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Recent studies indicate that indicative conditionals like “If people wear masks, the spread of
Covid-19 will be diminished” require a probabilistic dependency between their antecedents and
consequents to be acceptable (Skovgaard-Olsen et al., 2016). But it is easy to make the slip
from this claim to the thesis that indicative conditionals are acceptable only if this probabilistic
dependency results from a causal relation between antecedent and consequent. According to
Pearl (2009), understanding a causal relation involves multiple, hierarchically organized concep-
tual dimensions: prediction, intervention, and counterfactual dependence. In a series of experi-
ments, we test the hypothesis that these conceptual dimensions are differentially encoded in
indicative and counterfactual conditionals. If this hypothesis holds, then there are limits as to
how much of a causal relation is captured by indicative conditionals alone. Our results show
that the acceptance of indicative and counterfactual conditionals can become dissociated.
Furthermore, it is found that the acceptance of both is needed for accepting a causal relation
between two co-occurring events. The implications that these findings have for the hypothesis
above, and for recent debates at the intersection of the psychology of reasoning and causal
judgment, are critically discussed. Our findings are consistent with viewing indicative condition-
als as answering predictive queries requiring evidential relevance (even in the absence of direct
causal relations). Counterfactual conditionals in contrast target causal relevance, specifically.
Finally, we discuss the implications our results have for the yet unsolved question of how rea-
soners succeed in constructing causal models from verbal descriptions.
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There is wide agreement that conditional statements of the type “if
A, then C” play a central role in reasoning and argumentation (where
A refers to the antecedent and C to the consequent). For instance, in
2019 much political discussion centered around the statement “If
Trump is impeached, then it will affect the 2020 election.” At the
same time, conditionals pose many unsolved theoretical problems
that have kept researchers busy, despite continuous, multidisciplinary
efforts (Bennett, 2003; Kern-Isberner, 2001; Kratzer, 2012; Nicker-
son, 2015; Oaksford & Chater, 2010b; Spohn, 2013).
One of the reasons why conditionals are thought to be so

central in our cognitive lives is because of their relationship
with causal knowledge (Oaksford & Chater, 2010a). The lin-
guistic encoding of knowledge about causal relations in condi-
tionals plays a vital role for the cultural transfer of causal

knowledge across generations. For causal knowledge about
objects that are not in our immediate vicinity, we rely on cul-
turally transferred causal knowledge. The same goes for
objects that are governed by mechanisms, which we do not
fully understand, like artifacts designed by engineers. In addi-
tion, the acquisition of causal knowledge through observed
covariances and interventions dealing with the objects that are
in our direct vicinity is often guided by linguistically acquired
causal schemes (Gopnik et al., 2004). Various authors have
emphasized that probably most of our causal knowledge comes
through this linguistic source (e.g., Pearl, 2009; Ch. 7). But
according to Danks (2014; Ch. 4), it is also the one that is the least
investigated empirically.

The relationship between conditionals and causal relations has,
however, been the focus of much theoretical discussion. The im-
portance of this issue is highlighted by counterfactual approaches
to causation coming from philosophy (Collins et al., 2004; Good-
man, 1947; Lewis, 1973a), computer science (Pearl, 2009), and
statistics (Morgan & Winship, 2018; VanderWeele, 2015).
Recently, various authors in psychology and philosophy have also
made a case for causal interpretations of indicative conditionals
(e.g., Andreas & Günther, 2018; Oaksford & Chater, 2017; van
Rooij & Schulz, 2019; Vandenburgh, 2020).

In this article, we investigate whether indicative conditionals by
themselves suffice to express causal relations or whether there are
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aspects of causal relations that are not captured by indicatives.1

We will rely on Pearl’s (2009) theory of causality and his idea of a
hierarchy of causal queries. Through our experiments, we present
new evidence in support of this framework and investigate its rela-
tions to natural language conditionals. Before we turn to our
research questions, we first sketch some recent developments in
the psychology of reasoning, which have kindled a renewed debate
about the causal interpretation of indicative conditionals. Second,
we outline Pearl’s theory of a hierarchy of causal queries and dis-
cuss its critical potential vis-à-vis this debate.

Indicative Conditionals and Probabilities

Building on the work of Adams (1975), Edgington (1995), and
Bennett (2003), psychologists have found support for the hypothe-
sis that:

P if A; thenCð Þ ¼ P C j Að Þ; (1)

which goes by the name of “the Equation” or “the conditional
probability hypothesis” (Evans et al., 2003; Oberauer & Wilhelm,
2003; Over et al., 2007; Pfeifer & Kleiter, 2009). Recently, these
results were challenged, however. It has been found that the rela-
tionship between P(if A, then C) and P(C j A) is moderated by
relevance effects of the probabilistic dependency between A and C
(Skovgaard-Olsen et al., 2016; Skovgaard-Olsen, Collins, et al.,
2019; Skovgaard-Olsen, Kellen, et al., 2017; Vidal & Baratgin,
2017). This type of probabilistic dependency can be captured by
DP as a measure of the extent to which A changes the probability
of C:

DP ¼ P C j Að Þ � PðC j :AÞ (2)

These studies have found that in the case of Positive Relevance,
(DP . 0), the conditional probability remained a good predictor of
both the acceptance and probability of indicative conditionals. An
example would be “If Paul pushes down the gas pedal, then the
car will speed up” in the context of a scenario describing Paul
driving and running late for work. For cases of Negative Rele-
vance (DP , 0) and Irrelevance (DP = 0) this relationship was dis-
rupted, however. Two examples would be “If Paul pushes down
the gas pedal, then the car will slow down” (Negative Relevance)
and “If Paul is wearing a shirt, then his car will suddenly break
down” (Irrelevance).
These findings suggest that participants tend to view indicative

conditionals as defective if their antecedents fail to raise the probabil-
ity of their consequents. In such cases, their antecedents fail to pro-
vide a reason for the consequent (Douven, 2016; Krzy_zanowska et
al., 2017; Skovgaard-Olsen, 2016; Spohn, 2013). Drawing on the lit-
erature on confirmation measures, the notion of A being a reason for
or against C is here explicated in terms of its evidential relevance, or
the difference in degrees of beliefs that A makes to C (Spohn,
2012a; Ch. 6). If A raises the probability of C (DP . 0), then A is
said to be a reason for C, or positively relevant to C. If A lowers the
probability of C (DP, 0), then A is said to be a reason against C, or
negatively relevant to C. If A leaves the probability of C unchanged
(DP = 0), then A is said to be irrelevant to C, or neither a reason for
nor against C. Indicative conditionals are said to express such quali-
tative reason relation assessments on this account (Brandom, 1994;

Skovgaard-Olsen, 2016; Spohn, 2013; see also Douven, 2016; Krzy-
_zanowska et al., 2013; Rott, 1986). Throughout the paper, we will
measure qualitative assessments of the extent to which A is a reason
for/against C on an ordinal scale and refer to them as ordinal reason
relation assessments.

As a psychological construct, it is possible that multiple factors
influence the assessment of relevance and reason relations including
topical relevance, processing effort, and goals in a dialogue (Walton,
2004; Wilson & Sperber, 2004). Potentially, such factors influence
the categorization of variables as capable or incapable of affecting
the probability of the consequent. Variables that are categorized as
incapable get ignored. This makes it seem defective to find such var-
iables in the antecedent of conditionals, where one expects to find a
reason for the consequent (Skovgaard-Olsen, Collins, et al., 2019).
As a measure of the cognitive effects of a variable, we rely on the
notion of probabilistic difference-making from above but note that
there is a discussion with mixed evidence concerning further factors
influencing the perceived relevance.2

The data pattern described above constitutes the Relevance
Effect as an interaction effect (see Figure 1). Accounts differ on
whether this finding is to be given a semantic or pragmatic interpre-
tation (see, e.g., Skovgaard-Olsen, Collins, et al., 2019 for a
review), but here we focus on a different issue. It has recently been
suggested (e.g., in Oaksford & Chater, 2020a, 2020b; van Rooij &
Schulz, 2019) that relevance effects of this kind are to be given a
causal interpretation. One of the goals of the present work is to sys-
tematically explore this link through a series of experiments.

As we will explain further below, these experiments have a
bearing on whether (a) P(C j A) is a good predictor of P(if A, then
C) as predicted by Equation 1 (Evans & Over, 2004; Oaksford &
Chater, 2017); (b) whether a causal interpretation (Oaksford &
Chater, 2020a, 2020b; van Rooij & Schulz, 2019); or (c) an evi-
dential relevance interpretation of P(if A, then C) is needed (Skov-
gaard-Olsen et al., 2016). According to Evans and Over (2004),
people assess P(C j A) via the Ramsey Test:

to evaluate “if A, then C” add the antecedent (i.e., A) to the set of
background beliefs, make minimal adjustments to secure consistency,
and evaluate the consequent (i.e., C) on the basis of this temporarily
augmented set.

Using the Ramsey test as a basis of explicating the relationship
between conditionals and suppositional reasoning has been influ-
ential in at least three competing research programs in logic (Arlo-
Costa, 2007). However, in and of itself it is an abstract description
of a mental algorithm which needs to be fleshed out in terms of
psychological processes to be of use for cognitive scientists. As
Over et al. (2007) have noted:

1 As a short-form, we refer to indicative conditionals, like “If A, then
C,” as indicatives, and to counterfactual conditionals, like “If A had not
been the case, then C would not have been the case,” as counterfactuals.
Our focus will be on paradigmatic cases of indicative conditionals, like the
examples provided in the main text. Other controversial examples like non-
interference conditionals (“If Trump won the 2020-election, then pigs can
fly!”) are not treated here but see Douven (2016) and Skovgaard-Olsen
(2016) for further discussion.

2 See, e.g., Cruz et al. (2016), Skovgaard-Olsen, Singmann, et al.,
2017, online supplementary materials), Vidal and Baratgin (2017), and
Krzy _zanowska et al. (2017).
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Explaining how the Ramsey Test is actually implemented—by
means of deduction, induction, heuristics, causal models, and other
processes—is a major challenge, in our view, in the psychology of
reasoning. (p. 63)

In the past decade, psychologists have made extensive use of the
Ramsey test (for a review, see Oaksford & Chater, 2020b). But the
fundamental problem that Over et al. (2007) pointed to remains.
Resolving this issue is important, because Equation 1 and the above-
mentioned probabilistic view on conditionals has not just been taken
to be one view on conditional reasoning among others. Rather, it has
been treated as “one of the defining features of what has come to be
referred to as the new paradigm in cognitive psychology” (Nicker-
son, 2015; p. 199) and been said to be “at the heart of the probabilis-
tic new paradigm in reasoning” (Oaksford & Chater, 2017; p. 330;
see also Vance & Oaksford, 2020).
One of the processes for implementing the Ramsey test that Over

et al. (2007) consider is the use of causal models. In line with this,
Fernbach et al. (2011) and others have argued that causal beliefs are
used as a guide for estimating subjective probabilities. The notion
that conditional probabilities are assessed based on causal models
via the Ramsey test is interesting. If it can be corroborated, then this
would have implications for which of the previously mentioned
interpretations relating P(C j A) and P(if A, then C) is correct. For if
the conditional probabilities estimated via the Ramsey test were to
rely on causal models, then P(C j A) would not be independent of a
causal interpretation. In that case, P(if A, then C) would also not be
independent of causal considerations given Equation 1.
In addition, recent work on causal power suggests another possi-

ble connection between indicative conditionals and causality, which
we will now turn to, because it will figure centrally in our later
experiments.

Causal Power and Alternative Causes

On Cheng’s (1997) account of causal power, the generative
power of a cause to produce its effect is explicated by a scaled

version of DP, where the causal contribution of alternative causes
is shielded off:

WCause ¼ DP
1� Pðeffect j : causeÞ ;

DP ¼ P effect j causeð Þ � Pðeffect j : causeÞ; (3)

Causal power (WCause) is here understood as the probability with
which a target cause generates its effect3 independently of alternative
causes: P(effectjcause,:alternatives). Equation 3 measures this quan-
tity by determining how much the candidate cause contributes to rais-
ing the probability of the effect, while bracketing the influence of
alternative causes. Following Glymour (2001), causal power has
been used to parameterize Bayes nets (see, e.g., Aßfalg & Klauer,
2019; Cummins, 2014; Fernbach et al., 2010; 2011; Fernbach & Erb,
2013; Griffiths & Tenenbaum, 2005; Meder et al., 2014; Stephan &
Waldmann, 2018), as illustrated in Figure 2.

In Figure 2, C refers to the cause and A refers to alternative
causes. Throughout this article, we follow, however, the conven-
tion of using A and C to refer to the antecedent and consequent of
conditionals, whether or not they are related as cause and effect.
Based on this parametrization and other assumptions (discussed in
Luhmann & Ahn, 2005), conditional probabilities have been expli-
cated as follows, with 'W' representing the causal powers of the re-
spective causes:

P effect j causeð Þ ¼ Wcause þWalternative �Wcause �Walternative

(4)

Notice how conditional probabilities are here explicated in
terms of causal power parameters, which in turn are defined via
conditional probabilities. There is accordingly a choice as to which
of these constructs (i.e., conditional, subjective degrees of belief or

Figure 1
Regressing P(if A, Then C) on P(C|A)

Note. The left panel illustrates relationship predicted by Equation 1. The right panel illus-
trates the Relevance Effect (i.e. the moderation of the slope by relevance, in case of irrele-
vance [DP = 0] or negative relevance [DP , 0]), after Skovgaard-Olsen, Kellen, et al.
(2019).

3 For preventive causes, a separate equation was given by Cheng (1997),
which we return to in Experiment 1 (see Equation 5).
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mental representations of causal powers) is to be treated as psycho-
logically primitive. For instance, for Cheng (1997) causal powers
represent latent, causal capacities of distal objects. On this view, the
relative frequencies encoded in conditional probabilities are merely
the manifestations of these latent capacities. But this is not the
only position possible and the answer to the question of psycho-
logical primacy will have repercussions for the relationships
between conditionals, conditional probabilities, and causality.
Oaksford and Chater (2017) have suggested that a causal inter-

pretation of indicative conditionals can be combined with work in
probabilistic treatments of conditionals based on the Ramsey test
(e.g., Adams, 1975; Bennett, 2003; Edgington, 1995; Evans &
Over, 2004; Oaksford & Chater, 2007). Oaksford and Chater
(2017) do this by combining the thesis P(if A, then C) = P(C j A)
(Equation 1) with a causal power explication of conditional proba-
bilities (see Equation 4). Making this move allows Oaksford and
Chater (2017) to emphasize that there is an inferential dependency
between antecedents and consequents of indicative conditionals
(in line with, e.g., Douven, 2016; Krzy_zanowska et al., 2017;
Skovgaard-Olsen et al., 2016; Spohn, 2013). At the same time, it
allows Oaksford and Chater (2017) to build on the work on proba-
bility logic of Adams (1975), which has been applied to the psy-
chology of reasoning (e.g., in Evans & Over, 2004; Oaksford &
Chater, 2007; Pfeifer & Kleiter, 2009).
One challenge to this account, however, is that the Relevance

Effect (Skovgaard-Olsen et al., 2016) identifies boundary condi-
tions on P(Cj A) as a predictor of P(if A, then C). As a conse-
quence, if probabilistic dependency is factored into the account
through a causal power explication of conditional probabilities,
then we are left without an account of why relevance moderates
the relationship between P(C j A) and P(if A, then C) in violation
of Equation 1. The interaction effect depicted in Figure 1 shows
that P(if A, then C) can vary as a result of the influence of rele-
vance even when P(C j A) is held constant.
Accordingly, Oaksford and Chater (2020a) discuss the different

possibility where the Relevance Effect is itself an indicator of a
causal interpretation of indicative conditionals. But this amounts
to abandoning Equation 1 in its full generality.
As noted by van Rooij and Schulz (2019), there is, however,

also a different possibility for interpreting the relationship between

conditional probabilities, causal power, and P(if A, then C). The
general account relies on interpreting the acceptability of indica-
tive conditionals in terms of causal power. But when introducing
this thesis, van Rooij and Schulz rely on the auxiliary hypothesis
that participants tend to ignore alternative causes.

The motivation for this auxiliary hypothesis is that the equation
for causal power Equation 3 shows that causal power coincides
with the conditional probability of the effect given the cause when
there are no alternative causes:

x : x is an alternative cause of Ef g ¼ / ) WCause

¼ P effect j causeð Þ

If participants ignore alternative causes and by mistake treat
P(effect j ´ cause) as 0, then they should also underestimate
P(effectjcause) by evaluating it as P(effect|cause, ´alternatives).
Their estimate of P(effectjcause) will then coincide with the
value of causal power, which would explain the studies corrobo-
rating Equation 1. In van Rooij and Schulz (2019), a formal anal-
ysis of such limiting cases was used to propose a causal power
measure of the acceptability of conditionals by arguing that it is
the presence of causal power that makes indicative conditionals
acceptable.

Studies in the psychology of causal judgments have shown that
reasoners often tend to neglect alternative causes (see, e.g., Rott-
man & Hastie, 2014; for an overview). These findings, in turn, fit
with well-known effects from the psychology of reasoning con-
cerning inferences like denial of the antecedent (If A, C; ´A, there-
fore ´C) and affirmation of the consequent (If A, C; C, therefore
A). Indeed, a neglect of alternative antecedents (e.g., “If B, then
C”) has long been suspected as being part of the explanation why
participants would endorse these logically fallacious inferences
(Cummins, 1995; Politzer & Bonnefon, 2006). In linguistics, there
is a convergent body of research studying conditional perfection
(for review, see Liu, 2019), which describes the tendency to
strengthen an indicative conditional into a biconditional that sup-
presses alternative antecedents. Moreover, the tendency to sup-
press the impact of alternative hypotheses has long been suspected
of playing a role in the confirmation bias (Nickerson, 1998).

According to Fernbach et al. (2010, 2011), participants who are
asked for conditional probabilities report them but are biased by
their neglect of alternative causes. Alternatively, one may hold
that participants who are asked for conditional probabilities con-
strue the task differently and give causal power estimates instead
(but see Aßfalg & Klauer, 2019). For our purposes, however, it is
interesting to note that if participants tend to ignore alternative
causes, then the causal power interpretation of indicative condi-
tionals in van Rooij and Schulz (2019) can be used to account for
the Relevance Effect.

Accordingly, van Rooij and Schulz conjecture that what
explains when P(C j A) is and when it is not a good predictor of
P(if A, then C) in studies like Skovgaard-Olsen et al. (2016) is
exactly whether participants take alternative causes into account.
Participants are thereby portrayed as ignoring alternative causes
when processing positive relevance conditionals, like “If Paul
pushes down the gas pedal, then the car will speed up.” In contrast,
participants are predicted to take alternative causes into account

Figure 2
Common-Effects Bayes Net

Note. Parameterized by the base-rate (PCause) of the cause, C, its causal power
(WCause), and the combined base-rate and causal power (WAlternatives) of the al-
ternative cause(s), A. E = effect.
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when processing irrelevance items, like “If Paul is wearing a shirt,
then his car will function normally,” where the antecedent is obvi-
ously not an appropriate cause.
In Experiment 1, we test whether participants’ tendency to

ignore alternative causes makes them estimate P(C j A) as causal
power in scenarios that can be interpreted causally. Experiment 1
thereby provides a critical test of the following hypotheses based
on van Rooij and Schulz’s (2019) work:

H1: Causal power (Equation 3) accounts for the acceptance of
indicative conditionals.

H2: Participants’ tendency to ignore alternative causes is part
of the explanation of the Relevance Effect.

We now turn to Pearl’s (2009) theory of causality, which we
will use to reconceptualize the relationship between indicative
conditionals and causal relations. Of central importance in this
context is the following observation. Whereas Oaksford and
Chater (2017) and van Rooij and Schulz (2019) argue for a causal
interpretation of indicative conditionals, Pearl’s idea of a hierarchy
of causal queries invites a more complex picture in which indica-
tive conditionals only play a partial role.

Pearl’s Hierarchical Theory of Causality

According to Pearl (2009) and Pearl and Mackenzie (2018),
there are three conceptual layers of causality: prediction, interven-
tion, and counterfactual dependency. An understanding of these
three conceptual layers is manifested by the ability to answer three
different types of queries concerning the relationship between two
variables, X and Y. In Pearl and Mackenzie (2018), these queries
are roughly expressed as in Table 1.
In Pearl (2009; p. 29), the following examples are given: (a)

“would the pavement be slippery if we find the sprinkler off” (pre-
diction), (b) “would the pavement be slippery if we make sure that
the sprinkler is off” (intervention), and (c) “would the pavement
be slippery had the sprinkler been off, given that the pavement is
in fact not slippery and the sprinkler is on?” (counterfactual). As a
normative competence model of causal inference, Pearl (2009)
presents a theory of causal Bayes nets augmented by structural
equation modeling (SEM). For Pearl (2009), it is important to
emphasize that there are three irreducible layers of conceptual
understanding of causal relations: (a) statistical associations for
predictive inference (which can be computed by conditionaliza-
tion, e.g., via Bayes nets), (b) predictions based on interventions
(which are observed through manipulations in randomized, experi-
mental studies),4 and (c) counterfactual inferences (which can only
be computed based on structural equation models of the data

generating processes). In Appendix A, we illustrate the distinction
between these computational models via one of Pearl’s examples.

Several aspects of Pearl’s theory have been investigated in psy-
chological studies. For instance, whether reasoners differentiate
between observational probabilities and interventional probabil-
ities (Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005).
Similarly, studies have looked at participants’ understanding of
the Markov assumption and the implied conditional independen-
cies (Mayrhofer & Waldmann, 2015; Rehder, 2014; Rottman &
Hastie, 2014). But whereas the causal Bayes net component of the
theory has received extensive attention, the structural equation
component has received less attention in psychology. Yet, some
exceptions like Lagnado et al. (2013) do exist. In Appendix A, we
explain why it is important for psychology to focus more on SEM.

Research Questions Motivating This Investigation

The central question motivating the present inquiry is this: what
role do conditionals as linguistic expressions play in representing
causal information? Or, by accepting a conditional statement in a
causal scenario, which of the three aspects of the causal relation
highlighted by Pearl does a reasoner thereby accept, if any? Look-
ing back at Table 1, answering the first two types of queries
seems5 equivalent to processing indicatives (“will the pavement be
slippery, if we see/make sure that the sprinkler is off?”). More-
over, answering the third type of query is naturally taken to
involve processing counterfactuals (“would the pavement have
been slippery, if the sprinkler had been off?”). It is then natural to
formulate the following hypothesis based on Pearl’s view:

H3:Causal relations encodemultiple layers, some of which can
be expressed by indicatives (i.e. predictive queries), whereas
the most advanced one requires the use of counterfactuals (i.e.
counterfactual queries).

This, in turn, makes it natural to conjecture that:

H4: Indicatives that support and indicatives that do not support
counterfactuals can be empirically distinguished (see also
Lassiter, 2017).

Table 1
The Hierarchy of Causal Queries

Query type Natural language query Computational model

Predictive “What happens to my belief in Y if I see X?” Bayes net, SEM
Interventional “What happens to Y if I do X?” causal Bayes net, SEM
Counterfactual “Would Y not have occurred if X had not occurred?” SEM

Note. SEM = structural equation modeling (see Appendix A). The distinction between Bayes nets and causal Bayes nets is made to emphasize that
Bayes nets exist with both undirected edges representing symmetrical relations of evidential relevance, as well as Bayes nets that encode directed edges
used for representing asymmetrical relations of causal relevance (Danks, 2014; Højsgaard et al., 2012).

4 In addition, these interventions can now also be computed by applying
Pearl's (2009) do-calculus to observational studies (see also Morgan &
Winship, 2018).

5 Note that Pearl (2009, p. 29) uses “would” instead of “will” in the
consequents of the observational and interventionist queries. However, the
resulting conditional questions are closer in meaning to the indicatives above
given the indicative antecedents than the corresponding counterfactuals.
When Pearl wants to stress a counterfactual interpretation, he often uses
“would have” (see, e.g., Pearl & Mackenzie, 2018, p. 320).
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H5: The use of indicatives and the acceptance of causal rela-
tions can be dissociated even in causal scenarios.

To illustrate (H5), indicatives based on spurious correlations can
be used to answer predictive queries, but they do not express direct
causal links between their antecedents and consequents. A well-
known example is “If the barometer falls, then bad weather is
coming.” According to (H4), we would expect that a characteristic
of such indicative conditionals expressing spurious correlations is
that they do not support counterfactuals.
Depending on the query, the intervention might represent a natu-

ral continuation expressed in the indicative mood (e.g., “the cappuc-
cino will taste better, if I use espresso beans”). Alternatively, the
intervention might represent an unlikely continuation expressed in
the subjunctive mood (e.g., “the cappuccino would taste better, if I
bought an espresso machine for 10.000 e”). In our experiments, we
are less concerned with interventions, however. Instead, we focus

on different aspects of the distinction between predictive use of in-
dicative conditionals for expressing statistical associations of evi-
dential relevance and use of counterfactuals to answer queries that
target causal relevance. For a psychological theory of probabilistic
reasoning, DP is often used to represent evidential relevance and
causal power can be used to represent causal relevance.

Overview of the Experiments

To address the above research questions, we conducted experi-
ments that contrast a situation in which participants are provided a
detailed representation of a mechanism linking inputs and outputs
with observations of blackbox trials in which the mechanism was
covered. The animations were inspired by the 1993 computer
game, “The Incredible Machine.”

Figures 3 and 4 show annotated snapshots of the animations.
Figure 3 depicts the Machine condition in which a causal chain

Figure 3
Annotated Illustration of a Machine Trial

Note. See https://osf.io/fa9rj/ for a video illustration. See the online article for the color
version of this figure.

Figure 4
Annotated Illustration of a Blackbox Trial

Note. See https://osf.io/fa9rj/ for a video illustration. See the online article for the color
version of this figure.
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unfolds when a blue bowling ball (root cause) falls onto a mouse
wheel connected to a conveyor belt. This chain of events ends
with the basketball dropping into the basket. In Figure 4, the
mechanism is concealed. Note that this system is not deterministic
because the mice can start to run on their own and they may some-
times not run even if a bowling ball hits their cage. We adopted
this format as a way of manipulating the depth of participants’
understanding of a causal relation in light of long-standing debates
in the psychology of causal judgment about possession of struc-
tural knowledge that goes beyond associative learning (Pelley
et al., 2017; Waldmann, 1996; Waldmann & Hagmayer, 2005).
The animations that we used conveyed the information in a

trial-by-trial format. Usually, the psychology of reasoning (Man-
ktelow, 2012) follows the research tradition on cognitive illusions
(Kahneman et al., 1982) in studying reasoning problems via verbal
scenarios. However, trial-by-trial learning paradigms are common
in areas such as the psychology of learning (Bouton, 2016) and
causal reasoning (Waldmann, 2017). The finding of the descrip-
tion-experience gap (Hertwig & Erev, 2009; Rehder & Waldmann,
2017) shows that the two paradigms can lead to different results.
There is therefore a need for applying trial-by-trial learning para-
digms to problems in the psychology of reasoning (Vance & Oaks-
ford, 2020).
In our experiments, we manipulated different levels of contin-

gency (DP), conditional probability (P(C j A)), and causal power
(WCause). A trial-by-trial learning paradigm with the animated
mouse-wheel machine was used in Experiments 2–6. Table 2 pro-
vides a brief overview of the experiments.
Using the verbal stimulus materials used to originally document

the Relevance Effect in Skovgaard-Olsen et al. (2016), Experiment
1 aimed at providing a critical test of assumptions in van Rooij
and Schulz (2019). Experiment 1 thereby probed a causal power
account of the acceptance of indicative conditionals (H1) and
whether participants’ tendency to ignore alternative causes
accounts for the Relevance Effect (H2). The goal of Experiment 2
was to test whether the Relevance Effect could be replicated in a
trial-by-trial learning task.
The next two experiments involved singular causation judg-

ments. Singular causation judgments typically concern situations
in which both the potential cause and effect are known to have co-

occurred and reasoners have to establish whether the former
actually caused the effect on this specific occasion. Our interest in
these types of judgments originates in their role in testing (H3),
with its claim of multiple conceptual layers in the understanding
of causal relations. Moreover, we investigated singular causation
judgments to ensure that participants made the causal attributions
intended by our experimental designs.

Experiment 3 investigated whether the four central constructs of
(a) causal power, (b) indicative conditionals, (c) counterfactual
conditionals, and (d) singular causation are influenced by the same
factors in a large between-subjects experiment. The motivation for
this comparison was that according to a causal interpretation of
conditionals, one would expect conditionals to be affected by
manipulations that influence causal judgments.

The purpose of Experiment 4 was to investigate whether singular
causation judgments could be predicted by the acceptance of indica-
tive and counterfactual conditionals. In line with the hierarchy of
causal queries, Pearl (2009; Ch. 10) and Halpern (2019) build in
explicit counterfactual conditions in their accounts of singular cau-
sation. Experiment 4 therefore tested whether the acceptance of
counterfactual conditionals plays a role for singular causation.

Experiments 5 and 6 compared the acceptance of indicative and
counterfactual conditionals in a common-cause version of the
trial-by-trial learning paradigm. The goal was to investigate
whether the acceptance of indicatives and counterfactuals would
become dissociated for diagnostic and common-cause conditionals
to test (H4) and (H5). The investigation of scenarios with common-
cause and diagnostic reasoning is crucial because they exemplify
cases, where the answers to predictive queries need not represent
relations of direct causal impact. For instance, measurements on a
barometer are diagnostic for the coming weather conditions and
can be used to answer predictive queries (e.g., “Can we expect bad
weather, if the barometer falls?”). But the common cause of both
are changes in atmospheric pressure.

Experiment 1

According to van Rooij and Schulz (2019), the acceptability of
indicative conditionals is determined by causal power (H1). Based
on this account, it is natural to conjecture that participants assign
probabilities to indicative conditionals, “if A, then C,” based on

Table 2
Overview of the Experiments

Exp. Purpose Method Hypothesis

1 Critical test of assumptions needed to account for the
Relevance Effect based on van Rooij and Schulz (2019).

Verbal scenarios, test of causal power as a predictor of P(if
A, then C) and the influence of alternative causes on the
Relevance Effect.

H1, H2

2 Replication of the Relevance Effect in a trial-by-trial learn-
ing paradigm.

Animations with the mouse-wheel machine task in a causal
chain structure.

See below.

3 Investigate the relationship between judgments of causal
power, indicatives, counterfactuals, and singular
causation.

Animations with the mouse-wheel machine task in a causal
chain structure with a blackbox condition.

H3

4 Test of the acceptance of indicatives and counterfactuals
as predictors of singular causation judgments.

'' H3

5 Test of dissociation between the acceptance of indicatives
and counterfactuals.

Animations with the mouse-wheel machine task in a com-
mon cause structure with a blackbox condition.

H4, H5

6 Replicating Experiment 4 while controlling for the influ-
ence of tense and the order of events.

'' H4, H5
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causal power.6 On the auxiliary assumption that participants
ignore alternative causes, causal power would coincide with the
conditional probability, as we have seen. van Rooij and Schulz
(2019) suggest (H2) that we can use this observation to account for
the Relevance Effect in Skovgaard-Olsen et al. (2016). To do so,
one would have to conjecture that participants’ tendency to ignore
alternative causes makes P(C j A) a good predictor of P(if A, then
C) for Positive Relevance (Dp . 0) items. In contrast, the lack of
causal dependence of the consequent on the antecedent would
make P(C j A) overestimate P(if A, then C) for Irrelevance items
(Dp = 0). In addition, we probe whether we can replicate the Rele-
vance Effect in a situation, where it is difficult to ignore alternative
causes by using a task that builds on Byrne (1989). The purpose of
this was to provide a critical test of (H2) as an auxiliary assump-
tion of van Rooij and Schulz (2019), however.
In a much-discussed study, Byrne (1989) presented participants

with conditional inference problems like, for example, “If Lisa has
an essay to write, then Lisa will study late in the library,” along
with an additional premise presenting an alternative antecedent,
for example, “If Lisa has some textbooks to read, then Lisa will
study late in the library.” Applying this idea to our context, we
asked participants for probability evaluations in the presence of al-
ternative causes. We did this by first obtaining alternative causes
generated by other participants from a pilot study. We then dis-
played these above the test questions in the present study for par-
ticipants in the Alternative-Causes condition. The goal was to see
whether the Relevance Effect could be replicated even under full
knowledge of alternative causes, when the potential cognitive
effort of generating alternative causes had been removed.
Experiment 1 thus provides a critical test of the assumptions

needed to account for the Relevance Effect based on van Rooij and
Schulz’s (2019) causal power account of indicative conditionals.

Method Shared by All Experiments

Experiment 1, like all the other experiments reported in this arti-
cle, was conducted as an online study testing a large and demo-
graphically diverse sample. Participants were sampled over the
Internet (via Mechanical Turk) from the United States, United
Kingdom, Canada, and Australia. They received a monetary com-
pensation for their participation. The following exclusion criteria
were used: (a) not having English as native language, completing
the task in less than min seconds or in more than max seconds,7 (b)
failing to answer two simple SAT comprehension questions cor-
rectly in a warm-up phase, (c) answering “not serious at all” to the
question “how serious do you take your participation?” at the be-
ginning of the study, and (d) answering “yes” to whether they rec-
ognized the animation from the computer game “Incredible
Machines.”8 For each experiment, it was found that these exclu-
sion criteria had a minimal effect on the demographic variables.
To reduce the dropout rate during the experiment, participants

first went through three pages in all the experiments. These three
pages stated our academic affiliations, posed the two SAT compre-
hension questions in a warm-up phase, and presented the serious-
ness check (Reips, 2002). Participants were also shown two
dummy probability questions to familiarize them with the use of a
slider.

Participants

A total of 1,004 people completed Experiment 1. After applying the
a priori exclusion criteria the final sample consisted of 681 participants.
Mean age was 39.82 years, ranging from 18 to 799; 46.1% of the partic-
ipants were male, and 72.39% indicated that the highest level of educa-
tion that they had completed was an undergraduate degree or higher.

Design

The experiment had a between-subjects design with three factors.
The first was Relevance (with two levels: Positive Relevance (PO)
vs. Irrelevance (IR)). The second was Priors (with four levels: HH
vs. HL vs. LH vs. LL; e.g., HL means that P(A) = high and P(C) =
low). The third was group (with two levels: Alternative-Causes vs.
Control). Thus, there were 16 between-subjects conditions in total.

We will abbreviate the 2 Relevance 34 Prior conditions as fol-
lows: POHH, POHL, POLH, POLL, IRHH, IRHL, IRLH, IRLL.
The Relevance and Prior factors were combined factorially to
ensure that the examined relationships generalize across a wide
range of different probabilities. This ensures that our results do not
merely pertain, for example, to conditionals with high antecedent
and consequent probabilities, which tend to sound more plausible,
but that they generalize across a wider spectrum.

Materials and Procedures

Each of the 16 between-subjects conditions was randomly
assigned to one of 12 scenarios. Random assignment was per-
formed with replacement, such that each participant saw a differ-
ent scenario for each condition. This ensured that the mapping of
condition to scenario was counterbalanced across participants.
One of the 16 between-subjects conditions was randomly assigned
to a participant within a block. The block consisted of one page
displaying a scenario and three pages presenting the dependent
variables (see below). As a reminder, the scenario was presented
in gray on the top of these three pages. These scenario texts have
been found in previous experiments (Skovgaard-Olsen et al.,
2016; Skovgaard-Olsen, Singmann, et al., 2017) to reliably induce
assumptions about relevance and prior probabilities of the anteced-
ent and the consequent that implement our experimental condi-
tions. Table 3 displays sample items of the Paul scenario for
Positive Relevance (Dp. 0), and Irrelevance (Dp = 0).

For the Paul scenario in Table 3, participants assume that the
event “Paul pushes down the gas pedal” raises the probability

6 Note that van Rooij and Schulz (2019) are careful in stating their
theory only in terms of categorical acceptance of indicative conditionals.
But they indicate an extension of it to account for degrees of acceptability
as here and explicitly apply their theory to data from psychological
experiments that asked for degrees of acceptability in the form of
subjective probabilities. For this reason, we empirically test such an
extension of their theory.

7 Due to differences among the tasks, the min and max varied between
experiments: Experiment 1 = [60 s, 1,800 s], Experiments 2 and
3 = [240 s, 3,600 s], Experiment 4 = [120 s, 1,800 s], Experiments 5 and 6
= [240 s, 1,800 s].

8 This last exclusion criterion was used only in Experiments 3–6, which
introduced a blackbox condition that required controlling the background
knowledge of the participants.

9 One participant indicated the age of 14, but given Amazon’s
regulations we doubt this value.
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of the event “the car will speed up.” They moreover assume
that both sentences have a high prior probability (Positive Rele-
vance, HH). Conversely, participants assume that the event
“Paul is wearing a shirt” is irrelevant for whether “his car will
function normally,” and that both have a high prior (Irrelevance,
HH). Previous studies have confirmed that participants view
“Paul pushes down the gas pedal” as a reason for the event “the
car will speed up” and “Paul is wearing a shirt” as neither a rea-
son for nor against “his car will function normally.” The full
list of scenarios can be found at: https://osf.io/j4swp/.
On the three randomly ordered pages following the initial sce-

nario, participants were asked to provide estimates of conditional
probabilities (P(C j A), P(C j ´A)) via the Ramsey Test. They
were thus asked to suppose that the antecedent is the case and
evaluate the probability of the consequent under this assumption
on a scale from 0–100%. In addition, participants were asked to
assign probabilities on the same scale to conditional statements
across relevance conditions, for example: “IF Paul pushes down
the gas pedal, THEN the car will speed up.”
In a pilot study, we had participants generate alternative causes

for the Positive Relevance and Irrelevance items. Two independent
raters coded how many independent and plausible causes the par-
ticipants listed (see https://osf.io/fa9rj/ for the coding instructions).
It was found that the rank order jAlternativesPOj . jAlternativesIRj
obtained not only for the averaged ratings across conditions
(AlternativesPO = 3.13, AlternativesIR = 2.06), t(3.56) = 3.39, p =
.033, but also for each condition and each rater within each condi-
tion. For participants in the Alternative-Causes Group, an alterna-
tive cause generated by the participants in the pilot study was
selected for each of the 96 Relevance 3 Prior 3 Scenario combi-
nations. This alternative cause was presented to participants as the
antecedent of a conditional. For instance, some participants in the
Alternative-Causes group were shown the following conditional
presenting an alternative antecedent for the item above:

“IF Paul is driving down a hill, THEN Paul's car will speed up.”

This conditional was displayed on a separate page after the sce-
nario and repeated on every page above the test question for par-
ticipants in the Alternative-Causes Group. In contrast, participants
in the Control group were presented with the three dependent vari-
ables without alternative antecedents.

Results and Discussion

Causal power was calculated based on participants’ responses to
the conditional probability questions through calculations of DP
and the following formulas:

power ¼
DP

1� PðC j :AÞ if DP$ 0

�DP
PðC j :AÞ if DP, 0

8>>><
>>>:

(5)

The formulas calculate causal power for generative and preven-
tive causes, respectively.10

The first goal of the analysis was to establish whether the con-
trast between the Alternative-Causes and the Control group influ-
enced the Relevance Effect.

In Table 4, a mixed ANOVA was first conducted using the R-
packages afex (Singmann et al., 2020) and emmeans (Lenth, 2020).
The condition factor (POHH vs. POHL vs. POLH vs. POLL vs.
IRHH vs. IRHL vs. IRLH vs. IRLL) and Alternatives factor (Alter-
native-Causes vs. Control Group) were specified as varying between-
subjects. The dependent variable DV factor (P(C j A) vs P(Cj:A) vs
P(if A, then C) vs DP vs power) was specified as a within-subject
factor. Through this model, we tested the impact of the Alternative-
Causes vs Control group contrast on both the three measured (P(C j
A), P(Cj:A), P(if A, then C)) and the two calculated dependent vari-
ables (DP, power) across the between-subjects conditions.

Given that the contrast between the Alternatives-Causes and
the Control group was neither involved in a simple effect nor in
any statistically significant interactions (see Table 4), Figure 5
displays the results without this factor. The systematic differen-
ces between P(C j A) and P(if A, then C) for the IR items are
noteworthy in Figure 5, because they violate Equation 1. At the

Table 3
Stimulus Materials of the Paul Scenario

Paul is driving on a straight road with hardly any traffic ahead. He is on his way to work in an investment bank and is running late. At this
point the drive will take about one hour and he is supposed to arrive in 40 minutes.

Scenario Positive relevance Irrelevance

HH If Paul pushes down the gas pedal, then the car will speed up. If Paul is wearing a shirt, then his car will function normally.
HL If Paul drives fast, then he will be there in time for work. If Paul is wearing a shirt, then his car will suddenly break down.
LH If Paul’s car suddenly breaks down, then he will be late for work. If Paul is wearing shorts, then his car will function normally.
LL If Paul pushes down the brake pedal, then the car will slow down. If Paul is wearing shorts, then his car will suddenly break down.

Positive relevance (PO): mean DP = .32 High antecedent: mean P(A) = .70
Irrelevance (IR): mean DP = �.01 Low antecedent: mean P(A) = .15

High consequent: mean P(C) = .77
Low consequent: mean P(C) = .27

Note. HL: P(A) = high, P(C) = low; LH: P(A) = low, P(C) = high. The bottom rows display the mean values for all 12 scenarios pretested in
(Skovgaard-Olsen, Singmann, et al., 2017). Dp = P(CjA) – P(C j ´ A).

10When DP = 0 causal power was stipulated to be zero to avoid the
problem of undefined values for cases when P(C j ´ A) = 1. Removing the 41
participants with undefined values does not change the relative fit of the
models, however. For the purpose of predicting P(if A, then C) by causal
power (see M1 below), it would also have been possible to only apply the
causal power formula to the subset of cases where DP $ 0. Figure 5 reveals,
however, that the fit of M1 would not have improved by predicting P(if A,
then C) = 0 in such cases due to zero generative, causal power.
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same time, the two constructs are nearly identical for the PO
items. Both findings are in line with the predictions of the Rele-
vance Effect shown in Figure 1. The lack of coincidence of
Wcause and P(C|A), and the finding that P(C|�A) estimates are
consistently above 0, is also noteworthy, because it casts doubt
on van Rooij and Schulz’s (2019) auxiliary assumption.
The goal of the second analysis was to test whether causal

power predicted P(if A, then C) better than other models. Three
mixed linear models were contrasted for modeling P(if A, then C),
with random intercepts for scenarios using the R-package lme4
(Bates et al., 2015):
(M1) A model that predicts P(if A, then C) based on causal

power (van Rooij & Schulz, 2019); which measures P(effect j
cause, ´alternatives).
(M2) A model that predicts P(if A, then C) by P(C j A) as meas-

ured by the Ramsey Test, which corresponds to the suppositional
theory of conditionals (Evans & Over, 2004; Oaksford & Chater,
2007; Pfeifer & Kleiter, 2009).
(M3) A model that predicts P(if A, then C) based on an interac-

tion between P(C j A) and the Relevance condition factor (Positive

Relevance vs. Irrelevance), which corresponds to the model used
by Skovgaard-Olsen et al. (2016).

The outcome of the model comparison is displayed in Table 5.
The information criteria clearly converge on M3. This model per-
mits an interaction between P(C j A) and the Relevance condition
factor such that a lower slope of P(C j A) is expected in the Irrele-
vance Condition.

In this experiment, the Relevance Effect reported in Skovgaard-
Olsen et al. (2016) was replicated both in the Alternative-Causes
and the Control Group. It was thereby found that there was no sig-
nificant effect of explicitly presenting alternative causes to the par-
ticipants in the manner of Byrne (1989) for the Relevance Effect.
This finding, in turn, challenges the auxiliary assumption (H2) in
van Rooij and Schulz (2019) that participants’ tendency to ignore
alternative causes accounts for the Relevance Effect.

Based on the pilot study, we know that participants can generate
alternative causes for both the positive relevance and irrelevance
items. Hence, the stimuli in Skovgaard-Olsen et al. (2016) implic-
itly manipulate the presence of alternative causes. When compar-
ing participants’ probability assignments when the presence of

Table 4
ANOVA Table for Experiment 1

Effect df MSE F g2
G p

Condition 7, 665 0.19 73.58 .23 ,.0001
Alternatives 1, 665 0.19 2.62 .002 ns
Condition:Alternatives 7, 665 0.19 1.55 .006 ns
DV 2.49, 1,655.62 0.12 192.73 .15 ,.0001
Condition:DV 17.43, 1,655.62 0.12 22.24 .13 ,.0001
Alternatives:DV 2.49, 1,655.62 0.12 0.79 .0007 ns
Condition:DV:Alternatives 17.43, 1,655.62 0.12 0.89 .006 ns

Note. g2
G is generalized eta squared, which is an effect size measure that is recommended for repeated meas-

ures ANOVA in Bakeman (2005). The Alternatives factor encodes the contrast between the Alternative-Causes
group and the Control group (alternative causes absent). DV = dependent variable; MSE = mean square error.

Figure 5
The Measured and Calculated Mean Estimates

Note. The measured and calculated mean estimates of the five DVs are displayed across
the eight Relevance X Priors Conditions. The error bars represent 95% CIs. DV = depend-
ent variable; PO = Positive Relevance; IR = Irrelevance. See the online article for the color
version of this figure.
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alternative causes is implicitly manipulated (the Control Group)
and when it is explicitly manipulated (the Alternative-Causes
Group), we find no significant differences (see Table 4).11

In a direct model comparison, it was found that when comparing
the Suppositional Theory of Conditionals (Evans & Over, 2004;
Oaksford & Chater, 2007; Pfeifer & Kleiter, 2009), the causal power
theory of the acceptability of indicative conditionals (van Rooij &
Schulz, 2019), and the model used in Skovgaard-Olsen et al. (2016),
the latter turned out to be the best fitting model. What allowed this
model to outperform the other models was that it includes a simple
effect of Relevance and an interaction between P(C j A) and the Rele-
vance condition factor. This interaction term expects a lower slope of
P(C j A) in the Irrelevance Condition, where indicative conditionals
are predicted to appear defective. At the same time, it allows the use
of P(C j A) as a predictor of P(if A, then C), which is especially well-
supported in the Positive Relevance Condition. In Appendix B, we
further investigate the issue of why causal power theories could not
account for our findings through a simulation analysis.

Experiment 2

Beginning with Experiment 2, we used the animated mouse-
wheel-machine paradigm. In Experiment 1, the Relevance Effect
was replicated with verbal scenarios. The purpose of Experiment 2
was to replicate this effect using a trial-by-trial learning paradigm
involving mechanistic knowledge for the first time.

Method

Participants

A total of 350 people completed the experiment. The same sam-
pling procedures and exclusion criteria were used as in Experiment
1. The final sample after applying the a priori exclusion criteria
consisted of 221 participants. Mean age was 40.27 years, ranging
from 20 to 74; 38.91% of the participants were male, 69.23% indi-
cated that their highest level of education was an undergraduate
degree.

Design

The experiment had a within-subject design with Relevance as a
within-subject factor (with three levels: Positive Relevance [PO]
vs. Negative Relevance [NE] vs. Irrelevance [IR]), which refers to
three types of items explained below. In total, 20 trials were shown
which implemented the conditions in Table 6.
A pilot study12 had found that although DP in the trials shown

differed modestly, participants were able to arrive at stronger DP

differences across conditions when processing the items introduced
below. Their background knowledge and the evidence presented
concerning the mechanism permitted them to arrive at stronger sub-
jective Dp values than what was displayed in the trials. These sub-
jective Dp values correlated with participants’ ordinal reason
relation assessments, rpolyserial (97) = .73, p, .0001. The pilot study
thus showed that we could use a single contingency condition to
reliably manipulate the differences Positive Relevance, Negative
Relevance, and Irrelevance using the items introduced below.

Materials and Procedure

To ensure that the animations were displayed properly, partici-
pants were instructed to adjust their browser so that they would
see the whole box in which the animation was presented. We first
presented one trial with three multiple-choice questions. After the
display of a fixation cross in the upper left corner, participants saw
an animation with the mechanistic set-up depicted in Figure 3. In
the animation, a blue bowling ball fell down on a mouse-wheel,
connected to a conveyor belt, which set a chain of events in action
that eventually resulted in a red basketball falling down the basket
on the right side of the screen. Participants were instructed that the
animations would always start with the display of a white fixation
cross in the upper left corner (the position in which the blue bowl-
ing ball occurred). Second, participants learned that there was a
process bar in the middle of the screen that visualizes when the
animations stop. Third, they were asked to pay attention to the ani-
mation in all trials, and that they could not press “continue” until
all animations had been shown.

In the first trial, the animation paused several times to pose mul-
tiple-choice questions to ensure that participants had understood
what they had seen. After this trial, participants were given the fol-
lowing instruction:

As you will see, sometimes the mice can be sleepy (“ZzzZZZz”) and
fail to run despite being prompted. The mice can also be excited (“Wo
hoo!”) and start to run without being prompted.

This information was given to make participants aware that (a) the
effect could occur in the absence of the target cause and (b) sometimes
the effect could remain absent even in the presence of the target cause.

Table 5
Model Comparison for Indicative Conditionals

Model Effect v2 df p AIC BIC

M1 Causal power 241.52 1 ,.0001 481.70 499.80
M2 P(CjA) 652.26 1 ,.0001 232.43 250.52
M3 P(CjA) 515.81 1 ,.0001 38.87 66.01

Relevance condition 200.67 1 ,.0001
P(CjA): Relevance condition 28.72 1 ,.0001

Note. The lower Akaike information criterion (AIC) and Bayes information criterion (BIC) values indicate that M3 is superior to M1-M2 in light of the
parsimony vs. fit trade-off. Relevance is a categorical factor encoding Positive Relevance versus Irrelevance.

11 As such, the relationship between the Alternative-Causes Group and
the Control Group can be viewed as resembling the relationship between
the so-called explicit paradigm in Byrne (1989) and the implicit paradigm
in Cummins et al. (1991). These two paradigms also led to similar results.

12 See https://osf.io/fa9rj/.
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The next page informed participants about the change of an irrelevant
feature of the machine to implement the Irrelevance condition:

Sometimes, the bricks also look a bit brighter owing to small random
shifts in the lights.

Participants then saw 19 further trials implementing the condi-
tions outlined in Table 6. An illustration of the trials can be found
at https://osf.io/fa9rj/.
Following these further animations, three blocks of items were

displayed in random order containing several randomly ordered
questions. These three blocks implemented the within-subject Rele-
vance factor by presenting participants with the following Positive
Relevance (PO), Negative Relevance (NE), and Irrelevance (IR)
items, which all concerned properties of the machine shown:

PO: IF the blue bowling ball falls down, THEN the red basketball
drops down in the basket.

IR: IF the lights make the bricks in the machine look brighter, THEN
the red basketball drops down in the basket.

NE: IF none of the blue bowling balls are moving, THEN the red bas-
ketball drops down in the basket.

Within each block, participants were asked to evaluate the prob-
ability of these conditionals and the conditional probability of the
consequent given the antecedent via the Ramsey test on a scale
from 0% to 100%. Finally, participants were asked whether they
recognized the animation as originating from the computer game
“The Incredible Machine,” and a list of demographic questions.

Results and Discussion

As a manipulation check, it was found that the following per-
centages of the participants answered the initial multiple-choice
question correctly: 81.45%, 96.38%, 94.57%, Regressing P(if A,
then C) on P(C j A), the differences in Figure 6 were found across
Relevance conditions.

To test for the influence of Relevance on P(C j A) as a predictor
of P(if A, then C), three mixed linear models were contrasted, with
random intercepts for participants using the R-package lme4
(Bates et al., 2015); as shown in Table 7.

The information criteria favor M3. The results thus indicate that
there was both a simple effect of Relevance on P(If A, then C) and
an interaction between P(C j A) and Relevance.

For the PO item, the estimated marginal means of the P(if A,
then C) ratings were .55, 95% CI [.51, .60], .74, 95% CI [.71, .77],
and .92, 95% CI [.88, .97], when P(C j A) was held fixed as .50,
.75, and 1.00, respectively. In contrast, when P(C j A) was held
fixed at the same values for the IR item, the estimated marginal
means of the P(if A, then C) rating were .36, 95% CI [.33, .39],
.50, 95% CI [.46, .54], and .64, 95% CI [.59, .70], respectively.
For the NE item, the corresponding values were .29, 95% CI [.25,
.32], .37, 95% CI [.32, .42], and .46, 95% CI [.39, .53].

There is a striking match between the data pattern in Figure 6 and
the pattern outlined in Figure 1. The results indicate that although
participants’ responses are well described by Equation 1 for the Posi-
tive Relevance item, substantial divergences are found for the NE
and IR items. Previously, this effect has only been reported using
verbal scenarios (Skovgaard-Olsen et al., 2016; Skovgaard-Olsen,
Kellen, et al., 2019 Vidal & Baratgin, 2017), which was replicated in
Experiment 1. Now we show that this Relevance Effect can also be
found in a trial-by-trial learning paradigm in the presence of mecha-
nistic knowledge for the first time.

Experiment 3

To investigate the impact of mechanistic knowledge, Experi-
ment 3 introduced a contrast between one group of participants
seeing the underlying mechanism (as in Experiment 2) and another
group of participants seeing the same setting covered by a black-
box. The black box concealed the underlying mechanism of the

Table 6
Experimental Design

Condition P(C jA) P(C j´A) DP

PO 0.83 0.75 0.08
IR 0.80 0.80 0.00
NE 0.75 0.83 �0.08

Note. Contingencies calculated based on the initial trial, where the multi-
ple choice questions were presented and the subsequent 19 randomly or-
dered machine trials. PO = Positive Relevance; NE = Negative Relevance;
IR = Irrelevance.

Figure 6
Regressing P(if A, Then C) on P(C|A) Across Relevance

Note. The figure displays predictions of their ratings of P(if A, then C) by their P(C|A) responses. Both varia-
bles were rescaled by dividing by 100. The dashed lines indicate the predictions by Equation 1. The root mean
square error (RMSEA) values displayed were calculated based on fitting separate least square linear regressions
to the Positive Relevance (PO), Negative Relevance (NE), and Irrelevance (IR) conditions. See the online arti-
cle for the color version of this figure.
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events participants saw (see Figure 4). Our experiments thus
allowed us to investigate the effects of knowledge about the opera-
tion of a machine, compared with when one can only form associ-
ations based on observed covariances in blackbox trials.
Experiment 3 used this blackbox manipulation to investigate the
impact of participants’ causal knowledge on estimates of condi-
tional probabilities and conditional reasoning. Because partici-
pants in the blackbox condition only had observed covariances to
rely on, we will refer to this group as the Regularity Group.
Whereas other studies have investigated indicative conditionals

and singular causation judgments in the same experiment (e.g.,
Sikorski et al., 2019), we decided to additionally have participants
provide counterfactual conditionals and causal power judgments.
To investigate the relationship between mechanistic knowledge,
causality, conditionals, and contingency, a large online study was
therefore conducted with 32 between-subjects conditions that fac-
torially varied these factors.
According to (H3), causal relations encode multiple conceptual

layers, some of which require answers to queries that go beyond
what is expressed by indicative conditionals. On the opposing
view, indicative conditionals themselves express causal relations.
To corroborate (H3), it would have to be shown that there are
aspects of causal relations that go beyond the acceptance of indica-
tive conditionals. Experiments 4–6 were devoted to this aim. In
contrast, evidence against (H3) would have to show that partici-
pants evaluate indicative conditionals equivalently to explicit
causal notions like singular causation and causal power. Experi-
ment 3 tested this hypothesis.
Experiment 3 therefore investigated whether experimental manipula-

tions known to influence causal reasoning (i.e., contingency conditions
and the Machine vs. Blackbox contrast) had a similar impact on four
outcome variables of theoretical interest (the probability of indicative
conditionals, counterfactual conditionals, singular causation, and causal
power). Second, Experiment 3 investigated whether participants eval-
uated these four variables equivalently, or whether differences between
them emerged in support of (H3). To test this, SEM models were fitted
to the data across all 32 conditions. A comparison of these models
revealed whether it was possible to constrain the four main DVs to be
identical. Of interest for these comparisons was whether indicative con-
ditionals were evaluated as explicit causal constructs such as causal
power and singular causation in a between-subjects comparison. Third,
Experiment 3 was designed to investigate whether the influence of our
experimental manipulations on the four main DVs was mediated by par-
ticipants' estimations of Ramsey test conditional probabilities. Fourth, it

was investigated whether this mediational relationship in turn was mod-
erated by reason relation assessments.

Method

Participants

A total of 2,211 people completed the experiment. The same
sampling procedures and exclusion criteria were used as in Experi-
ment 1 with one addition. Experiment 3 additionally excluded par-
ticipants who recognized the set-up from the computer game
“The Incredible Machine,” because such participants will know
the mechanism of the machine even in the blackbox condition.
The final sample after applying the a priori exclusion criteria con-
sisted of 1472 participants. Mean age was 38.94 years, ranging
from 18 to 8113; 40.42% of the participants were male, and
70.72% indicated that their highest level of education was an
undergraduate degree.

Design

The experiment had a between-subjects design with three fac-
tors: DVtype (with four levels: indicative conditional vs. singular
causation vs. counterfactual conditional vs. causal power), Contin-
gency (with four levels outlined in Table 8 below: a vs. b vs. c vs.
d), and group (with two levels: Machine vs. Regularity, which dif-
fered on whether participants saw the underlying mechanism as in
Figure 3 or only the blackbox trials as in Figure 4).

Materials and Procedure

Participants were randomly assigned to one of these 32
between-subjects conditions. To investigate the impact of mecha-
nistic knowledge, we first presented one group of participants
(those in the Machine condition) with a trial showing the mecha-
nistic set-up from Experiment 2. Participants in the Regularity
Group, by contrast, only saw a blackbox trial.

In the first trial, the animation was paused several times to
pose multiple-choice questions to ensure that participants had
understood what they had seen. For the 15 trials that followed,
all participants saw 15 blackbox trials (see Figure 4) conveying
the different contingencies listed in Table 8. Participants in the
Machine group were instructed that the blackbox covered most of

Table 7
Model Comparison for Indicative Conditionals

Model Effect v2 df p AIC BIC

M1 P(C jA) 637.15 1 ,.0001 57.03 75.01
M2 P(C jA) 291.66 1 ,.0001 �72.58 �45.60

Relevance condition 166.98 2 ,.0001
M3 P(C jA) 302.04 1 ,.0001 �86.08 �50.11

Relevance condition 172.46 2 ,.0001
P(C jA): Relevance condition 24.81 2 ,.0001

Note. Note that P(C jA) here refers to the values measured by the Ramsey Test. The lower Akaike informa-
tion criterion (AIC) and Bayes information criterion (BIC) values indicate that M3 is superior to M1 and M2 in
light of the parsimony versus fit trade-off.

13 One participant answered 5. This answer was excluded from the
reported age range.
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the animation with the machine that they had seen on the first
trial.14 Following these trials, participants were shown a block
with three dependent variables in random order. Two of the de-
pendent variables were shown to all participants. One of these
was the following Ramsey test question:

Suppose that the blue bowling ball falls down. [highlighted in blue]

Under this assumption, how probable is the following statement on a
scale from 0% to 100%:

The red basketball drops down in the basket. [highlighted in blue]

The second question was an ordinal reason relation assessment
on a 5-point Likert-scale, where the quoted sentences were high-
lighted in blue:

Please indicate the extent to which “the blue bowling ball falls down”
is a reason for/against “the red basketball falls into the basket”:

A strong reason against; a reason against; neutral; a reason for; a
strong reason for.

The third dependent variable was a probability judgment on a
scale from 0% to 100% with an item determined randomly based
on the chosen between-subjects condition from the following list.

Singular Causation. The blue bowling ball caused the red
basketball to drop down in the basket.

Indicative Conditional. IF the blue bowling ball falls
down, THEN the red basketball drops down in the basket.

Counterfactual Conditional. IF the blue bowling ball had
NOT fallen down, THEN the red basketball would NOT have
dropped down in the basket.

Causal Power. Some instances of the red basketball
dropping down in the basket are due to hidden alternative
causes. Imagine there are 100 runs of the animation in which
no alternative causes are present. Suppose that the blue bowl-
ing ball falls down in all of these 100 runs. In how many of
them would the red basketball drop down in the basket?
The formulation of the causal power question followed a stand-

ard formulation found in the literature on causal judgment (see
e.g., Cheng & Lu, 2017; Liljeholm & Cheng, 2007).
Finally, participants were asked whether they recognized the

animation as originating from the computer game “The Incred-
ible Machine” and a list of demographic questions.

Results and Discussion

Pilot Study for Experiment 3

We first conducted a pilot study. We here summarize some of
its results, because they concern the issue of whether participants
ignore alternative causes in our experimental paradigm, which was
the auxiliary hypothesis used to explain the Relevance Effect in
van Rooij and Schulz (2019). Further results concerning the
impact of mechanistic knowledge on changes to contingencies are
reported at https://osf.io/fa9rj.

The pilot study presented participants with two open-ended ques-
tions, where participants were requested to list up to seven other al-
ternative causes of the basketball dropping into the basket than the
blue bowling ball falling down. An acceptable answer to this ques-
tion might be that one of the mice started to run of its own volition.
Second, participants were asked to explain the mechanism in the
black box which makes the basketball fall into the basket. To ana-
lyze participants’ open-ended responses, we had two raters classify
the number of alternative causes to the blue bowling ball falling
down. As a proxy for the complexity of the explanations, the two
raters also classified the number of functional units in participants’
explanations of why the red basketball dropped into the basket.
Details on the classification can be found at https://osf.io/fa9rj.

The Machine group (M = 4.35, SD = 2.25) produced signifi-
cantly more functional units in their explanations than the Regular-
ity group (M = 1.84, SD = 1.13), t(127.18) = 9.17, p , .0001.
Moreover, it was found that the Machine group (M = 1.21, SD =
1.4) produced significantly more alternative causes than the Regu-
larity group (M = .82, SD = .99), t(153.42) = 2.054, p = .042. In
the Machine condition, 39.54% produced zero (plausible) alterna-
tive causes. In the Regularity condition, 47.5% of the participants
produced zero (plausible) alternative causes. However, these pro-
portions did not differ significantly, v2(1) = .77, p = .38. In sum, it
was found that the explanations of the Machine group were more
complex, as measured by the number of functional units used in
their explanations. Moreover, the Machine group tended to list
more alternative causes than the Regularity Group. However, the
two groups did not differ in the frequency with which zero physi-
cally plausible, alternative causes were listed, which was found to
be high (.39%) in both groups.

Main Study

Participants in the Machine group were asked three multiple
choice questions. In the Regularity Group, two multiple-choice
questions were presented. As a manipulation check, it was found
that the following percentages of participants answered the initial
multiple choice question correctly: (Machine Group) 83.70%,
98.10%, 96.20%, (Regularity Group) 88.18%, 88.45%.

Structural Equation Model

To analyze all 32 between-subjects conditions, a structural equa-
tion model with four groups (one for each of the main dependent

Table 8
Experimental Design, Contingency Conditions

Condition P(CjA) P(Cj:A) DP WAntecedent

a 0.75 0.50 0.25 0.50
b 0.25 0.00 0.25 0.25
c 0.25 0.25 0.00 0.00
d 0.75 0.75 0.00 0.00

Note. The contingency conditions were introduced through the first ini-
tial trial and consecutive 15 randomly ordered blackbox trials. These were
subject to the constraint that the last trial displayed was a ,bowling ball,
basketball. trial. This was done to enable, for example, participants to
make singular causation judgments about whether the bowling ball caused
the basketball to fall down the basket. WAntecedent = the causal power of
the antecedent of the conditionals.

14 Because the mechanism was covered for these trials, participants
were never exposed to animations of sleepy or excited mice as disablers
and alternative antecedents like in Experiment 2. Moreover, because the IR
item from Experiment 2 was not used, the color of the bricks remained
constant throughout.
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variables, yj) and moderated mediation was fitted to the data of all
1472 participants (see Figures 7 and 8). SEM is a generalization of
regression models used for causal inference in statistics, which is
based on modeling the covariance matrix. SEM moreover permits
the estimation of direct and indirect effects of explanatory variables
as well as imposing conditional independence constraints from a
causal model (Kline, 2016; Shipley, 2016). For our purposes, SEM
is suited for identifying the sensitivity of our four main outcome
variables to the experimental manipulations while holding other
factors fixed. Moreover, we use the SEM model for testing the indi-
rect effects of the experimental manipulations through mediating
variables.
Owing to the theoretical importance of Ramsey test conditional

probabilities, they were considered as a mediator of our manipula-
tions. In line with previous research, the indirect paths through the
Ramsey test (P(C j A)DV) were furthermore moderated by a quali-
tative reason relation assessment, ReasonDV. Across the four
groups, the two mediators, P(C j A) and Reason, were modeled in
the same way. But the model allowed for differential influence of
these on the main outcome variable across the four different types.
The model permits the experimental conditions to influence the

four main outcomes variables via two causal chains: (a) through
the direct effects of the objective input (i.e., the experimental con-
ditions) on the subjectively evaluated DVs, and (b) through indi-
rect effects, where the objective input affects subjective
evaluations of P(C j A) and reason relations, which in turn influ-
ence the subjectively evaluated DVs. On the hypothesis of a causal
interpretation of indicatives, similar psychological processes

should be involved in evaluating the four central DVs. The model
implements this by allowing the same structure across all four
DVs. In addition, the model permits the rejection of this hypothe-
sis by allowing the dashed edges to differ across the four DVs.
Comparing alternative models that set the dashed edges equal for
some of the four main DVs thus provides a test of differences
between these psychological constructs.

In the following, P(C j A) and the four main outcome variables
were divided by 100, and the P(C j A) and reason relation were
centered on their means. Furthermore, the Contingency factor (a,
b, c, d) outlined in Table 8 was encoded in three indicator varia-
bles representing the following contrasts: (x1) a � b, (x2) c � b,
and (x3) d � b. The model was fitted using the R-package lavaan
(Rosseel, 2012).

The model in Figure 8 was arrived at by trimming down a satu-
rated model. We did this through a combination of domain knowl-
edge, statistical tests, and by introducing equality constraints
between coefficients of the predictors of the four main outcome
variables. Only statistically significant paths are displayed and
were retained. Figure 8 shows that, except for counterfactuals, the
linear models of the main outcome variable, yj, were in each case
capable of accounting for more than 50% of the total variance. In
the case of indicative conditionals, the model accounted for more
than 82% of the variance. Global fit statistics moreover indicated
that the covariance matrix predicted by the model did not signifi-
cantly misfit the data, v2(59) = 73.56, p = .096, and that the model
met widely used benchmarks for fit measures in SEM modeling
(Finch & French, 2015; Kline, 2016): RMSEA = .026, 90% CI
[.00, .043], pe0#:05 . .99, CFI = .996, SRMR = .037, Akaike infor-
mation criterion (AIC) = 1306.85, Bayes information criterion
(BIC) = 1926.30.

What enabled this model to do comparably well was by impos-
ing differences between the four main DVs corresponding to the
dashed edges in the conceptual diagram (see Figure 7) and as illus-
trated in the diagram of the fitted model (see Figure 8). In contrast,
imposing the constraint that all four main DVs were identical
resulted in a model that significantly misfit the data, v2(68) =
377.18, p , .001, and which performed worse in terms of the fit
versus parsimony trade-off, AIC = 1592.47, BIC = 2164.27. Simi-
larly, imposing the constraint that the evaluation of indicative con-
ditionals was identical to causal power and singular causation led
to an inferior model that significantly misfit the data, v2(66) =
175.09, p , .001, AIC = 1394.38, BIC = 1976.77. Finally, impos-
ing the constraint that only the evaluation of indicative condition-
als and causal power were identical led to an inferior model that
significantly misfit the data, v2(61) = 88.92, p = .011, AIC =
1318.21, BIC = 1927.06. Of the latter three, the last was, however,
the most competitive. But it still failed to capture the differences
between indicative conditionals and causal power displayed in
Figure 8.

Across the 16 Contingencies 3 DV conditions, the main
outcome variables were consistently rated higher on the
0–100% scale in the Machine group than in the Regularity
group (Mdifference = 17.57, SD = 5.25). Figure 8 shows that this
effect was in part mediated through the influence of the
Machine factor (0 vs. 1) on the reason relation assessment and
the Ramsey test assessment of P(C j A). In addition, Figure 8

Figure 7
Conceptual Diagram

Note. The dashed edges could vary between the four main dependent
variables; the solid lines were fixed for all. “Contingency” (a, b, c, d) was
coded into three contrasts: x1, x2, and x3. A mean structure and covarian-
ces (not displayed here) were also added to the SEM model: see https://
osf.io/fa9rj for further details. P(CjA)*R = interaction between P(CjA)
and Reason.
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shows that all four dependent variables were influenced by the
contingency and machine manipulations.
A further finding in Figure 8 is that although the reason relation

assessment affected all four main dependent variables to varying
degrees, the Ramsey test assessment of P(C j A) did not affect the
evaluation of the counterfactual “if A had not been the case, then C
would not have been the case.” Finally, a moderation of P(C j A)
by qualitative reason relation assessments was only found for singu-
lar causation judgments and indicative conditionals. We test this
moderated mediation effect below.

Ramsey Test Conditional Probabilities and Causal Power

It was found that participants’ Ramsey test conditional probabilities,
P(C j A)DV, were sensitive to the Machine versus Regularity manipula-
tion. Participants in the Machine condition tended to overestimate P(C j
A)DV when P(C j A)design = low (conditions: b, c), xb = .43, t(185) =
6.67, p, .0001, xc = .48, t(176) = 9.86, p, .0001. Conversely, partici-
pants in the Regularity condition tended to underestimate P(C j A)DV
when P(C j A)design = high (conditions: a, d), xa = .65, t(166) = �5.82,
p , .0001, xd = .66, t(201) = �5.55, p , .0001. These divergences
from the manipulated conditional probabilities are illustrated through the
distances to the dashed lines in Figure 9.
It was, moreover, found that P(C j A)DV was highly correlated

with participants’ estimates for causal power, powerDV: r = .90,
t(367) = 38.56, p , .0001. Controlling for the other predictors
shown in Figure 8, P(C j A)DV continued to be a significant predic-
tor of causal power, b = .60, z = 13.65, p, .0001.

The high correlation between Ramsey test conditional probability
and powerDV could be interpreted as follows. In the pilot study, it
was found that many participants produced zero physically plausi-
ble, independent, alternative causes (.39%) in both the Machine
and the Regularity conditions when prompted. This finding could in
turn be interpreted as supporting van Rooij and Schulz’s (2019) hy-
pothesis that participants treat conditional probabilities as equal to

Figure 8
SEM Model

Note. P(CjA)*R = two-way interaction of mean-centered P(CjA) and Reason. Contingency contrasts: x1 = a–b; x2 = c–b; x3 = d–b. Only statistically
significant effects (p , .05) are shown. The regressions for the two mediators (P(C|A), Reason) are fixed to have the same regression coefficients across
groups. SEM = structural equation modeling. See the online article for the color version of this figure.

Figure 9
Ramsey Test Conditional Probabilities Across Conditions

Note. The dashed lines indicate the manipulated conditional probabil-
ities through the experimental design (see Table 8). See the online article
for the color version of this figure.
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causal power because they tend to ignore alternative causes. Such a
tendency would count as a bias, insofar as participants also see tri-
als in which the effect occurs in the absence of the target cause. In
these trials the effect must be attributed to alternative causes.
However, a comparison with the manipulated conditional proba-

bility and causal power through the Contingency conditions invites
a different interpretation. Based on Powerdesign, the pattern that
would be expected for the indicator variables (x1, x2, x3) encod-
ing the Contingency conditions is shown in Table 9.
As Table 9 shows, the predicted signs of the causal power esti-

mates for the contingency contrasts are: þ, �, �. In contrast, the
predicted signs for the conditional probability estimates: þ, 0, þ.
Figure 10 displays the signs of participants' causal power estimates
in the data. More specifically, Figure 10 shows the total effects of
x1, x2, and x3 on powerDV, along with the proportion that is medi-
ated through P(C j A)DV alone.15

As is clear from a comparison between Figure 10 and Table 9,
the magnitudes and signs of the total effects of x1, x2, and x3 on
PowerDV are more compatible with P(C j A)design than with
Powerdesign. Had participants estimated PowerDV based on the
causal power calculated by the actual trials shown, the effects of
x1, x2, and x3 would have had to follow the following order: þ,
�, �. Instead, the effects of x1, x2, and x3 followed the order of
the manipulated conditional probabilities: þ, 0, þ.
The results therefore suggest that the high correlation between

Ramsey test conditional probability and powerDV is to be
accounted for by participants’ causal power estimates as follows:
Participants appear to be more sensitive to manipulations in condi-
tional probabilities (P(C j A)design) than to variations in the manip-
ulated causal power (Powerdesign) in our experimental task. A
simulation study in Appendix B shows what the expected relation-
ship is between conditional probabilities and causal power for dif-
ferent types of statistical analyses. In the General Discussion, we
will return to this issue and interpret van Rooij and Schulz’s
(2019) hypotheses in light of these results.

Moderated Mediation

To test for the influence of reason relation assessments on the
indirect effects of Ramsey test conditional probabilities, a moder-
ated mediation analysis was conducted (Hayes, 2018). In this anal-
ysis, the Reason factor is used as a moderator of the mediation by
the Ramsey test conditional probabilities. The Reason factor was
recoded from its measurement on a 5-point Likert-scale to values
between 0 and 1: strong reason against (.2), reason against (.4),
neutral (.6), reason for (.8), and strong reason for (1.0). By trim-
ming down a saturated model, the coefficients were constrained to
be zero for counterfactuals and causal power. Moreover, as shown
in Figure 8, the coefficients were set to be equal for singular causa-
tion and indicative conditionals. It was found that there was a

significant interaction between P(C j A)DV and ReasonDV for sin-
gular causation and indicative conditionals, b = .34, z = 3.64, p ,
.0001. In addition, it was found that there was a conditional effect
of P(C j A)DV on causal power, b = .34, z = 3.64, p , .0001. Fol-
lowing Hayes (2018), the indirect effect of the experimental condi-
tions through P(C j A)DV on singular causation and indicative
conditionals can be viewed as moderated by ReasonDV, whenever
a bootstrap interval of the index of partial moderated mediation
does not cross zero (as found in Table 10). The moderated media-
tion of P(C j A) by reason relation assessments for the outcome
variable, P(if A, then C), replicates the influence of reason rela-
tions on P(if A, then C) from Experiments 1 and 2.

Summary

The main findings of Experiment 3 were as follows: First, sup-
port for the conceptual layer hypothesis (H3) could be obtained,
because models that treated indicative conditionals and explicit
causal constructs (i.e., singular causation and causal power) equiv-
alently were found to significantly misfit the data. Differences
between the four main outcome variables thus emerged, which are
illustrated in Figure 8. Most notably, it was found that there was
no direct effect of Ramsey test assessments of P(C j A) on counter-
factual conditionals (“If A had not been the case, then C would not
have been the case”) and that the interaction between Ramsey test
conditional probabilities and reason relation assessments could
only be found for indicative conditionals and singular causation
judgments. In contrast, no such interaction occurred for causal
power judgments. Second, it was found that Ramsey test condi-
tional probabilities and measured causal power were highly corre-
lated. It was considered whether this correlation should be
interpreted considering the findings of a pilot study showing that
many participants failed to produce physically plausible,

Table 9
Comparison of Causal Power and P(CjA)
Indicator Contingency Powerdesign Sign P(CjA)design Sign

x1 a–b .50 � .25 = .25 þ .75 � .25 = .50 þ
x2 c–b 0 � .25 = �.25 � .25 � .25 = 0 0
x3 d–b 0 � .25 = �.25 � .75 � .25 = .50 þ

Note. See Table 8 for the Contingency conditions.

Figure 10
Total Effect of x1, x2, and x3 on PowerDV

Note. The proportion of the total (positive) effect that is mediated
through P(CjA)DV alone is labeled. See the online article for the color
version of this figure.

15 Note that there is a slight imprecision in these numbers because of the
indirect effects of x1 (b = �.009, 95% CI [�.018, �.001]), x2 (b = �.006,
95% CI [�.011, .000]), and x3 (b = �.013, 95% CI [�.023, �.002])
through the mediator, Reason, with opposite signs. But these adjustments
are so slight that they do not impact the interpretation substantially and
they are thus ignored in the total (positive) effects displayed below.
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independent, alternative causes in both the Machine and the Regu-
larity conditions when prompted. Yet, this interpretation was
rejected due to the finding that the causal power judgments devi-
ated strongly from the manipulated causal powers. Instead, it was
found that participants were more sensitive to manipulations of
conditional probability in their causal power judgments than to
variations in the manipulated causal power in our experimental
task.
The general finding of higher ratings in the Machine condition

than in the Regularity condition suggests that participants rely on
structural information that go beyond mere observed covariances
for the four main outcome variables, when mechanistic knowledge
is available. This is in agreement with previous findings (see, e.g.,
Johnson & Ahn, 2017) but is here also found for indicative and
counterfactual conditionals. Since our experimental task had this
knowledge component, participants had to integrate background
information with the observed trials to form their subjective
responses (as modeled by the SEM in Figures 7 and 8). But impor-
tantly, it was found that participants’ evaluations of indicative con-
ditionals could not be equated with their subjective judgments of
explicit causal constructs in a between-subjects comparison.

Experiment 4

The results of Experiment 3 displayed in Figure 8 indicate that
singular causation and indicative/counterfactual conditionals are
influenced by similar factors and mediational processes. Still, it was
found that the evaluation of indicative conditionals is not equivalent
to the processing of explicit causal notions. According to the hy-
pothesis of multiple conceptual layers of causal understanding (H3),
it is expected that indicative and counterfactual conditionals capture
separate components of causal relations. To test this hypothesis, the
goal of Experiment 4 was to probe whether participants’ singular
causation judgments could be predicted by their acceptance of in-
dicative or counterfactual conditionals in a within-subject design.
This within-subject design was adopted to test whether participants’
singular causation judgments could be predicted by their acceptance
of indicative and counterfactual conditionals.

Method

Participants

A total of 594 people completed the experiment. The same sam-
pling procedures and exclusion criteria were used as in Experiment
3. The final sample after applying the a priori exclusion criteria

consisted of 330 participants. Mean age was 40.02 years, ranging
from 18 to 74; 46.1% of the participants were male, and 67.88%
indicated that the highest level of education that they had com-
pleted was an undergraduate degree or higher.

Procedure

Participants were randomly assigned to the same 4 Contin-
gency 3 2 group between-subjects conditions as in Experiment 3.
The procedure was identical to the one in Experiment 3 with one
exception: in Experiment 4, only the Singular Causation, Indicative
Conditional, and Counterfactual Conditional dependent variables
were included, and these were manipulated within subject.

Results and Discussion

To test whether singular causation judgments could be predicted
by the probabilities assigned to indicatives and counterfactuals, a
within-subject comparison was conducted across the 8 Group
(Machine, Regularity) 3 Contingency (a, b, c, d) conditions.
Three regression models were compared (see Table 11 below).
First, a model that predicts singular causation judgments based on
the group factor (Machine vs. Regularity) and the probability
assigned to indicative conditionals alone (M1). Second, a model
that is like (M1) but additionally includes the probability assigned
to counterfactual conditionals as a predictor (M2). Third, a model
that is like (M2) but additionally controls for the influence of the
Contingency factor.

The model comparison favors (M2). It was thus found that a
model that includes participants’ evaluations of counterfactuals
was a better fitting model than one that only included indicatives
(M1). This suggests that both the ratings of indicative and counter-
factual conditionals were needed to predict singular causation
judgments. It was also found that including ratings of counterfac-
tuals accounted for unique variance when including a model that
controls for the influence of the experimental conditions (M3).
Thus, even if we take differences in presented contingencies into
account, the relationship between singular causation judgments
and indicative and counterfactual conditionals holds.16

Pearl (2009) and Pearl and Mackenzie (2018) have argued that
there are three types of queries that represent different layers of
conceptual understanding of causal relations, which can be
expressed via conditionals, as we have seen. Here we have not
tested interventions. But the results of Experiment 4 indicate that
participants’ predictive judgments (expressed via indicatives)—
and their counterfactual comparisons (expressed via counterfac-
tuals)—are good predictors of their singular causation judgments.
This finding is in line with the hypothesis that there are different
layers of conceptual understanding of causal relations that can be
expressed by natural language conditionals (H3).

More broadly, the finding that counterfactual judgments influ-
ence singular causation judgements is in line with causality

Table 10
Indices of Moderated Mediation

Xi ! P(CjA) ! y Moderator Index: aibj 95% Bootstrap CI

Xi = x1 Reason .12 [.056, .19]
x2 Reason .022 [.005, .040]
x3 Reason .13 [.060, .21]
Machine Reason .047 [.020, .073]

Note. The index aibj is a product out of the regression coefficients of Xi

in the mediator regression model (ai) and the regression coefficients of the
moderator on the indirect path (bj) in the outcome regression model. A
bootstrap interval is used, because it has been shown in previous studies
that the assumption of normality is violated for this index (Hayes, 2018).

16 To control for random effects attributable to variation across
participants in a mixed regression analysis, trial replications would be
needed of the DV factor. This would require presenting participants with
multiple machines analog to the mouse-wheel machine in Figures 3 and 4.
Although such an analysis would be desirable, it goes beyond the limits of
the present investigation. Aggregating the data and fitting models
corresponding to M1 and M2 lead to similar results favoring M2 over M1
in both Experiment 3 and 4.
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theories from philosophy (Collins et al., 2004; Goodman, 1947;
Lewis, 1973a), computer science (Pearl, 2009), and statistics
(Morgan & Winship, 2018; VanderWeele, 2015), emphasizing the
close connection between counterfactuals and singular causal rela-
tions. Finally, in their accounts of singular causation, Pearl (2009;
Ch. 10) and Halpern (2019) both build in counterfactual conditions
in agreement with our results.

Experiment 5

The results of Experiment 4 suggest that there is more to the ac-
ceptance of a causal relation than the endorsement of indicative
conditionals. In Experiment 5, this point was further corroborated
through the investigation of a common-cause structure with two
correlated effects. The use of such common-cause models permit-
ted us to contrast probabilistic dependencies based on spurious
correlations with probabilistic dependencies based on direct causal
influence.
To further test the hypothesis (H3) that reasoners grasp multiple

conceptual layers of causal relations, Experiment 5 made a direct
comparison of the acceptance of indicatives and nonbacktrack-
ing,17 interventionalist counterfactuals. Through the common-
cause structure, we investigated the contrast between these two
types of conditionals in the presence and absence of direct causal
relations relating their antecedents and consequents. In our experi-
mental task, the common-cause version of the mouse-wheel
machine shown in Figure 11 was implemented. First, a purple
bowling ball drops on a mouse wheel, which sets off two sequen-
ces of events. One terminating with a yellow basketball following
down. Another terminating with a red basketball falling. In this
common-cause scenario, causal relevance and probabilistic rele-
vance come apart. The reason is that there was a probabilistic de-
pendence between the yellow and the red basketballs, which was
not grounded in a direct causal relation. So, although events with
the yellow basketball is relevant to the probability of the red

basketball falling down, the yellow basketball is not a cause for
this and is thereby not causally relevant.

According to Lassiter (2017), the causal irrelevance of the yel-
low basketball for the red basketball is decisive for probabilistic
counterfactuals. Yet, Lassiter holds that it should play no role for
probabilistic indicatives, in line with the following hypotheses:

(H4) Indicatives that support and indicatives that do not support
counterfactuals can be empirically distinguished.

(H5) The use of indicatives and the acceptance of causal rela-
tions can be dissociated even in causal scenarios.

To examine these hypotheses, Experiment 5 contrasts indica-
tives and counterfactuals in predictive, diagnostic, and common-
cause conditions. We moreover compare the assessment of these
conditionals with singular causation judgments in situations where
the causal relation is either present or absent. Our goal was to test
for possible dissociations between the acceptance of indicative and
counterfactual conditionals.

Method

Participants

A total of 949 people completed the experiment. The same sam-
pling procedures and exclusion criteria were used as in Experiment
4. The final sample after applying the a priori exclusion criteria
consisted of 542 participants. Mean age was 40.16 years, ranging
from 18 to 91; 39.48% of the participants were male, and 73.43%
indicated that the highest level of education they had was an
undergraduate degree.

Design

The experiment had a mixed design. It contained one within-
subject factor, DV (with three levels: indicative conditional vs.
singular causation vs. counterfactual Conditional). In addition,
there were two between-subjects factors: Contingency (with four
levels outlined in Table 12: a vs. b vs. c vs. d), and Condition
(with three levels: predictive vs. diagnostic vs. common-cause). In
total, 12 conditions were manipulated between subjects.

Materials and Procedure

Participants were randomly assigned to one of the 12 between-
subjects conditions. The experimental procedure was similar to the
one of Experiment 4. One difference was that Experiment 4 fea-
tured a group comparison between the machine versus blackbox
conditions. In contrast, in Experiment 5 all participants saw an ini-
tial common-cause machine trial (see Figure 11) and subsequently
15 blackbox trials, implementing the Contingency conditions out-
lined in Table 12. Because the common-cause version featured
three events, there were eight possible combinations of events. To

Table 11
Singular Causation Judgments

Model b SE p R2 AIC BIC

M1
Intercept .38 .037 ,.0001 .30 102.12 117.32
Indicative .47 .048 ,.0001
Group regular �.15 .032 ,.0001

M2
Intercept .14 .041 ,.001 .45 21.61 40.61
Indicative .44 .042 ,.0001
Counterfactual .38 .040 ,.0001
Group regular �.076 .029 .0089

M3
Intercept .18 .051 ,.001 .46 24.67 55.06
Indicative .41 .052 ,.0001
Counterfactual .39 .043 ,.0001
Group regular �.077 .029 .008
Contingency b �.064 .045 ns
Contingency c �.026 .043 ns
Contingency d �.050 .038 ns

Note. The lower Akaike information criterion (AIC) and Bayes infor-
mation criterion (BIC) values indicate that M2 is superior to M1 and M3
in light of the parsimony versus fit trade-off. Please refer to Table 8, for
the meaning of ‘b’, ‘c’, and ‘d’. ‘ns’ indicates that the p-value was not
significant.

17 In backtracking counterfactuals, one engages in abductive reasoning
and starts reasoning backwards from, e.g., the nonoccurrence of an event to
the nonoccurrence of its typical cause. When modelling interventions in a
causal system, this type of reasoning is blocked in Pearl (2009). Pearl
achieves this by the stipulation that the intervention sets a variable to a
given value while removing the causal influence of variables that would
normally have affected it.
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make the task less complex, participants were instructed in
advance which of the three balls they should pay special attention
to for answering the questions after the 15 blackbox trials.
Following these trials, participants were shown a block with

two types of test questions (the dependent variables) in random
order. One of these asked for the probability of an indicative con-
ditional in one of the following three Conditions (predictive vs.
diagnostic vs. common-cause), on a slider permitting continuous
values between 0 and 100%.

Predictive Condition. IF the purple bowling ball falls
down, THEN the yellow basketball falls down.

Diagnostic Condition. IF the yellow basketball falls down,
THEN the purple bowling ball fell down.

Two Spuriously Related Effects of a Common-Cause. IF
the yellow basketball falls down, THEN the red basketball drops
into the basket.
The second question asked for the probability of a counterfac-

tual conditional. For the counterfactuals, participants were encour-
aged to imagine an intervention that would have prevented the
antecedent from occurring:
Imagine that we had prevented the purple bowling ball [/yellow

basketball] from falling down (e.g., by constructing a safety net
under it) [/e.g., by gluing it to the surface].
As a reminder, the statement describing the hypothetical inter-

vention was displayed in gray on the following page. Participants
were then asked to rate the probability of one of the following coun-
terfactuals on a scale from 0% to 100% under this assumption:

Predictive Condition. IF the purple bowling ball had NOT
fallen down, THEN the yellow basketball would NOT have fallen
down.

Diagnostic Condition. IF the yellow basketball had NOT
fallen down, THEN the purple bowling ball would NOT have
fallen down.

Two Spuriously Related Effects of a Common-Cause. IF
the yellow basketball had NOT fallen down, THEN the red basket-
ball would NOT have dropped into the basket.
Following this block, participants were asked for singular causation

judgments by assigning probabilities to the following statements:

Predictive Condition. The purple bowling ball falling
down caused the yellow basketball to fall down.

Diagnostic Condition. The yellow basketball falling down
caused the purple bowling ball to fall down.

Two Spuriously Effects of a Common-Cause. The yellow
basketball falling down caused the red basketball to drop into the
basket.

Results and Discussion

To test whether participants’ ratings for the indicative and coun-
terfactual conditional statements were influenced by the Condition
and Contingency factors, a mixed ANOVA was fitted to the data.
The R packages afex (Singmann et al., 2020) and emmeans
(Lenth, 2020) were used to this end. Condition (common-cause vs.
diagnostic vs. predictive) and Contingency (a vs. b vs. c vs. d)
were specified as between-subjects factors. DV (indicative vs.
counterfactual vs. singular causation) was specified as a within-
subject factor. The goal was to investigate possible dissociations
between the probability of indicatives and counterfactuals within
the levels of the condition factor, in line with H4 and H5.

We found a significant three-way interaction between the Con-
dition, Contingency, and DV factors, F(11.30, 998.59) = 5.15,
p , .0001, g2

G = .03. In addition, a significant two-way interac-
tion between the Condition and DV factors was found, F(3.77,

Table 12
Experimental Design, Contingency Conditions

Condition P(E1jC) DPE1,C P(CjE1) DPC,E1 P(E2jE1) DPE2,E1

a 0.80 0.47 0.80 0.47 0.80 0.47
b 0.50 0.33 0.83 0.33 0.83 0.53
c 0.83 0.33 0.50 0.33 0.80 0.47
d 0.80 0.47 0.80 0.47 0.50 0.33

Note. The contingency conditions were introduced through the first ini-
tial trial and consecutive 15 randomly ordered blackbox trials. These trials
were subject to the constraint that the last trial displayed was a ,bowling
ball, yellow basketball, red basketball. trial. This was done to enable par-
ticipants to make singular causation judgments about whether the bowling
ball caused the basketball to fall into the basket.

Figure 11
Annotated Illustration of a Common-Cause Trial

Note. Instead of the annotation, participants saw animated trials. See https://osf.io/fa9rj/
for a video illustration. See the online article for the color version of this figure.
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998.59) = 44.66, p , .0001, g2
G = .07. There were also signifi-

cant simple effects of the DV factor, F(1.88, 998.59) = 76.34,
p , .0001, g2

G = .06, and the Condition factor, F(2, 530) =
123.01, p , .0001, g2

G = .20.
The results are displayed in Figure 12. Most participants gave

high ratings for the singular causation question in the predictive
condition (M = .70, SD = .24) and low ratings in the diagnostic
condition (M = .13, SD = .23). In contrast, they displayed more
uncertainty about whether the two target variables were causally
linked in the common-cause condition (M = .50, SD = .32), with
53 participants in the third quantile ($ .75) and 54 participants in
the first quantile (# .20).
Bonferroni-Holm–corrected pairwise contrasts revealed dissoci-

ations between counterfactuals and indicatives. In the common-
cause condition, counterfactuals were rated lower than the corre-
sponding indicatives for Contingency a (b = �.19, 95% CI [�.31,
�.061]), t(530) = �3.58, p , .01) and Contingency b (b = �.19,
95% CI [�.33, �.043]), t(530) = �3.10, p, .01). For the diagnos-
tic condition, the same relationship was found for Contingency a
(b = �.26, 95% CI [�.39, �.12]), t(530) = �4.52, p , .0001),
Contingency b (b = �.39, 95% CI [�.52, �.25]), t(530) = �6.77,
p , .0001), Contingency c (b = �.22, 95% CI [�.36, �.086]),
t(530) = �3.92, p , .001), and Contingency d (b = �.40, 95% CI
[�.55, �.26]), t(530) = �6.84, p , .0001). In the predictive con-
dition, counterfactuals were rated higher than the corresponding
indicatives for Contingency b (b = .18, 95% CI [.049, .30]),
t(530) = 3.32, p , .01) and lower than indicatives for Contin-
gency c (b = �.17, 95% CI [�.31, �.033]), t(530) = �2.97, p ,
.01).
Across Contingency conditions, it was found, on the one hand, that

the three dependent variables were very similar in the predictive condi-
tion (bcounterfactual � indicative = �.03, 95% CI [�.10, .038]), t(530) =
�1.085, ns; bindicative � causation = �.033, 95% CI [�.09, .026]),

t(530) = �1.34, ns; bcounterfactual � causation = �.064, 95% CI [�.12,
�.0064]), t(530) = �2.67, p = .023). On the other, it was found that
the three dependent variables differed increasingly in the common-
cause condition (bcounterfactual � indicative = �.11, 95% CI [�.17,
�.045]), t(530) = �4.09, p , .001; bindicative � causation = .080, 95%
CI [.025, .13]), t(530) = 3.52, p , .001; bcounterfactual � causation =
�.030, 95% CI [�.08, .024]), t(530) = �1.33, ns), and completely in
the diagnostic condition (bcounterfactual � indicative = �.32, 95% CI
[�.39, �.25]), t(530) = �11.06, p , .0001; bindicative � causation = .43,
95% CI [.37, .49]), t(530) = 17.64, p, .0001; bcounterfactual � causation =
.11, 95% CI [.053, .17]), t(530) = 4.65, p, .0001).

The results warrant the following conclusions. First, the accep-
tance of indicatives can clearly become dissociated from the accep-
tance of the corresponding counterfactuals and singular causation
judgments corroborating H4 and H5. Second, it was found that
counterfactual judgments tend to align with singular causation
judgments. This in turn supports the hypothesis of a hierarchy of
causal queries. On this view, singular causation judgments
require affirmative answers to counterfactual queries (“does the
consequent counterfactually depend on the antecedent?”), in
addition to affirmative answers to the predictive queries (“is the
antecedent a good predictor of the consequent?”) expressed by
indicative conditionals.

The finding of a dissociation was most striking in the compari-
son between the predictive and diagnostic conditions. A factor
contributing to this was the individual variation in whether partici-
pants accepted the existence of a direct causal relation in the com-
mon-cause condition. The use of blackbox trials may have made it
more difficult for the minority who accepted a causal relation in
the common-cause condition to distinguish between common-
cause conditional and predictive conditionals.

Indicative conditionals can be acceptable both in the direction
“if A, then C” and in the direction “if C, then A.” This is an

Figure 12
Displaying the DVs Across the 12 Conditions

Note. The three DVs are displayed across the 12 levels of the Contingency (a vs. b vs. c vs. d) 3 Condition
(predictive vs. diagnostic vs. common cause) factors. Causation = singular causation judgment; indicative = in-
dicative conditional; counterfactual = counterfactual conditional; DV = dependent variable. The error bars rep-
resent 95% CIs. See the online article for the color version of this figure.
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indicator that indicatives do not themselves encode causal rela-
tions, but rather the inferential potential based on causal (and non-
causal) probabilistic dependencies. Whereas causal relations are
asymmetrical, our results are consistent with the probabilistic de-
pendency between antecedent and consequents of indicative con-
ditionals being symmetrical (Skovgaard-Olsen, 2015; Spohn,
2012a, Ch. 6).
In Ali et al. (2011), the alternative view is put forward that

participants spontaneously recode causal relationships. Accord-
ingly, the consequent can serve as the cause of the antecedent
although the reverse direction would normally be expected. This
recoding strategy is, however, challenged in cases like the one
investigated in Experiment 5, where both the antecedent and the
consequent are two effects of a common cause. It is worth not-
ing, moreover, that Ali et al.’s (2011) case for the recoding hy-
pothesis relies on indirect evidence from inference patterns,
which showed deviations from participants’ responses. We there-
fore regard this distinction between the spontaneous recoding hy-
pothesis and the hypothesis of symmetry between antecedents
and consequents of indicative conditionals (as introduced by the
symmetry of probabilistic dependence) as a fruitful area for fur-
ther inquiry.

Experiment 6

The comparison between predictive and diagnostic conditionals
in Experiment 5 involved a tacit comparison between a forward
and backward temporal order of the antecedents and consequents.
Yet, Experiment 5 only investigated common-cause conditionals
in the forward direction, where the event mentioned in the ante-
cedent occurred before the event mentioned in the consequent. To
exclude possible confounds, Experiment 6 sought to contrast for-
ward and backward common-cause conditionals within a single
contingency condition. It was expected that a similar dissociation
between indicative and counterfactual conditionals would be
found in Experiment 6 and that this dissociation would be moder-
ated by the temporal order (the antecedent occurring before vs. af-
ter the consequent).

Method

Experiment 6 followed the same method as Experiment 5 unless
otherwise stated.

Participants

A total of 323 participants completed the experiment. The same
sampling procedures and exclusion criteria were used as above.
The final sample after applying the a priori exclusion criteria con-
sisted of 166 participants. Mean age was 42.86 years, ranging
from 19 to 74; 38.55% of the participants were male, and 77.71%
indicated that the highest level of education they had was an
undergraduate degree.

Design

The experiment had a mixed design. The DV factor (with three
levels: indicative conditional vs. singular causation vs. counterfac-
tual conditional) was varied within subject. The Condition factor

was varied between subjects (with four levels: predictive vs. diag-
nostic vs. common cause forward vs. common cause backward).

In contrast to Experiment 5, only Contingency a of Table 12
was used in Experiment 6. This contingency fixes the conditional
probabilities and Dp values of the examined conditionals to the
same values: P(E1jC) = P(CjE1) = P(E2jE1) = P(E1jE2) = .80;
DPE1,C = DPC,E1 = DPE2,E1 = DPE1,E2 = .47. In total, four condi-
tions were manipulated between subjects.

Materials and Procedure

In Experiment 6, the backward common-cause conditional was
introduced:

IF the red basketball dropped into the basket, THEN the yellow
basketball fell down.

In addition, Experiment 6 held the tense of all conditionals con-
stant. Both the antecedent and consequents of all examined indica-
tive conditionals were thus manipulated to be in past tense. To
create a context of epistemic uncertainty suitable for indicative
conditionals, participants were instructed for indicative condition-
als that they had to evaluate these sentences with respect to a fur-
ther unknown run of the animation. For counterfactuals and
singular causation judgments, participants were instructed to eval-
uate the sentences while thinking back on the last trial that they
had seen. Like in Experiment 5, this last trial was fixed to be a
,bowling ball, yellow basketball, red basketball. trial.

Results and Discussion

An ANOVA with Condition (common-cause backward vs. com-
mon-cause forward vs. diagnostic vs. predictive) as a between-sub-
jects factor and DV (indicative vs. counterfactual vs. singular
causation) as a within-subject factor was fitted to the data. The R-
packages afex (Singmann et al., 2020) and emmeans (Lenth, 2020)
were used. As in Experiment 5, the goal was to investigate possible
dissociations between the probability of indicatives and counterfac-
tuals within the levels of the condition factor, as a test of H4 and H5.

It was found that there was a significant two-way interaction
between the Condition and DV factors, F(5.79, 312.79) = 3.33,
p , .01, g2

G = .03. In addition, significant simple effects of the
Condition factor, F(3, 162) = 23.58, p , .0001, g2

G = .19, and the
DV factor, F(1.93, 312.79) = 9.33, p = .0001, g2

G = .03, were
found. The results are displayed in Figure 13.

Bonferroni-Holm corrected pairwise contrasts revealed dissoci-
ations between counterfactuals and indicatives. Counterfactuals
were rated lower than the corresponding indicatives in the com-
mon-cause backward condition, b = �.22, 95% CI [�.35, �.098]),
t(162) = �4.30, p = .0001, and in the diagnostic condition, b =
�.16, 95% CI [�.31, �.018]), t(162) = �2.71, p = .015.

As in Experiment 5, the results warrant the following conclu-
sions. First, the acceptance of indicative conditionals can become
dissociated from the acceptance of the corresponding counterfac-
tuals and singular causation judgments, in accordance with H4 and
H5. Second, counterfactual judgments tend to align with singular
causation judgments, in line with the hypothesis of a hierarchy of
causal queries (H3). But in contrast to Experiment 5, the dissocia-
tion of indicatives and counterfactuals was not found for forward
common-cause conditionals. We attribute this difference of results
to the procedural changes in Experiment 6, whereby past tense was
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adopted uniformly for the antecedents and consequents of all indic-
ative conditionals.
One thing is striking about the results shown in Figure 13.

Although the conditional probabilities and contingencies were
identical for every condition, the indicative conditionals in the pre-
dictive condition were systematically higher than in all the other
conditions. This finding may have resulted from the participants’
need to integrate their background knowledge, and knowledge of
the mechanism from the first trial, with their learning experiences
in the blackbox trials. Participants may thus have used assump-
tions about the underlying mechanism to provide clues about how
stable the observed covariances were.
Alternatively, the finding could indicate that diagnostic and

common-cause conditionals have different acceptability conditions
than predictive conditionals. Accordingly, indicative conditionals
in the diagnostic and common-cause conditions would have
acceptability conditions that are systematically below the corre-
sponding conditional probabilities even under positive contin-
gency. Such a finding would be noteworthy, because it is not part
of any of the main theories of indicative conditionals in the psy-
chology of reasoning (see, e.g., Bennett, 2003; Douven, 2016;
Evans & Over, 2004; Goodwin & Johnson-Laird, 2018; Nicker-
son, 2015; Oaksford & Chater, 2007, 2010b; Rescher, 2007).
Accordingly, Evans et al. (2007) state that “the Ramsey test pre-

dicts that belief in the conditional will be based on the probability
of (qjp), regardless of the causal roles instantiated by p and q” (p.
639). To back this up, Evans et al. report evidence concerning pre-
dictive and diagnostic conditionals. Worth noticing in their results,
however, is that the beta weight does change from .69 in the predic-
tive conditional to .52 in the diagnostic conditional, when the prob-
ability of these conditionals is regressed on the corresponding
Ramsey test conditional probabilities (see Evans et al., 2007; Table
2). This in turn would be consistent with the hypothesis of different
acceptability conditions and the results reported here. Future
research will have to determine whether the hypothesis of different
acceptability conditions for various types of indicatives is correct in
our trial-by-trial learning paradigm and in their paradigm.

General Discussion

The linguistic encoding of knowledge about causal relations plays
a vital role for determining the basis for the cultural transfer of causal
knowledge across generations. Causative verbs indicating the central
contributing factor play a role in this transfer. An example is the verb
“to break” in the example “the hammer broke the window” (Neele-
man & van de Koot, 2012). Central among the linguistic construc-
tions that facilitate the acquisition of causal knowledge are,
moreover, natural language conditionals (Sloman, 2005; Ch. 11;
Spohn, 2013). Conditionals play this role as a primary vehicle for
expressing dependencies between variables (e.g., “if you hit it with a
hammer, then it will break”). However, exactly which aspects of
causal relations are linguistically encoded in indicative conditionals
is still very much in dispute; with some authors interpreting recent
findings of the role of probabilistic dependency as evidence for a
causal interpretation, as we have seen. We will start by discussing
what bearing our results have on that debate below and then turn to
outlining a more general framework based on Pearl’s hierarchical
theory of causation in which our various experimental findings can
be interpreted in the remainder of the General Discussion.

Indicative Conditional, Causal Power, and the
Relevance Effect

Experiment 1 followed previous studies (e.g., Skovgaard-Olsen
et al., 2016; Skovgaard-Olsen, Kellen, et al., 2019) in replicating
the Relevance Effect with verbal scenarios. In Experiment 2, it
was found that the Relevance Effect could also be found in a trial-
by-trial learning paradigm involving mechanistic knowledge.

Possible interpretations of the Relevance Effect reported by
Skovgaard-Olsen et al. (2016) have played a role in recent work in
the psychology of reasoning (see, e.g., Oaksford & Chater, 2020a,
2020b; Over, 2020; Over & Cruz, 2018; van Rooij & Schulz,
2019). There is a strong temptation to interpret the Relevance
Effect as indicating that indicative conditionals are often read cau-
sally as that the antecedent is a cause of the consequent (Oaksford

Figure 13
Displaying the Three DVs Across 4 Conditions

Note. The three DVs are displayed across the four levels of the Condition factor.
CCBackward = common-cause backward; CCForward = common-cause forward; causation =
singular causation judgment; indicative = indicative conditional; counterfactual = counterfac-
tual conditional; DV = dependent variable. The error-bars represent 95% CIs. See the online
article for the color version of this figure.
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& Chater, 2020a, 2020b; van Rooij & Schulz, 2019). The latter
view connects with another broad theme; namely, the assumption
that causal models underlie most of our subjective judgments of
probability (Fernbach et al., 2011). On this view, causal models
can thus provide a basic building block for the new paradigm in
the psychology of reasoning by, inter alia, solving the puzzle of
how the Ramsey test is psychologically implemented. Accord-
ingly, Evans et al. (2007) and Over (2020) both suggest that the
Ramsey test is implemented via causal models.
In van Rooij and Schulz (2019), a further step was taken in con-

necting recent work on the probability of conditionals with theo-
ries of causal judgment. van Rooij and Schulz suggest that causal
power can be used to account for the acceptability conditions of
indicative conditionals (H1). Because causal power in turn has
been used to parameterize causal Bayes nets (Aßfalg & Klauer,
2019; Fernbach et al., 2011; Glymour, 2001; Oaksford & Chater,
2017), this hypothesis would directly show how the subjective
probabilities of indicative conditionals could be based on causal
models. In addition, van Rooij and Schulz (2019) also suggest as
an auxiliary hypothesis that participants’ tendency to ignore alter-
native causes could explain why previous research has found evi-
dence in support of Equation 1 under some conditions (H2). The
reason being that causal power coincides with conditional proba-
bility whenever there are no alternative causes.
In line with this conjecture, it was found in the pilot study to

Experiment 3 that 39.54% and 47.5% of the participants produced
zero (plausible) alternative causes in the Machine condition and
the Blackbox conditions, respectively. This finding might in turn
explain why causal power and Ramsey test conditional probabil-
ities were found to be highly correlated in Experiment 3 in the
trial-by-trial learning paradigm.
To test van Rooij and Schulz (2019) conjecture (H2) directly,

Experiment 1 made a between-subjects comparison of participants'
judgments employing the verbal scenarios originally used to dis-
cover the Relevance Effect. In a pilot study preparing such a com-
parison, it was found, however, that participants had no trouble
generating alternative causes for these stimulus materials both in
the Positive Relevance condition and in the Irrelevance condition.
In fact, participants tended to generate more alternative causes in
the former condition than in the latter. They did this in spite of the
fact that the irrelevance items presented participants with a candi-
date cause (e.g., Paul is wearing a shirt), which was patently use-
less for producing the effect (e.g., Paul’s car suddenly breaking
down). To get a more direct critical test, we presented participants
with the alternative causes that their peers had generated in a
between-subjects comparison in Experiment 1. It made no differ-
ence for all the investigated effects whether participants were pre-
sented with alternative causes explicitly while making their
judgments. These findings suggest that it is not the presence or ab-
sence of an accessible alternative cause that accounts for the Rele-
vance Effect.
In a second direct test of van Rooij and Schulz’s (2019) conjec-

ture that causal power accounts for the acceptability of indicative
conditionals (H1), it was found in a model comparison in Experi-
ment 1 that neither causal power nor Ramsey test conditional
probabilities alone could account for participants' ratings of P(if
A, then C) across conditions. Instead, the analysis replicated Skov-
gaard-Olsen et al.’s (2016) finding that a model permitting
P(C j A) to interact with the Relevance factor best accounted for

participants' ratings. In Skovgaard-Olsen, Kellen, et al. (2019) pat-
terns of individual variation in these results were investigated.

Given these negative findings, it is useful to return to the high
correlation between causal power and Ramsey test conditional
probability in Experiment 3. On closer inspection, it was found
that participants' causal power ratings were more sensitive to the
manipulated conditional probabilities than the manipulated causal
power (see Table 9 and Figure 10). This could suggest that partici-
pants were biased in the other direction, by estimating conditional
probabilities in a task designed to elicit their causal power judg-
ments. Over et al. (2007; Experiment 2) also found that condi-
tional probabilities calculated based on participants' responses
were highly correlated with their ratings of causal strength (r =
.87), and that the latter even correlated with probabilities of con-
junctions to the same degree (r = .86). This finding, together with
the much weaker associations of causal strength estimates with
P(effectj:cause), could also be interpreted as failures to give
proper causal strength estimates in the investigated paradigms.

As a final option, one could adopt a causal power account but
drop van Rooij and Schulz’s (2019) auxiliary assumption that par-
ticipants' tendency to ignore alternative causes make them evaluate
P(if A, then C) as P(C j A). In Appendix B, we investigate this
possibility via a simulation analysis. Again, it is found that the
simulation analysis did not turn out favorably for a causal power
account of P(if A, then C).

Additionally, it was found in Experiment 3 that equating the
evaluation of indicative conditionals with judgments of singular
causation and causal power would result in a model that signifi-
cantly misfit the data. In light of these various negative results (as
well as further results discussed below), one must be careful not to
make the slip from stating that the acceptability of indicative con-
ditionals requires probabilistic dependency to the thesis that indic-
ative conditionals are acceptable just in case there is causal
relation between the antecedent and consequent. Instead, our
results are consistent with the hypothesis (H3) that causal relations
involve a hierarchy of causal queries, which goes beyond what is
expressed by indicative conditionals alone.

Having dealt with causal power interpretations of indicative
conditionals in relation to debates in the psychology of reasoning,
we now turn to our remaining results and broaden our view by out-
lining a general framework based on Pearl’s hierarchical theory of
causation in which our various experimental findings can be
interpreted.

Learning Causal Relations Through Descriptions

According to Danks (2014): “A full account of causal learning
from description remains an open research problem, particularly
the question of when learners infer the absence of a causal relation
(C does not cause E) from absence of information” (p. 68). Several
of our experiments can be interpreted as providing hints for con-
structing such an account. In Experiment 4 it was found that singu-
lar causation judgments could not be predicted by the probability
of indicative conditionals alone. Instead, it was found that the
probability assigned to both indicatives and counterfactuals was
needed to predict singular causation judgments. This finding al-
ready suggests that causal relations have multiple conceptual
dimensions which are differentially encoded in indicatives and
counterfactuals.
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In our task involving counterfactuals, participants were asked to
evaluate the probability that the red basketball would not have
fallen into the basket if the blue bowling ball had not fallen down,
after being shown a trial where both balls fell down. This type of
task requires participants to evaluate the following counterfactual
probability: P(Yx 0 = false j X = true, Y = true). In words: Under
the assumption that both events actually occurred, what is the
probability that Y would not have occurred had X not occurred?
According to Pearl (2009), evaluating counterfactual expressions
of this type is not possible based on causal Bayes nets, as illus-
trated the Appendix A. Instead, the evaluation of counterfactual
expressions requires a causal model with equations that represent
the autonomous mechanisms of the data-generating processes
underlying directed edges, like in SEMs, as we explain in Appen-
dix A.
The counterfactual probability evaluates the causal necessity of

the first event for the second event (counterfactual query). In con-
trast, predictive queries evaluate whether the occurrence of the an-
tecedent is sufficient for predicting the consequent. By showing
that singular causation judgments cannot be predicted by the ac-
ceptance of indicative conditionals alone, our results indicate that
participants are sensitive to the counterfactual dimension of causal
judgments. For example, when a colleague says “Germany got the
first wave of Covid-19 under control because of masks and social
distancing,” and intends a causal interpretation, then this involves
accepting the counterfactual, “If Germany had not introduced
masks and social distancing, the first wave of Covid-19 would not
have gotten under control.” In Spohn (2013; p. 1100), these sen-
tences are taken as equivalent. Our results suggest that the col-
league would also have to accept indicative conditionals like “if
masks and social distancing are introduced, then Covid-19 will get
under control” to make this type of causal attribution. The debate
with the colleague over the causal attribution can then be focused
on arguments concerning the acceptance/rejection of these indica-
tive and counterfactual conditionals.
Corroborating the hypothesis of differential encoding of multi-

ple conceptual dimensions, it was found in Experiments 5 and 6
that the probability of indicatives and counterfactuals could
become dissociated in causal scenarios (H4). This result was
obtained by investigating diagnostic and common-cause condition-
als in addition to predictive conditionals. Usually,18 the focus in
the psychology of reasoning has been on the acceptance of predic-
tive, indicative conditionals. Theories have thus been formulated
for the probability of indicative conditionals, which do not con-
sider possible asymmetries between the probability of predictive,
diagnostic, and common-cause indicative conditionals. Yet such
asymmetries were found when holding P(consequentjantecedent)
constant in Experiment 6.
Taken together, our finding of the need to predict singular cau-

sation judgments based on both indicatives and counterfactuals
(Experiment 4) and the dissociations between the latter (Experi-
ments 5 and 6) point in the same direction. They both suggest that
one part of an account of causal learning from description may
consist in subtle patterns of acceptance and rejection of indicatives
and counterfactuals. For instance, the speaker's unwillingness to
assert “bad weather would not be coming, if the barometer had
been prevented from falling” after having stated “if the barometer
falls, bad weather is coming” would suggest that the speaker does

not take his or her answer to a predictive query as supporting a
causal relation.

Accordingly, the acceptance of an indicative conditional sug-
gests that there is a symmetric, evidential relevance relation
between two variables or propositions. But this does not yet imply
that the evidential relationship is based on direct causation. As
Edgington (2008; p. 18) observes, it is never contradictory to
assert “If A happens, B will happen, but A will not cause B to hap-
pen.” In contrast, the acceptance of interventionalist, nonback-
tracking counterfactuals suggests that there is an asymmetric,
direct causal relation. This means that learners should be able to
infer the absence of a causal relation from a verbal description
indicating either that there is no probabilistic dependency (because
the indicative rejected) or that it is a mere probabilistic depend-
ency (because the counterfactual is rejected).

Oaksford and Chater (2010a, 2020a) have suggested that condi-
tionals describing inferential dependencies can be viewed as struc-
ture building operators in causal Bayes nets. The account we have
unfolded above is in accordance with this general idea. But the hy-
pothesis of differential linguistic encoding of causal relations
through conditionals advanced in this paper opens up for more
detailed investigations of the construction of causal models based
on linguistic testimony. To illustrate, blackbox observations of
three events may either correspond to a causal chain, a common-
cause structure, or causal structures with hidden variables.
Through indicative conditionals, the edges of the graph can be
conveyed. Through the tense of the antecedents and consequents,
temporal cues about the ordering of events can be given (e.g., “If
it rains, then the streets will be wet” vs. “If the streets are wet,
then it rained”). Such temporal cues can be used to infer the direc-
tion of edges. Moreover, the acceptance and rejection patterns of
interventionalist, nonbacktracking counterfactuals can be used to
read off the direction of edges. For instance, in a situation where it
rains and the streets are wet, “If we had built a pavilion, then the
street would not have been wet” sounds acceptable, but “If we had
built a pavilion, then it would not have rained” sounds off.

A further component of the ability to infer a qualitative causal
structure is the ability to imagine a mechanism whereby cause and
effects are related (Johnson & Ahn, 2017; Lagnado et al., 2007).
Our use of the contrast between a Blackbox and a Machine condi-
tion led to the finding in Experiment 3 of higher ratings of the four
examined outcome variables when mechanistic knowledge was
available. This finding suggests that participants rely on structural
information that goes beyond mere observed covariances when
evaluating both conditionals and explicit causal constructs like sin-
gular causation and causal power. Assumptions about the underly-
ing mechanism provide clues about how stable observed
covariances are and permit participants to make distinctions
between predictive/diagnostic relationships and effects of a com-
mon cause as in Experiments 5 and 6.

Causal Versus Evidential or Informational Relevance

In Spohn (2010, 2012a, Ch. 14), the distinction between eviden-
tial and causal relevance is expressed through the attempt of

18 One notable exception is Ali et al. (2010, 2011), which complement
our results.
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explicating causal relations as a specific case of a generic reason
relation. Pearl (2009) draws a parallel distinction as follows:

Informational relevance is concerned with questions of the form:
“Given that we know Z, would gaining information about X give us
new information about Y?” Causal relevance is concerned with ques-
tions of the form: “Given that Z is fixed, would changing X alter Y?”
(pp. 234–235, italics added)

The distinction between the evidential and causal relevance of
factors also plays a role in distinguishing between purely predic-
tive uses of regression approaches from causally interpreted mod-
els in statistics (Gelman & Hill, 2007; Kline, 2016; Morgan &
Winship, 2018; Pearl et al., 2016; Shipley, 2016). The distinction
is moreover central in discussions over the opposition between ev-
idential and causal decision theory (Hitchcock, 1993, 1996; Meek
& Glymour, 1994; Pearl, 2009; Spohn, 2012b).
According to Danks (2014), the graphical models in Bayes nets

“can be understood as compact representations of relevance rela-
tions, where different types of graphical models present different
types of relevance (e.g., informational, causal, probabilistic, com-
municative)” (p. 39). In causal Bayes nets parameterized via base
rates and causal power (see Figure 2), the directed edges represent
relations of causal relevance. In contrast, in undirected graphical
models, the edges represent symmetric, evidential relevance rela-
tions (ibid, Ch. 3). In cases of confounding arising via common-
cause scenarios, and other cases of spurious correlations,19 causal
relevance and probabilistic relevance come apart. For a psycholog-
ical theory of probabilistic reasoning, DP is often used to represent
evidential relevance20 and causal power can be used to represent
causal relevance.
For a causal Bayes net like Figure 2, the parents of a variable

represent all the variables that are directly causally relevant to the
given variable (Spohn, 2010). Bayes nets are normally only used
to encode variables that are at least unconditionally relevant to one
another. Answering predictive queries in a Bayes net via condi-
tionalization is therefore unlike the cases of missing-link condi-
tionals, where conditionalization is applied to variables that are
categorized as being completely unrelated. Hence, answering pre-
dictive queries based on Bayes nets is akin to making predictions
based on reason relations.
To acknowledge the counterfactual dimension of causal relations,

causal power can also be replaced with the following counterfactual
notion of sufficiency: P(Yx = truejY = false, X = false). In words:
Under the assumption that both events did not occur, what is the
probability that Y would have occurred had X occurred? This coun-
terfactual concept of sufficiency is identifiable based on Cheng’s
(1997) account of causal power, provided that no confounding is
present and that the cause is generative (Pearl, 2009; ch. 7). The
counterfactual notion is, however, stronger than the evidential rela-
tionship that we take indicative conditionals to express. The reason
is that evidential relevance does not require that the antecedent and
the consequent are actually false, but only that the antecedent can
be used to predict the occurrence of the consequent (as a sufficient
reason for believing in the consequent).
Coming from linguistics, Lassiter (2017) puts forward the

view that the causal irrelevance of a factor is decisive for prob-
abilistic counterfactuals. At the same time, Lassiter argues that
such causal irrelevance plays no role for probabilistic,

indicative conditionals. Lassiter argues this point by considering
the reversal of truth values of the counterfactual “If Fran had
made her flight, it is likely that she would have died.” Although
this counterfactual would normally be considered true after a
plane crash, Lassiter argues that its truth value reverses, when
considering the manipulation of the causally relevant factor that
Fran is a highly skilled pilot. In contrast, when evaluating the
indicative conditional, “If Fran made the flight it is likely that
she died,” the fact that the plane crashed is held fixed. Varying
information about Fran’s skills as a pilot should therefore make
no difference.21

Lassiter’s (2017) formal linguistic analyses are in line with
Pearl’s (2009) idea of a hierarchy of causal queries. They are
also congenial to the possibility of mapping natural language
expressions of indicatives onto the processing of generic predic-
tive queries and counterfactuals onto the processing of distinc-
tively causal, counterfactual queries, as we have done in the
present study. The dissociations of the probability of indicatives
and counterfactuals in Experiments 5 and 6 in situations where
ratings of singular causation are low corroborate this hypothe-
sis. These dissociations corroborate a conceptual distinction
between indicatives that support counterfactuals and indicatives
that do not support counterfactuals (H4) owing to the absence
of direct causal relations.

Viewed from this perspective, it is worth highlighting that
Kirk (2013) notes in his book on experimental design that sci-
entific hypotheses share the characteristic that they “can be
reduced to the form of an if-then statement. For example, “If
John smokes, then he will show signs of high blood pressure”
(p. 49). Kirk proceeds to explain how such if-then statements
are to be evaluated through statistical hypothesis testing and
confidence interval estimation. But it would have been highly
controversial, if he had then gone on to state that these methods
of classical statistics were themselves sufficient for establishing
causal claims. For this, statistical methods for causal inference
make use of procedures for evaluating counterfactuals (Morgan
& Winship, 2018; Pearl et al., 2016; VanderWeele, 2015). In
addition, the experimental method investigates the scope for
intervention, which can now also be emulated through Pearl’s
(2009) do-calculus based on observational studies.

In other words, validating a scientific hypothesis expressed as
an indicative conditional is only the first step toward establishing a
causal relation. In addition, it must also be established whether the
probabilistic dependency that the conditional expresses can form
the basis for intervention, whenever feasible. Second, it must be
established whether it supports counterfactual conditionals, which

19 In addition to spurious correlations created by a common cause,
spurious correlations are introduced by conditioning on either a collider or
the descendant of a collider in common-effects structures (Pearl et al.,
2016).

20 It should be noted, though, that the factorization of undirected
graphical models permits the use of any non-negative function defined over
the variables in a clique (Højsgaard et al., 2012), yet DP can take negative
values. However, DP is only one of a larger class of confirmation measures
(Crupi et al., 2007) and measures of covariation (Hattori & Oaksford,
2007), which all merit further empirical investigation.

21 For a dissenting perspective see Over and Cruz (2019) and Over
(2020), who hold that counterfactuals can “collapse” to indicative
conditionals in examples of this kind.
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are used for causal explanation (e.g., a colleague claiming that
“Germany has gotten the first wave of Covid-19 under control
because of masks and social-distancing”). In short, the assessment
of causal relations requires probabilistic prediction, investigation
of scope for intervention, and counterfactually based explanations.
The low singular causation ratings in Experiment 6 to the

backward common-cause and the backward diagnostic cases
further suggest that participants recognize temporal precedence
as a requirement of (direct) causal relevance. In both cases,
where the antecedent occurred later than the consequent, very
low singular causation judgments were obtained. Yet, the disso-
ciation of these singular causation judgments with the probabil-
ity of indicative conditionals suggests that participants accept
that the antecedent may nevertheless be evidentially relevant
for the consequent, in spite of its low (direct) causal relevance.
Finally, we contrast mental model theory with the account

above and make some further comparisons.

Alternative Frameworks

On the newest version of mental model theory (Khemlani et al.,
2018), indicatives are viewed as conjunctive assertions about pos-
sibilities as shown in Table 13.
On this view, “if the sun is setting, then the sky is red” makes a

categorical assertion that it is impossible that the sun is setting and
the sky is not red, and that it is possible that:

the sun is setting and the sky is red,

the sun is not setting and the sky red,

the sun is not setting and the sky is not red.

In Johnson-Laird and Khemlani (2017), various causal relations
are also explicated in terms of mental model theory. Interestingly,
Johnson-Laird and Khemlani distinguish between a weak and a
strong notion of causation. On the weak notion, “the sun is setting
causes the sky to be red” asserts the same three possibilities as “if
the sun is setting, then the sky is red.” The only difference is that
the weak notion of causation imposes the temporal constraint that
“the sun is setting” occurs before “the sky is red,” whereas indica-
tive conditionals would be compatible with either temporal direc-
tion. Hence, on mental model theory, the weak notion of causation
is almost identical in meaning to indicative conditionals, but indic-
ative conditionals need not express a causal relation.

In our account, we have emphasized that in addition to accept-
ing indicative conditionals, and respecting a temporal order, coun-
terfactual conditionals of the type “if the sun had not set, then the
sky would not have been red” should be accepted in causal attribu-
tions as well. The results from Experiments 4–6 have corroborated
this view.

Inspecting Table 13, a special problem emerges for mental
model theory in taking this finding on board. The problem is that
although the indicative conditional asserts that it is impossible that
the sun is setting and the sky is not red, the counterfactual with
negated antecedent and consequent asserts that this is a counterfac-
tual possibility. However, on the notion of impossibility that John-
son-Laird and Khemlani (2017; p. 170) adopt, there exist no
possibilities in which an impossible proposition holds. But this
means that in accepting an indicative conditional, “if A, then C,”
and the counterfactual with negated clauses, “if A had not
occurred, then C would not have occurred,” as part of causal attri-
butions, one is depicted as inconsistently claiming both that “A
and not-C” is a counterfactual possibility and that there are no pos-
sibilities in which “A and not-C” holds. We can therefore conclude
that Pearl’s hierarchy of causal queries does not sit well with the
revised mental model theory.

In philosophy and linguistics, the possible worlds semantics of
Stalnaker (1968) and Lewis (1973b) remain popular alternatives.
Pearl (2009; Ch. 7) showed that it was possible to use his account
of interventions in causal models to explicate the elusive notion of
similarity in Lewis (1973b). In doing so, Pearl showed that it was
possible to derive the same conditional logics based on his struc-
tural semantics for counterfactuals as on Lewis’ account. On this
logic, conditional sufficiency, or and-to-if inferences, are valid.
For indicative conditionals, these types of inferences are, however,
the focus of a recent controversy in the psychology of reasoning
(Over & Cruz, 2018; Skovgaard-Olsen, Kellen, et al., 2019).

At the time of Nute (1980), they were already considered prob-
lematic for counterfactual conditionals. Accordingly, Nute (1980)
discusses various ways of weakening possible worlds semantics
into a logic, where they are invalid. Lewis (1973b) earlier showed
that he could apply his truth conditions for this logic as well if he
allowed that other possible worlds could be as similar to the actual
world as the actual world itself.

In a causal model, this would correspond to considering further
possible values of the background variables characterizing the cur-
rent situation than the ones actually instantiated and calculating
the effects of forcing the antecedent to be true under those circum-
stances as well. This could give rise to cases where the consequent
is false leading to a failure of conjunctive sufficiency. It would be

Table 13
Mapping Between Indicative and Counterfactuals, MMT

Row Partition Factual Counterfactual Counterfactual with Neg.

If A then C If A had happened, then C would have happened If A had not occurred, then C would not have occurred
1 A C Possibility Counterfactual possibility Fact
2 A Not-C Impossibility Impossibility Counterfactual possibility
3 Not-A C Possibility Counterfactual possibility Impossibility
4 Not-A Not-C Possibility Fact Counterfactual possibility

Note. MMT = mental model theory. Quelhas et al. (2018) call indicative conditionals “factual conditionals.” The last “Counterfactual with Negations” col-
umn was added here.
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interesting to see whether Pearl could follow the extensions of
possible worlds semantics in Nute (1980) to evaluate the counter-
factuals with respect to a set of sufficiently similar possible worlds
in case the antecedent is true in the actual world.
Other conditional logics have been developed along these lines

to avoid conjunctive sufficiency also for indicative conditionals.
For instance, Vidal (2017) builds on Nute (1980) but introduces a
two-stage implementation of the Ramsey test that brackets the cur-
rent beliefs and disbeliefs in the antecedent before evaluating the
consequences of adding the antecedent to one’s belief set. Simi-
larly, Rott (2019) has developed a logic for an expanded notion of
the Ramsey test to ensure that the antecedent is relevant for the
consequent, which he suggests could either be part of the truth or
acceptability conditions of indicative conditionals. See further
Raidl (2020) for an overview of several such formal systems.

Conclusion

In sum, the evidence across the six experiments we report
herein is most consistent with the view that indicative condition-
als encode inferential relations (as shown by the Relevance
Effect, which was replicated in Experiments 1 and 2) and are
used for answering predictive queries. Following Skovgaard-
Olsen, Collins et al. (2019), these inferential relations may be
viewed as conventional implicatures. The results also suggest
that there are multiple layers of conceptual understanding
involved in causal relations that are differentially encoded in in-
dicative and counterfactual conditionals, which has not been
demonstrated before. Both the acceptance of indicatives and coun-
terfactuals are required to predict singular causation judgments
(Experiment 4). However, when the acceptance of indicative and
counterfactual conditionals become dissociated (Experiments 5
and 6), the acceptance of counterfactuals tracks singular causation
judgments and the (direct) causal relevance of the antecedent for
the consequent. In contrast, indicative conditionals track evidential
relevance.
Moreover, although causal power may be used to parameterize

causal Bayes nets (Glymour, 2001), and its application to indica-
tive conditionals can be theoretically motivated (van Rooij &
Schulz, 2019), it turns out empirically that causal power does not
fit our data for indicative conditionals (Experiments 1, 3, Appen-
dix B). Instead, an account that assumes that participants make
reason relation assessments using conditional probabilities while
being sensitive to when the antecedent lowers or raises the proba-
bility of the consequent turns out to better account for our results.
This is in line with the idea of indicative conditionals as answering
predictive queries requiring evidential relevance without necessar-
ily representing causal relevance.
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Appendix A

Bayes Nets and SEM

We here illustrate the difference between causal Bayes nets
and structural equation modeling (SEM) in Pearl’s (2009)
theory of causal inference. Whereas Pearl (1988) earlier argued
that one could explain causal inferences solely in terms of
causal Bayes nets, he later revised this account because of the
need for structural equation models for counterfactual reason-
ing (Pearl, 2009; Pearl & Mackenzie, 2018).

On Pearl’s (2009) current account, there are three irreduci-
ble layers of conceptual understanding of causal relations: (a)
statistical associations for predictive inference (which can be
computed by conditionalization, e.g., via Bayes nets), (b) pre-
dictions based on interventions (which are observed through
manipulations in randomized, experimental studies),22 and (c)
counterfactual inferences (which can only be computed based
on structural equation models of the data generating processes,
as we show below).

Bayes nets encode a set of conditional independence state-
ments to simplify the specification of a joint probability distri-
bution over a set of causally relevant variables (Darwiche,
2009), such as the ones displayed in Figure A1.

To illustrate their use in answering the queries above, the
occurrence of the effect (e.g., cancer) can be predicted by con-
ditionalizing on information about its possible causes (e.g.,
smoking), P(cancerjsmoking). To evaluate the effect of an
intervention (e.g., a hypothetical treatment designed to remove
tar in the lungs), graph-surgery can be performed on the Bayes
net as illustrated in Figure A2. Graph surgery works by remov-
ing all incoming edges to the node intervened on, setting it to a
given value (e.g., Z = 0), and calculating the effects of the inter-
vention on the descending nodes, P(cancerjdo[tar = 0]).

Finally, we can evaluate the counterfactual scenario in
which we consider whether the patient would have been cured,
if the tar had been removed. But we need to make this evalua-
tion while taking into account that the patient is in fact in a con-
dition in which he has cancer and tar in his lungs. As a result,
we need to be able to both (i) conditionalize on the factual

information (cancer = 1, tar = 1) to update our distribution
of the boundary conditions (U) representing the actual cir-
cumstances, and (ii) perform graph surgery to calculate the
effects of our counterfactual intervention. However, this
latter step is not possible without structural equations rep-
resenting the causal mechanisms underlying the causal
diagram, which are shown in Figure A2.

In this case, the boundary conditions might be unknown
factors influencing both the amount of tar in the patient’s
lungs (U2) and whether the patient smokes and has cancer
(U1). The structural equations in Figure A2 are used to
update the distribution of the boundary conditions based on
the available evidence, P(U j smoke = 1, cancer = 1, tar = 1).
This updated distribution remains invariant when considering
the counterfactual scenario in which an intervention is intro-
duced to set tar = 0, through graph surgery to generate the sub-
model displayed as b) above. Finally, the counterfactual
probability, P(cancer = 0tar = 0 j cancer = 1, tar = 1), is calculated
based on both the updated distribution of the boundary condi-
tions and the submodel, where the graph surgery has been
applied (Pearl, 2009; Ch. 7). Since Bayes nets lack structural

Figure A1
Bayes Net Representing a Causal Chain

Figure A2
Graph Surgery on SEM

Note. (a) Structural equation model of the causal chain in Figure A1
with structural equations determining the values of endogenous variables
X, Y, Z as a function of their parents and the exogenous variables, U1 and
U2, representing the boundary conditions. (b) Submodel obtained by per-
forming graph surgery on a by replacing the equation for Z with Z = 0
and removing all edges to Z. SEM = structural equation modeling.

(Appendices continue)

22 In addition, these interventions can now also be computed by
applying Pearl's (2009) do-calculus to observational studies (see also
Morgan &Winship, 2018).
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equations representing the influence of the boundary condi-
tions, Bayes nets cannot handle cases, where we both update
based on the evidence (cancer = 1, tar = 1) and consider what
would have happened if tar had been 0 under the actual
circumstances.

Formally, this double evaluation of (1) an update by factual
information (cancer = 1, tar = 1) concerning the actual world
and (2) computation of probabilities in counterfactual scenarios
(cancer = 0, tar = 0) would give rise to inconsistency, if repre-
sented by standard probability theory via conditionalization
alone. The use of structural models illustrated in Figure A2 pre-
vents this by separating the update that is kept invariant
between the models a) and b), and computing the counterfac-
tual update in the submodel b) only. To represent this type of
computational query, Pearl introduces the notation P(Yx 0 =
false j X = true, Y = true). In words: under the assumption that

both events actually occurred (P[· j X = true, Y = true]),23 what
is the probability that Y would not have occurred had X not
occurred (P[Yx 0 = false j ·]).

Sometimes the term Structural Causal Model (SCM) is
used by Pearl to emphasize the integration of SEM as a statisti-
cal tool with causal graphs, a counterfactual semantics, and an
explicit causal interpretation of structural equations. Recent
books on SEM have integrated many of these developments
(see, e.g., Kline, 2016; Shipley, 2016). We provide further
details on structural equation models, when we apply them as a
statistical tool in Experiment 3.

Appendix B

Simulation Analysis, Causal Power

Here we consider the option of adopting a causal power
account while dropping van Rooij and Schulz’s (2019) auxiliary
assumption that participants' tendency to ignore alternative
causes make them evaluate P(if A, then C) as P(C j A). Instead,
the causal power account of the acceptability of indicative condi-
tionals could be strengthened by the observation that the equa-
tion in Cheng (1997) requires causal power and P(C j A) to be
highly correlated for generative causes. This observation might
in turn account for the positive association between P(if A, then
C) and P(C j A). To examine exactly how strongly P(C j A) and
P(if A, then C) would be associated on a pure causal power
account, a simulation analysis was carried out with 488422 prob-
ability distributions generated through gridsearch (see Table B1,
upper part). As the simulation shows, it is required that a causal
power construct not only is strongly positively associated with
P(C j A), b1 = 1.08, in a regression analysis, but also negatively
associated with P(Cj:A), b2 =�.52.

In Over et al. (2007), it was assumed that on a causal analy-
sis, it would be required that the negative association of
P(Cj:A) with P(if A, then C) would be of the same magnitude

as the positive association of P(C j A). However, as the sim-
ulation analysis shows, this constraint only holds for DP. In
contrast, on a causal power account, the absolute magnitude
of the positive association of P(C j A) is twice that of the
negative association with P(Cj:A). Nevertheless, in previ-
ous studies—like Evans et al. (2007) and Over et al.
(2007)—it was found that although weak, negative associa-
tions between P(Cj:A) and P(if A, then C) did occur, they
were of a much smaller magnitude than the ones shown
above.

In the lower part of Table B1, a reanalysis of parts of the
data from Experiment 1 was carried out with the type of mixed
regression model reported in Table 5. This type of model also
contains a random intercept controlling for differences between
scenarios, while estimating fixed, mean effects. The required
negative association of P(Cj:A) with P(if A, then C) was not
obtained for this subset of the data. P(Cj:A) was, however,
negatively associated with causal power. Thus, like the model
comparison in Table 5, this reanalysis did not turn out favor-
ably for a causal power account of P(if A, then C).

(Appendices continue)

23 The dot, ·, is here used as a placeholder for an event, proposition, or
random variable.
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Table B1
Simulation Analysis, Pure Casual Power Account

Data r(Y, P(CjA)) r(Y, P(Cj:A)) m1: (Y � P(CjA)) m2: (Y � P(CjA) þ P(Cj:A))
Simulation
Y = power rY,P(CjA) = .82 rY,P(Cj-A) = 0.03 b1 = .82, b1 = 1.08, b2 = �.52

rY,P(CjA).P(Cj-A) = .94 rY,P(Cj-A).P(CjA) = �.79 R2 = .68 R2 = .88
Y = DP rY,P(CjA) = .5 rY,P(Cj-A) = �.5 b1 = .5, b1 = 1.0, b2 = �1.0

rY,P(CjA).P(Cj-A) = 1.0 rY,P(Cj-A).P(CjA) = �1.0 R2 = .25 R2 = 1
Experiment 1
Y = If rY,P(CjA).P(Cj-A) = .72 rY,P(Cj-A).P(CjA) = .04 b1 = .75 b1 = .74, b2 = .03
Y = power rY,P(CjA).P(Cj-A) = .69 rY,P(Cj-A).P(CjA) = �.42 b1 = .61 b1 = .74, b2 = �.37

Note. The comparison is based on Positive Relevance conditions only. Upper half: correlation and least square regression analysis of simulated data
based on 488422 probability distributions, which were generated meeting the criterion of Positive Relevance. Lower half: reanalysis of the Positive
Relevance condition of xperiment 1 based on mixed regression models.
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