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Abstract
The key assumption behind evolutionary epistemology is that animals are active learners 
or ‘knowers’. In the present study, I updated the concept of natural learning, developed by 
Henry Plotkin and John Odling-Smee, by expanding it from the animal-only territory to 
the biosphere-as-a-whole territory. In the new interpretation of natural learning the con-
cept of biological information, guided by Peter Corning’s concept of “control information”, 
becomes the ‘glue’ holding the organism–environment interactions together. The control 
information guides biological systems, from bacteria to ecosystems, in the process of natu-
ral learning executed by the universal algorithm. This algorithm, summarized by the acro-
nym IGPT (information-gain-process-translate) incorporates natural cognitive methods 
including sensing/perception, memory, communication, and decision-making. Finally, the 
biosphere becomes the distributed network of communicative interactions between bio-
logical systems termed the interactome. The concept of interactome is based on Gregory 
Bateson’s natural epistemology known as the “ecology of mind”. Mimicking Bateson’s 
approach, the interactome may also be designated “physiology of mind”—the principle 
behind regulating the biosphere homeostasis.
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1 Introduction

The universal capacity of organisms, from bacteria to animals, to actively sense their local 
environments and adjust to them intelligently, reflects the universal capacity to learn (Plot-
kin 1982; Bradie 1986; Gontier 2006; Watson et al. 2015; Watson and Szathmáry 2016; 
Bradie and Harms 2017). In the evolutionary sense, all organisms are active learners or 
‘knowers’. The processes behind natural learning are at the heart of evolutionary episte-
mology. According to the branch of evolutionary epistemology known as EEM (evolution-
ary epistemology mechanisms): (1) organisms are knowledge systems, (2) evolution is the 
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process of knowledge acquisition and (3) there are features shared by all forms of the evo-
lutionary knowledge acquisition (Plotkin 1982).

Learning enables organisms to intelligently adjust to local environments and calls for 
further learning and further adjustments—organisms are engaged in an endless process of 
natural epistemology or biological intelligence (Slijepcevic 2018). Furthermore, the pro-
cess of learning is not one sided. As organisms learn about their local environments and 
adjust to them, local environments become their learning partners (Lewontin 1978; Oka-
sha 2005). Local environments, represented by diverse groups of organisms, learn about 
adjusting actions of their organismal partners and intelligently adjust to their partners’ 
adjustments. This is the biosphere-wide cybernetic process that includes all species and 
all organisms (Bateson 1979). In this process, organisms of the same species communicate 
with each other through natural languages (Ben-Jacob 1998; Ben-Jacob et  al. 2004) and 
different forms of semiosis (i.e. habits, codes), as they are at work in ecological systems 
and explored by contemporary biosemiotics (Kull et al. 2008). On the other hand, organ-
isms from different species communicate through the process of cross-kingdom communi-
cation based on biosemiotics (McFall-Ngai et al. 2013; Jarosz et al. 2014).

Given that the nature of communicative interactions is cybernetic or informational, bio-
logical information becomes an essential ingredient in the process of natural learning. The 
role of information in natural learning featured prominently in writings of EEM proponents 
(e.g. Plotkin 1982; Plotkin and Odling-Smee 1982). However, very little can be found in 
the EEM literature about the actual concept of biological information and how this concept 
integrates into the process of natural learning.

The aim of the present paper is to integrate the original EEM’s understanding of natural 
learning by Plotkin (1982) and Plotkin and Odling-Smee (1982) with cybernetic, informa-
tion theory and systems theory views, using bacteria as a model system. I start by present-
ing the EEM’s take on the concept of information and the role of information in natu-
ral learning (Sect. 2). I then outline the concept of biological information that combines 
information theory and its more recent derivatives appropriate for biological systems, in 
particular, “control information” of Corning (2007) (Sect. 3) and information processing 
by bacteria (Ben-Jacob 1998, 2009; Ben-Jacob et al. 2004) (Sect. 4). In the final part of the 
paper (Sect. 5), I present a synthetic outlook of information processing and natural learning 
in biological systems.

2  Information and Natural Learning According to Plotkin 
and Odling‑Smee as Representatives of Early EEM

This section is an overview of how Plotkin (1982) and Plotkin and Odling-Smee (1982) 
understood the concept of information and natural learning. In brief, their view deviated 
from the mainstream neo-Darwinian ideas. In neo-Darwinian terms, organisms behave as 
biological machines controlled by genes (Dawkins 1976; Futuyma 1998). Organisms with 
random genetic changes survive and propagate in those environments whose properties are 
compatible with the properties of biological machines brought about by random genetic 
changes. This scenario is almost mechanistic: organisms fit pre-existing environments. Fur-
thermore, environments are unresponsive and largely immune to influences by organisms.

By contrast, organisms internalize environmental features in the process of natural 
learning. Given the organic constitution of all environments inhabited by animals (e.g. 
the atmosphere is the product of the living world etc.) environments are their learning 
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partners because they consist of organisms of different kinds (microorganisms, fungi, 
plants) (Lewontin 1978; Okasha 2005; Holland 2006). Thus, natural learning is interpreted 
as a form of adaptation—the process of knowledge acquisition about the environment and 
subsequent adjustment to the environment guided by the new knowledge. In this process 
genetic determinism is not the only factor influencing adaptations. An important role is 
played by the concept of information. Adaptations are interpreted as processes of informa-
tion gain, subsequent storage of information, and translation of information into pheno-
typic traits (Plotkin 1982). Interestingly, the concepts of information and knowledge are 
often taken to mean the same:

The terms information and knowledge are used interchangeably. They refer to coher-
ent and conserved patterns of order in the environment and the corresponding organi-
zation of the phenotype whose end-directedness relates to those particular patterns of 
environmental order. (Plotkin 1982, 6)

However, equating the concepts of information and knowledge may be imprecise for 
two reasons. First, the entire field of cybernetics, concerned with the information theory, is 
ignored. Second, there is no attempt to make a distinction, if any, between the concept of 
information in physicalist sense (original information theory) and biological sense (organ-
isms may be different from machines in terms of information processing).

The imprecise treatment of information is somewhat softened in a detailed outline of the 
concept of natural learning. Here is the definition of natural learning in the style of evolu-
tionary epistemology (Plotkin and Odling-Smee 1982), which contains parallels to modern 
niche construction and ecological inheritance theories (e.g. Laland et al. 2014):

Learning is acquisition by an individual animal of information about some aspects of 
that animal’s world, the storage of that information, and its integration into pre-exist-
ing behaviour patterns such that it is potentially capable of changing the behaviour 
of that animal in the future. Like any other form of information or knowledge gain, 
learning is a dynamic, dialectical process involving a changing world and a changing 
learner. (Plotkin and Odling-Smee 1982, 443)

The processes behind natural learning are further elaborated and explained using the 
framework (Plotkin and Odling-Smee 1982) briefly outlined below.

1. Living systems are knowledge systems. This is the key principle of evolutionary epis-
temology attributed to writings of earlier evolutionary epistemologists.

2. The world, as perceived by organisms, is constantly changing. An important source of 
change are organisms themselves “whose teleonomic goal is to bring about some change 
in the world”.1

3. “Change is the engine that drives the evolution and the formation of adaptation”. The 
concept of “change” is probably closest the framework comes to explaining the concept 
of information in functional or biological sense (see next section).

4. Learning is a process that enables organisms to obtain knowledge about the changing 
world (their immediate environment). There are four levels of learning. Level 1 is genetic 
(allele frequencies and reproducing populations). Level 2 is epigenetic (“the flexible 
translation of a genotype into a phenotype”). Level 3 is physiological (organ or organ-

1 All citations in parts 1–7 (all pieces of text in inverted commas) are from Plotkin and Odling-Smee 
(1982, 450–451).
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system specific: e.g. immune system or brain). Level 4 represents cultural processes 
(learned information transmission among a group of learners in a non-genetic fashion). 
This is similar to the concept of evolution in four dimensions (E4D) by Jablonka and 
Lamb (2007).

5. There is no sharp distinction between individual organisms and social groups in terms 
of their properties as biological systems. This means that a group of organisms may 
acquire a form of intentional behaviour resembling that of an organism (superorganism).

6. Learning is hierarchical and always proceeds in direction from Level 1 towards higher 
levels.

7. All processes of natural learning share a universal algorithm. Thus, the explanatory 
power of evolutionary epistemology rests with this universal algorithm for natural learn-
ing.

The intention behind the above framework was to use it as the basis for a universal 
biological theory (Plotkin 1982). There was an attempt to describe the universal algorithm 
for natural learning. It consisted of integrating four levels of learning into a wide-ranging 
framework (theory) in which diversity of learning forms in animals was confronted and 
controlled by their environments, thus creating the unity of learning as the product of the 
organism–environment interactions (Plotkin and Odling-Smee 1982).

Judging the above framework from a > 35-year distance, it certainly remains plausible 
provided that deep updates are carried out to bring the framework in line with numerous 
research avenues initiated and developed since then. For example, the assumption that 
natural learning is restricted to animals makes the theory untenable from the perspective 
of universality.2 Organisms that dominate the planetary biomass are microorganisms and 
plants (Whitman et al. 1998; Mancuso and Viola 2015). They must be incorporated into the 
framework because there is an emerging large set of data supporting the notion of micro-
bial and plant capacities to learn (e.g. Lyon 2015, 2017; Trewavas 2017) (see also Sect. 4). 
In addition, independent concepts of natural learning have been articulated by a number 
of authors (Bateson 2000; Lyon 2015, 2017; Watson et al. 2015; Watson and Szathmáry 
2016). Finally, a relatively superficial treatment of the concept of information, and the field 
of cybernetics and systems theory, makes the framework seriously outdated. The aim of the 
next section is to focus on the concept of biological information with a view to generating a 
more comprehensive and up to date framework for natural learning from the perspective of 
evolutionary epistemology.

2 Strictly speaking, it is not true that evolutionary epistemology (EE) is based on the assumption that natu-
ral learning is applicable only to animals. For example, Campbell (1974), in his ten stages of knowledge 
argued that the first stage is the “non-mnemonic problem solving” used by protists (“paramecium, stentor”). 
However, Campbell wrongly interpreted protists as animals. Furthermore, Campbell’s “non-mnemonic 
problem solving” stage appears outdated in light of recent advances in bacterial and protist cognition which 
recognize mnemonic problem solving in these organisms. For details of bacterial mnemonic problem solv-
ing (memory) and communication (stage 7 in Campbell’s scheme) see Sect. 4 of this article. On the whole, 
early EE writings focused overwhelmingly on animal cognition. Only rarely EE researchers ventured out-
side the kingdom Animalia. When this happened, as in the case of protists, the explanatory narrative suf-
fered from taxonomic inaccuracies.
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3  Information Theory

The birth of information theory in 1948 was one of the landmark events in modern sci-
ence. Two key figures of cybernetics, or communication theory, were Shannon (1948) 
and Wiener (1948). They viewed the concept of information as an engineering problem. 
According to Corning (2007) the mechanistic attitude of early cybernetics—information 
as a purely engineering issue—resulted in a failure to understand information in the func-
tional sense. The functional side of information relates to how living systems interpret and 
utilize information.

The only person in the early cybernetic circles who attempted to explain information in 
the functional sense was Gregory Bateson (Harries-Jones 2017). His famous dictum that 
information is “the difference that makes a difference” (Bateson 1979, 1991, 2000) still 
resonates well with natural system theorists. In spite of a reasonable explanatory power 
of Bateson’s ideas, they lacked the mathematical rigour present in writings of Shannon 
and Wiener. More recently, Corning (2007) provided a useful scientific and mathemati-
cal grounding of information in the functional sense that may overcome shortcomings of 
Shannon’s and Wiener’s concepts. I will next briefly outline the development of cybernetic 
ideas from Shannon and Wiener to Bateson and Corning.

The fundamental problem of communication, according to Shannon, is how to transmit 
messages (information) from a sender to a receiver through a communication channel and 
avoid corruption by noise. Even though most messages have meanings, semantic aspects 
of communication are irrelevant to the engineering side of things. From the perspective of 
evolutionary epistemology, this is a significant problem because the content of messages 
(semantic side of biological information) is essential to organisms as active learners. Thus, 
Shannon interpreted information as the capacity to reduce statistical uncertainty (noise). If 
the information is measured in binary bits, the informational uncertainty may be expressed 
in a number of bits required to eliminate uncertainty. Mathematician John von Neuman 
suggested to Shannon that he should use the thermodynamic term “entropy” to express 
statistical uncertainty.

However, Corning (2007) argued that physicalist interpretations of statistical equations 
for enthropy by Boltzman and Gibbs in the nineteenth century, and Schrödinger in his leg-
endary book What is life?, although extremely useful to physicists, engineers, chemists and 
molecular biologists, started to blur a distinction between entropy in the theromodynamic 
sense (as governed by energy) and how physical order/disorder is created in the world. 
Entropy refers to the availability of energy to carry out work. However, information in the 
functional or biological sense may have nothing to do with work potential (Bateson 2000; 
Corning 2007; Harries-Jones 2017). Information is “the capacity to control the capacity to 
do work” (Corning 2007, 303, original in italics; see also below).3

Wiener’s interpretation of information did not exactly match that of Shannon. Simi-
larly to Schrödinger, Wiener argued that information represents negative entropy or 
negentropy. Wiener also introduced biological systems in his elaboration of cybernetic 
ideas. He interpreted capacities of biological systems and their components, such as 
enzymes and cells, as metastable Maxwell’s Demons capable of reducing entropy. He 
viewed entropy in biological systems as a form of entropic anomaly—an anomaly of 

3 Other authors who attempted to address the concept of biological information include Pattee (2001) and 
Deacon (2012). However, their works (semantic closure by Pattee; the notion of constraint in the context of 
biological information by Deacon) are beyond the scope of this study.
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living systems relative to physical ones. For Bateson and Corning, Wiener’s explanation 
addressed only part of the problem. To make up for the missing part, Bateson intro-
duced the term “bioentropy”. A detailed explanation of bioentropy can be found in Har-
ries-Jones (2010). In brief, “bioentropy focuses on the ability of organisms to create pat-
tern from noise in a systemic informational context”  (Harries-Jones 2010, 2373–2374).

In his mathematical analysis Wiener did not differ significantly from Shannon. 
Instead of formalizing the functional understanding of information, he was more con-
cerned with measuring amount of information. Thus, in the early days of cybernetics, 
the balance was tipped in favour of engineering and physics—precise measurements of 
information (syntax) rather than focus on the informational content of messages (seman-
tics). The consequence was that the concept of information was reified—from the engi-
neering and physicalist points of view, it is legitimate to regard information in material 
terms. In other words, information is an independent entity that can be measured. This 
remains the mainstream view in spite of some serious objections. For example, Rapo-
port thought it is misleading to view information as a concrete physical entity “that can 
be poured into an empty vessel like liquid” (cited in Corning 2007, 300). Similarly, 
Heinz von Foerster argued that information is a purely relational concept that can be 
actualized only when it is related to cognitive systems (cited in Corning 2007). Thus, 
information does not have an independent existence. This is in line with Bateson’s argu-
ments according to which information has no dimensions. “The difference that makes 
a difference”—biological information as understood by Bateson—must have a receiver 
at the end interested in the information content which will guide the receiver to adjust 
behaviour accordingly (Bateson 1979).

The apparent lack of a proper scientific grounding of information in functional or bio-
logical sense prompted Corning (2007) to propose a new concept he termed “Control 
Information” or  Ic. Here is the definition of control information:

The capacity (know how) to control the acquisition, disposition and utilization of 
matter/energy in purposive (teleonomic) processes. (Corning 2007, 302)

He also presented a simple mathematical formalism that takes account of all relevant 
parameters including: energy, entropy, Shannon information termed  Is etc. In brief, Corn-
ing argued, similarly to Bateson, that information is not a thing or mechanism. It can 
only be defined as a relationship between an organism (living cybernetic system) and its 
environment. The environment contains a variety of latent or potential control informa-
tion designated  Ip (p for potential). The informational potential of the environment is only 
actualized when purposeful cybernetic systems (organisms) make use of it. Thus, in the 
functional sense information is entirely context-dependent and user-specific. For example, 
pheromones emitted by ants cannot be registered by human senses.

Furthermore, control information causes purposeful work to be done by biological sys-
tems. The key point here is that control information allows the separation of biology from 
mechanics of physics and engineering. Control information as a biological concept is “the 
capacity to control the capacity to do work”. Bateson (1991) similarly argued that “the 
difference that makes a difference”—the equivalent of control information—“does not pro-
vide the energy, it only triggers the expenditure of energy”. Thus, the difference leads to 
“transform of difference”. In contrast to physical equilibrium systems, organisms are non-
equilibrium open systems that require constant structural adjustments in order to survive. 
Control information or “transform of difference” thus becomes an ordering principle—a 
form of bioentropy in which ecological waste (entropy) created by one species becomes an 
essential metabolite for survival of another (Harries-Jones 2010, 2017).
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Corning provided a number of examples to illustrate control information in practice and 
also to put it in a wider context. For example, he attempted to explain the relationship 
between control information on one side and feedback, semiotics and biosemiotics, second-
order cybernetics and sociological theory of communication on the other. Instead of pre-
senting his illustrations, I will next explore the interpretation of information theory in the 
context of microbiology that yields a remarkable similarity to Corning’s concept of control 
information.

4  Natural Information Processing in Bacteria

A wide range of experimental studies, accumulated over the last several decades, indi-
cate that the origin of natural learning can be traced to bacteria,4 first living organisms 
(e.g. Lyon 2015, 2017). This is particularly important from the perspective of evolution-
ary epistemology—the concept of natural learning is not restricted to animals. Therefore, 
it is appropriate to use bacteria to demonstrate Corning’s concept of control information 
as a component of natural learning. The main proponent of natural learning in bacteria, 
or “natural cognition” as he called it, was Eshel Ben-Jacob. In a series of papers he pre-
sented principles of natural intelligence and natural information processing in bacteria and 
described how bacterial colonies create a collective “mind” by exchanging information 
between individual members. Below is the summary of his thinking based on several key 
papers (Ben-Jacob 1998, 2009; Ben-Jacob et al. 2004).

The first thing to note is that bacteria are not solitary organisms. Overwhelming evi-
dence suggests that bacteria, through social cooperation, become multicellular organisms 
(superorganisms) consisting of  109–1012 individual members. Bacterial colonies show cell 
differentiation, a division of tasks and, in some cases, the existence of modules resembling 
reproductive organs. However, for the sake of demonstration let us first explore informa-
tion processing in the single bacterial cell using the well-known phenomenon of bacterial 
chemotaxis, before exploring information processing by bacterial colonies.

Each individual bacterial cell is a complex system capable of exploring thermodynamic 
imbalances in the environment for its own survival. From the perspective of thermodynam-
ics, a bacterial cell can be viewed as a three-component system. One component of the 
system is its “engine”, the function of which is to explore thermodynamic imbalances in 
the environment to carry out work (Fig. 1a).

The second component of the system is the “machine” (Fig.  1a). Its function is to 
use the energy obtained by the engine to maintain the structure of the cell (synthesis of 
organic components required for the maintenance and survival of the bacterial body). 
By doing this, the machine acts against disorder within the cell or the natural course of 
entropy increase. The third component of the system is the information-processing module, 
which coordinates and synchronizes actions of the engine and the machine (Fig. 1a). The 
information-processing module consists of the cell sensing system integrated with the cell 
genome and the cell molecular network that transmit signals from the sensing system to the 
genome.

4 Whatever applies to bacteria, in terms of natural learning, it is also applicable to archaea, the second 
domain of life. The reason I singled out bacteria in this article is that almost all studies of natural learning 
in prokaryotes rely on bacteria.
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Chemotaxis is usually defined as the cell movement that occurs in response to gradients 
in concentration of a chemical agent present in the environment. Chemotaxis can be posi-
tive (attraction) or negative (repulsion). In attractive chemotactic movement, a bacterium 
swims in a slow tumbling fashion and measures concentration of a relevant chemical along 
the way. The process of measurement involves the sensing of chemical gradients, the rec-
ollection of previous measurements (memory), and information processing (genome plus 
molecular network) to detect potential differences between measurements. When the analy-
sis is completed, in a remarkable feat of natural learning, a bacterium makes a decision 
whether to continue slow tumbling movements (no difference between measurements) or 
change the swimming style into long and fast movements towards higher concentration (a 
significant difference in measurements).

We can now put control information in the context of chemotaxis. The information pro-
cessing module of the bacterium serves to sense the environment and extract latent infor-
mation from it. The latent information is Corning’s  Ip—gradients of concentrations of 
various chemicals in the local environment inhabited by the bacterium (Fig. 1a). Thus, the 
concentration of chemicals in the environment, as a form of latent information  (Ip), does 
not have independent existence—it is simply a part of the physical properties of the envi-
ronment. Furthermore, the concentration of a chemical in the environment is not a thing or 

E M IP

Cell

Ip

Cell

E M IP

Ic

E M IP

Cell

Decision to 
move fast

EnvironmentA
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Fig. 1  Information-processing in bacterial chemotaxis. a A bacterial cell contains engine (E), machine (M) 
and information-processing module (IP).  Ip is latent information in the environment. b When the latent 
information is sensed it becomes control information or  Ic. c Decision is made based on natural computa-
tion (learning) prompted by  Ic. For details see the text
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mechanism. It represents a non-homogeneous distribution of sugar in the watery solution 
of the bacterial swimming environment. Only when the relationship between a particular 
cybernetic system, in this case the bacterium, and its environment is established via the 
information-processing module,  Ip becomes actualized and turns into  Ic (Fig.  1b). This, 
in turn, prompts the bacterial cell to undergo the analytical episode of natural computa-
tion after which a proper decision (natural learning) is made with regard to “[t]he capacity 
(know how) to control acquisition, disposition and utilization of matter/energy in a purpo-
sive (teleonomic) process” (Corning 2007, 302) (Fig. 1c).

In the bacterial act of natural information processing, there is neither a formal sender, 
nor a formal communication channel, nor even a message, like in the case of Shannon’s 
understanding of information. But, there must always be a user, in this case the bacterium. 
Furthermore, the episode of bacterial chemotaxis is in line with Bateson’s definition of 
information: “The difference that makes a difference”. In this case, the difference is the 
actual difference in the concentration of a chemical between the past measurements per-
formed by the bacterial natural computation and the current measurement. This difference 
leads to “transform of difference”—a decision of the bacterium to change the swimming 
style if the concentration of sugar is high enough (Fig. 1c). This new swimming style leads 
to “expenditure of energy” as the capacity to adjust to its local environment.

Let us now consider how bacterial colonies behave in the process of natural information 
processing. There is one crucial difference between the colony and a single cell—the emer-
gence of communication between individual cells. Individual cells communicate through 
various forms of chemotactic signalling and quorum sensing (bacterial natural language). 
Thus, for individual cells, the colony becomes their natural environment. As a result, indi-
vidual cells begin to respond to the colony itself—the information flows from the colony to 
the individual. This results in the emergence of the colonial identity with different modules 
for distributed information processing (Fig. 2a).

The result is that the combined action of the internally stored information (e.g. the 
genome of each bacterium) and the information extracted from the environment by the 
society of bacteria that form the colony, turns the colony into a brain-like entity capable of 
performing collective acts of natural learning. The colony acquires a form of memory that 
consists of the information stored in individual genomes and the information collectively 
extracted from the environment and memorized by the structure of the colony (natural 
mind). Genetic memory per se is not sufficient for adaptation. Thus, the genetically stored 
information in individual bacteria serves only to initiate more complex collective infor-
mation processing faculties that in turn generate new knowledge required to adapt to new 
conditions in the environment. It can be argued that chemotactic signalling at the level of 
the colony represents a form of social intelligence consisting of the exchange of messages 
loaded with meaning (semantics and pragmatics) resulting in the self-organization of the 
colony as a product of current and past environmental conditions. The mechanisms behind 
all biological functions discussed in this paragraph are explained by Ben-Jacob (2009).

In the context of the colony, which now represents an integrated society of  109–1012 
bacteria, the concepts of  Ic and  Ip become multitudes. For the colony, the territory of  Ip 
becomes the society of individual bacteria (internal  Ip) but also the external environ-
ment (source of external  Ip) (Fig. 2a). The “collective mind” of the colony transforms two 
sources of  Ip (internal and external) into  Ic (Fig. 2b). This initiates the process of contextual 
natural computation that eventually results in the collective decision-making (Fig. 2c). For 
example, when the colony encounters a dry and hard surface, individual bacteria begin 
excreting a lubricating layer of fluid to create the swimming medium for other bacteria. 
Thus, the learning capacity of the colony is reflected in the ability to perform collective 
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sensing of the local environment and make a decision as to how to appropriately adjust to 
it.

Taken together, the above two examples of information processing and natural learning 
(Figs. 1, 2) illustrate the concept of Corning’s control information in the simplest living 
organisms—bacteria. Similarly to Corning, Ben-Jacob argued that “[b]y latent informa-
tion we refer to data embedded in the environment that, once processed cognitively, initi-
ates change in the organism’s function or behavior” (Ben-Jacob 2009, 79). It is thus clear 
that Corning’s components of control information,  Ip and  Ic, have their equivalents in Ben-
Jacob’s interpretation of bacterial cognition. Ben-Jacob’s “latent information” is equivalent 
to Corning’s  Ip; Ben-Jacob’s “cognitive processing” is equivalent to Corning’s  Ic.

Thus, the principles of control information may be applicable to all living systems, from 
single cells to societies and ecosystems (see below). Corning’s control information is a 
form of ‘glue’ that holds together organism–environment interactions. Control information, 
thus, forms the basis for the universal algorithm for natural learning. In line with this pos-
sibility, the emerging field of biosemiotics views information exchange as an indispensable 
feature of life (e.g. Kull et al. 2008). Importantly, semiosis cannot exist without interpret-
ability. The biosemiotic concept of “interpretability” is strikingly similar to the concept of 
“actualization” in control information (see above).

Ip(external)

Ip(internal)

Ic

A

B

C

Lubricant secre�on

Fig. 2  Information-processing by a bacterial colony. a The population of bacterial cells (small circles) uni-
fied by the colonial identity (an ellipsoid shape containing all cells). Different patterns in individual bacte-
rial cells indicate division of tasks within the colony. Sources of  Ip are the colony and the external environ-
ment. b Collective sensing of the environment by the colony turns  Ip into  Ic. c (for details see the text). The 
collective decision is made by the colony based on natural computation (learning) prompted by  Ic. Mecha-
nisms behind colonial identity, division of tasks, collective sensing, natural “mind” and natural computation 
are described in Ben-Jacob (2009)
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5  Synthesis

In the final part of the paper, I will present a synthetic overview of information pro-
cessing and natural learning in biological systems by updating the old framework of 
Plotkin and Odling-Smee (1982) with the concept of control information (Corning 
2007). The overview will address the principles of natural learning, categories of bio-
logical systems involved in it, the methodology behind natural learning and the emer-
gence of the biosphere as the communicative network of biological systems.

5.1  Principles of Natural Learning

Early proponents of EEM were concerned exclusively with the cognitive structure of 
animal intelligence. However, animals constitute a minority of biological forms. If 
the biosphere is viewed as the biomass comprised by living systems that make it up, 
then plants and microbes dominate (Whitman et al. 1998; Mancuso and Viola 2015). 
Also, in terms of species number bacteria dominate the biosphere (Larsen et al. 2017). 
Numerous publications in the last couple of decades show that plants (reviewed in 
Trewavas 2017) and bacteria (Ben-Jacob 1998, 2009; Ben-Jacob et  al. 2004; Lyon 
2015, 2017) possess natural learning capacities. Thus, evolution may represent a con-
tinuous learning process (Watson and Szathmáry 2016) which appears to follow algo-
rithmic principles (Watson et al. 2015). In this process organisms are not passive evo-
lutionary objects shaped by the interaction between the genes (internal structures) and 
the environment (external conditions), but instead, they act as natural agents actively 
involved in creating conditions for own evolution (Walsh 2018).

In line with the above arguments, I suggest that the new definition of natural learn-
ing should take account of all organisms and serve to extend the original and narrow 
framework of Plotkin and Odling-Smee (1982). Thus, in the process of natural learn-
ing biological systems acquire information about their local environments, process 
that information by own internal structures, and translate processed information into 
phenotypic traits. The universal algorithm for natural learning can be described by the 
acronym IGPT (information-gain-process-translation). IGPT represents a multi-stage 
process of natural learning derived from an older concept by Plotkin (1982) and Plot-
kin and Odling-Smee (1982), and now enriched with the concept of control informa-
tion  (Ip and  Ic) (Corning 2007). Examples of IGPT in action are given in Figs. 1 and 2. 
The IGPT algorithm can be expressed as:

where IG (Information Gain) represents information gathering about the environment by 
the biological system using its own sensory-motor apparatus; IP represents processing that 
information by the internal structure of the biological system (natural computation); and 
IT represents translation of the processes behind IG and IP into structural changes of the 
biological system. Thus, the environmental features represented by Ip → Ic are internalized 
by biological systems in a multi-stage IGPT process.  Ip and  Ic represent (1) a form of ‘glue’ 
that holds together organism–environment interactions and (2) a guiding principle behind 
natural learning (Figs. 1, 2).

Ip → Ic → IG → IP → IT
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5.2  Categories of Biological Systems Involved in Natural Learning

Natural learning is an essential feature of biological systems. One way of categorizing 
biological systems, relative to their capacities to learn, may be SET (serial endosym-
biosis theory) (Sagan 1967; Margulis 1998, 2004). The key principle behind SET is 
“individuality by incorporation”—“all organisms large enough for us to see are com-
posed of once-independent microbes teamed up to become larger wholes” (Margulis 
1998, 43–44). I propose seven categories of biological systems based on how the most 
fundamental units of natural learning, bacteria, are distributed throughout the biosphere 
as building blocks for more complex systems for natural learning.

All seven categories of biological systems involved in natural learning are summa-
rised in Fig. 3, together with their evolutionary timeline and some other parameters that 
will be addressed in the next section.

The fundamental unit of natural learning is a single cell prokaryote—a bacterium. 
Therefore, I term the most fundamental unit of natural learning a “Simple Cell” or SC 
(Fig.  3). (However, it must be acknowledged that biological systems below SC, such 
as viruses, may be capable of natural learning (Villareal 2015)). All other systems for 
natural learning are derived from SC by two biological processes: multiplication and 
merger. The process of multiplication produces populations of SCs (e.g. bacterial col-
ony) unified into single functioning systems by the process of communication (bacterial 
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Fig. 3  Categories of biological systems involved in natural learning based on SET. For abbreviations and 
explanation see the text. Types of social intelligence (SI) are SI1 (communication between conspecifics) 
and SI2 (cross-kingdom communication)
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language) (Ben-Jacob et al. 2004). I term populations of SCs “Societies of SCs” (SSCs) 
(Fig. 3).

On the other hand physical mergers between two or more SCs generates a more com-
plex system I term CC (Composite Cell) (Fig. 3). CC is equivalent to various types of the 
eukaryotic cell as elaborated by SET. All single cell protists, single cell fungi and algae 
belong to this category. Their populations, integrated into more complex systems by the 
communication process, lead to the next category: “Societies of CCs” or SCCs (Fig. 3).

The above four categories, SCs, SSCs, CCs and SCCs, dominated the biosphere for 3.2 
billion years (since the origin of life 3.8 Bya to roughly 600–700 Mya) (Fig. 3). The transi-
tion to true multicellularity required a hierarchical shift in which loosely organized SCCs 
sacrificed their individuality in deference to that of a tightly organized corporate body (a 
cell-based superorganism). Thus, the next category of biological systems involved in natu-
ral learning is the Multi-cell Organism (MCO) displaying cell specialization and division 
of labor, and developmental processes—all plants and animals (Fig. 3). They emerged in 
the evolution 600–700 Mya. MCOs cannot function without accompanying microbiota. 
MCOs are meta-organisms, also called holobionts, consisting of two sets of cells: tightly 
integrated eukaryotic cells forming the corporate body and populations of loosely inte-
grated microbial cells present inside and outside the corporate body (Margulis 1993; Zil-
ber-Rosenberg and Rosenberg 2008).

Populations of MCOs exhibit varying degrees of sociality leading to the next category, 
“Societies of MCOs” (SCMOs) (Fig. 3). The highest form of sociality is known as euso-
ciality. It is recognized by the emergence of tightly organized collectives of MCOs called 
“superorganisms” in the case of social insects such as ants, termites and bees (Crespi and 
Yanega 1995; Wilson and Hölldobler 2005). Human beings are also eusocial (Wilson 
2012).

The final category of biological systems involved in natural learning is termed ESs 
or “Ecological Systems” (Fig. 3). These include biomes such as mature forests in which 
all previous six categories of biological systems are integrated. For example, plants have 
the capacity to control nitrogen-fixing bacteria and through this control, they strategically 
influence entire biomes with the final outcome being the resilience of their environment 
(Sheffer et al. 2015). Some animal-built and human-built structures can be loosely classi-
fied into this category including the ecological collectives involved in the practice of agri-
culture. For example, ant agriculture involves plants, bacteria and fungi (Wilson and Höll-
dobler 2005; Wilson 2012).

In summary, seven categories of biological systems involved in natural learning are 
prokaryotes and their societies (SCs and SSCs), protists, fungi, algae and their societies 
(CCs and SCCs), plants and animals and their societies (MCOs and SMCOS) and biomes 
integrating all lower systems (ESs) (Fig. 3).

5.3  The Methodology of Natural Learning

To complete this general outline of natural learning it is important to identify the cognitive 
methodology behind it. In other words, which cognitive methods are used universally by 
all categories of biological systems in their quest for new knowledge? Before exploring the 
methodology of natural learning it is important to precisely define biological systems as 
users of cognition in the evolutionary process.

Biological systems are purposive teleonomic systems or natural agents (Walsh 2018) 
that become cognitive agents in the context of evolutionary epistemology. According to 
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Ernst Mayr, “[a] teleonomic process or behavior is one that owes its directedness to the 
operation of a program”. He defined a program “as coded or pre-arranged information 
that controls a process (or behaviour) leading it toward a given end”. Genetic programs 
that control organisms are “closed programs”, meaning they are entirely deterministic. 
However, according to Mayr, organisms also possess “open programs” that allow them to 
acquire additional information through “learning, conditioning, or through other experi-
ences” (all Mayr 1974, 99).

Some biologists, including Lewontin (1978), argued against the concept of the biologi-
cal program as a form of a deterministic Darwinian machine. Instead, organismal forms 
are under-determined by the action of the genes and environment because organisms are 
active natural agents involved in creating conditions for evolution of biological forms. The 
notion of organisms as natural or cognitive agents is similar to Robert Rosen’s theory of 
anticipatory systems (Rosen 1985). Anticipatory systems contain internal predictive mod-
els of themselves and of their environments. According to Rosen, every organism, from a 
bacterium to an elephant, must contain information about self, about species and about the 
environment (an internal model), encoded into the organization of the living system. This 
modelling relation between organisms and their internal structures is primarily epistemo-
logical. Thus, the behaviour of Rosen’s anticipatory systems at any present instant involves 
aspects of past, present and future, because the internal model serves to pull the future into 
the present resulting in the natural act of anticipation.

Assuming that biological systems are natural agents (Walsh 2018) or anticipatory sys-
tems (Rosen 1985), there are four universal cognitive methods used by all of them in the 
process of natural learning5:

• Sensing/perception The capacity to collect information about the environment.
• Memory The capacity to store collected information into system’s own internal struc-

ture. The genetic storage (DNA as a storage medium) is only one layer of biological 
memory. The other layer of biological memory is the entire system’s structure.

• Communication Capacity to communicate with conspecifics (natural languages and 
biosemiotics), and non-conspecifics (cross-kingdom communication as a form of biose-
miotics).

• Decision-making The final product of all cognitive methods and anticipation leading to 
the action of the system relative to its environment. If the action is retained by the eco-
logical filter of natural selection it becomes epistemologically successful leading to its 
storage into the systems’ structure. If not, it becomes an epistemological error, which is 
eliminated by natural selection.

5.4  Biosphere as the Communicative Network

The final task is to put all categories of biological systems in the context of the biosphere. 
Heinz von Foerster argued that information is a purely relational concept that can be actu-
alized only when it is related to cognitive systems. If we accept his dictum and assume 
that the biosphere is the supersystem that accommodates all seven categories of biological 
systems and their environments (Fig. 3), the biosphere becomes the network of communi-
cative interactions between them (Fig. 4). In this network the IGPT algorithm guided by 

5 Behaviour, as a cognitive method, is replaced by anticipation; see definition above.
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 Ic and  Ip (Sect. 5.1) and the universal cognitive methods (Sect. 5.3) become the means by 
which biological systems (Sect. 5.2) internalize their environments (Fig. 4).

Thus, concepts of organisms and environments are relative concepts. From the dawn of 
life, when first bacteria internalized a small inorganic part of the planet Earth, there is no 
hard distinction between organisms and their environments. Organisms create their envi-
ronments (Laland et al. 2014). A suitable analogy for the relativity of the organism–envi-
ronment complex is the holon concept of Arthur Koestler. Organisms are two-face enti-
ties like the Roman god Janus—part internal structures (organisms in true sense) and part 
external structures projected by their internal models (environments) (Fig. 4).6

The totality of all communicative interactions in the biosphere may be termed the 
“interactome”7—the biosphere-wide distributed network of biological information that 
holds organism–environment interactions together (Fig. 4).

The biosphere, as the supersystem accommodating all biological systems and their 
environments, possesses the capacity to self-regulate (homeostasis) (Lovelock and Mar-
gulis 1974). The concept of the “emergent homeostasis” (Turner 2004) provides some 

SC

SSC

CC

SCCMCO

SMCO

ES

Fig. 4  The interactome—the biosphere-wide distributed network of communicative interactions (for 
abbreviations see Sect. 5.2). Dashed lines represent the ‘glue’ holding organism–environment interactions 
together. For details see Sect. 5.4. The interactome should be viewed as a distributed rather than centralized 
system. For example, Fig. 4 may represent an ecosystem such as a mature forest (Ulanowicz 2002). The 
interactome represents a holarchy of all ecosystems that comprise the biosphere

6 This is equivalent to Rosen’s modelling relations between organisms and their internal models (see 
above). A similar but older idea of Umwelt (surrounding world) was elaborated by Jakob von Uexküll. 
Charles Sanders Peirce entertained a similar idea. A modern term is “niche construction” (Laland et  al. 
2014).
7 My term “interactome” is different from the same term used in biochemistry that refers to the totality of 
protein interactions in the cell.
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support for the notion that interactome may contribute to the biosphere homeostasis. The 
idea behind the emergent homeostasis is that genetically diverse organisms pursue com-
mon physiological interests resulting in the local or distributed homeostasis. Thus, the 
idea of interactome serves to add a different dimension to the emergent homeostasis: the 
informational or biosemiotic dimension. For example, there is evidence that the mutualistic 
symbiosis between leafcutter ants (genera Atta and Acromyrmex) and fungi (genera Leuco-
agaricus and Leucocoprinus) (ant agriculture) may involve some form of chemical com-
munication or biosemiosis, which is informational in nature (Vasse et al. 2017).

The best example of interactome in action is a climax forest containing all seven ele-
ments shown in Fig.  4. Ulanowicz (2002) introduced the concepts of “mutual informa-
tion” and “infodynamics” into ecology. These concepts represent a measure of the inter-
connectedness of the energy flow in the ecosystem. The ecosystem is most interconnected 
(information-rich) in its mature stage (e.g. climax forest in a steady state). The concept of 
interactome is compatible with, and it may help the analytics of ecological “infodynamics” 
(Ulanowicz 2002). Furthermore, the biosphere-scale homeostasis may also be viewed as 
the synergy between ecosystems that make it up. It is important to stress that the biosphere 
should not be viewed as a single cognitive system, but rather a super-system, or the syn-
ergy (holarchy) of all systems that make it up—interactome is a distributed rather than 
centralized regulator of homeostasis.

If interactome indeed contributes to biosphere homeostasis, this possibility would open 
some interesting questions. Is the biosphere a form of anticipatory system? Does the bio-
sphere possess a form of memory? These questions are legitimate, but probably unanswer-
able at present.

However, some bold speculations may help to define the research direction that could 
enable us, at the minimum, to ask appropriate questions. In this regard it is worth remem-
bering Bateson’s (1979) concept of mind. He proposed six criteria of mind including (1) 
that mind is an aggregate of interacting parts and (2) that the interaction between parts is 
triggered by difference (see Sect. 3), which is “a non-substantial phenomenon not located 
in space or time” (Bateson 1979, 92); in other words, biological information. Bateson per-
suasively argued that human subjectivity and consciousness are limited as forms of natural 
epistemology.

In line with Bateson’s thinking, the interactome may also be called “physiology of 
mind”. The term is derived from Bateson’s concept “ecology of mind”. Bateson’s “ecol-
ogy of mind” was a form of natural epistemology driven by bio-cybernetics (Harries-Jones 
2017). The term “physiology of mind” refers to the milieu intérieur concept of Claude Ber-
nard, as the capacity of a given biological system to regulate its own stability or homeosta-
sis, applied to the biosphere as a whole (Turner 2017).

6  Concluding Remarks

In this paper I updated the 35-year-old framework for natural learning, which served as 
the basis of EEM. The update consisted of integrating the concept of control information 
and expanding the territory of evolutionary epistemology from the animal-only territory 
to the biosphere-as-a-whole territory based on recent advances in bacterial and plant cog-
nition. I proposed a new definition of natural learning and attributed natural learning to 
seven types of biological systems involved in natural learning. Finally, I outlined the uni-
versal algorithm for natural learning and suggested that the biosphere contains a multitude 
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of communicative interactions, or the interactome, between biological systems that make it 
up, guided by the universal algorithm. Finally, I identified a similarity between Bateson’s 
concept of “ecology of mind” and the concept of interactome. The similarity is contained 
within the new term “physiology of mind”, as the ability of interactome to regulate the 
biosphere homeostasis.
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