as shown in the following figure ( essentially the

same as Figure 0):
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Why are almost all unsolved philosophical problems solved in QL?

7O : quantum mechanics
refs. [15, 20,21]
−−−−−−−−−−−−→
linguistic turn

8O : Descartes=Kant philosophy
refs. [16, 22, 23]

−−−−−−−−−−−−−→
mechanical turn

12O : statistics, dynamical system theory, Fuzzy sets
refs. [11, 12, 17–19,24]
−−−−−−−−−−−−−−−−−→

dualistic turn


•

R

(TLP))

10O : Wittgenstein

(philosophical investigations)

anlogical positivism−−−−−−−−−−−−→
analytic philosophy



ideal language philosophy

modal logic (Kripke)

ref. [27]
−−−−−−−−−−−−−−→

dualistic turn
QL

ordinary language philosophy

11O : Saussure’s linguistics
Sec. 11.5 in ref. [26]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
quantitative representation

�

•

Figure 5 (≈ [b] in Sec. 1 ⊂ Figure 0): QL is the scientific unified theory of five ( 7O 8O12O10O11O)
( QL bridges among 7O 8O12O10O11O, thus almost all unsolved philosophical problems are solved in QL )

6.2 List of quantum linguistic clarifications of open problems

If Figure 5 is true, we can expect that QL has a great power to solve a lot of unsolved problems in quantum

mechanics, Descartes=Kant epistemology, statistics, and analytic philosophy. This will be shown as follows.

We think that

(♯) many unsolved problems raised in the 2500 year history of dualistic idealism can be

clarified within the framework of quantum languages.

My results concerning quantum language are summarized in the following two texts

(♭)


(♭1): Ref. [26]: History of western philosophy from the quantum theoretical

point of view; [Ver. 3]

(♭2): Ref. [25]: The linguistic Copenhagen interpretation of quantum mechanics:
Quantum language [Ver 5]

Remark 25. I think that all unsolved problems in (♭1) and (♭2) have not been solved. That is because

they cannot be solved without the scientific dualistic idearism (i.e., quantum language). Some of our next

solutions may be disputed (especially those related to Plato’s philosophy may have been too aggressive). I

hope readers will examine it further. However, even if there are some deficiencies, it’s not serious. Because

my purpose is to assert the (Z3) in Sec. 7 ( Conclusion).
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(♭1) The list of my answers for scientific unsolved problems:
ref. [26]; History of Western philosophy in the mechanical worldview Research Report, Dept. Math. Keio

University, KSTS/RR-20/001 (2020); 473 p

(http://www.math.keio.ac.jp/academic/research_pdf/report/2020/20001.pdf)

• Has philosophy progressed? (the answer is presented throughout [26])

• What is probability (or, measurement, causality) ? (cf. Sec. 1.1.1 in [26])

• Zeno paradox (Flying arrow), (cf. Sec. 2.4.2 in [26])

• Zeno paradox (Achilles and a tortoise), (cf. Sec. 2.4.3 in [26])

• the measurement theoretical understanding of Plato’s allegory of the sum , (cf. Sec. 3.3.2 in [26])

• Plato’s Idea theory≈Zadeh’s fuzzy theory(ref. [35])≈Sausuure’s linguistic theory (cf. Sec. 3.5.3
in [26])

• Syllogism holds in classical systems, but not in quantum systems (cf. Sec. 4.3.3 in [26])

• Only the present exists (cf. Sec. 6.1.2 in [26])

• What is the problem of universals? (cf. Sec. 6.5.1 in [26])

• What is Geocentrism vs. Heliocentrism? After all, the worldviewism (cf. Sec. 7.4.2 in [26])

• Two (scientific or non-scientific) interpretations of I think, therefore I am .(cf. Sec. 8.2.2 in [26])

• Leibniz-Clark correspondence (i.e., what is space-time?), (cf. Sec. 9.3 in [26])

• The problem of qualia (cf. Sec. 9.5.1 in [26])

• Brain in a vat argument (cf. Sec. 9.5.2 in [26])

• The solution of Hume’s problem of induction (cf. Sec. 9.7.1 in [26])

• Grue paradox cannot be represented in quantum language (cf. Sec. 9.7.2 in [26])

• What is causality? (cf. Sec. 10.3 in [26])

• What is Peirce’s abduction? (cf. Sec. 11.3.1 in [26])

• Five-minute hypothesis (cf. Sec. 11.4.1 in [26])

• McTaggart’s paradox (cf. Sec. 11.4.2 in [26])

• quantitative representation of ”Signifier” and ”signified” (ref. [31]) (cf. Sec. 11.5.3 in [26])

• A scientific understanding of Wittgenstein’s picture theory (cf. Sec. 11.6.2 in [26])

• Wittgenstein’s paradox (cf. Sec. 11.6.3 in [26])

• Flagpole problem, (cf. Sec. 11.7.1 in [26])

• Hempel’s raven paradox (cf. Sec. 11.8 in [26])

• the mind-body problem (i.e., How are mind and body connected?), (cf. Sec. 11.9.4 in [26])

(♯) Also, for the solutions of unsolved problems in quantum mechanics, statistical mechanics, statistics
and probability theory, see ref. [25]). Particularly, I think that the following three are important in
physics:

• the discovery of Heisenberg’s uncertainty relation (Ref. [7], or Sec. 4.3 in ref. [25])
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• The clarification of the projection postulate (i.e., the wavefunction collapse) (ref. [20] , or Sec.
11.2 in ref. [25])

• The measurement theoretical characterizations of equilibrium statistical mechanics (Ref. [19],
or Chap.17 in ref. [25])

(♭2) The list of my answers for scientific unsolved problems:
ref. [25]; Linguistic Copenhagen interpretation of quantum mechanics; Quantum Language [Ver 5], Research

Report, Dept. Math. Keio University, KSTS/RR-19/003 (2019); 473 p

(http://www.math.keio.ac.jp/academic/research_pdf/report/2019/19003.pdf)

• Is QL worth calling a language of science? (the answer is presented
throughout [25])

• Kolmogorov’s extension theorem in quantum language (Sec.4.1 in ref. [25]) (Sec.4.1 in ref. [25])

• The law of large numbers in quantum language (Sec.4.2 in ref. [25])

• the true discovery of Heisenberg’s uncertainty relation (Sec. 4.3 in ref. [25])

• Bell’s inequality holds in both classical and quantum systems (Sec. 4.5.2 in ref. [25])

• Measurement theoretical formulation of measurement, inference, control (Sec. 5.2 in ref. [25])

• Monty-Hall problem in quantum language (non-bayesian approach) (Sec.5.5 in ref. [25])

• Two envelope problem in quantum language (non-bayesian approach) (Sec.5.6 in ref. [25])

• Confidence interval and statistical hypothesis test (Chapter 6 in ref. [25])

• Analysis of variance (Chapter 7 in ref. [25])

• Syllogism holds in classical systems, but not in quantum systems (Sec.8.6 and Sec.8.7 in ref. [25])

• Mixed measurement theory (Bayesian measurement theory) (Chap. 9 in ref. [25])

• The measurement theoretical characterization of the wave-function collapse (= projection pustulate)
(Sec.11.2 in ref. [25])

• The measurement theoretical characterizations of de Broglie’s paradox, quantum Zeno effect,
Schrödinger cat, Wigner’s friend, Wheeler’s delayed choice experiment, Hardy Paradox, quantum
eraser (Sec.11.3∼Sec.11.8 in ref. [25])

• The measurement theoretical characterizations of double-slit experiment, Wilson cloud chamber
(Sec.12.2, Sec.12.3 in ref. [25])

• The measurement theoretical characterizations of regression analysis (Sec.13.2 in ref. [25])

• The measurement theoretical characterizations of Brownian motion, Zeno’s paradox (Sec.14.2 ,
Sec.14.4 in ref. [25])

• The measurement theoretical characterizations of least-squares method (Chap.15 in ref. [25])

• The measurement theoretical characterizations of Kalman filter (Chap.16 in ref. [25])

• The measurement theoretical characterizations of equilibrium statistical mechanics (Chap.17 in ref.
[25])

• The measurement theoretical characterizations of psychological tests (Chap.18 in ref. [25])

• The measurement theoretical characterizations of belief (Chap.19 in ref. [25])
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• The mathematical foundation of science (Hempel’s raven paradox) (Chap.20 in ref. [25])

7 Conclusion

In Sec. 3, I show that

(Z1) a class of binary projective measurements in classical QL has a logical structure.

This and Sec. 4 say that

(Z2) Wittgenstein’s language (i.e., the language that he supposed, but didn’t define in TLP) is realized by

a class of binary projective measurements in classical QL

That is, we see:

QL
classical QL

Wittgenstein’s language

Figure 6 (=Figure 1): Wittgenstein’s language(in which scientific logic holds)

= a class of binary projective measurements in classical quantum language

Since classical QL is one of the most important languages of science ( such as Newton mechanics, the

theory of relativity, statistics, etc. (e.g., see Figure 0 in Sec. 1 and Sec. 6), the (Z2)(= Figure 6) is the most

fundamental in science ( cf. (♯) in Remark 15).

Note that logic is derived from Axiom 1 in QL. On the other hand, it should be noted that logic is not

derived the principle of Newtonian mechanics. In this sense, I think that Wittgenstein’s picture theory is

original and not trivial. As seen in [d] in Sec. 1, Wittgenstein was the first philosopher to try to make a

clear distinction between mathematical logic and scientific logic. Therefore, I think that his picture theory

should be praised not only from a philosophical point of view but also from a scientific point of view.

Lastly, I add the following:

(Z3) Wittgenstein claimed to have solved all the problems of philosophy in his TLP. Thus, if my proposal

(i.e., QL) is an alternative to his picture theory, almost all philosophical problems must be solved under

QL. I think that this was completely realized in the lists (♭1) and (♭2) in Sec. 6.
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I hope that many readers will examine my proposal from various aspects. For more information on my

results, see the homepage: (http://www.math.keio.ac.jp/~ishikawa/indexe.html).

.
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