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a b s t r a c t

This essay presents an alternative to contemporary substantivalist and relationist interpretations of
quantum gravity hypotheses by means of an historical comparison with the ontology of space in the
seventeenth century. Utilizing differences in the spatial geometry between the foundational theory and
the theory derived from the foundational, in conjunction with nominalism and platonism, it will be
argued that there are crucial similarities between seventeenth century and contemporary theories of
space, and that these similarities reveal a host of underlying conceptual issues that the substantival/
relational dichotomy fails to distinguish.
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1. Introduction

Even granting the most basic and clear-cut conception of
substantivalism and relationism – where substantivalists hold,
and relationists reject, that space/spacetime is an independently
existing entity – it has become quite evident that the attempts to
ascribe either a substantivalist or relationist interpretation to
classical gravitation theories is an exercise fraught with perils,
since the sophisticated forms of both ontologies are seemingly
identical as regards their content in the modern setting of general
relativity (GR).1 What is less well-known, however, is that this
metaphysical quagmire has likewise ensnarled philosophers con-
cerned with the ontology of quantum gravity (QG), which will, it is
hoped, link the physics at the spatiotemporal micro-realm of
quantum mechanics (QM) with the large-scale structure of space
and time in GR. In short, the general consensus would seem to be
that sophisticated versions of both substantivalism and relation-
ism are equally consistent, or equally problematic, interpretations
of QG (e.g., Rickles, 2005; Earman, 2006), a conclusion that is

apparently reflected in the rival appropriations of an important QG
hypothesis, loop quantum gravity (LQG), for either Leibnizian
relationism or Newtonian substantivalism. For example, a Leibni-
zian lineage for LQG has been put forward by Smolin (2006,
200–203), among many others. Yet, in Dainton (2010), which
defends the relevance of the substantival/relational dichotomy in
GR (380–381), it is argued that the ontology of LQG “seems as
substantival as any conception”, prompting Dainton to ask, “What
could be less Leibnizian?”, despite the fact that LQG is “very
different from Newton's absolute space” (405–406). Since the
substantival/relational dichotomy is the most basic and important
ontological division in the philosophy of space and time, it is
imperative to investigate why it leads to such conflicting assess-
ments, and to examine if there are better alternatives.

This essay will begin to meet this challenge by offering an
alternative range of conceptual distinctions that lie below the
imprecise dichotomy imposed by contemporary substantivalism
and relationism. In particular, an examination of a range of
seventeenth century metaphysical speculation on the deep ontol-
ogy of space, by Gassendi, More, Newton, Leibniz, and others, will
reveal a host of uncanny similarities with modern QG strategies:
these similarities concern (i) the spatial geometry at both the
foundational level of ontology and at the derived or resulting
levels of ontology, and (ii) platonism and nominalism as regards
the spatial geometry at these two levels. As will be demonstrated,
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(i) and (ii) more directly concern both the seventeenth century and
the contemporary QG approaches to spatial ontology than the
manifest equivocalities of the substantivalist/relationist division—
and, quite importantly, (i) and (ii) obviates the dubious ontological
distinctions between the sophisticated substantivalist and sophis-
ticated relationist interpretations of LQG, as well as for the metric-
field in GR. Our investigation will also question whether the
geometric background independent/dependent distinction is the
modern equivalent of the substantival/relational divide.

In Section 2, various similarities and differences between
Newton, Leibniz, and other seventeenth century thinkers, will be
surveyed, with the lessons gathered from our analysis applied, in
Section 3, to the strategies proposed among competing QG
hypotheses and to various issues, such as background indepen-
dence and nominalism.

2. Classifying spatial ontology in the seventeenth century

If anything is disclosed in the competing interpretations of
Smolin and Dainton, it has little to do with the adequacy of the
substantival/relational dichotomy. Rather, it exposes the enduring
aspiration among latter-day thinkers to appropriate Newton
(a presumed substantivalist) and Leibniz (a presumed relationist)
as the proper historical ancestor of a particular modern theory of
spacetime substantivalism or relationism. Yet, the actual details of
seventeenth century spatial hypotheses undermine such attempts.

2.1. Geometric levels and platonism/nominalism

In order to more accurately pinpoint the differences between
Newton, Leibniz and others in the seventeenth century concerning
the deep ontology of space, it will be necessary to focus on two
main issues. The first concerns those geometric structures posited
at (a) the “foundational level” of ontology (entity/entities asso-
ciated with that theory) that are identical to (b) the geometric
structures posited at the “secondary level” of ontology, where the
secondary level entity/entities are grounded on, emerge, or result
from, the foundational level of ontology: we will dub this distinc-
tion, FGL, for foundational geometric level, with the foundational
level usually, but not always, linked to the microphysical realm
(“microlevel”), and the resultant, secondary level entities often,
but not always, associated with the observable macroscopic level
(“macrolevel”). In the seventeenth century, the geometry of space
at the secondary macrolevel of material bodies is Euclidean, but
the nature of the geometric features at the foundational level,
i.e., God and/or Leibniz' monads, could take different forms.
Leibniz' New Essays puts forth three ways that a being can be
related to place/space at the secondary macrolevel:

The Scholastics have three sorts of ubeity, or ways of being
somewhere. The first is called circumscriptive. It is attributed to
bodies in space which are in it point for point, so that
measuring them depends on being able to specify points in
the located thing corresponding to points in space. The second
is the definitive. In this case, one can “define” – i.e. determine –

that the located thing lies within a given space without being
able to specify exact points or places which it occupies
exclusively. That is how some people have thought that the
soul is in the body, because they have not thought it possible to
specify an exact point such that the soul or something pertain-
ing to it is there and at no other point… The third kind of
ubeity is repletive. God is said to have it, because he fills the
entire universe in a more perfect way than minds fill bodies, for
he operates immediately on all created things, continually

producing them, whereas finite minds cannot immediately
influence or operate upon them. (1996, II.xxiii.21)

In what follows, we will explore how these three types of
ubeity relate to the spatial geometry at the material secondary
macrolevel.

As for circumscriptive ubeity, Leibniz mentions only bodies
(whereas Newton would include all beings), but the idea is that
the entity is mapped to three-dimensional Euclidean space in a
point by point manner, much like a modern isomorphism. Leibniz'
analysis also assumes that the entity (body, God, etc.) fully shares
in the geometric properties intrinsic to macrolevel space, the most
important of these properties being the metric (distance), as
Leibniz mentions: “measuring them depends on being able to
specify points in the located thing corresponding to points in
space”. The second way that a being can be related to space is
“definitive”, wherein “the located thing lies within a given space
without being able to specify exact points or places which it
occupies exclusively”. Unlike the metrical structure implicit in
circumscriptive ubeity, which also incorporates the topology of
space, definitive ubeity is a topological conception alone, for the
length or extension of the entity is indeterminate, i.e., it is not
“possible to specify an exact point such that the soul or something
pertaining to it is there and at no other point”. More carefully, if an
entity obtains a Euclidean metrical determination, then an exact
set of continuously structured spatial points needs to be specified
for that entity, but, since Leibniz states that the exact points
cannot be determined, the continuously extended regions needed
for Euclidean metrical space cannot be applied to that entity.
Hence, because the being's spatial properties are limited to
individual points, all that definitive ubeity can furnish is some-
thing akin to topological notions (see also Grant, 1981, 342, n. 66).
As will be discussed later, a concept that is closely aligned with
definitive ubeity is “holenmerism”, the thesis that a being is whole
in every part, or point, of space. Finally, there is “repletive” ubeity,
which Leibniz assigns to God who “operates immediately on all
created things”. Although not mentioned in this passage, Leibniz
rejects the notion that God is situated in space (see Section 2.4),
rather, only God's actions can be situated. So, leaving aside God's
actions, repletive ubeity equates with the absence of all macrolevel
geometric properties as regards God's being itself, and it also holds
true for Leibniz' monads, as will be discussed below.

Returning to the spatial geometry of the foundational entity,
FGL, the three types of ubeity presented in Leibniz' discussion –

circumscriptive, definitive, and repletive – therefore correlate
with, respectively, three types of geometrical properties that are
shared between the foundational entity and the entity/entities at
the secondary level, metrical, topological, and pregeometric,
where “pregeometric” signifies that the foundational entity’s
metrical and topological properties differ significantly from the
metrical and topological properties manifest at the secondary
level, or that the foundational entity lacks geometric properties
altogether. The resultant secondary level of spatial geometry,
furthermore, is the Euclidean space of the seventeenth century
theorists, and, for modern QG theories, it is often the geometry
assumed in GR or quantum field theory (QFT, the field version of
QM). In what follows, we will dub these three positions, in their
order of presentation; FGL(met), FGL(top), FGL(prg). Accordingly,
in the seventeenth century: circumscriptive ubeity, FGL(met),
holds that the spatial properties of the foundational entity are
identical with the metric of Euclidean space (and which includes
the topology of Euclidean space); definitive ubeity, FGL(top),
contends that the foundational entity only possesses the topolo-
gical properties of Euclidean space; and repletive ubeity, FGL(prg),
is the thesis that the foundational entity is either non-spatial or
manifests unique metrical and topological spatial properties not
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found at the secondary macrolevel Euclidean space. When we turn
to modern QG theories in Section 3, the emphasis will be the same,
with FGL denoting the geometric structures of the foundational
level theory that are identical to the geometric structures utilized
by the secondary level theory, with the latter grounded upon, and
resulting from, the foundational theory (although there may be no
such identical structures shared among these levels).

The second general issue addresses whether spatial geometry
at the secondary level is either independent of, or dependent on,
the entities that arise at that level, a distinction that we will dub,
SL(v-plt), for secondary level geometric virtual-platonism, and
SL(nom), for secondary level geometric nominalism. The rationale
behind the “virtual-platonism” designation stems from its limited
range: virtual-platonism does not imply the existence of abstract
objects, which are the metaphysical items often associated with
traditional platonism, but simply claims that the spatial geometry
at the secondary level can exist in the absence of the entities,
usually matter or fields at the macrolevel, that arise or emerge at
the secondary level (from the foundational level), i.e., secondary
level entities do not instantiate (bring into existence) space at the
secondary level. SL(nom), in contrast, holds that space at the
secondary level only exists when instantiated by secondary level
entities. In what follows, virtual-platonism and nominalism will be
used in place of substantivalism and relationism, for the former
pair better conveys the difference between a theory that regards
spatial geometry as, respectively, independent of, or dependent on,
entities (usually macrolevel material bodies/fields); and, more
importantly, the virtual-platonism/nominalism distinction is bet-
ter suited for application to the foundational and secondary level
distinction. The virtual-platonism/nominalism distinction is like-
wise more historically accurate than the substantivalism/relation-
ism dichotomy since Newton and Leibniz were influenced by the
platonist and nominalist traditions prevalent in their day, e.g.,
Cambridge Neoplatonism. How platonism and nominalism relate
to the geometry, if any, at the foundational ontological level, i.e., FL
(v-plt) and FL(nom), will be postponed until Section 3.3.

2.2. Newton on spatial ontology

Following a long tradition, Newton’s De gravitatione states that
space is not a substance because it cannot “act upon things, yet
everyone tacitly understands this of substance” (Newton, 2004, 21).
Using the terminology above, Newton’s spatial hypotheses favor
circumscriptive ubeity, for he assigns the same geometric structure
at both the bodily (secondary) level and for God (foundational
level), with the latter directly providing the foundation of space,
and he also sides with virtual-platonism about spatial geometry:
FGL(met), and SL(v-plt). In De grav, he argues: “[f]or the delineation
of any material figure is not a new production of that figure with
respect to space, but only a corporeal representation of it, so that
what was formerly insensible in space now appears before the
senses” (22). Such sentiments support geometric virtual-platonism
since these structures would exist even in the absence of all bodies
(secondary level entities). There are many passages that confirm
FGL(met), e.g., God contains “all other substances in Him as their
underlying principle and place” (Newton, 1978, 132), but the best
evidence is the “determined quantities of extension” thesis put
forward in De grav. In brief, Newton presents a conception of
material bodies that denies the existence of corporeal substance,
and where God directly grounds bodily properties, including
extension, rather than corporeal substance: “extension takes the
place of the substantial subject in which the form of the body [i.e.,
the determined quantities] is conserved by the divine will” (2004,
29). The rationale for this Spinoza-like view is theological to some
degree, “[f]or we cannot posit bodies of this kind without at the
same time positing that God exists, and has created bodies in empty

space out of nothing” (31). He rejects Descartes’ view of substance
by reasoning that “if the distinction of substances between thinking
and extended is legitimate and complete, God does not eminently
contain extension within himself”, and, “hence it is not surprising
that atheists arise ascribing to corporeal substance that [extension]
which solely belongs to the divine” (31–32). Accordingly, if there is
no difference between corporeal and incorporeal substance, since
God is the only true substance, then there is only one attribute of
extension that all beings share, God’s extension; therefore, FGL
(met). Finally, it should be noted that Henry More is the main
advocate of FGL(met) and SL(v-plt) in Newton’s time (see, More,
1995, 56–57).

2.3. Gassendi on spatial ontology

Unlike many of his contemporaries and predecessors, Newton
and More deny “holenmerism” (definitive ubeity), a doctrine that
does admit a difference in geometric properties with regard to
various incorporeal and corporeal substances. On holenmerism,
incorporeal beings are “whole in every part” of space, and thus not
(metaphysically) divisible. Gassendi accepts this holenmerist view
of God, which is equivalent to FGL(top), by declaring:

[W]e conceive an infinity as if of extension, which we call
[God’s] immensity, by which we hold that he is everywhere.
But, I say as if of extension, lest we imagine that the divine
substance were extended through space like bodies are. Indeed,
although the divine substance is supremely indivisible and
whole at any time and any place, yet doubtless as corporeal
substance is said to be extended – that is not at one point only
but is spread out through many parts of space – so there is a
kind of divine extension, which does not exist in one place only,
but in many, indeed, in all places. (Gassendi, 1976, 94)

On Gassendi’s estimation, bodies occupy space by being
extended (“spread out”) across many points, but his qualification,
“as if of extension”, with respect to God implies that God only
shares with bodies the property of occupying the points of space,
i.e., that “divine extension”, as he also calls it, lacks the dimensional
extension of body across the points of space (“lest we imagine that
the divine substance were extended through space like bodies are”).
Since space is continuous (“space… remains continuous, the same,
and motionless”, Gassendi, 1972, 395), and since God only occupies
the points of this continuous space (e.g., God “is present in every
place”, 396), it thus follows that only topological properties are
applicable to God. Put differently, while God and matter share
topological structure, the holenmerist doctrine (definitive ubeity)
that God is “whole in every part” undermines the ascription of
Euclidean metrical structure to this being—hence, FGL(top). Further-
more, since Gassendi accepts that space is Euclidean at the
secondary level of bodies (see also Grant, 1981, 210), and is
independent of matter (secondary level entities), he sides with
Newton in accepting our form of geometric virtual-platonism, SL(v-
plt). Specifically, while God is not really extended, God grounds a
form of incorporeal extension that is congruent to the corporeal
dimensions of body at that ontological level, and this fact accounts
for the dimensionality of any vacuum: space is “an incorporeal and
immobile extension in which it is possible to designate length,
width, and depth so that every object might have its place” (1972,
391). Hence, the congruence of incorporeal and corporeal
dimensionality and the possibility of a vacuum justifies our
virtual-platonism designation as regards spatial geometry at the
secondary macrolevel. Finally, there is a form of co-dependence
between Gassendi’s God and space that justifies the FGL(top)
classification: “That God be in space is thought to be a character-
istic external to His essence, but not with respect to His
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immensity, the conception of which necessarily involves the
conception of space” (1976, 94). In sum: FGL(top), SL(v-plt).

2.4. Leibniz on spatial ontology

Like all of the other seventeenth century thinkers, God plays a
foundational role in Leibniz’ deep ontology of space. In the New
Essays, he contends that space’s “truth and reality are grounded in
God, like all eternal truths”, and that “space is an order [of
situations] but that God is the source” (Leibniz, 1996, II.xiii.17).
Yet, in contrast to both Newton’s “determined quantities of
extension” hypothesis of a God extended through space (circum-
scriptive ubeity) and Gassendi’s holenmerist idea of an unex-
tended but spatially situated God (definitive ubeity), Leibniz
rebuffs the notion that “God discerns what passes in the world
by being present to the things”, rather, God discerns things “by the
dependence on him of the continuation of their existence, which
may be said to involve a continual production of them” (Leibniz,
2000, 56; L.V.85). All of these themes are nicely encapsulated in
the following passage:

If God were extended he would have parts. But duration
confers parts only on his operations. Where space is in ques-
tion, we must attribute immensity to God, and this also gives
parts and order to his immediate operations. He is the source of
possibilities and of existents alike, the one by his essence and
the other by his will. So that space like time derives its reality
only from him, and he can fill up the void whenever he pleases.
It is in this way that he is omnipresent. (1996, II.xv.2)

Therefore, while Leibniz’ accepts that God’s immensity grounds
space, his acceptance of a non-spatial God (repletive ubeity) clearly
rules out a similarity of geometric structure at the foundational and
secondary (material) levels of reality—and the same holds for his basic
ontological unit of ontology (other than God), namely, monads. As a
simple substance, a monad, like God, has no spatial parts, “[b]ut where
there are no parts, neither extension, nor shape, nor divisibility is
possible” (Leibniz, 1989, 213). The non-spatiality of the monads is, in
fact, a common theme in Leibniz’ late work, and this includes both the
metrical and topological aspects of space: e.g., “there is no spatial or
absolute nearness or distance among monads. And to say that they are
crowded together in a point or disseminated in space is to use certain
fictions of our mind” (Leibniz, 1969, 604); and, “monads, in and of
themselves, have no positionwith respect to one another” (1989, 201).
Leibniz, moreover, rejects the FGL(top) conception of incorporeal
beings, i.e., where God and souls are situated in the points of space,
for he explicitly rejects holenmerism in the correspondence with
Clarke: “[t]o say [a soul] is, the whole of it, in every part of the body is
to make it divisible of itself. To fix it to a point, to diffuse it all over
many points, are only abusive expressions” (2000, 16–17; L.III.12).
Accordingly, for both God and monads, FGL(prg). In short, “God is not
present to things by situation but by essence; his presence is
manifested by his immediate operation” (16–17; L.III.12), where
“immediate operation” is correlated with the continual conservation
or reproduction of the world (as is also evident in the earlier quotation
on repletive ubeity in Section 2.1). A somewhat analogous conception
will be seen at work regarding how monads relate to the secondary
macrolevel of bodies (see Section 3.2).

Turning to platonism/nominalism, since “there is no space
where there is no matter” (52, L.V.62), Leibniz opts for a geometric
nominalism at the secondary level, SL(nom).2 Yet, although space

is not “an absolute being” (15, L.III.5), it still represents “real
truths” (47, L.V.47), even in the absence of matter: “[t]ime and
space are of the nature of eternal truths, which equally concern
the possible and the actual” (1996, II.xiv.26). Since these truths are
independent of existing bodies, this form of explanation, in effect,
betrays a strong penchant for absolutism—but, it is an absolutism
about the truths of geometry conceived in a nominalist fashion,
secured via God’s immensity.3

2.5. Barrow and Descartes on spatial ontology

Barrow also reckons that space is dependent on God: “there
was Space before the World was created, and… there is now an
Extramundane, infinite Space, (where God is present)” (Barrow,
1976, 203). By declaring that there was “Space before the World”,
this passage has platonist overtones, and likely prompted those
assessments that group Barrow with the absolutists, such as Hall
(1990, 210). Nevertheless, Barrow actually follows Leibniz’ nomin-
alism, for he explicates space’s “existence” via the God-based,
non-dimensional capacity of space to receive dimensional bodies
(in keeping with the Scholastic “imaginary” space tradition; see
Grant, 1981, chapter 6). For instance, he explains that time “does
not imply an actual existence, but only the Capacity or Possibility
of the Continuance of Existence; just as space expresses the
Capacity of a Magnitude contain’d in it” (1976, 204). Hence, SL
(nom), and, since evidence is lacking, either FGL(prg) or FGL(top).

Descartes’ conception of space shares many features in common
with Leibniz’ views, especially the espousal of God’s repletive ubeity
(using Leibniz’ term), or FGL(prg): where “[s]uch a power, being
only a mode in the [corporeal] thing to which it is applied, could not
be understood to be extended once the extended thing correspond-
ing to it is taken away” (Descartes, 1991, 373). As he later notes, “[i]t
is certain that God’s essence must be present everywhere for his
power to be able to manifest itself everywhere” (1991, 381); and
that substances “can exist only with the help of God’s concurrence”
(Descartes, 1985, 210). And, since matter is identical with space
(227), and a vacuum is impossible (230), SL(nom).

2.6. Reflections on seventeenth century and contemporary
spatial ontologies

One of the major themes of our investigation is that seven-
teenth century natural philosophers regard extension/space as
requiring some form of foundation in a substance or entity,
broadly construed. It may not be a property that is internal to, or
“inheres” in, God for Newton and Leibniz, but they both claim that
space is nonetheless dependent on God. In short, both reject the
notion that space is either an independent entity in its own right
or that it can act upon things, thus it is not a substance. Likewise,
since both adhere to the Aristotelian substance/property doctrine,
any relationist construal of space as the extension between bodies
would be rejected as “an attribute without a subject, an extension
without anything extended” (23; L.IV.9). It is in this sense that
modern attempts to appropriate Newton and Leibniz as would-be

2 A straightforward declaration of nominalism from the New Essays compares
numbers and extension: “[I]n conceiving several things at once one conceives
something in addition to the number, namely the things numbered; and yet there
are not two pluralities, one of them abstract (for the number) and the other
concrete (for the things numbered). In the same way, there is no need to postulate

(footnote continued)
two extensions, one abstract (for space) and the other concrete (for body)”
(1996, II.iv.5).

3 See (1996, II.xiii.8) on Leibniz’ “universal place”, which mimics Newton’s
absolutism. Relational motion is a separate subject beyond the scope of this
investigation—but, generally, the seventeenth century theories of motion that
allegedly support relationism (Descartes, Leibniz) are irrelevant to the deep
metaphysics that underwrites their respective spatial hypotheses, namely, God.
Furthermore, it is the analysis of this neglected metaphysical component in
correlation with the structures at the secondary level that will allow comparisons
between seventeenth century and QG theories (although the deep metaphysics
underlying QG theories is natural, and not supernatural).
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substantivalists or relationists go seriously awry (e.g., Sklar, 1974;
Friedman, 1983). In brief, the contemporary stalemate that afflicts
the modern spacetime ontology debate is largely the result of a
vain effort to remain consistent to Newton and Leibniz but with-
out utilizing their stock of metaphysical presuppositions.

In order to better grasp how the platonism/nominalism dis-
tinction can assist the evaluation of spatial ontologies, it is worth
examining the important contribution of Belot (2011). As we have
seen, the truths of Leibnizian space are both grounded by God and
independent of matter: e.g., concerning how the world can be
filled with matter, “there would be as much as there possibly can
be, given the capacity of time and space (that is, the capacity of the
order of possible existence); in a word, it is just like tiles laid down
so as to contain as many as possible in a given area” (1989, 151).
Belot (2011, 2) infers from this evidence that Leibniz is a realist
about geometry at the phenomenal level of matter. However, this
justifiable observation overlooks the fact that Leibniz’ realism
about space at that level stems from God’s immensity, and so his
realism differs in only one significant way from Newton’s God-
grounded spatial realism; namely, at the secondary material
macrolevel, Newton’s virtual-platonism versus Leibniz’ nominal-
ism, a distinction that evades the contemporary substantivalism/
relationism debate since that dichotomy conflates the ontological
and geometrical/mathematical aspects of spatial theories, and
thus it cannot track these more fine-grained distinctions. From a
modern perspective, one might strive to equate Newton’s virtual-
platonism with a straightforward realism about geometric struc-
ture at the secondary material level, and Leibniz’ nominalism with
a modal realism at that level, but this approach fails to account for
the rationale behind these different realist ascriptions, non-modal
versus modal: (a) an underlying ontology (God) that is actually
present in space (via circumscriptive ubeity), FGL(met), in con-
junction with his virtual-platonism, SL(v-plt), thus explaining
Newton’s geometric realism at the secondary level; and (b), an
underlying ontology (God, monads) that is not present in space
(via repletive ubeity), FGL(prg), in conjunction with his nominal-
ism, SL(nom), thereby explaining Leibniz’ geometric modal realism
at the secondary level. Put differently, both Leibniz and Newton
would deny the assumption that bodies/fields alone can ground
spatial geometry, since only God can—but, a macrolevel body/field
foundation is the motivation behind the modern approach to
spacetime ontology (e.g., the sophisticated metric-field versions
of both substantivalism and relationism in GR).

As just discussed, one might advance a modal relationist
hypothesis as the contemporary equivalent of Leibniz’ nominalism,
a strategy developed in Belot (2011, 173–185). While Belot’s efforts
are informative, it nonetheless strains the coherence of relationist
doctrine. A true modal relationist must posit spatial (spatiotem-
poral) modality on actually existing matter/fields, or on the
possibility of matter/fields coming into existence given at least
one existing body. Leibniz’ hypotheses, on the contrary, fix the
truths of spatial structure, not on bodies or on the possibilities of
bodies, but on God: “He is the source of possibilities and of
existents alike, the one by his essence and the other by his will.
So that space like time derives its reality only from him” (1996,
II.xv.2). Likewise, a complete vacuum state does seem plausible
given his additional claim that God could block the emergence of
extended matter, and hence space: Leibniz states that a monad's
primitive force is “a higher principle of action and resistance, from
which extension and impenetrability emanate when God does not
prevent it by a superior order” (quoted in Adams, 1994, 351). If one
is forced to choose between substantivalism and relationism,
consequently, then Leibniz’ spatial hypotheses would seem to fall
more comfortably on the absolutist/substantivalist side of the
debate, and not modal relationism. Indeed, a theory whose fixed
spatial truths and structures do not depend on matter/fields – but

instead posits that matter, and hence the instantiated truths of
space, emerge from a quite different, non-spatial layer of ontology
– not only eludes modal relationism, but would seem to demand a
separate classification beyond substantivalism and relationism.

3. The deep metaphysics of space from the seventeenth
century to quantum gravity

The preceding analysis sets the stage for a closer examination
of various QG hypotheses, background independence, pregeome-
try, spacetime emergence,4 and, ultimately, of the deficiencies in
the substantivalist/relationist dichotomy as it applies to the
seventeenth century and QG.

3.1. Geometric levels and quantum gravity

Returning to our division of spatial geometric levels, FGL, there
is a fascinating, and apparently natural, analogue of this distinc-
tion within the diverse array of QG hypotheses (albeit some QG
hypotheses will pose various classificational difficulties due to
their complex and hybrid construction). One might question the
relevance of this exercise, of course, given that the seventeenth
century’s preoccupation with the theological underpinnings of
space would seem to have little in common with the modern
search for QG. Yet, as mentioned previously, the situation con-
fronting both the seventeenth century and the QG theorist is
exactly the same: both are concerned with constructing an
adequate theory of space, time, and the physical world based on
a pre-given foundational entity or theory, specifically, the western
God, on the one hand, and GR and QM (QFT), on the other. Both
“research programs”, as it were, strive to retain the essential
features of that underlying theory, but both recognize the need
to adapt, revise, and sometimes overturn, various elements of the
established system in the process of securing their respective goals
(namely, a spatiotemporal theory grounded upon God, for the
seventeenth century, and a spatiotemporal theory that success-
fully integrates GR and QM, for contemporary physics).

Turning to these analogies, Newton and More’s FGL(met)
would correspond to the earliest geometrodynamic hypotheses
(as a canonical quantization approach), as well the older covariant
quantization techniques, since these approaches rely upon the
general metrical structure employed by the foundational theory,
which is, respectively, GR and QFT. In the (naïve) covariant
quantization strategy that flourished up through roughly the early
1970s, the metric of the foundational theory, QFT, is split into two
parts: the fixed background metric (usually Minkowskian), which
“defines spacetime, namely it defines location and causal rela-
tions” (Rovelli, 2004, 12), and a dynamical component that relies
on perturbation techniques to secure the postulated graviton (and
hence extend QFT to gravity), with the graviton being the
secondary level entity constructed from the foundational theory,
QFT. In the old geometrodynamics, GR is the foundational theory,
with the metric and the curvature of spacetime taken as the
basic groundwork from which all other physical phenomena are
presumed to be derived or constructed (i.e., as the secondary level

4 Emergence is a difficult concept, but our analysis will use this term to include
both of the strategies explored in Butterfield & Isham (2001) for going beyond the
standard ingredients of QM (via QFT) and GR, i.e., a four-dimensional manifold and
a classical, Lorentzian metric: (i) quantization, which is the quantizing of a classical
structure “and then to recover it as some sort of classical limit of the ensuing
quantum theory”; and (ii) emergence, where the classical structure is seen as “an
approximation, valid only in regimes where quantum gravity effects can be
neglected, to some other [more fundamental] theory” (2001, 35). The difficulties
associated with developing a theory of emergent spacetime are mentioned in Lam
& Esfeld (2013).
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entities). The geometric outlook that motivates geometrodynamics
also prompts Sklar’s well-known concept of supersubstantivalism:
“not only does spacetime have reality and real structural features,
but in addition, the material objects of the world, its totality of
ordinary and extraordinary material things, are seen as particular
structured pieces of spacetime itself” (1974, 221). Newton’s
“determined quantities of extension” hypothesis, surveyed in
Section 2.2, fits the supersubstantivalist definition quite nicely,
that is, if one substitutes the term “spacetime” with the term
“God’s spatial extension”. If viewed within the context of the deep
metaphysics of space, however, the various attempts to tie
Descartes to geometrodynamics fail (e.g., Graves. 1971, 87), since
Descartes grounds space (¼matter) on a non-spatial, non-
geometric conception of God, as we have seen.

In addition, the first phase of String theory, roughly up through
the mid-1990s, would likely fit the FGL(met) category as well.
Despite invoking a number of compactified extra dimensions at
the foundational microlevel, the perturbative method employed
by these theories presupposes a classical spacetime backdrop and
its metric:

[T]he propagation of the [one-dimensional] string is viewed as
a map X:-M from a two-dimensional worldsheet W to space-
time M (the ‘target spacetime’). The quantization procedure
quantizes X, but not the metric γ on M, which remains
classical… [T]he classical spacetime metric γ on M satisfies a
set of field equations that are equivalent to (the supergravity
version of) Einstein’s field equations for general relativity plus
small correction of Planck size: this is the sense in which
general relativity emerges from string theory as a low-energy
limit. (Butterfield and Isham 2001, 71)

While the metric at the foundational microlevel of strings and
the secondary macrolevel of GR is, approximately, the same in
these string theories, hence FGL(met), the already significant
topological differences at these two levels have evolved into a
potentially more radical set of dissimilarities in the subsequent
development of non-perturbative string theories (see also Cao,
1997, 111). As Butterfield and Isham note, concerning the possibi-
lity that there might exist a minimum spacetime length in these
later approaches (via the duality symmetries), “these develop-
ments suggest rather strongly that the manifold conception of
spacetime is not applicable at the Planck length; but is only an
emergent notion, approximately valid at much larger length-
scales” (2001, 73). Consequently, the trajectory of the development
of non-perturbative string theories seems headed towards FGL
(prg), where the foundational level of ontology exhibits entirely
different geometric structures, both topological and metrical, than
at the secondary macrolevel of GR.

The well-known rival of string theory is LQG (loop quantum
gravity), which, unlike string theory, does not rely upon a classical
metric but does rely upon a classical topological manifold. Rather,
LQG quantizes the metric of GR, incorporating a discrete quantum
substructure at the foundational level but regaining the classical
metric as an emergent phenomena at the secondary level. As a
later variant of the canonical quantization program, a theory like
LQG “uses a background dimensional manifold (but it uses no
metric)”, where this (spatial) manifold “becomes part of the fixed
background in the quantum theory—so that… there is no immedi-
ate possibility in discussing quantum changes in the spatial
topology” (76). Therefore, LQG upholds FGL(top). So, regarding
the question that first prompted our investigation, i.e., “Which
seventeenth century philosophy of space best resembles the
structure of LQG?”, we are finally in a position to provide an
answer: it is neither Smolin’s choice of Leibniz, who accepts
FGL(prg), nor Dainton’s preference for Newton, who endorses

FGL(met)—rather, it is Gassendi, since he endorses FGL(top)!
As discussed in Section 2.4, by declaring that “there is no spatial
or absolute nearness or distance among monads” (1969, 607), it
follows that any ascription of metrical properties to Leibniz’
monadic ontology is ruled out, but so would most topological
properties. A topological space involves a neighborhoods of points
and their various non-metrical interrelationships, such as conti-
nuity and connectedness. Yet, since monads have “no position
with respect to one another”, and each monad is “a certain world
of its own, having no connections of dependency except with God”
(1989, 199), even these weaker topological notions are apparently
excluded. That is, if monads were situated in the points of
Euclidean secondary macrolevel space, then classical topological
structure would be applicable to Leibniz’ ontology of monads, via
FGL(top), but Leibniz consistently rejects this possibility: “I do not
think it appropriate to regard souls [i.e., monads] as though in
points” (Leibniz, 2007, 123–127). In short, the structure of a
continuous manifold at the foundational level, FGL(top), is incom-
patible with Leibniz’ spatial ontology at that level, but not with
respect to Gassendi’s, for the latter situates God in the points of a
Euclidean space and its corresponding continuous topology.

3.2. Pregeometry: Leibniz and QG

There is, however, a group of modern QG strategies that would
seem analogous to the pregeometry of monads, namely, start with
a mere set of points, M, without topological or differential
structure, and build the continuous topological and metrical
secondary macrolevel structures upon this foundation. On Butter-
field and Isham’s estimation, “this set is formless, its only general
geometrical property being its cardinal number”, and is such that
“there are no relations between the elements of M, and no special
way of labeling any such elements [i.e., no topology]” (2001, 81).
Butterfield and Isham’s analysis is part of a larger discussion of
alternative QG strategies, different from string theory and LQG,
where the quantization is imposed “below the metric”. Quantum
effects and structures can then be introduced at this lower level
and associated, depending on the particular QG scheme, with a
host of possible sub-metric structures, e.g., M, causal, algebraic,
topological, differential, etc., in an ascending hierarchy (with
different hierarchies erected based on the particular QG strategy).
These sub-metric QG structures thus lie underneath, and can be
said to generate or bring about, GR and QFT’s common geometrical
presuppositions as employed in their standard mathematical
formalisms, i.e., a Lorentzian metric on a four-dimensional topo-
logical, differentiable manifold. Among these different strategies,
the most Leibnizian would lie in the utilization of a discrete
quantum substructure, similar to LQG’s quantization strategy, but
absent LQG’s need for a differentiable manifold. Since the main
goal of Leibniz’ analysis situs is to provide an algebraic model of
spatial situation (1969, 248–249), forsaking the spatial metric and
manifold components is thus in keeping with his overall world-
view, an approach that takes algebra/arithmetic as primary, and
geometry as derived (1989, 251–252).

There are many QG theories that fit this general category, such
as causal sets, computational universe, etc. For example:

Causal set theory arises by combining discreteness and causality
to create a substance that can be the basis of a theory of quantum
gravity. Spacetime is thereby replaced by a vast assembly of
discrete “elements” organized by means of “relations” between
them into a “partially ordered set” or “poset” for short. None of
the continuum attributes of spacetime, neither metric, topology
nor differentiable structure, are retained, but emerge it is hoped
as approximate concepts at macroscales. (Dowker, 2005, 446)

E. Slowik / Studies in History and Philosophy of Modern Physics 44 (2013) 490–499 495
Author's Personal Copy

2013) 490 4999



In what follows, however, we will concentrate on the quantum
causal histories program (QCH). Hedrich (2009, 22) provides the
colorful description, “geometrogenesis”, for the process by which
“spacetime emerges from a pregeometric quantum substrate” in
QCH, with the “quantum substrate” correlated to the set M and a
causal structure in Butterfield and Isham’s account.

[QCH’s] basic assumptions are: There is no continuous space-
time on the substrate level. The fundamental level does not
even contain any spacetime degrees of freedom at all. Causal
order is more fundamental than properties of spacetime, like
metric or topology. Causal relations are to be found on the
substrate level in form of elementary causal network struc-
tures… [M]acroscopic spacetime is necessarily dynamical,
because it results from a background-independent pregeo-
metric dynamics. But, the dynamics of the effective degrees
of freedom on the macro-level are necessarily decoupled from
the dynamics of the substrate degrees of freedom. If they
would not be decoupled, there would not be any spacetime
or gravity on the macro-level, because there is none on the
substrate level. (22–23)

The analogue of these QG hypotheses will be readily evident to
the Leibnizian devotee. First, monads and their intrinsic primitive
forces correspond to the discrete elementary quantum events,
which in the QCH program are excitation states in a finite-
dimensional Hilbert space (as the discrete nodes in a graph
structure).5 For Leibniz, matter and space emerge from a hidden
realm of constitutive entities that, like QM and QG theories, is
more aptly described in terms of force: a monad is “endowed with
primitive power” so that the “derivative forces [of bodies] are only
modifications and resultants of the primitive forces” (1989, 176).
Second, the derivative nature of the spatial and dynamical proper-
ties of bodies, as opposed to the intrinsic primitive forces of the
non-spatial monads which bring about bodies, thus correlates
with the term “decoupling”; i.e., the emergence of secondary
macrolevel spatial and dynamical properties that are quite differ-
ent from, and seemingly independent of, the foundational micro-
level pre-spatial dynamical properties that generate those
macrolevel properties. For Leibniz, monads (like God) are not in
space per se, but they are the means by which God “brings about”
matter and, hence, instantiates his nominalist account of space:
“[c]ertainly monads cannot be properly in absolute place, since
they are not really ingredients but merely requisites of matter”
(1963, 607); and, “properly speaking, matter is not composed of
constitutive unities [monads], but results from them” (1989, 179;
see Rutherford, 1995; Garber, 2009, 383–384, briefly suggest a
particle-physics interpretation as well).

A third similarity between QCH and Leibniz relates to one of
the major themes of our investigation, namely, nominalism:

But what are these coherent, propagating excitation states,
resulting from the substrate dynamics and leading to spacetime
and gravity?… The answer given by the Quantum Causal
Histories approach consists in a coupling of geometrogenesis
to the genesis of matter. The idea is that the coherent excita-
tion states resulting from and at the same time dynamically
decoupled from the substrate dynamics are matter degrees of

freedom. And they give rise to spacetime, because they behave
as if they were living in a spacetime. (Hedrich, 2009, 23)

By its “coupling of geometrogenesis to the genesis of matter”,
i.e., the emergence of space at the secondary level is coupled to the
emergence of matter at that level, QCH can truly claim a lineage
with Leibniz’ brand of nominalism, as opposed to LQG, the latter
permitting possible states that are absent matter at the secondary
level but which retain topological structure at that level. That is, a
vacuum state occurs in LQG when the foundational level s-knots,
which constitute the discrete structure of space (by means of
equivalence classes of spin networks formed by spatial diffeo-
morphisms), lack the requisite quantum excitations needed for the
existence of matter (see Rickles, 2005, 426–427). In short, using
the new taxonomy, LQG’s version of space at the secondary level
upholds FGL(top) even in the complete absence of matter. For this
reason, LQG is closer to Gassendi’s theory, where a matter-less
topological space is possible at the secondary level as well, and
unlike the strategy employed by Leibniz and QCH, where the
emergence/actualization of space (spacetime) at the secondary
level is linked to the emergence of matter at that level. (However,
as will be explained in Section 3.3, LQG actually supports nomin-
alism at the secondary level since the metric-field counts as a
secondary level entity in addition to matter. Gassendi, on the other
hand, supports virtual-platonism since his secondary level entity is
matter, and space at the secondary level is instantiated by the
foundational level entity, God, rather than by the secondary level
matter.) Of the two theories, LQG and QCH, there are other reasons
for preferring QCH as more comparable to Leibniz’ monadic
system. The result of LQG’s quantization of the metric of GR is
an array of spin networks with finite area and volume, which
essentially constitutes “quantum chunks” of space (Rovelli, 2001,
110). The QM-rooted spin networks are therefore inconsistent with
the non-spatial, non-geometric character of monads, and the same
is true of the spatial diffeomorphisms required to form the
s-knots from the spin networks (since diffeomorphisms are
geometric transformations on a differential, hence continuous,
manifold, contra Leibniz’ FGL(prg)). Moreover, given the direct
quantization of GR’s metric, gravity is rendered a fundamental
interaction for LQG; but gravity is emergent for both Leibniz and
QCH, since it is tied to the existence of matter at the secondary
macrolevel. Rather, the spin networks in LQG, which are contig-
uous discrete chunks of a quantum field, are much closer to
Leibniz’ conception of contiguous discrete chucks of matter, as
opposed to the non-contiguous discrete objects that comprise his
pregeometric monadic metaphysics.

Nevertheless, there is one significant issue on which Leibniz’
monadic system diverges from QG theories, namely, causal or
dynamical structure at the foundational level, such as QCH’s
quantum channels (the lines of the graphs that connect the
vertices; see footnote 5). Because “monads have no windows
through which something can enter or leave” (1989, 214) there
is as an absence of any inter-monadic causal mechanism at that
level. On the other hand, even granting the legitimacy of this
criticism (as regards the analogy between QCH and Leibniz’
monadic system), a counter-reply might reside in the fact that
the type of connection that binds the elementary quantum events
in QCH is quantum information. The nature of quantum informa-
tion within QM is difficult to assess, but it would seem to be a type
of physical property that, for lack of a better description, is
nonetheless situated near the material/immaterial divide (see,
e.g., Bub, 2010 on QM information). Consequently, since the lines
that connect the nodes of the graph structure in QCH represent a
flow of quantum information, and, since quantum information
evokes “immaterialist” connotations, it could be interpreted by
the Leibnizian as an acceptable surrogate for an intermonadic

5 “The basic structure [at the microlevel] is a discrete, directed, locally finite,
acyclic graph. To every vertex (i.e. elementary event) of the graph, a finite-
dimensional Hilbert space (and a matrix algebra of operators working on this
Hilbert space) is assigned. So, every vertex is a quantum system… So, the graph
structure becomes a network of flows of quantum information between elementary
quantum events. Quantum Causal Histories are informational processing quantum
systems; they are quantum computers” (Hedrich, 2009, 22).
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connection at the foundational monadic level. Whether or not this
strategy is plausible is open to question, of course, but there are
precedents for utilizing a graph structure to model Leibniz monads
(e.g., Barbour & Smolin, 1992).

3.3. Background independence versus nominalism

From the modern QG perspective, Smolin has argued that the
substantival/relational dichotomy converts to a dispute over back-
ground dependent (fixed geometry for all models) or background
independent methods (more than one geometry possible for these
models), thus it follows that the early String theories that
employed a fixed background metric and manifold are more
substantivalist (absolutist) than the alternative QG options that
only rely on a point manifold, such as LQG (Smolin, 2006, 199).
However, the utilization of the manifold’s topological, dimen-
sional, and differential structure can still be deemed to violate a
fully background independent scheme, and it is for these reasons
that Smolin declares LQG to be only partially relational (2 1 5).
Leaving aside the problem of which geometric component struc-
ture should be identified with substantivalism, manifold or metric
(see Earman, 1989, 201), a somewhat different way of explaining
the inadequacy of using the background dependence/indepen-
dence divide as a substitute for the substantival/relational dichot-
omy connects with our earlier analysis of virtual-platonism and
nominalism. In short, whether the background geometry is, or is
not, fixed is not a crucial factor in the platonist/nominalist
distinction; rather, it is the presence of geometric structure at a
given ontological level in the absence of all physical entities or
processes at that level that is crucial, since that possibility would
refute nominalism at that level.

For these reasons, the argument that LQG is in conflict with
relationism, because it allows vacuum solutions (see, Rickles,
2005, 425; Earman, 2006, 21), gains no traction against our new
system of classifying spatiotemporal ontology. LQG does not
violate nominalism because the secondary level theoretical
entity/entities, i.e., the entities postulated by GR, in particular,
GR’s metric-field (which are all emergent phenomena or proper-
ties of the foundational theory’s s-knots), instantiate the spatial
structures required at the secondary level. Additionally, not only is
there no vacuum state of the metric-field (i.e., a region of the
manifold lacking a metrical value), but since the metric is also the
gravitational-field, which carries energy, the metric/gravitational-
field can thus legitimately claim to be a nominalist-friendly
physical thing (see Earman & Norton, 1987, 519, who detail some
of the physical consequences of gravity waves). Accordingly, given
our new taxonomy, there is no conceptual room to invoke a
further distinction between sophisticated substantivalist and
sophisticated relationist interpretations of GR’s metric-field—at
the secondary level, both of these rival interpretations fall under
nominalism (as opposed to virtual-platonism), and hence are
identical as judged by our new ontological scheme.

Leaving aside GR’s emergence at the secondary level, the
allegation that LQG permits a vacuum state is somewhat mislead-
ing due to the fact that the underlying quantum processes at the
foundational microlevel would still remain. Although traditional
matter-based conceptions of spatial relationism are indeed under-
mined by these vacuum solutions, the finite value of the vacuum
energy and its effects in QFT (virtual particles, Casimir effect, Higgs
field) upholds a non-matter, field-based form of nominalism at the
foundational microlevel, since there are no voids totally absent of
energy at that level. Likewise for the energy of the metric-field in
GR (as noted above), whether conceived as an emergent secondary
level feature of QG or as the foundational entity in standard GR.
More carefully, recalling the distinction first introduced in
Section 2.1, if the platonism/nominalism question is pushed to

the foundational level of ontology, FL(v-plt) and FL(nom), then all
of our examined theories, whether from the seventeenth or
twentieth/twenty-first centuries, align with nominalism, FL(nom).
As revealed in this essay, God is the foundational entity required
for the existence of space in the seventeenth century, thereby
securing nominalism at the foundation level via that unique
(immaterial) entity. In the same way, modern QG theories are
not committed to a virtual-platonist background structure at the
foundational level given the complete nonexistence of the relevant
QG entities and processes at that level. So, just as nominalism does
not discriminate between sophisticated substantivalist and sophis-
ticated relationist interpretations at the secondary level of GR’s
emergent metric, the same holds true at the foundational level in
QG (or if the metric is taken as the foundational entity in standard
GR). For these reasons, our new system also provides an insight as
to why Earman and Rickles’ arguments are only effective against a
relationist (or nominalist) interpretation of LQG if confined to
matter at the secondary level.

Nominalism at the foundational level, furthermore, is well-docu-
mented, both for seventeenth century philosophers of space and
modern QG theories. At this foundational level, seventeenth century
philosophers required a sort of congruence of the domain of God’s
substance or operation and the extent of space, so that space is not
“external” to God, a possibility that would undermine nominalism. To
be exact, space cannot exceed either the bounds of God’s own
extension (Newton) or God’s non-extended immensity, whether that
non-extended immensity takes the form of definitive ubeity (Gas-
sendi) or repletive ubeity (Descartes and Leibniz). Newton, for
instance, denies “that a dwarf-god should fill only a tiny part of
infinite space” (1978, 123), and Gassendi claims that “since it follows
from the perfection of the divine essence that it be eternal and
immense, all time and space are therefore connoted” (1976, 94). For
Leibniz, “[t]he immensity and eternity of God are things more
transcendent than the duration and extension of creatures”, yet, “[t]
hose divine attributes do not imply the supposition of things extrinsic
to God, such as are actual places and times” (2000, 61; L.V.106); and,
since monads generate the matter that instantiates space, it naturally
follows that space is not independent of the monads.

In a similar fashion, there is a sort of congruence of the physical
quantum states and their Hilbert spaces, or the field in QFT and its
Minkowski spacetime, in that the QM-based QG theories do not
sanction void spaces entirely devoid of energy, where an absolute
void would imply that the geometry at this foundational level
exceeds the bounds of, or is external to, its physical entities/fields
and their associated states at that level. (The same holds true for
standard GR, since there are, once again, no metrical voids that
would undermine a nominalist interpretation of that theory.) One
could even go so far as to claim a certain analogy between God’s
grounding the possibilities of bodies at the macrolevel in Leibniz’
spatial ontology (as above, 1996, II.xv.2), and, for a physical system
in QM, the state vectors grounding the probability of the physical
observables in a Hilbert space. In many of the pregeometric QG
hypotheses, in fact, it is often claimed that space emerges from
“internal” QM processes, a description that upholds the nominalist
ban on entirely void spaces (virtual-platonism) at the foundational
level: e.g., in the model of Kaplunovsky and Weinstein (1985), “the
distinction between ‘geometric’ and ‘internal’ degrees of freedom
can be seen as a low-energy artifact that has only phenomenolo-
gical relevance. Space is finally nothing more than a fanning out of
a quantum mechanical state spectrum” (Hedrich, 2009, 16).

3.4. Pre-established Harmony and QG

Lastly, it should be noted that Smolin’s quest for a completely
background independent QG theory provides a unique Leibnizian
twist to that principle, for he employs a hidden variables conception
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of QM as a key component. In response to the query, “Can there be a
fully background-independent approach to quantum theory?”, he
states, “I believe that the answer is only if we are willing to go
beyond quantum theory, to a hidden variables theory” (Smolin,
2006, 232). In more detail, he argues:

We know from the experimental disproof of the Bell inequal-
ities that any viable hidden variables theory must be non-local.
This suggests the possibility that the hidden variables are
relational. That is, rather than giving a more detailed descrip-
tion of the state of an electron, relative to a background, the
hidden variables may give a description of relations between
that electron and the others in the universe (2 3 2).

While not directly mentioning Leibniz’ monadic system, Smo-
lin’s hidden variables approach to a fully background independent
QG theory not only evokes the holistic, pre-established harmony of
Leibniz’ monadic metaphysics, but, in fact, was inspired by it
(Barbour & Smolin, 1992; Barbour, 2003). Although “the monad’s
natural changes come from an internal principle, since no external
cause can influence it internally” (Leibniz, 1989, 214), their pre-
established harmony mimics the holistic interconnections of a
hidden variables theory: “This interconnection or accommodation
of all created things to each other, and each to all the others, brings
it about that each simple substance [monad] has relations that
express all the others, and consequently, that each simple sub-
stance is a perpetual, living mirror of the universe” (2 2 0). Smolin
describes his hidden variables strategy as “relational”; but the
relational aspect of these entities, whether a monad or a hidden
variables electron, is not spatial relationism, but the non-spatial
interrelatedness of intrinsic metaphysical (monad) or physical
(electron) properties—and this demonstrates, once again, the
inability of the substantival/relational distinction to probe the
conceptual depths of the foundational realm of ontology, whether
in the seventeenth century or in modern QG theories.

4. Conclusion

The main goal of this essay has been to expose the limited
capacity of substantivalism and relationism to assess spatial
ontologies by offering an alternative, and more successful, classi-
ficational system. The evidence for the weakness of the substan-
tivalist/relationist dichotomy resides in the uncertainty that
characterizes any application of the distinction, whether in the
seventeenth century or in the context of QG and GR. In its place, a
different set of distinctions has been advanced that concern (i) the
different levels of spatial geometry at the foundational and
secondary levels, and (ii) the platonist/nominalist divide in spatial
geometry at these levels—and these new dichotomies, which more
accurately track the content of both seventeenth century and
modern QG theories, do not naturally align with the substanti-
val/relational distinction, as we have seen. Consider substantival-
ism: with respect to (i), some alleged substantivalists embrace a
similarity of metrical structure at the bodily (secondary) and
foundational level (More, Newton), but some do not (Gassendi);
as regards (ii), some alleged substantivalists favor virtual-
platonism at the secondary level (More, Newton, Gassendi), but
some do not (Barrow). And, while both of the alleged relationists
in our investigation (Descartes, Leibniz) are in the same camp
concerning (i) and (ii), i.e., both posit a difference in metrical and
topological structure at the foundational and secondary levels, as
well as accept geometric nominalism at the secondary level,
modern substantivalism and relationism cannot adequately
explain these similarities since they do not take into account
issues (i) and (ii). For instance, while issue (i) is clearly not a factor
in the modern dichotomy, if the possibility of a vacuum were

invoked as a surrogate for nominalism, our issue (ii), and hence as
a means of separating substantivalists from relationists, then
Leibniz would now count as substantivalist since he admits the
possibility of a vacuum. Therefore, despite the obvious similarities
between Descartes and Leibniz’ theories of space, the substantiv-
alist/relationist dichotomy simply cannot pair them together in a
natural way.

In contrast, our new set of dichotomies concerning the deep
ontology of space does accomplish a number of important goals.
First, it successfully groups together seventeenth century spatial
ontologies that are indeed similar on specific issues, but it also
accounts for their differences concerning other issues: specifically,
Newton and More, but not Gassendi, with FGL(met); Gassendi
with FGL(top); Newton, More and Gassendi with SL(v-plt), Leibniz
and Descartes with FGL(prg); Leibniz, Descartes, and Barrow with
SL(nom). In addition, FL(nom) is upheld by all of the theories
surveyed in our examination, whether in the Early Modern period
or as regards contemporary QG hypotheses (as well as QM and
GR). Second, our two-part dichotomy not only successfully parti-
tions the various QG approaches into natural categories, but, more
importantly (on historical and philosophical grounds), it also
provides a basis for drawing successful analogies with seventeenth
century theories, e.g., Leibniz with the pregeometry of QCH,
Gassendi with the continuous topological structure required for
LQG, and Newton with the fixed background metric in early String
theory. Ironically, our system also successfully accomplishes some
of the goals that have eluded previous assessments that rely upon
the substantival/relational dichotomy to draw historical analogies:
it links Newton, but not Descartes, with geometrodynamics, and
Leibniz and Descartes with a pregeometric subvenient entity
which lacks any continuous degrees of freedom.

Finally, the new taxonomy advanced in this essay has an
important advantage in that it does not utilize nor sanction the
apparently arbitrary and unconstructive ontological distinction
between the sophisticated substantivalist and sophisticated rela-
tionist interpretations of LQG and the metric-field in GR (whether
as an emergent feature of a QG theory or in standard GR). While
the substantivalist/relationist distinction is somewhat serviceable
in the context of macrolevel Newtonian mechanics, it has become
practically dysfunctional in the debates on the status of the
metric-field in GR and in the assessment of QG hypotheses. The
deep ontology of space, which is a paramount concern for
seventeenth century thinkers and QG theorists alike, may now
hopefully prompt a much needed recalibration of the tools used
for ontological appraisal by philosophers of space and time.
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