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Introductory Note

This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory
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Neutrosophic Closed Set and Neutrosophic Continuous

Functions

A. A. Salama, Florentin Smarandache, Valeri Kromov

A.A. Salama, Florentin Smarandache, Valeri Kromov (2014). Neutrosophic Closed Set and Neutrosophic
Continuous Functions. Neutrosophic Sets and Systems, 4, 4-8

Abstract

In this paper, we introduce and study the concept of "neutrosophic closed set "and "neutrosophic continuous function". Possible

application to GIS topology rules are touched upon.

Keywords: Neutrosophic Closed Set, Neutrosophic Set; Neutrosophic Topology; Neutrosophic Continuous Function.

1INTRODUCTION

The idea of "neutrosophic set" was first given by
Smarandache [11, 12]. Neutrosophic operations have been
investigated by Salama at el. [1-10]. Neutrosophy has laid
the foundation for a whole family of new mathematical
theories, generalizing both their crisp and fuzzy
13]. shall

neutrosophic crisp version of these concepts. In this paper,

counterparts  [9, Here we present the

we introduce and study the concept of "neutrosophic closed set

"and "neutrosophic continuous function".
2 TERMINOLOGIES

We recollect some relevant basic preliminaries, and in
particular the work of Smarandache in [11, 12], and
Salama at el. [1-10].

2.1 Definition [5]

A neutrosophic topology (NT for short) an a non empty
set X isa family 7 of neutrosophic subsets in X satisfy-
ing the following axioms

(NT;) Oy L e,
(NT,) G,NG, er foranyG,,G, ez,
(NT,) UG, e V(G iieldlcr

In this case the pair (X .T) is called a neutrosophic

topological space (NTS for short) and any neutrosophic
setin 7 is known as neuterosophic open set (NOS for
short) inX _ The elements of T are called open

neutrosophic sets, A neutrosophic set F is closed if and
only if it C (F) is neutrosophic open.

2.1 Definition [5]
The complement of (C (A) for short) of is called a neutro-
sophic closed set ( for short) in A. NOSA NCS X.

3 Neutrosophic Closed Set .
3.1 Definition

Let (X,7) be a neutrosophic topological space. A
neutrosophic set Ain (X,z) is said to be neutrosophic
closed (in shortly N-closed).
If Ncl (A) < G whenever A ¢ G and G is neutrosophic
open; the complement of neutrosophic closed set is
Neutrosophic open.

3.1 Proposition
If A and B are neutrosophic closed sets then AUB is
Neutrosophic closed set.

3.1 Remark
The intersection of two neutrosophic closed (N-closed
for short) sets need not be neutrosophic closed set.

3.1 Example
Let X ={a, b, c} and
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A =<(0.5,05,05), (0.4,05,0.5), (0.4,0.5,0.5)>
B =<(0.3,0.4,0.4), (0.7,0.5,0.5) , (0.3,0.4,0.4)>
Then T = { Oy,1n, A, B} is a neutrosophic topology on X.
Define the two neutrosophic sets Ay and A, as follows,
A, =<(0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)>
A, =<(0.7,0.6,0.6)(0.3,0.5,0.5),(0.7,0.6,0.6)>
A, and A, are neutrosophic closed set but A M A, is
not a neutrosophic closed set.
3.2 Proposition
Let be a neutrosophic topological space. If B is
neutrosophic closed set and B < A < Ncl (B), then A is
N-closed.

3.4 Proposition

In a Xeatrosophic topological space (X,T), T=3 (the
family of all neutrosophic closed sets) iff every
neutrosophic subset of (X, T) is a neutrosophic closed set.

Proof.

suppose that every neutrosophic set A of (X,T) is N-
closed. Let AeT, since A < A and A is N-closed, Ncl (A)
< A. But A < Ncl (A). Hence, Ncl (A) =A. thus, A € 3.
Therefore, T < 3. If B € 3 then 1-B €T < 3. and hence
BeT, That is, 3 < T. Therefore T=3 conversely, suppose
that A be a neutrosophic set in (X,T). Let B be a
neutrosophic open set in (X,T). such that A < B. By
hypothesis, B is neutrosophic N-closed. By definition of
neutrosophic closure, Ncl (A) < B. Therefore A is N-
closed.

3.5 Proposition

Let (X,T) be a neutrosophic topological space. A
neutrosophic set A is neutrosophic open iff B < NInt (A),
whenever B is neutrosophic closed and B < A.

Proof

Let A a neutrosophic open set and B be a N-closed, such
that B < A. Now, B ¢ A= 1-A =1-B and 1-A is a
neutrosophic closed set = Ncl (1-A) < 1-B. That is,
B=1-(1-B) < 1-Ncl (1-A). But 1-Ncl (1-A) = Nint (A).
Thus, B < Nint (A). Conversely, suppose that A be a
neutrosophic set, such that B < Nint (A) whenever B is
neutrosophic closed and Bc A. Let 1-AcB = 1-B c A.
Hence by assumption 1-B < Nint (A). that is, 1-Nint (A)
c B. But 1-Nint (A) =Ncl (1-A). Hence Ncl(1-A) < B.
That is 1-A is neutrosophic closed set. Therefore, A is
neutrosophic open set

3.6 Proposition
If Nint (A) < B < A and if A is neutrosophic open set
then B is also neutrosophic open set.

Collected Papers, IX

4. Neutrosophic Continuous Functions

4.1 Definition
i) If B?@B,JB,VB) is a NS in Y, then the preimage of B
under ' denoted by f‘l(B), is a NS in X defined by

£8)=( 1 (ue). (o) 104
i) If A=(up, 08, va) is @ NS in X, then the image of A

under f,denoted by f(A), is ghe a NS in Y defined by
F(A) = (1 (n). T (), T(v))).

Here we introduce the properties of images and
preimages some of which we shall frequently use in the
following sections .

4.1 Corollary
Let A, {A:ieJ}, beNSsinX, and

B, {Bj:jeK} NSinY,and f: X »>Ya
function. Then

(@) Ac A = f(A)c f(A),

Bl B, < fH(BY = f7(By),

(b) Ac f7X(f(A) andif f is injective, then
A=f7Y(f(A)).

(c) f7Y(f(B)) =B andif f is surjective, then
f1(f(B) )=B,.

(@) 3B ) =uf i), HAB) ) =B,
(&) tuA)=Uf(A) T(NA)cF(A)andif f isinjective,
then f(nA)=nf(A);

() ) =1y 0N =0y~

(9) f(oy)=0y, f@ay)=1y if T issubjective.

Proof
Obvious.

4.2 Definition

Let (X, 731) and (Y, 77 ) be two NTSs, and let
f : X =Y be afunction. Then f issaid to be continuous
iff the preimage of each NCSin 7, isaNSin/j.

4.3 Definition

Let (X, 73) and (Y, 77 ) be two NTSsand let
f : X > Y be afunction. Then f is said to be open iff the
image of each NS in 77 isaNSin75.

4.1 Example
Let (X, 7, ) and (Y, ) betwo NTSs
(@) If f:X —Y iscontinuous in the usual sense, then in
this case, f is continuous in the sense of Definition 5.1
too. Here we consider the NTs on X and Y, respectively,
as follows : 75 = gﬂe,o,ﬂg> G e ro} and
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I, = g,uH,O,,uﬁz: H eY’O},
In this case we have, for each <yH 0, 14 > ely,
HeY,,
f‘léH 0. 4f, 2 = (1 2un), £70), 7))
=§f wp F(0), (F(w)®) ey,
b) If f:X —Y isneutrosophic open in the usual
sense, then in this case, f is neutrosophic open
in the sense of Definition 3.2.
Now we obtain some characterizations of
neutrosophic continuity:

4.1 Proposition

Let f :(X,Fl)—)(Y,Fz).
f is neutrosop continuous iff the preimage of each NS
(neutrosophic closed set) in 75 isaNSin/5.

4.2 Proposition
The following are equivalent to each other:
(@ f:(X,I7)—> (Y, ) isneutrosophic
continuous .
(b) fL(NInt(B) = NInt(f 1(B)) for each CNS B
inYy.
(©) NCI(f X(B))  f L(NCI(B)) for each NCB in
Y.
4.2 Example
Let (Y,7%) pe a NTS and f ;X —Y be a function. In
this case 77 = ﬁ “L(H):H e I, (is a NT on X. Indeed, it
is the coarsest NT on X which makes the function

f:X —>Y continuous. One may call it the initial
neutrosophic crisp topology with respectto f.

4.4 Definition

Let (X,T) and (Y,S) be two neutrosophic topological space,
then

(@ Amap f: (X,T) - (Y,S) is called N-continuous (in
short N-continuous) if the inverse image of every closed
set in (Y,S) is Neutrosophic closedin (X,T).

(b) A map f:(X,T)— (Y,S) is called neutrosophic-gc
irresolute if the inverse image of every Neutrosophic
closedset in (Y,S) is Neutrosophic closedin (X,T).
Equivalently if the inverse image of every Neutrosophic
open set in (Y,S) is Neutrosophic open in (X, T).

(©) A map f:(XT)—> (Y,S) is said to be strongly
neutrosophic continuous if f(A) is both neutrosophic
open and neutrosophic closed in (X,T) for each
neutrosophic set A in (Y,S).

(d) A map f: (X,T) > (Y,S) is said to be perfectly
neutrosophic continuous if £ (A) is both neutrosophic
open and neutrosophic closed in (X,T) for each
neutrosophic open set A in (Y,S).

() A map f:(X,T)>(Y,S) is said to be strongly N-
continuous if the inverse image of every Neutrosophic
open set in (Y,S) is neutrosophic open in (X,T).
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(F) A map f:(X,T)—>(Y,S) is said to be perfectly N-
continuous if the inverse image of every Neutrosophic
open set in (Y,S) is both neutrosophic open and
neutrosophic closed in (X,T).

4.3 Proposition

Let (X,T) and (Y,S) be any two neutrosophic topological
spaces. Let f: (X, T) — (Y,S) be generalized neutrosophic
continuous. Then for every neutrosophic set A in X,

J(Ncl(A)) < Nel(f(A)).

4.4 Proposition

Let (X,T) and (Y,S) be any two neutrosophic topological
spaces. Let f: (X, T) — (Y,S) be generalized neutrosophic
continuous. Then for every neutrosophic set A in Y,

Nel(/™(A)) < £ (Ncl(A)).

4.5 Proposition

Let (X,T) and (Y,S) be any two neutrosophic topological
spaces. If A is a Neutrosophic closedset in (X,T) and if f :
(X,T) — (Y,S) is neutrosophic continuous and
neutrosophic-closed then f(A) is Neutrosophic closedin
(Y.S).

Proof.

Let G be a neutrosophic-open in (Y,S). If f(A) < G, then
A c fXG) in (X,T). Since A is neutrosophic closedand
fXG) is neutrosophic open in (X,T), Ncl(A) c fY(G),
(i.e) f(Ncl(A)cG. Now by assumption, f(Ncl(A)) is
neutrosophic closed and  Ncl(f(A)) < Ncl(f(Ncl(A))) =
f(Ncl(A)) < G. Hence, f(A) is N-closed.

4.5 Proposition
Let (X,T) and (Y,S) be any two neutrosophic topological
spaces, If f : (X,T) — (Y,S) is neutrosophic continuous
then it is N-continuous.

The converse of proposition 4.5 need not be true. See
Example 4.3.

4.3 Example
Let X ={a,b,c} and Y ={a,b,c}. Define neutrosophic sets A
and B as follows A = ((0.40.40. 5),(0.20.40. 3),(0.40.40 .5))

B = ((0.4,0.5,0.6),(0.30.20. 3),(0.40.50. 6))
Then the family T = {0y, 1y, A} is a neutrosophic topology
on Xand S = {0y, 1y, B} is a neutrosophic topology on
Y. Thus (X,T) and (Y,S) are neutrosophic topological
spaces. Define f: (X,T) —» (Y,S)as f(a) = b, f(b) =a, f(c)
= c. Clearly f is N-continuous. Now f is not neutrosophic
continuous, since f*(B) ¢ T for B € S.

4.4 Example
Let X = {a,b,c}. Define the neutrosophic sets A and B as
follows.

A= ((0.4,05,0.4),(0.5050. 5),(0.4,0.5,0.4))
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B = ((0.7,0.6,0.5),(0.30.40. 5
and C = ((0.50.5,0.5),
T = {0y, 1n, A,B}
and S = {0y, 1y, C} are neutrosophic topologies on X.
Thus (X,T) and (X,S) are neutrosophic topological spaces.
Define f: (X,T) — (X,S) as follows f(a) = b, f(b) =b, f(c)
= c. Clearly f is N-continuous. Since
D = ((0.6,0.6,0.7),(0.40.40 .3), (0.60.60 .7))
is neutrosophic open in (X,S), (D) is not neutrosophic
open in (X,T).
4.6 Proposition
Let (X,T) and (Y,S) be any two neutrosophic topological
space. If f: (X, T) — (Y,S) is strongly N-continuous then
f is neutrosophic continuous.
The converse of Proposition 3.19 is not true. See
Example 3.3

(0.4,0.5,2)'.(%)3,’%04.'2;0?),0. 5))

4.5 Example
Let X ={a,b,c}. Define the neutrosophic sets A and B

as follows.

A =((0.90.90.9),(0.10.10 .1),(0.90.90 .9);

B= ((0.90.90.9),(0.1,0.10),(0.90.10 .8))
and C= ((0.90.90.9),(0.1,00.1),(0.90.90 .9))
T = {On, In, A ,B} and S = {0y, 1y, C} are neutrosophic
topologies on X. Thus (X,T) and (X,S) are neutrosophic
topological spaces. Also define f :(X,T)— (X,S) as follows
f@ = a, f(b) = c, f(c) = b. Clearly f is neutrosophic
continuous. But f is not strongly N-continuous. Since

D = ((0.9,0.9,0.99), (0.0500. 01) , (0.9,0.90 .99))
Is an Neutrosophic open set in (X,S), f (D) is not
neutrosophic open in (X,T).

4.7 Proposition
Let (X,T) and (Y, S) be any two neutrosophic topological
spaces. If f: (X,T) — (Y,S) is perfectly N-continuous then
f is strongly N-continuous.

The converse of Proposition 4.7 is not true. See
Example 4.6

4.6 Example
Let X = {a,b,c}. Define the neutrosophic sets A and B as
follows.

A= ((090.90.9),(0.10.10 .1),(0.90.90 .9))

B = ((0.99,0.99 ,0.99) , (0.01,0,0) , (0.99,0.99 ,0.99) )
And C= ((0.90.90 .9),(0.10.1,0 .05),(0.90.90 .9))
T = {On, In, A ,B} and S = {Oy,1n, C} are neutrosophic
topologies space on X. Thus (X,T) and (X,S) are
neutrosophic topological spaces. Also define f: (X,T) —
(X,S) as follows f(a) = a, f(b) = f(c) =b. Clearly f is
strongly N-continuous. But f is not perfectly N
continuous. Since D = ((0.9,0.9,0.9),(0.10.10 ), (0.9,0.90 .9))

Is an Neutrosophic open set in (X,S), f D) is

neutrosophic open and not neutrosophic closed in (X, T).
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4.8 Proposition
Let (X,T) and (Y,S) be any neutrosophic topological
spaces. If f: (X,T) — (Y,S) is strongly neutrosophic
continuous then f is strongly N-continuous.
The converse of proposition 3.23 is not true. See

Example 4.7
4.7 Example
Let X = {a,b,c} and Define the neutrosophic sets A and B
as follows.

A =((0.9090.9),(0.10.10 .1),(0.90.90 .9))

B = {(0.990.99 0.99) ,(0.0100) ,(0.990.99 0.99) )
and C=((0.9090.9),(0.10.10 .05),(0.90.90 .9))
T = {0y, 1n, A ,B} and S = {0y, 1y, C} are neutrosophic
topologies on X. Thus (X,T) and (X,S) are neutrosophic
topological spaces. Also define f : (X, T) —» (X,S) as
follows: f(a) = a, f(b) = f(c) = b. Clearly f is strongly N-
continuous. But f is not strongly neutrosophic continuous.
Since

D = ((0.9,0.9,0.9), (0.10.10 ), (0.9,0.90 .9))
be a neutrosophic set in (X,S), (D) is neutrosophic open
and not neutrosophic closed in (X,T).

4.9 Proposition

Let (X,T),(Y,S) and (Z,R) be any three neutrosophic
topological spaces. Suppose f : (X,T) - (Y,S), g : (Y,S)
— (Z,R) be maps. Assume f is neutrosophic gc-irresolute
and g is N-continuous then g o f is N-continuous.

4.10 Proposition

Let (X,T), (Y,S) and (Z,R) be any three neutrosophic
topological spaces. Let f : (X,T) = (Y,S), g : (Y,S) >
(Z,R) be map, such that f is strongly N-continuous and g
is N-continuous. Then the composition g o f is
neutrosophic continuous.

4.5 Definition
A neutrosophic topological space (X,T) is said to be
neutrosophic Ty, if every Neutrosophic closed set in (X,T)
is neutrosophic closed in (X, T).
4.11 Proposition

Let (X,T),(Y,S) and (Z,R) be any neutrosophic
topological spaces.  Let f: (X,T) = (Y,S)and g: (Y,S)
— (Z,R) be mapping and (Y,S) be neutrosophic Ty, if f
and g are N-continuous then the composition g o f is N-
continuous.

The proposition 4.11 is not valid if (Y,S) is not

neutrosophic Ty.

4.8 Example
Let X = {a,b,c}. Define the neutrosophic sets A,B and
C as follows.

A= {((0.40.40 .6),(0.40.40 .3)
B = ((0.40.50 .6), (0.30.40 .3)
and C=((0.40.60 .5),(0.50.30 .4))
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Then the family T = {Oy, 1n, A}, S = {Oy, 1n, B} and R =
{On, 1y, C} are neutrosophic topologies on X. Thus
(X,T),(X,S) and (X,R) are neutrosophic topological spaces.
Also define f: (X, T) > (X,S) as f(a) = b, f(b) =a, f(c) =
cand g : (X,S) > (X,R) as g(a) = b, g(b) = ¢, g(c) = b.
Clearly f and g are N-continuous function. But g o f is not
N-continuous. For 1 — C is neutrosophic closed in (X,R).
FYg*(1-C)) is not N closed in (X,T). g o f is not N-

continuous.
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Soft neutrosophic semigroups
and their generalization

Mumtaz Ali, Muhammad Shabir, Munazza Naz, Florentin Smarandache

Mumtaz Ali, Muhammad Shabir, Munazza Naz, Florentin Smarandache (2014). Soft
neutrosophic semigroups and their generalization. Scientia Magna 10(1), 93-111

Abstract Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not
clearly defined objects. In this paper we introduced soft neutrosophic semigroup,soft
neutosophic bisemigroup, soft neutrosophic N-semigroup with the discuissionf of some of their
characteristics. We also introduced a new type of soft neutrophic semigroup, the so called soft
strong neutrosophic semigoup which is of pure neutrosophic character. This notion also foound
in all the other corresponding notions of soft neutrosophic thoery. We also given some of their
properties of this newly born soft structure related to the strong part of neutrosophic theory.

Keywords Neutrosophic semigroup, neutrosophic bisemigroup, neutrosophic N-semigroup,
soft set, soft semigroup, soft neutrosophic semigroup, soft neutrosophic bisemigroup, soft ne-

utrosophic N-semigroup.

§1. Introduction and preliminaries

Florentine Smarandache for the first time introduced the concept of neutrosophy in 1995,
which is basically a new branch of philosophy which actually studies the origin, nature, and
scope of neutralities. The neutrosophic logic came into being by neutrosophy. In neutro-
sophic logic each proposition is approximated to have the percentage of truth in a subset T,
the percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F.
Neutrosophic logic is an extension of fuzzy logic. In fact the neutrosophic set is the generaliza-
tion of classical set, fuzzy conventional set, intuitionistic fuzzy set, and interval valued fuzzy
set. Neutrosophic logic is used to overcome the problems of impreciseness, indeterminate, and
inconsistencies of date etc. The theory of neutrosophy is so applicable to every field of alge-
bra. W. B. Vasantha Kandasamy and Florentin Smarandache introduced neutrosophic fields,
neutrosophic rings,neutrosophic vector spaces,neutrosophic groups,neutrosophic bigroups and

neutrosophic N-groups, neutrosophic semigroups, neutrosophic bisemigroups, and neutrosophic
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N-semigroups, neutrosophic loops, nuetrosophic biloops, and neutrosophic N-loops, and so on.
Mumtaz ali et al. introduced nuetrosophic L A-semigroups.

Molodtsov introduced the theory of soft set. This mathematical tool is free from parame-
terization inadequacy, syndrome of fuzzy set theory, rough set theory, probability theory and so
on. This theory has been applied successfully in many fields such as smoothness of functions,
game theory, operation research, Riemann integration, Perron integration, and probability. Re-
cently soft set theory attained much attention of the researchers since its appearance and the
work based on several operations of soft set introduced in [2,9, 10]. Some properties and algebra
may be found in [1]. Feng et al. introduced soft semirings in [5]. By means of level soft sets
an adjustable approach to fuzzy soft set can be seen in [6]. Some other concepts together with
fuzzy set and rough set were shown in [7, 8].

This paper is about to introduced soft nuetrosophic semigroup, soft neutrosophic group,
and soft neutrosophic N-semigroup and the related strong or pure part of neutrosophy with the
notions of soft set theory. In the proceeding section, we define soft neutrosophic semigroup, soft
neutrosophic strong semigroup, and some of their properties are discussed. In the next section,
soft neutrosophic bisemigroup are presented with their strong neutrosophic part. Also in this
section some of their characterization have been made. In the last section soft neutrosophic
N-semigroup and their corresponding strong theory have been constructed with some of their

properties.

§2. Definition and properties

Definition 2.1. Let S be a semigroup, the semigroup generated by S and I i.e. SUT
denoted by (SUT) is defined to be a neutrosophic semigroup where I is indeterminacy element
and termed as neutrosophic element.

It is interesting to note that all neutrosophic semigroups contain a proper subset which is
a semigroup.

Example 2.1. Let Z = {the set of positive and negative integers with zero}, Z is only
a semigroup under multiplication. Let N(S) = {{(ZUI)} be the neutrosophic semigroup under
multiplication. Clearly Z C N(S) is a semigroup.

Definition 2.2. Let N(S) be a neutrosophic semigroup. A proper subset P of N(5) is
said to be a neutrosophic subsemigroup, if P is a neutrosophic semigroup under the operations
of N(S). A neutrosophic semigroup N (S) is said to have a subsemigroup if N(S) has a proper
subset which is a semigroup under the operations of N(S).

Theorem 2.1. Let N(S) be a neutrosophic semigroup. Suppose P; and P, be any two
neutrosophic subsemigroups of N(.S) then PyUP, (i.e. the union) the union of two neutrosophic
subsemigroups in general need not be a neutrosophic subsemigroup.

Definition 2.3. A neutrosophic semigroup N(S) which has an element e in N(.S) such
that exs = sxe = s for all s € N(S5), is called as a neutrosophic monoid.

Definition 2.4. Let N(S) be a neutrosophic monoid under the binary operation .
Suppose e is the identity in N(.9), that is sxe = e*x s = s for all s € N(S). We call a proper
subset P of N(S) to be a neutrosophic submonoid if
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1. P is a neutrosophic semigroup under .

2. e € P, i.e., Pis a monoid under .

Definition 2.5. Let N(S) be a neutrosophic semigroup under a binary operation .
P be a proper subset of N(S). P is said to be a neutrosophic ideal of N(S) if the following
conditions are satisfied.

1. P is a neutrosophic semigroup.

2. For all p € P and for all s € N(S) we have p * s and s * p are in P.

Definition 2.6. Let N(S) be a neutrosophic semigroup. P be a neutrosophic ideal of
N(S), P is said to be a neutrosophic cyclic ideal or neutrosophic principal ideal if P can be
generated by a single element.

Definition 2.7. Let (BN(S), *,0) be a nonempty set with two binary operations x and
0. (BN(S),*,0) is said to be a neutrosophic bisemigroup if BN(S) = P1 U P2 where atleast
one of (P1,x) or (P2,0) is a neutrosophic semigroup and other is just a semigroup. P1 and P2
are proper subsets of BN(S), i.e. P1 & P2.

If both (P1,x*) and (P2,0) in the above definition are neutrosophic semigroups then we
call (BN (S), %, 0) a strong neutrosophic bisemigroup. All strong neutrosophic bisemigroups are
trivially neutrosophic bisemigroups.

Example 2.2. Let (BN(S),*,0) = {0,1,2,3,1,21,31,5(3),%,0} = (P1,*) U (Ps,0)
where (P, %) ={0,1,2,3,1,21,3I,+} and (P, 0) = (S(3),0). Clearly (P1,x*) is a neutrosophic
semigroup under multiplication modulo 4. (Ps,0) is just a semigroup. Thus (BN(S),*,0) is a
neutrosophic bisemigroup.

Definition 2.8. Let (BN(S) = P1U P2;0,x) be a neutrosophic bisemigroup. A proper
subset (T, 0, %) is said to be a neutrosophic subbisemigroup of BN(\S) if

1. T=T1UT2 where T1=P1NT and T2 =P2NT.

2. At least one of (T'1,0) or (T2, *) is a neutrosophic semigroup.

Definition 2.9. Let (BN(S) = P, U P»,0,%) be a neutrosophic strong bisemigroup. A
proper subset T of BN(.S) is called the strong neutrosophic subbisemigroup if T' = T7 U T, with
Ty = PrNT and T, = P, NT and if both (77, %) and (7%, 0) are neutrosophic subsemigroups of
(Py,*) and (P2, 0) respectively. We call T = T UT5; to be a neutrosophic strong subbisemigroup,
if atleast one of (T1,%) or (Tz,0) is a semigroup then T' = Tj U T, is only a neutrosophic
subsemigroup.

Definition 2.10. Let (BN(S) = P; U Py%,0) be any neutrosophic bisemigroup. Let J
be a proper subset of B(NS) such that J; = JN Py and Jo = J N P» are ideals of P; and P
respectively. Then .J is called the neutrosophic bi-ideal of BN (S).

Definition 2.11. Let (BN(S), *, 0) be a strong neutrosophic bisemigroup where BN (S) =
Py U P, with (Pr,*) and (Py, 0) be any two neutrosophic semigroups. Let J be a proper subset
of BN(S) where I = I Uy with Iy = JN P; and I, = J N P, are neutrosophic ideals of
the neutrosophic semigroups P; and P, respectively. Then I is called or defined as the strong
neutrosophic bi-ideal of B(N(5)).

Union of any two neutrosophic bi-ideals in general is not a neutrosophic bi-ideal. This is
true of neutrosophic strong bi-ideals.

Definition 2.12. Let {S(N),*1,...,*x} be a non empty set with N-binary operations
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defined on it. We call S(N) a neutrosophic N-semigroup (N a positive integer) if the following
conditions are satisfied.

1. S(N) =51 U...USy where each S; is a proper subset of S(N) i.e. S; & Sjor S; & S;
if i # 5.

2. (S;,*;) is either a neutrosophic semigroup or a semigroup for i = 1,2,..., N.

If all the N-semigroups (S, i) are neutrosophic semigroups (i.e. for i = 1,2,..., N) then
we call S(IV) to be a neutrosophic strong N-semigroup.

Example 2.3. Let S(IV) = {S1US2US3USy, 1, x2, *3, ¥4} be a neutrosophic 4-semigroup
where

S1 = {Z12, semigroup under multiplication modulo 12}.

Sy =4{0,1,2,3,1,2I,31, semigroup under multiplication modulo 4}, a neutrosophic semi-
group.

a b

S3 = o ;a,b,e,d € (RUI) p, neutrosophic semigroup under matrix multiplica-
tion and Sy = (Z U I), neutrosophic semigroup under multiplication.

Definition 2.13. Let S(N) = {S; USyU...U SN, *1,...,%y} be a neutrosophic N-
semigroup. A proper subset P = {P; U P, U...U Py, *1,%2,...,%y} of S(N) is said to be a
neutrosophic Nsubsemigroup if P, = PN S;,i = 1,2,..., N are subsemigroups of S; in which
atleast some of the subsemigroups are neutrosophic subsemigroups.

Definition 2.14. Let S(N)={S1 US2U...USN,*1,...,%n} be a neutrosophic strong
N-semigroup. A proper subset T = {T3 UTo U ... UTy,*1,...,%x} of S(N) is said to be a
neutrosophic strong sub N-semigroup if each (T, *;) is a neutrosophic subsemigroup of (S;, ;)
fort=1,2,...,N where T; =T NS,.

If only a few of the (T, *i) in T are just subsemigroups of (Si,*i) (i.e. (T%,xi) are not
neutrosophic subsemigroups then we call T' to be a sub N-semigroup of S(N).

Definition 2.15. Let S(N) = {S1 U Sy U...USnN,*1,...,%x} be a neutrosophic N-
semigroup. A proper subset P = {Py U P, U...U Py,#1,...,xy} of S(N) is said to be a
neutrosophic N-subsemigroup, if the following conditions are true,

i. P is a neutrosophic sub N-semigroup of S(NV).

ii. Each P, =PnNS;,i=1,2,...,N is an ideal of 5.

Then P is called or defined as the neutrosophic N-ideal of the neutrosophic N-semigroup
S(N).

Definition 2.16. Let S(N)={S; US> U...USN,*1,...,*n} be a neutrosophic strong
N-semigroup. A proper subset J = {[ Ul U...UIx} where I, =JNS; fort =1,2,...,N is
said to be a neutrosophic strong N-ideal of S(N) if the following conditions are satisfied.

1. Each is a neutrosophic subsemigroup of S;,t = 1,2,..., N ie. It is a neutrosophic
strong N-subsemigroup of S(V).

2. Each is a two sided ideal of Sy for t =1,2,..., V.

Similarly one can define neutrosophic strong N-left ideal or neutrosophic strong right ideal
of S(N).

A neutrosophic strong N-ideal is one which is both a neutrosophic strong N-left ideal and
N-right ideal of S(N).
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Throughout this subsection U refers to an initial universe, E is a set of parameters, P(U)
is the power set of U, and A C E. Molodtsov (12 defined the soft set in the following manner:

Definition 2.17. A pair (F, A) is called a soft set over U where F is a mapping given
by FF: A— P(U).
In other words, a soft set over U is a parameterized family of subsets of the universe U.

For e € A, F(e) may be considered as the set of e-elements of the soft set (F, A), or as the set
of e-approximate elements of the soft set.

Example 2.4. Suppose that U is the set of shops. FE is the set of parameters and each
parameter is a word or senctence. Let E={high rent, normal rent, in good condition, in bad
condition}. Let us consider a soft set (F, A) which describes the attractiveness of shops that Mr.
Z is taking on rent. Suppose that there are five houses in the universe U = {hq, ho, hs3, ha, h5}
under consideration, and that A = {eq, e, e3} be the set of parameters where

e stands for the parameter high rent.

eo stands for the parameter normal rent.

es stands for the parameter in good condition.

Suppose that

F(e1) = {h1, ha}.

F(e3) = {ha, hs}.

F(e3) = {hg, ha, hs5}.

The soft set (F, A) is an approximated family {F(e;),7 = 1,2,3} of subsets of the set U

which gives us a collection of approximate description of an object. Thus, we have the soft set

(F, A) as a collection of approximations as below:

(F, A) = {high rent = {hq, hs}, normal rent = {ho, hs}, in good condition = {hs, ha, hs}}.

Definition 2.18. For two soft sets (F, A) and (H, B) over U, (F, A) is called a soft subset
of (H,B) it

1. ACB.

2. F(e) CGle), for all e € A.

This relationship is denoted by (F, A) c (H, B). Similarly (F, A) ichaHed a soft superset
of (H, B) if (H, B) is a soft subset of (F, A) which is denoted by (F, A) D (H, B).

Definition 2.19. Two soft sets (F, A) and (H, B) over U are called soft equal if (F, A)
is a soft subset of (H, B) and (H, B) is a soft subset of (F, A).

Definition 2.20. (F, A) over U is called an absolute soft set if F'(e) = U for all e € A
and we denote it by U.

Definition 2.21. Let (F, A) and (G, B) be two soft sets over a common universe U such
that AN B # ¢. Then their restricted intersection is denoted by(F, A) Nr (G, B) = (H,C)
where (H,C) is defined as H(c) = F(¢)NG(c) forall ce C = AN B.

Definition 2.22. The extended intersection of two soft sets (F, A) and (G, B) over a
common universe U is the soft set (H,C), where C = AU B, and for all e € C, H(e) is defined
as
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F(e), ifee A— B,
H(e) = G(e), ifee B— A,
F(e)nGle), ifee ANB.

We write (F, A) N. (G, B) = (H,C).

Definition 2.23. The resticted union of two soft sets (F, A) and (G, B) over a common
universe U is the soft set (H,C), where C' = AU B, and for all e € C, H(e) is defined as the
soft set (H,C) = (F,A) Ug (G, B) where C = AN B and H(c) = F(c) UG(c) for all c € C.

Definition 2.24. The extended union of two soft sets (F, A) and (G, B) over a common
universe U is the soft set (H,C), where C = AU B, and for all e € C, H(e) is defined as

F(e), ifee A— B,
He) = G(e), ifee B— A,
F(e) UGle), ifee ANB.
We write (F, A) U (G, B) = (H,C).
Definition 2.25. A soft set (F, A) over S is called a soft semigroup over S if (F, A)
(F,A) C (F,A).
It is easy to see that a soft set (F, A) over S is a soft semigroup if and only if ¢ # F (a) is

A
o

a subsemigroup of S.

Definition 2.26. A soft set (F, A) over a semigroup S is called a soft left (right) ideal
over S, if (S, FE) C (F,A),((F,A) C (S,E)).

A soft set over S is a soft ideal if it is both a soft left and a soft right ideal over S.

Proposition 2.1. A soft set (F, A) over S is a soft ideal over S if and only if ¢ # F (a)
is an ideal of S.

Definition 2.27. Let (G, B) be a soft subset of a soft semigroup (F, A) over S, then
(G, B) is called a soft subsemigroup (ideal) of (F, A) if G (b) is a subsemigroup (ideal) of F' (b)
for all b € A.

83. Soft neutrosophic semigroup

Definition 3.1. Let N(S) be a neutrosophic semigroup and (F, A) be a soft set over
N(S). Then (F,A) is called soft neutrosophic semigroup if and only if F'(e) is neutrosophic
subsemigroup of N(S), for all e € A.

Equivalently (F, A) is a soft neutrosophic semigroup over N(S) if (F, A) 5 (F,A) C (F,A),
where Ny (s),4) # (F, A) # ¢.

Example 3.1. Let N(S) = (Z* U {0}* U {I}) be a neutrosophic semigroup under
+. Consider P = (2ZT UI) and R = (3Z% U I) are neutrosophic subsemigroup of N(S).
Then clearly for all e € A, (F, A) is a soft neutrosophic semigroup over N(S), where F(x1) =
{2ZTu D)}, F(zo) ={(3Z1TUI)}.

Theorem 3.1. A soft neutrosophic semigroup over N(.S) always contain a soft semigroup

over S.
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Proof. The proof of this theorem is straight forward.

Theorem 3.2. Let (F, A) and (H, A) be two soft neutrosophic semigroups over N ().
Then their intersection (F, A) N (H, A) is again soft neutrosophic semigroup over N(.5).

Proof. The proof is staight forward.

Theorem 3.3. Let (F,A) and (H, B) be two soft neutrosophic semigroups over N(.5).
If AN B = ¢, then (F, A) U (H, B) is a soft neutrosophic semigroup over N(S).

Remark 3.1. The extended union of two soft neutrosophic semigroups (F, A) and (K, B)
over N(S) is not a soft neutrosophic semigroup over N(S).

We take the following example for the proof of above remark.

Example 3.2. Let N(S) = (ZT UI) be the neutrosophic semigroup under +. Take
P ={(2ZtUI)} and P, = {(3Z1T UI)} to be any two neutrosophic subsemigroups of N(S).
Then clearly for all e € A, (F, A) is a soft neutrosophic semigroup over N(S), where F(z1) =
{2ZTu D)}, F(z) ={(3ZTUI)}.

Again Let Ry = {(5ZTUI)} and Ry = {(4Z7 UI)} be another neutrosophic subsemigroups
of N(S) and (K, B) is another soft neutrosophic semigroup over N (), where K (z1) = {(5Z1U
N}, K(zs) ={{42T v D)}

Let C = AU B. The extended union (F,A) U, (K,B) = (H,C) where z; € C, we
have H(z1) = F(z1) U K(x1) is not neutrosophic subsemigroup as union of two neutrosophic
subsemigroup is not neutrosophic subsemigroup.

Proposition 3.1. The extended intersection of two soft neutrosophic semigroups over
N(S) is soft neutrosophic semigruop over N(S).

Remark 3.2. The restricted union of two soft neutrosophic semigroups (F, A) and (K, B)
over N(S) is not a soft neutrosophic semigroup over N(S).

We can easily check it in above example.

Proposition 3.2. The restricted intersection of two soft neutrosophic semigroups over
N(S) is soft neutrosophic semigroup over N ().

Proposition 3.3. The AND operation of two soft neutrosophic semigroups over N (S5)
is soft neutrosophic semigroup over N(S).

Proposition 3.4. The OR operation of two soft neutosophic semigroup over N(S) may
not be a soft nuetrosophic semigroup over N (S).

Definition 3.2. Let N(S) be a neutrosophic monoid and (F, A) be a soft set over N(.5).
Then (F, A) is called soft neutrosophic monoid if and only if F'(e) is neutrosophic submonoid
of N(S), for all x € A.

Example 3.3. Let N(S) = (ZUI) be a neutrosophic monoid under +. Let P = (2ZUI)
and @ = (3Z U I) are neutrosophic submonoids of N(S). Then (F, A) is a soft neutrosophic
monoid over N(S), where F(x1) = {(2ZUI)},F(z2) = {(3ZUI)}.

Theorem 3.4. Every soft neutrosophic monoid over N(S) is a soft neutrosophic semi-
group over N(S) but the converse is not true in general.

Proof. The proof is straightforward.

Proposition 3.5. Let (F, A) and (K, B) be two soft neutrosophic monoids over N ().
Then
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1. Their extended union (F, A) U, (K, B) over N(S) is not soft neutrosophic monoid over

N(S).

2. Their extended intersection (F, A) N, (K, B) over N(S) is soft neutrosophic monoid over
N(S).

3. Their restricted union (F, A) Ug (K, B) over N(S) is not soft neutrosophic monoid over
N(S).

4. Their restricted intersection (F,A) N (K, B) over N(S) is soft neutrosophic monoid
over N(S).

Proposition 3.6. Let (F,A) and (H, B) be two soft neutrosophic monoid over N(S).
Then

1. Their AN D operation (F, A) A (H, B) is soft neutrosophic monoid over N(.59).

2. Their OR operation (F, A) V (H, B) is not soft neutrosophic monoid over N(S).

Definition 3.3. Let (F, A) be a soft neutrosophic semigroup over N(S), then (F, A) is
called Full-soft neutrosophic semigroup over N(S) if F(z) = N(S), for all z € A. We denote it
by N(S).

Theorem 3.5. Every Full-soft neutrosophic semigroup over N (S) always contain absolute
soft semigroup over S.

Proof. The proof of this theorem is straight forward.

Definition 3.4. Let (F, A) and (H, B) be two soft neutrosophic semigroups over N(.5).
Then (H, B) is a soft neutrosophic subsemigroup of (F, A), if

1. BCA.

2. H(a) is neutrosophic subsemigroup of F'(a), for all a € B.

Example 3.4. Let N(S) = (ZUI) be a neutrosophic semigroup under +. Then (F, A) is a
soft neutrosophic semigroup over N(S), where F'(z1) = {(2ZU )}, F(x2) ={(8ZUI)},F(z3) =
{{(6ZzU1I)}.

Let B = {1, 22} C A. Then (H, B) is soft neutrosophic subsemigroup of (F, A) over N (),
where H(z1) = {(4ZUI)} , H(z2) ={(6ZUI)}.

Theorem 3.6. A soft neutrosophic semigroup over N(S) have soft neutrosophic sub-
semigroups as well as soft subsemigroups over N(S).

Proof. Obvious.

Theorem 3.7. FEvery soft semigroup over S is always soft neutrosophic subsemigroup of
soft neutrosophic semigroup over N (S).

Proof. The proof is obvious.

Theorem 3.8. Let (F, A) be a soft neutrosophic semigroup over N (S) and {(H;, B;);i € I'}
is a non empty family of soft neutrosophic subsemigroups of (F, A) then

1. Ner (H;, B;) is a soft neutrosophic subsemigroup of (F, A).

2. Nier (Hy, B;) is a soft neutrosophic subsemigroup of A;cr (F, A).

3. Uier (H;, B;) is a soft neutrosophic subsemigroup of (F, A) if B; N B; = ¢, for all i # j.

Proof. Straightforward.

Definition 3.5. A soft set (F, A) over N(5) is called soft neutrosophic left (right) ideal
over N(S) if N(S) 5 (F,A) C (F,A), where N(N(S)’A) # (F,A) # qNS and N(S) is Full-soft

neutrosophic semigroup over N(.5).
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A soft set over N(S) is a soft neutrosophic ideal if it is both a soft neutrosophic left and a
soft neutrosophic right ideal over N(S).

Example 3.5. Let N(S) = (ZUI) be the neutrosophic semigroup under multiplication.
Let P =(2ZUI) and Q = (4Z U I) are neutrosophic ideals of N(S). Then clearly (F, A) is a
soft neutrosophic ideal over N(S), where F(z1) = {(2ZUI)},F(z2) = {{(4ZUI)}.

Proposition 3.7. (F, A) is soft neutrosophic ideal if and only if F(x) is a neutrosophic
ideal of N(S), for all x € A.

Theorem 3.9. Every soft neutrosophic ideal (F, A) over N (S) is a soft neutrosophic
semigroup but the converse is not true.

Proposition 3.8. Let (F, A) and (K, B) be two soft neutrosophic ideals over N(\5).
Then

1. Their extended union (F, A) U, (K, B) over N(S) is soft neutrosophic ideal over N(S).

2. Their extended intersection (F, A) N, (K, B) over N(S) is soft neutrosophic ideal over
N(S).

3. Their restricted union (F, A) Ug (K, B) over N(S) is soft neutrosophic ideal over N(.5).

4. Their restricted intersection (F, A) N. (K, B) over N(S) is soft neutrosophic ideal over
N(S).

Proposition 3.9.

1. Let (F, A) and (H, B) be two soft neutrosophic ideal over N(5).

2. Their AND operation (F, A) A (H, B) is soft neutrosophic ideal over N(.5).

3. Their OR operation (F, A) V (H, B) is soft neutrosophic ideal over N(S).

Theorem 3.10. Let (F, A) and (G, B) be two soft semigroups (ideals) over S and T
respectively. Then (F, A) x (G, B) is also a soft semigroup (ideal) over S x T.

Proof. The proof is straight forward.

Theorem 3.11. Let (F, A) be a soft neutrosophic semigroup over N (S) and {(H;, B;);i € I}
is a non empty family of soft neutrosophic ideals of (F, A) then

1. NMier (H;, B;) is a soft neutrosophic ideal of (F, A).

2. Nier (Hy, B;) is a soft neutrosophic ideal of Ay (F, A).

3. User (H;, B;) is a soft neutrosophic ideal of (F, A).

4. Vier (H;, B;) is a soft neutrosophic ideal of Ve (F, A).

Definition 3.6. A soft set (F, A) over N(S) is called soft neutrosophic principal ideal
or soft neutrosophic cyclic ideal if and only if F(z) is a principal or cyclic neutrosophic ideal of
N(S), for all z € A.

Proposition 3.10. Let (F, A) and (K, B) be two soft neutrosophic principal ideals over
N(S). Then

1. Their extended union (F, A) U, (K, B) over N(S) is not soft neutrosophic principal ideal
over N(S).

2. Their extended intersection (F, A) N. (K, B) over N(S) is soft neutrosophic principal
ideal over N(S).

3. Their restricted union (F, A) Ug (K, B) over N(S) is not soft neutrosophic principal
ideal over N(S).
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4. Their restricted intersection (F, A) N. (K, B) over N(S) is soft neutrosophic principal
ideal over N(S).

Proposition 3.11. Let (F, A) and (H, B) be two soft neutrosophic principal ideals over
N(S). Then

1. Their AN D operation (F, A) A (H, B) is soft neutrosophic principal ideal over N(.5).

2. Their OR operation (F, A) V (H, B) is not soft neutrosophic principal ideal over N(S).

§3. Soft neutrosophic bisemigroup

Definition 3.1. Let {BN (S), *1,*2} be a neutrosophic bisemigroup and let (F, A) be
a soft set over BN(S). Then (F, A) is said to be soft neutrosophic bisemigroup over BN (G) if
and only if F(x) is neutrosophic subbisemigroup of BN(G) for all x € A.

Example 3.1. Let BN(S) ={0,1,2,1,21,(Z UI), x,+} be a neutosophic bisemigroup.
Let T = {0,1,21,(2Z U I),x,+},P = {0,1,2,(56Z UI),x,+} and L = {0,1,2,Z, x, +} are
neutrosophic subbisemigroup of BN (S). The (F, A) is clearly soft neutrosophic bisemigroup
over BN (S), where F' (z1) = {0,1,2I,(2ZUI), x,+}, F (x2) ={0,1,2,(5ZUI), x,+}, F (z3) =
{0,1,2,Z, %, +}.

Theorem 3.1. Let (F, A) and (H, A) be two soft neutrosophic bisemigroup over BN (S).
Then their intersection (F, A) N (H, A) is again a soft neutrosophic bisemigroup over BN (S).

Proof. Straightforward.

Theorem 3.2. Let (F, A) and (H, B) be two soft neutrosophic bisemigroups over BN (S)
such that AN B = ¢, then their union is soft neutrosophic bisemigroup over BN (.S).

Proof. Straightforward.

Proposition 3.1. Let (F,A) and (K, B) be two soft neutrosophic bisemigroups over
BN(S). Then

1. Their extended union (F, A) U, (K, B) over BN (S) is not soft neutrosophic bisemigroup
over BN (S).

2. Their extended intersection (F, A)N. (K, B) over BN(.S) is soft neutrosophic bisemigroup
over BN (S).

3. Their restricted union (F, A)Ug (K, B) over BN () is not soft neutrosophic bisemigroup
over BN (S).

4. Their restricted intersection (F, A) N. (K, B) over BN(S) is soft neutrosophic bisemi-
group over BN(S).

Proposition 3.2. Let (F,A) and (K, B) be two soft neutrosophic bisemigroups over
BN(S). Then

1. Their AN D operation (F, A) A (K, B) is soft neutrosophic bisemigroup over BN (S).

2. Their OR operation (F, A) V (K, B) is not soft neutrosophic bisemigroup over BN (S).

Definition 3.2. Let (F, A) be a soft neutrosophic bisemigroup over BN (), then (F, A)
is called Full-soft neutrosophic bisemigroup over BN (S) if F'(z) = BN(S), for all x € A. We
denote it by BN(S).

Definition 3.3.  Let (F,A) and (H, B) be two soft neutrosophic bisemigroups over
BN(S). Then (H, B) is a soft neutrosophic subbisemigroup of (F, A), if
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1. BCA.

2. H(x) is neutrosophic subbisemigroup of F(z), for all € B.

Example 3.2. Let BN(S)={0,1,2,1,21,(ZUI), x,+} be a neutosophic bisemigroup.
Let T = {0,1,21,(2Z UI),x,+},P = {0,1,2, (52 U I}, x,+} and L = {0,1,2,Z, x,+} are
neutrosophic subbisemigroup of BN (S). The (F, A) is clearly soft neutrosophic bisemigroup
over BN (S), where F' (x1) = {0,1,2I,(2ZUI), x,+}, F (x2) ={0,1,2,(5ZUI), x,+}, F (z3) =
{0,1,2, 2, %, +}.

Then (H, B) is a soft neutrosophic subbisemigroup of (F, A), where H (z1) = {0,1,{(4Z U 1),
x,+}, H (z3) ={0,1,4Z, x,+} .

Theorem 3.3. Let (F, A) be a soft neutrosophic bisemigroup over BN (S) and {(H;, B;) ;
i € I'} be a non-empty family of soft neutrosophic subbisemigroups of (F, A) then

1. Ner (H;, B;) is a soft neutrosophic subbisemigroup of (F, A).

2. Nier (Hy, B;) is a soft neutrosophic subbisemigroup of Ay (F, A).

3. Ujer (H;, B;) is a soft neutrosophic subbisemigroup of (F, A) if B;NB; = ¢, for all i # j.

Proof. Straightforward.

Theorem 3.4. (F, A) is called soft neutrosophic biideal over BN (S) if F(x) is neutro-
sophic biideal of BN (S), for all z € A.

Example 3.3. Let BN(S) = ({{Z U I),0,1,2,1,21,+, x}(x under multiplication
modulo 3)). Let T = {(2Z U I),0,1,1,2,+,x} and J = {(8Z U I),{0,1,1,2]},+x} are
ideals of BN (S). Then (F,A) is soft neutrosophic biideal over BN (S), where F (x1) =
{(2ZU1),0,1,1,21,+, x}, F (z2) = {(82 UT),{0,1,1,21},+x}.

Theorem 3.5. Every soft neutrosophic biideal (F, A) over BS (N) is a soft neutrosophic
bisemigroup but the converse is not true.

Proposition 3.3. Let (F, A) and (K, B) be two soft neutrosophic biideals over BN (S).

Then

1. Their extended union (F, A) U, (K, B) over BN (S) is not soft neutrosophic biideal over
BN(S).

2. Their extended intersection (F, A) N. (K, B) over BN(S) is soft neutrosophic biideal
over BN (S).

3. Their restricted union (F, A) Ug (K, B) over BN (S) is not soft neutrosophic biideal over
BN(S).

4. Their restricted intersection (F, A) N. (K, B) over BN(S) is soft neutrosophic biideal
over BN (S).

Proposition 3.4. Let (F, A) and (H, B) be two soft neutrosophic biideal over BN ().
Then

1. Their AND operation (F, A) A (H, B) is soft neutrosophic biideal over BN(SS).

2. Their OR operation (F, A) V (H, B) is not soft neutrosophic biideal over BN (S).

Theorem 3.6.

Let (F, A) be a soft neutrosophic bisemigroup over BN (S) and {(H;, B;);¢ € I} is a non
empty family of soft neutrosophic biideals of (F, A) then

1. Nier (H;, B;) is a soft neutrosophic biideal of (F, A).

2. Nier (H;, B;) is a soft neutrosophic biideal of A;er (F, A).
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84. Soft neutrosophic strong bisemigroup

Definition 4.1. Let (F, A) be a soft set over a neutrosophic bisemigroup BN (S). Then
(F, A) is said to be soft strong neutrosophic bisemigroup over BN(G) if and only if F(x) is
neutrosophic strong subbisemigroup of BN(G) for all z € A.

Example 4.1. Let BN(S) ={0,1,2,1,21,(ZUI), x,+} be a neutrosophic bisemigroup.
Let T = {0,1,2I,(2Z U1I),x,+} and R = {0,1,1,(4Z U I),x,+} are neutrosophic strong
subbisemigroups of BN (). Then (F, A) is soft neutrosophic strong bisemigroup over BN (.5),
where F' (x1) ={0,1,2I,(2ZUI), x,+}, F (z2) ={0,1,1,(4Z UI), x,+}.

Theorem 4.1. Every soft neutrosophic strong bisemigroup is a soft neutrosophic bisemi-
group but the converse is not true.

Proposition 4.1. Let (F, A) and (K, B) be two soft neutrosophic strong bisemigroups
over BN(S). Then

1. Their extended union (F,A) U, (K, B) over BN(S) is not soft neutrosophic strong
bisemigroup over BN (S).

2. Their extended intersection (F,A) N. (K, B) over BN(S) is soft neutrosophic stong
bisemigroup over BN (S).

3. Their restricted union (F,A) Ugr (K, B) over BN(S) is not soft neutrosophic stong
bisemigroup over BN (S).

4. Their restricted intersection (F, A) N, (K, B) over BN(S) is soft neutrosophic strong
bisemigroup over BN (S).

Proposition 4.2. Let (F,A) and (K, B) be two soft neutrosophic strong bisemigroups
over BN(S). Then

1. Their AND operation (F,A) A (K, B) is soft neutrosophic strong bisemigroup over
BN(S).
2. Their OR operation (F, A) V (K, B) is not soft neutrosophic strong bisemigroup over
BN(S).

Definition 4.2. Let (F, A) and (H, B) be two soft neutrosophic strong bisemigroups
over BN(S). Then (H, B) is a soft neutrosophic strong subbisemigroup of (F, A), if

1. BC A.

2. H(x) is neutrosophic strong subbisemigroup of F(x), for all z € B.

Example 4.2. Let BN(S) ={0,1,2,1,21,(ZUI), x,+} be a neutrosophic bisemigroup.
Let T = {0,1,2I,(2Z U1I),x,4+} and R = {0,1,1,{(4Z UI),x,+} are neutrosophic strong
subbisemigroups of BN (S). Then (F, A) is soft neutrosophic strong bisemigroup over BN (.5),
where F (z1) ={0,1,21,(2ZUI), x,+}, F (x2) ={0,1,(4Z UI), x,+}.

Then (H,B) is a soft neutrosophic strong subbisemigroup of (F,A), where H (z1) =
{0,1,(4ZU1), %, +}.

Theorem 4.2. Let (F, A) be a soft neutrosophic strong bisemigroup over BN (S) and
{(H;, B;);i € I} be a non empty family of soft neutrosophic strong subbisemigroups of (F, A)
then

1. Ner (H;, B;) is a soft neutrosophic strong subbisemigroup of (F, A).

2. Nier (H;, B;) is a soft neutrosophic strong subbisemigroup of Ay (F, A).
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3. Ujer (H;, B;) is a soft neutrosophic strong subbisemigroup of (F, A) if B; N B; = ¢, for
all i # j.

Proof. Straightforward.

Definition 4.3. (F, A) over BN (S5) is called soft neutrosophic strong biideal if F(z) is
neutosophic strong biideal of BN(S), for all z € A.

Example 4.3. Let BN(S) = ({(ZUI),0,1,2,1,2I},+, x(x under multiplication modulo
3)). Let T ={(2ZU1I),0,1,1,2I,4+,x} and J = {(8Z U I),{0,1,1,21},+x} are neutrosophic
strong ideals of BN (S). Then (F, A) is soft neutrosophic strong biideal over BN (S), where
F(xz1) = {(2ZU1),0,1,1,2],+,x}, F (z2) = {(8Z U I),{0,1,1,2I},+x}.

Theorem 4.3. Every soft neutrosophic strong biideal (F, A) over BS(N) is a soft
neutrosophic bisemigroup but the converse is not true.

Theorem 4.4.  Every soft neutrosophic strong biideal (F,A) over BS (N) is a soft
neutrosophic strong bisemigroup but the converse is not true.

Proposition 4.3. Let (F, A) and (K, B) be two soft neutrosophic strong biideals over
BN(S). Then

1. Their extended union (F, A)U. (K, B) over BN (.S) is not soft neutrosophic strong biideal
over BN(S).

2. Their extended intersection (F, A) N. (K, B) over BN(S) is soft neutrosophic strong
biideal over BN(S).

3. Their restricted union (F, A) Ur (K, B) over BN(S) is not soft neutrosophic strong
biideal over BN(S).

4. Their restricted intersection (F, A) N. (K, B) over BN(S) is soft neutrosophic stong
biideal over BN (.S).

Proposition 4.4. Let (F, A) and (H, B) be two soft neutrosophic strong biideal over
BN(S). Then

1. Their AN D operation (F, A) A (H, B) is soft neutrosophic strong biideal over BN(S5).

2. Their OR operation (F, A)V (H, B) is not soft neutrosophic strong biideal over BN (.S).

Theorem 4.5. Let (F, A) be a soft neutrosophic strong bisemigroup over BN (S) and
{(H;, B;);i € I} is a non empty family of soft neutrosophic strong biideals of (F, A) then

1. Ner (H;, B;) is a soft neutrosophic strong biideal of (F, A).

2. Nier (H;, B;) is a soft neutrosophic strong biideal of A;cr (F, A).

§5. Soft neutrosophic N-semigroup

Definition 5.1. Let {S(N),*1,...,*n} be a neutrosophic N-semigroup and (F, A) be
a soft set over {S(NN),*1,...,*n}. Then (F, A) is termed as soft neutrosophic N-semigroup if
and only if F'(x) is neutrosophic sub N-semigroup, for all z € A.

Example 5.1. Let S(IV) = {S1US3US5USy, *1, *9, *3, ¥4 } be a neutrosophic 4-semigroup
where

S1 = {Z12, semigroup under multiplication modulo 12}.

Sy ={0,1,2,3,1,2I,31I, semigroup under multiplication modulo 4}, a neutrosophic semi-

group.
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a b
S3 = ;a,b,e,d € (RUI) p, neutrosophic semigroup under matrix multiplica-
cd

tion.
Sy = (Z U I), neutrosophic semigroup under multiplication. Let T' = {T} U T, U T3 U
Ty, %1, %9, %3, %4} is a neutosophic sub 4-semigroup of S (4), where T} = {0,2,4,6,8,10} C Z1o,

b
Ty = {01,213 C S0, Ty =4 | “ 7 |iabe,deQuD S c 8, T4 = (520 D)) C 84,
C

the neutrosophic semigroup under multiplication. Also let P = {P; UPy U P3U Py, %1, %o, %3, %4 }
be another neutrosophic sub 4-semigroup of S (4), where P; = {0,6} C Z15, P, = {0,1,1} C

b
Sa, P3 = ¢ sa,bye,d € (ZUT) » C S3, Py = {(2ZU1I)} C Sy4. Then (F, A) is soft
cd

neutrosophic 4-semigroup over S (4), where

b
F(z) = {0,2,4,6,8100u{0,7,21,303ul | * " |.abedecQun Suitzun,
c d
b
F(rs) = {0,6)u{o,,3ul| “ " |iabede(zunSufezuny.
c d

Theorem 5.1. Let (F, A) and (H, A) be two soft neutrosophic N-semigroup over S(N).
Then their intersection (F, A) N (H, A) is again a soft neutrosophic N-semigroup over S(N).

Proof. Straightforward.

Theorem 5.2. Let (F, A) and (H, B) be two soft neutrosophic N-semigroups over S(N)
such that AN B = ¢, then their union is soft neutrosophic N-semigroup over S(N).

Proof. Straightforward.

Proposition 5.1. Let (F, A) and (K, B) be two soft neutrosophic N-semigroups over

S(N). Then

1. Their extended union (F, A) U, (K, B) over S(N) is not soft neutrosophic N-semigroup
over S(N).

2. Their extended intersection (F, A)N. (K, B) over S(N) is soft neutrosophic N-semigroup
over S(N).

3. Their restricted union (F, A) Ug (K, B) over S(N) is not soft neutrosophic N-semigroup
over S(N).

4. Their restricted intersection (F, A)N. (K, B) over S(N) is soft neutrosophic N-semigroup
over S(N).

Proposition 5.2. Let (F,A) and (K, B) be two soft neutrosophic N-semigroups over
S(N). Then

1. Their AN D operation (F, A) A (K, B) is soft neutrosophic N-semigroup over S(N).

2. Their OR operation (F, A) V (K, B) is not soft neutrosophic N-semigroup over S(N).

Definition 5.2. Let (F, A) be a soft neutrosophic N-semigroup over S(NNV), then (F, A)
is called Full-soft neutrosophic N-semigroup over S(N) if F(z) = S(N), for all z € A. We
denote it by S(V).
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Definition 5.3. Let (F, A) and (H,B) be two soft neutrosophic N-semigroups over
S(N). Then (H, B) is a soft neutrosophic sub N-semigroup of (F, A), if

1. B C A.

2. H(x) is neutrosophic sub N-semigroup of F'(x), for all z € B.

Example 5.2. Let S(IV) = {S1US3US5USy, %1, *9, *3, ¥4 } be a neutrosophic 4-semigroup
where

S1 = {Z12, semigroup under multiplication modulo 12}.

Sy ={0,1,2,3,1,2I,31, semigroup under multiplication modulo 4}, a neutrosophic semi-
group.

a
S3 = ;a,b,e,d € (RUI) p, neutrosophic semigroup under matrix multiplica-

tion.
Sy = (Z U I), neutrosophic semigroup under multiplication. Let T' = {T} U To U T3 U
Ty, %1, %9, %3, %4} 1S a neutosophic sub 4-semigroup of S (4), where T3 = {0,2,4,6,8,10} C

ab
Z127 T2 = {0,[,2[,3[} C SQ, T3 = ;a,b,c,dG(QUI) C 53, T4 = {<5ZU
C

I)} C 54, the neutrosophic semigroup under multiplication. Also let P = {P; U P, U P3 U
Py, %1, %9, %3, %4} be another neutrosophic sub 4-semigroup of S (4), where P; = {0,6} C Zi2,

a b
PgZ{O,l,[}CSQ, P; = ;a,b7c,d€<ZUI> C Ss, P4:{<2ZUI>}CS4. Also
c d
let R = {R1 U Ry U R3 U Ry, *1, %9, *3, %4} be a neutrosophic sub 4-semigroup os S (4) where
a b
Ry ={0,3,6,9},Ry = {0,1,2I} ,R3 = sa,bye,de (2ZUI) » Ry = {(3ZU1)}.
c d

Then (F, A) is soft neutrosophic 4-semigroup over S (4), where

b
F(z) = {0,2,4,6,8,10)0{0,7,21,305ul | * " |.abedecQun Suitzuny,
c d
b
F(r) = {o.6)u{o,,iyul| " |iabedezunbuiezuny,
c d
b
F(zs) = {0,3,6,9%u{0,1,200 | “ " Jiabedeezunbuiazuny.

c

Clearly (H, B) is a soft neutrosophic sub N-semigroup of (F, A), where

a b
H(x1) = {0,4,83U{0,1,2I}U sa,bye,de (ZUI) » U{(10ZUI)},
C

H(x3) = {0,6}U{0,1}U as sa,bye,de (4ZUI) p U{(6ZUI)}.

Theorem 5.3. Let (F, A) be a soft neutrosophic N-semigroup over S (N) and {(H;, B;) ;i € I'}

is a non empty family of soft neutrosophic sub N-semigroups of (F, A) then
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1. Nier (H;, B;) is a soft neutrosophic sub N-semigroup of (F, A).

2. Nier (Hy, B;) is a soft neutrosophic sub N-semigroup of A;er (F, A).

3. User (H;, B;) is a soft neutrosophic sub N-semigroup of (F, A) if B, N B; = ¢, for all
i#j.

Proof. Straightforward.

Definition 5.4. (F,A) over S (N) is called soft neutrosophic N-ideal if F'(z) is neuto-
sophic N-ideal of S (N), for all z € A.

Theorem 5.4. Every soft neutrosophic N-ideal (F, A) over S (N) is a soft neutrosophic
N-semigroup but the converse is not true.

Proposition 5.3. Let (F, A) and (K, B) be two soft neutrosophic N-ideals over S (N).

Then

1. Their extended union (F, A) U, (K, B) over S (N) is not soft neutrosophic N-ideal over
S (N).

2. Their extended intersection (F,A) N. (K, B) over S (N) is soft neutrosophic N-ideal
over S (N).

3. Their restricted union (F, A)Ug (K, B) over S (N) is not soft neutrosophic N-ideal over
S (N).

4. Their restricted intersection (F, A) N. (K, B) over S (N) is soft neutrosophic N-ideal
over S (N).

Proposition 5.4. Let (F, A) and (H, B) be two soft neutrosophic N-ideal over S (N).
Then

1. Their AND operation (F, A) A (H, B) is soft neutrosophic N-ideal over S ().

2. Their OR operation (F, A) V (H, B) is not soft neutrosophic N-ideal over S (N).

Theorem 5.5. Let (F, A) be a soft neutrosophic N-semigroup over S (N) and {(H;, B;);
i € I} is a non empty family of soft neutrosophic N-ideals of (F, A) then

1. Nier (Hy, B;) is a soft neutrosophic N-ideal of (F, A).

2. Nier (Hj, B;) is a soft neutrosophic N-ideal of A;cr (F, A).

§6. Soft neutrosophic strong N-semigroup

Definition 6.1. Let {S(N),*1,...,*x5} be a neutrosophic N-semigroup and (F, A) be a
soft set over {S(N),*1,...,*n}. Then (F, A) is called soft neutrosophic strong N-semigroup if
and only if F'(z) is neutrosophic strong sub N-semigroup, for all x € A.

Example 6.1. Let S(IV) = {S1US3US5USy, *1, *2, *3, ¥4 } be a neutrosophic 4-semigroup
where

S1 = (Zg UT), a neutrosophic semigroup.

Sy ={0,1,2,3,1,2I,31, semigroup under multiplication modulo 4}, a neutrosophic semi-
group.

a b
c d

S3

;a,b,e,d € (RUI) p, neutrosophic semigroup under matrix multiplica-

tion.
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Sy = (Z U I), neutrosophic semigroup under multiplication. Let T = {Th U T, U T3 U

Ty, %1, %2, %3, %4} 1S a neutosophic strong sub 4-semigroup of S (4), where T} = {0,3,3I} C
a b

(ZeUI), Ty = {0,1,21,31} C So, T3 = ja,bye,d e (QUIY p € S3, Ty = {(5Z U
cd

I} C Sy, the neutrosophic semigroup under multiplication. Also let P = {P, U P, U P3 U

Py, %1, %2, x3, %4 } be another neutrosophic strong sub 4-semigroup of S (4), where P; = {0, 21,41}
a b

C{(ZgUI), P, ={0,1,I} C Sy, P3 = sa,b,e,d € (ZUI) » C S3, Po={(2ZU1)}
c d

C S4. Then (F, A) is soft neutrosophic strong 4-semigroup over S (4), whereThen (F, A) is soft
neutrosophic 4-semigroup over S (4), where

b
F() = {0,33000{0,71,21,3000 [ “ 7 |iabede@unSuiszun,
c d
b
Fzs) = {02r,4nyu{0, 1,030l | “ 7 |iapbedezunbuiezun.
c d

Theorem 6.1. Every soft neutrosophic strong N-semigroup is trivially a soft neutro-
sophic N-semigroup but the converse is not true.

Proposition 6.1. Let (F, A) and (K, B) be two soft neutrosophic strong N-semigroups
over S(N). Then

1. Their extended union (F, A) U, (K, B) over S(N) is not soft neutrosophic strong N-
semigroup over S(N).

2. Their extended intersection (F,A) N. (K, B) over S(N) is soft neutrosophic strong
N-semigroup over S(N).

3. Their restricted union (F, A) Ug (K, B) over S(N) is not soft neutrosophic strong N-
semigroup over S(N).

4. Their restricted intersection (F,A) N, (K, B) over S(N) is soft neutrosophic strong
N-semigroup over S(N).

Proposition 6.2. Let (F, A) and (K, B) be two soft neutrosophic strong N-semigroups
over S(N). Then

1. Their AND operation (F,A) A (K, B) is soft neutrosophic strong N-semigroup over
S(N).

2. Their OR operation (F, A) V (K, B) is not soft neutrosophic strong N-semigroup over
S(N).

Definition 6.2. Let (F, A) and (H, B) be two soft neutrosophic strong N-semigroups
over S (N). Then (H, B) is a soft neutrosophic strong sub N-semigroup of (F, A), if

1. B CA.

2. H(z) is neutrosophic strong sub N-semigroup of F(z), for all x € B.

Theorem 6.2.

1. Let (F, A) be a soft neutrosophic strong N-semigroup over S (N) and {(H;, B;);i € I}
is a non empty family of soft neutrosophic stong sub N-semigroups of (F, A) then

2. Nier (H;, B;) is a soft neutrosophic strong sub N-semigroup of (F, A).
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3. Nier (H;, B;) is a soft neutrosophic strong sub N-semigroup of A;er (F, A).

4. User (H;, B;) is a soft neutrosophic strong sub N-semigroup of (F, A) if B, N B; = ¢,
for all i # j.

Proof. Straightforward.

Definition 6.3. (F,A) over S (N) is called soft neutrosophic strong N-ideal if F(z) is
neutosophic strong N-ideal of S (N), for all z € A.

Theorem 6.3. Every soft neutrosophic strong N-ideal (F,A) over S (N) is a soft
neutrosophic strong N-semigroup but the converse is not true.

Theorem 6.4. Every soft neutrosophic strong N-ideal (F,A) over S(N) is a soft
neutrosophic N-semigroup but the converse is not true.

Proposition 6.3. Let (F, A) and (K, B) be two soft neutrosophic strong N-ideals over
S (N). Then

1. Their extended union (F, A) U, (K, B) over S (N) is not soft neutrosophic strong N-
ideal over S (N). 2. Their extended intersection (F, A)N. (K, B) over S (N) is soft neutrosophic
strong N-ideal over S (V).

3. Their restricted union (F,A) Ur (K, B) over S (NN) is not soft neutrosophic strong
N-ideal over S (N).

4. Their restricted intersection (F, A) N. (K, B) over S (V) is soft neutrosophic strong
N-ideal over S (N).

Proposition 6.4. Let (F, A) and (H, B) be two soft neutrosophic strong N-ideal over
S (N). Then

1. Their AN D operation (F, A) A (H, B) is soft neutrosophic strong N-ideal over S (V).

2. Their OR operation (F, A) V (H, B) is not soft neutrosophic strong N-ideal over S (N).

Theorem 6.5. Let (F, A) be a soft neutrosophic strong N-semigroup over S (N) and
{(H;, B;) ;i € I} is a non empty family of soft neutrosophic strong N-ideals of (F, A) then

1. Nier (H;, B;) is a soft neutrosophic strong N-ideal of (F, A).

2. Nier (H;, B;) is a soft neutrosophic strong N-ideal of A;er (F, A).

Conclusion

This paper is an extension of neutrosphic semigroup to soft semigroup. We also extend
neutrosophic bisemigroup, neutrosophic N-semigroup to soft neutrosophic bisemigroup, and
soft neutrosophic N-semigroup. Their related properties and results are explained with many
illustrative examples, the notions related with strong part of neutrosophy also established within

soft semigroup.
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(T, I, F)-Neutrosophic Structures

Florentin Smarandache

Florentin Smarandache (2015). (T, I, F)-Neutrosophic Structures. Proceedings of the Annual
Symposium of the Institute of Solid Mechanics and Session of the Commission of Acoustics,
SISOM 2015 Bucharest 21-22 May; Acta Electrotechnica 57(1-2); Neutrosophic Sets and

Systems 8, 3-10

Abstract. In this paper we introduce for the first time a
new type of structures, called (T, I, F)-Neutrosophic
Structures, presented from a neutrosophic logic perspec-
tive, and we show particular cases of such structures in
geometry and in algebra. In any field of knowledge, each
structure is composed from two parts: a space, and a set
of axioms (or laws) acting (governing) on it. If the space,
or at least one of its axioms (laws), has some indetermi-
nacy, that structure is a (T, I, F)-Neutrosophic Structure.
The (T, I, F)-Neutrosophic Structures [based on the com-
ponents T=truth, I=indeterminacy, F=falsehood] are dif-
ferent from the Neutrosophic Algebraic Structures [based
on neutrosophic numbers of the form a+bl, where

I=indeterminacy and In = 1], that we rename as Neutro-
sophic I-Algebraic Structures (meaning algebraic struc-
tures based on indeterminacy “I” only). But we can
combine both and obtain the (T, I, F)-Neutrosophic I-
Algebraic Structures, i.e. algebraic structures based on
neutrosophic numbers of the form a+bl, but also having
indeterminacy related to the structure space (elements
which only partially belong to the space, or elements we
know nothing if they belong to the space or not) or inde-
terminacy related to at least one axiom (or law) acting on
the structure space. Then we extend them to Refined (T, I,
F)-Neutrosophic Refined I-Algebraic Structures.

Keywords: Neurosophy, algebraic structures, neutrosophic sets, neutrosophic logics.

1. Neutrosophic Algebraic Structures [or
Neutrosophic I-Algebraic Structures].

A previous type of neutrosophic structures was introduced
in algebra by W.B. Vasantha Kandasamy and Florentin
Smarandache [1-56], since 2003, and it was called
Neutrosophic Algebraic Structures.  Later on, more
researchers joined the neutrosophic research, such as:
Mumtaz Ali, A. A. Salama, Muhammad Shabir, K.
llanthenral, Meena Kandasamy, H. Wang, Y.-Q. Zhang, R.
Sunderraman, Andrew Schumann, Salah Osman, D.
Rabounski, V. Christianto, Jiang Zhengjie, Tudor Paroiu,
Stefan Vladutescu, Mirela Teodorescu, Daniela Gifu, Alina
Tenescu, Fu Yuhua, Francisco Gallego Lupiafiez, etc.
The neutrosophic algebraic structures are algebraic
structures based on sets of neutrosophic numbers of the
form N = a + bl, where a, b are real (or complex) numbers,
and a is called the determinate part on N and b is called the
indeterminate part of N, while | = indeterminacy,

withml + nl = (m +n)I, 0-I=0, I" =1 for integern > 1,

and | / | = undefined.

When a, b are real numbers, then a + bl is called a
neutrosophic real number. While if a, b are complex
numbers, then a + bl is called a neutrosophic complex
number.
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We may say "indeterminacy" for "I" from a+bl, and
"degree of indeterminacy" for "I" from (T, I, F) in order to
distinguish them.

The neutrosophic algebraic structures studied by Vasantha-
Smarandache in the period 2003-2015 are: neutrosophic
groupoid, neutrosophic semigroup, neutrosophic group,
neutrosophic ring, neutrosophic field, neutrosophic vector
space, neutrosophic linear algebras etc., which later
(between 2006-2011) were generalized by the same
researchers to neutrosophic bi-algebraic structures, and
more general to neutrosophic N-algebraic structures.
Afterwards, the neutrosophic structures were further
extended to neutrosophic soft algebraic structures by
Florentin Smarandache, Mumtaz Ali, Muhammad Shabir,
and Munazza Naz in 2013-2014.

In 2015 Smarandache refined the indeterminacy | into
different types of indeterminacies (depending on the
problem to solve) such as |y, I, ..., I with integer p > 1,
and obtained the refined neutrosophic numbers of the form
Np = a+bl+bolo+.. . +byl, where a, by, by, ..., by are real or
complex numbers, and a is called the determinate part of
Np, while for each ke{l, 2, ..., P} I is called the k-th
indeterminate part of N, and for each ke{l, 2, ..., p}, and
similarly
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mly + nl, = (M + n)l, 0-L, =0, 1" = I for integer n > 1, and
I, /1, = undefined.

The relationships and operations between I and Iy, for j #k,
depend on each particular problem we need to solve.

Then consequently Smarandache [2015] extended the
neutrosophic algebraic structures to Refined Neutrosophic
Algebraic Structures [or Refined Neutrosophic I-Algebraic
Structures], which are algebraic structures based on the
sets of the refined neutrosophic  numbers
a+b1I1+b2I2+...+prp.

2. (T, 1, F)-Neutrosophic Structures.

We now introduce for the first time another type of
neutrosophic structures. These structures, in any field of
knowledge, are considered from a neutrosophic logic point
of view, i.e. from the truth-indeterminacy-falsehood (T, I,
F) values. In neutrosophic logic every proposition has a
degree of truth (T), a degree of indeterminacy (1), and a
degree of falsehood (F), where T, I, F are standard or non-
standard subsets of the non-standard unit interval J0, 1°[.
In technical applications T, I, and F are only standard
subsets of the standard unit interval [0, 1] with:

0 < sup(T) + sup(l) + sup(F) < 3*
where sup(Z) means superior of the subset Z.
In general, each structure is composed from: a space,
endowed with a set of axioms (or laws) acting (governing)
on it. If the space, or at least one of its axioms, has some
indeterminacy, we consider it as a (T, I, F)-Neutrosophic
Structure.
Indeterminacy with respect to the space is referred to some
elements that partially belong [i.e. with a neutrosophic
value (T, I. F)] to the space, or their appurtenance to the
space is unknown.
An axiom (or law) which deals with indeterminacy is
called neutrosophic axiom (or law).
We introduce these new structures because in the world we
do not always know exactly or completely the space we
work in; and because the axioms (or laws) are not always
well defined on this space, or may have indeterminacies
when applying them.

3. Refined (T, I, F)-Neutrosophic Structures
[or (T}, Ik, Fi)-Neutrosophic Structures]

In 2013 Smarandache [76] refined the neutrosophic
components (T, I, F) into
(TL T27 ceey va Ill |27 ..

. Ip, Fi, Fo, ..., Fr),
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where m, p, r are integers > 1.

Consequently, we now [2015] extend the (T, I, F)-
Neutrosophic Structures to (Ty, To, ..., Ty Iy, 1o, ..o, Ip; Foy
F,, ..., F\)-Neutrosophic Structures, that we called Refined
(T, I, F)-Neutrosophic Structures [or (T;, I, Fy)-
Neutrosophic Structures]. These are structures whose
elements have a refined neutrosophic value of the form (T,
To ooy Ty 1, bo, oo, Iy Fuy Fo, .., F) or the space has
some indeterminacy of this form

4. (T, 1, F)-Neutrosophic I-Algebraic Struc-
tures.

The (T, I, F)-Neutrosophic Structures [based on the
components T=truth, I=indeterminacy, F=falsehood] are
different from the Neutrosophic Algebraic Structures
[based on neutrosophic numbers of the form a+bl]. We
may rename the last ones as Neutrosophic I-Algebraic
Structures (meaning: algebraic structures based on
indeterminacy “I” only).

But we can combine both of them and obtain a (T, I, F)-
Neutrosophic I-Algebraic Structures, i.e. algebraic
structures based on neutrosophic numbers of the form a+bl,
but also have indeterminacy related to the structure space
(elements which only partially belong to the space, or
elements we know nothing if they belong to the space or
not) or indeterminacy related to at least an axiom (or law)
acting on the structure space.

Even more, we can generalize them to Refined (T, I, F)-
Neutrosophic Refined I-Algebraic Structures, or (T, I, F))-
Neutrosophic ls-Algebraic Structures.

5. Example of Refined I-Neutrosophic Alge-
braic Structure

Let the indeterminacy | be split into I; = contradiction (i.e.
truth and falsehood simultaneously), 1, = ignorance (i.e.
truth or falsehood), and I3 unknown, and the
corresponding 3-refined neutrosophic numbers of the form
at+bqli+byl+bsls.

The (G, *) be a groupoid. Then the 3-refined I-
neutrosophic groupoid is generated by 14, I,, I3 and G under
*and it is denoted by

N3(G) = {(GululUl), *}

= { at+bqli+hsl,+bsls / a, by, by, b3 € G }
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6. Example of Refined (T, I, F)-Neutrosophic
Structure

Let (T, I, F) be splitas (Ty, Ty; I, Ip; Fy, Fa, F3). Let

H = ( {hy, hy, h3}, #) be a groupoid, where hy, h,, and h;
are real numbers. Since the elements h;, h,, h; only
partially belong to H in a refined way, we define a refined
(T, I, F)-neutrosophic groupoid { or refined (2; 2; 3)-
neutrosophic groupoid, since T was split into 2 parts, I into
2 parts, and F into 3 parts } as

H ={h,(0.1, 0.1; 0.3,0.0; 0.2, 0.4, 0.1), h,(0.0, 0.1; 0.2,
0.1; 0.2,0.0,0.1), h5(0.1,0.0; 0.3,0.2; 0.1,0.4,0.0)}.

7. Examples of (T, I, F)-Neutrosophic I-
Algebraic Structures.

1. Indeterminate Space (due to Unknown Element).
And Neutrosophic Number included. Let B =
{2+5l, -1, -4, b(0, 0.9, 0)} a neutrosophic set,
which contain two neutrosophic numbers, 2+5I
and -1, and we know about the element b that its
appurtenance to the neutrosophic set is 90% inde-
terminate.

2. Indeterminate Space (due to Partially Known El-
ement). And Neutrosophic Number included.
LetC={-7,0, 2+1(0.5, 0.4, 0.1), 11(0.9, 0, 0) },
which contains a neutrosophic number 2+1, and
this neutrosophic number is actually only partially
in C; also, the element 11 is also partially in C.

3. Indeterminacy Axiom (Law).

Let D = [0+0l, 1+11] = {c+dl, where ¢, d € [0, 1]}.
One defines the binary law # in the following
way:

#:DxD>D
X#Y =X+ Xol) # (Y1 + Yol) = [(Xe + Xo)ly] +Yal,
but this neutrosophic law is undefined
(indeterminate) when y; = 0.

4. Little Known or Completely Unknown Axiom
(Law).

Let us reconsider the same neutrosophic set D as
above. But, about the binary neutrosophic law ©
that D is endowed with, we only know that it as-
sociates the neutrosophic numbers 1+1 and
0.2+0.31 with the neutrosophic number 0.5+0.41,
i.e. (1+1)©(0.2+0.31) = 0.5+0.4l.

There are many cases in our world when we barely
know some axioms (laws).
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8. Examples of Refined (T, I, F)-Neutrosophic
Refined I-Algebraic Structures.

We combine the ideas from Examples 5 and 6 and we
construct the following example. Let’s consider, from
Example 5, the groupoid (G, *), where G is a subset of
positive real numbers, and its extension to a 3-refined I-
neutrosophic groupoid, which was generated by 1y, 1, I3
and G under the law * that was denoted by

N3(G) = { at+bqli+b,l+bsls / a, by, by, b € G }

We then endow each element from N3(G) with some

(2; 2; 3)-refined degrees of membership/indeterminacy/

nonmembership, as in Example 6, of the form (T4, Ty; I,

ly; F1, Fy, F3), and we obtain a

N3(G) @23 = { atbyli+bolo+bsls(Ty, To 1y, 1o Fi, Fo, F) / a,
by, by, bs €G3,

where

_ a B 0.5a
' a+b+b,+b, " ? a+b +b,+b,

| b1 » b2 )
1= ) = )
a+bi+b2+bs a+bi+b2+bs

= 0.1bs 0.2b:
1= y 2 = y !
a+bi+b2+bs a+bi+b2+bs

B b2+ b3
> a+bi+ba+bs

Therefore, N3(G).2:3) 1S a refined (2; 2; 3)-neutrosophic
groupoid and a 3-refined I-neutrosophic groupoid.

9. Neutrosophic Geometric Examples.

a) Indeterminate Space.
We might not know if a point P belongs or not to
a space S [we write P(0, 1, 0), meaning that P’s
indeterminacy is 1, or completely unknown, with
respect to S].
Or we might know that a point Q only partially
belongs to the space S and partially does not be-
long to the space S [for example Q(.3, 0.4, 0.5),
which means that with respect to S, Q’s member-
ship is 0.3, Q’s indeterminacy is 0.4, and Q’s non-
membership is 0.5].
Such situations occur when the space has vague
or unknown frontiers, or the space contains am-
biguous (not well defined) regions.
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b) Indeterminate Axiom.

Also, an axiom (o) might not be well defined on
the space S, i.e. for some elements of the space
the axiom (o)) may be valid, for other elements of
the space the axiom (o) may be indeterminate
(meaning neither valid, nor invalid), while for the
remaining elements the axiom (o) may be invalid.
As a concrete example, let’s say that the neutro-
sophic values of the axiom (a) are (0.6, 0.1, 0.2) =
(degree of validity, degree of indeterminacy, de-
gree of invalidity).

10. (T, I, F)-Neutrosophic Geometry as a Par
ticular Case of (T, I, F)-Neutrosophic
Structures.

As a particular case of (T, I, F)-neutrosophic structures in
geometry, one considers a (T, |1, F)-Neutrosophic
Geometry as a geometry which is defined either on a space
with some indeterminacy (i.e. a portion of the space is not
known, or is vague, confused, unclear, imprecise), or at
least one of its axioms has some indeterminacy (i.e. one
does not know if the axiom is verified or not in the given
space).

This is a generalization of the Smarandache Geometry
(SG) [57-75], where an axiom is validated and invalidated

in the same space, or only invalidated, but in multiple ways.

Yet the SG has no degree of indeterminacy related to the
space or related to the axiom.

A simple Example of a SG is the following — that unites
Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian
geometries altogether, in the same space, considering the
Fifth Postulate of Euclid: in one region of the SG space
the postulate is validated (only one parallel trough a point
to a given line), in a second region of SG the postulate is
invalidated (no parallel through a point to a given line —
elliptical geometry), and in a third region of SG the
postulate is invalidated but in a different way (many
parallels through a point to a given line — hyperbolic
geometry). This simple example shows a hybrid geometry
which is partially Euclidean, partially Non-Euclidean
Elliptic, and partially Non-Euclidean Hyperbolic.
Therefore, the fifth postulate (axiom) of Euclid is true for
some regions, and false for others, but it is not
indeterminate for any region (i.e. not knowing how many
parallels can be drawn through a point to a given line).

We can extend this hybrid geometry adding a new space
region where one does not know if there are or there are
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not parallels through some given points to the given lines
(i.e. the Indeterminate component) and we form a more
complex (T, I, F)-Neutrosophic Geometry.

12. Neutrosophic Algebraic Examples.

1) Indeterminate Space (due to Unknown Element).
Let the set (space) be NH = {4, 6, 7, 9, a}, where the set
NH has an unknown element "a", therefore the whole
space has some degree of indeterminacy. Neutrosophically,
we write a(0, 1, 0), which means the element a is 100%
unknown.

2) Indeterminate Space (due to Partially Known El-

ement).
Given the set M = {3, 4, 9(0.7, 0.1, 0.3)}, we have two
elements 3 and 4 which surely belong to M, and one writes
them neutrosophically as 3(1, 0, 0) and 4(1, 0, 0), while the
third element 9 belongs only partially (70%) to M, its
appurtenance to M is indeterminate (10%), and does not
belong to M (in a percentage of 30%).
Suppose M is endowed with a neutrosophic law* defined
in the following way:
Xa(ty, iy, F1)* Xa(ta, ip, T2) = max{Xy, xo}( min{ty, t,}, max{iy,
i}, max{fy, f-}),

which is a neutrosophic commutative semigroup with unit
element 3(1, 0 ,0).
Clearly, if X, y € M, then x*y € M. Hence the neutrosophic
law * is well defined.
Since max and min operators are commutative and
associative, then * is also commutative and associative.
If X € M, then x*x = x.
Below, examples of applying this neutrosophic law *:
3*%9(0.7, 0.1, 0.3) = 3(1, 0, 0)*9(0.7, 0.1, 0.3) = max{3,
9}( min{1, 0.7}, max{0, 0.1}, max{0, 0.3} ) = 9(0.7, 0.1,
0.3).
3*4 =3(1, 0, 0)*4(1, 0, 0) = max{3, 4}( min{1, 1}, max{0,
0}, max{0, 0} ) = 4(1, 0, 0).

2) Indeterminate Law (Operation).
For example, let the set (space) be NG = ( {0, 1, 2}, /),
where "/" means division.
NG is a (T, I, F)-neutrosophic groupoid, because the
operation /" (division) is partially defined and undefined
(indeterminate). Let's see:
2/1 =1, which belongs to NG;
1/2 = 0.5, which does not belongs to NG;
1/0 = undefined (indeterminate).
So the law defined on the set NG has the properties that:
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= applying this law to some elements, the results are
in NG [well defined law];

= applying this law to other elements, the results are
not in NG [not well defined law];

= applying this law to again other elements, the re-
sults are undefined [indeterminate law].

We can construct many such algebraic structures where at
least one axiom has such behavior (such indeterminacy in
principal).

12. Websites at UNM for Neutrosophic Alge-
braic Structures and respectively Neutrosoph-
ic Geometries:

http://fs.gallup.unm.edu/neutrosophy.htm
and
http://fs.gallup.unm.edu/geometries.htm respectively.
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Neutrosophic filters in BE-algebras

Akbar Rezaei, Arsham Borumand Saeid, Florentin Smarandache

Akbar Rezaei, Arsham Borumand Saeid, Florentin Smarandache (2015).
Neutrosophic filters in BE-algebras. Ratio Mathematica 29, 65-79

Abstract

In this paper, we introduce the notion of (implicative) neutrosophic filters in
BE-algebras. The relation between implicative neutrosophic filters and
neutrosophic filters is investigated and we show that in self distributive BE-
algebras these notions are equivalent.

Keywords: BE-algebra, neutrosophic set, (implicative) neutrosophic filter.

1 Introduction

Neutrosophic set theory was introduced by Smarandache in 1998 ([10]). Neu-
trosophic sets are a new mathematical tool for dealing with uncertainties which
are free from many difficulties that have troubled the usual theoretical
approaches. Research works on neutrosophic set theory for many applications
such as infor-mation fussion, probability theory, control theory, decision making,
measurement theory, etc. Kandasamy and Smarandache introduced the concept
of neutrosophic algebraic structures ([3, 4, 5]). Since then many researchers
worked in this area and lots of literatures had been produced about the theory of
neutrosophic set. In the neutrosophic set one can have elements which have
paraconsistent information (sum of components > 1), others incomplete
information (sum of components < 1), others consistent information (in the case
when the sum of components =1) and others interval-valued components (with
no restriction on their superior or inferior sums).
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H.S. Kim and Y.H. Kim introduced the notion of a BE-algebra as a
generaliza-tion of a dual BCK-algebra ([6]). B.L. Meng give a procedure which
generated a filter by a subset in a transitive BE-algebra ([7]). A. Walendziak
introduced the no-tion of a normal filter in BE-algebras and showed that there is a
bijection between congruence relations and filters in commutative BE-algebras
([11]). A. Borumand Saeid and et al. defined some types of filters in BE-
algebras and showed the re-lationship between them ([1]). A. Rezaei and et al.
discussed on the relationship between BE-algebras and Hilbert algebras ([9]).
Recently, A. Rezaei and et al. introduced the notion of hesitant fuzzy
(implicative) filters and get some results on BE-algebras ([8]).

In this paper, we introduce the notion of (implicative) neutrosophic filters and
study it in details. In fact, we show that in self distributive BE-algebras concepts
of implicative neutrosophic filter and neutrosophic filter are equivalent.

2 Preliminaries

In this section, we cite the fundamental definitions that will be used in the
sequel:

Definition 2 .1. [6] By a BE-algebra we shall mean an algebra X= (X; x, 1) of
type (2, 0) satisfying the Aollowing axioms:

(BEl) z*xx =1,
(BE2) zx1=1,
(BE3) 1*xx ==,

(BE4) xx (y*xz)=yx*(xx*xz), forallz,y,z € X.

From now on, X is a BE-algebra, unless otherwise is stated. We introduce a
relation “<” on X by z < yif and only if x * y = 1. A BE-algebra X is said to be
self distributive if z % (y % 2) = (x*xy) * (x* z), forall z,y, 2 € X. A BE-algebra
X is said to be commutative if satisfies:

(x*xy)xy=(yxz)*x forall z,y € X.
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Proposition 2.1. [11] If X is a commutative BE-algebra, then for all x,y € X,
rxy=1landy*xxz =1imply x = y.

We note that “<” is reflexive by (BE1). If X is self distributive then relation “<”
is a transitive ordered set on X, because if x < y and y < z, then

xxz=1%x(xx2)=(rxy)*x(vxz)=zrx(yxz)=zx1=1
Hence x < z. If X is commutative then by Proposition 2.1, relation “<” is anti-
symmetric. Hence if X is a commutative self distributive BE-algebra, then relation
“<” is a partial ordered set on X.
Proposition 2.2. [6] In a BE-algebra X, the following hold:
(0) zx(yxz)=1,
(1) yx((yxz)xx) =1 forallz,y € X.

A subset F' of X is called a filter of X if it satisfies: (F1) 1 € F, (F2) x € F
and z x y € F imply y € F. Define
Alz,y) ={z€ X :xx(yxz) =1},

which is called an upper set of x and y. It is easy to see that 1, 2,y € A(x, y), for
any z,y € X. Every upper set A(z,y) need not be a filter of X in general.

Definition 2.2. [1] A non-empty subset F' of X is called an implicative filter if
satisfies the following conditions:

(IF1) 1€ F,
(IF2) zx*(y*xz) € Fandz*xy € F imply that x x z € F, forall z,y, 2z € X.

If we replace z of the condition (IF2) by the element 1, then it can be easily
observed that every implicative filter is a filter. However, every filter is not an
implicative filter as shown in the following example.

Example 2.1. Let X = {1, a, b} be a BE-algebra with the following table:

Then F' = {1,a} is a filter of X, but it is not an implicative filter, since
lx(axb)=1xa=a€c€ Fandlxa=a€c Fbutl«b=>b¢ F.
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Definition 2 .3. [ 10] Let X bea s et. A neutrosophic subset A of X isa triple
(T'a, 14, Fa) where Ty : X — [0, 1] is the membership function, I, : X — [0, 1]
is the indeterminacy function and 4 : X — [0, 1] is the nonmembership function.

Here for each © € X, T'a(x), I4(x) and F4(x) are all standard real numbers in
[0,1].

We note that 0 < Tu(x) + I4(z) + Fa(z) < 3, for all x € X. The set of
neutrosophic subset of X is denoted by NS(X).

Definition 2 .4. [10] Let A and B be two neutrosophic sets on X . Define A < B
ifand only if T4 (z) < Tg(x), Ia(x) > Ig(x), Fa(z) > Fp(z), forall z € X.

Definition 2 .5. Let X , = (X;;%,1)and X ,= (Xy;0,1’) be two BE-algebras.
Then a mapping f : X; — X5 is called a homomorphism if, for all x1, x5, € X;
flzy *x z2) = f(x1) o f(xg). Itis clear that if f : X; — X5 is a homomorphism,
then f(1) =1".

3 Neutrosophic Filters

Definition 3.1. A neutrosophic set A of X is called a neutrosophic filter if satisfies
the following conditions:

(NF]) TA(Jﬁ) S TA(l), IA(x) Z IA(l) and FA(LE) Z FA(l),

(NF2) min{Ta(x*y), Ta(x)} < Ta(y), min{ls(z *y),la(x)} > I4(y) and
min{ Fa(x *y), Fa(z)} > Fa(y), forall x,y € X.

The set of neutrosophic filter of X is denoted by NF(X).

Example 3.1. In Example 2.1, put 74 (1) = 0.9, T4 (a) = T'4(b) = 0.5,
IA(l) = 0.2, IA(CL) = IA(b) = 0.35and FA(1> = 0.1, FA(CL) = FA<b) =0.
Then A = (T4, 14, F4) is a neutrosophic filter.

Proposition 3.1. Ler A € NF(X). Then

(i) if v <y, then Ty(x) < Ta(y), Ia(z) > Ia(y) and F4(x) > Fa(y),
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(ii) Ta(x) <Ta(y*x), Ia(x) > I4(y *x) and Fu(x) > Fa(y * ),

(iii) min{Ts(x),Ta(y)} < Ta(z*y), min{ls(x), [a(y)} > [a(z *y) and
min{Fa(z), Fa(y)} = Fa(z *y),

(iv) Ta(z) < Ta((wxy)xy), La(z) = La((wxy)+y) and Fa(z) > Fa((zxy)+y),

(v) min{Ty(x), Ta(y)} < Tal(z * (y * 2)) * 2),
min{/4(z), [4(y)} > Ia((z * (y * 2)) * z) and
min{F(z), Fa(y)} = Fal(z * (y * 2)) * 2),

(vi) if min{Ts(y), Ta((x xy) * 2)} < Ta(zxx), then Ty is order reversing and
I, Fa are order (ie. if © < y, then Ty(y) < Ta(x), I4(y) > I4(x) and
Fa(y) = Fa(x))

(vii) if z € A(z,y), then min{T(z), Ta(y)} < Ta(z2),
min{Z4(x), [a(y)} > I4(2) and min{ Fa(x), Fa(y)} > Fa(z)

(viii) sz a; xx =1, then /\TA(ai) < Ty(x), /\IA(ai) > I4(z) and

i=1 =1 i=1
n

/\FA(ai) > Fa(x) whereHai*x:an*(an_l*(...(al*x)...)).

i=1
Proof. (i). Let z < y. Then x x y = 1 and so
Ta(x) =min{T4(z), Ta(1)} = min{Ta(x), Ta(x xy)} < Taly),

La(x) = min{la(2), Ta(1)} = min{Za(z), La(z * y)} = La(y),
Fa(x) = min{F4(z), Fa(1)} = min{Fa(x), Fa(z xy)} > Fa(y).

(i1). Since x < y * x, by using (i) the proof is clear.
(ii1). By using (i1) we have

min{74(x), Ta(y)} < Ta(y) < Ta(x*vy),
min{/a(z),Ia(y)} > Ia(y) > 1
min{Fa(x), Fa(y)} > Fa(y)

(iv). It follows from Definition 3.1,

Ty(z) = min{Txa(x),Ta(1)}

Al *y),

>
Z FA(ZL’*y).

=
=
—
-
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-
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8
*
&
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.
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Also, we have

A2 |

and

Vol

(v). From (iv) we have

min{74(z), Ta(y)}

min{Za(x), 1a(y)}

and

min{ Fa(x), Fa(y)}
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x(zxy))}
*((z*xy)xy))}

IA I IA

VoIV
g
=
=
b
"y
-

AV | A/
g
=
—~—
5
3
A;A

(vi). Let x <y, thatis, x xy = 1.

Tay)

Ta(y)

=min{Ta(y), Ta(1x1)} = min{Ta(y), Ta((zxy)x1)} < Ta(lxz)

= TA(JI),

=min{l4(y), La(1x1)} = min{la(y), [a((z*y)*1)} > I4(1xx) = 4(x),
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Fa(y) = min{Fa(y), Fa(1 1)} = min{Fa(y), Fa((z*y) x 1)} = Fa(lx ) =
FA(.I)
(vii). Let z € A(z,y). Then x * (y * z) = 1. Hence

min{Ta(z), Ta(y)} = min{Ta(x), Ta(y), Ta(1)}

= min{T4(z), Ta(y), Ta(z * (y * 2))}
min{Ta(y), Ta(y * z) }
TA(Z)

IA A

Also, we have

min{Za(e), La(y)} = min{La(2), La(y). La(1)}

AVARLY,
g
=

=
b
—~
S
~
b
<
*
I\
~

and

min{Fa(z), Fa(y)} = min{Fa(z), Fa(y), Fa(1)}

= min{Fa(z), Fa(y), Fa(z x (y* 2))}
min{ Fa(y), Fa(y * 2)}
Fa(2).

AVARLY,

(viii). The proof is by induction on n. By (vii) it is true for n = 1, 2. Assume
that it satisfies for n = k, that is,

k k k k
Hal*x— 1= N\ Ta(a;) < Ta(z), N\ La(a;) > La(z) and \ Fa(a;) > Fa(x)
=1 =1 =1 =1

forallal,...,ak,x e X.

k+1
Suppose that Hai xx = 1,forall ay,...,ax, a1,z € X. Then

i=1
k+1 k+1 k+1
/\ Ta(a:) < Tu(ar x2), )\ Ia(a;) > Ia(ar % 2),and )\ Fa(a;) > Fa(ay = x).
i=2 i=2 i=2

Since A is a neutrosophic filter of X, we have

k+1 k+1
/\ Ta(a;) = min{(/\ Ta(a;)), Ta(ar)} < min{Ta(ay * x),Ta(ar)} < Ta(x),
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k+1 k+1

/\ Ii(a;) = min{( /\ Ia(a;)), Ia(ar)} > min{la(ay * x), I4(a1)} > Ia(z)
and
/\ Fala;) = min{(/\ Fa(a;)), Fala)} > min{Fu(ay % x), Falay)} > Fa(z).
(Il

Theorem 3.1. If { A, }ic; is a family of neutrosophic filters in X, then ﬂ A; is too.

i€l

Theorem 3.2. Let A € NF(X). Then the sets
(i) Xr, = {z € X : Tu() = Ta(1)},
(ii) X1, = {w € X : L(x) = La(D)},
(iii) Xp, = {x € X : Fa(x) = Fa(D)},
are filters of X.

Proof. (i). Obviously, 1 € Xj,,. Letz,x xy € Xr,. Then
Ta(z) = Ta(z *xy) = Ta(1). Now, by (NF1) and (NF2), we have

Ta(1) = min{Ta(x), Ta(z xy)} < Taly) < Ta(l).
Hence T'4(y) = T4(1). Therefore, y € Xr,.
The proofs of (ii) and (iii) are similar to (i).00
Definition 3.2. A neutrosophic set A of X is called an implicative neutrosophic
filter of X if satisfies the following conditions:
(INF1) Tx(1) > Ta(x),

(INF2) Ty(z*z) > min{Ta(z* (y * 2)), Ta(z xy)},
Iy(z*2) <min{la(x* (y*2)),Ia(x+y)} and
Fa(w* z) <min{Fa(z * (y * 2)), Fa(z x y)}, forall z,y, 2 € X.
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The set of implicative neutrosophic filter of X is denoted by I NF(X). If we
replace z of the condition (INF2) by the element 1, then it can be easily observed
that every implicative neutrosophic filter is a neutrosophic fi Iter. Ho wever, ev-
ery neutrosophic filter is not an implicative neutrosophic filter as shown in the
following example.

Example 3.2. Let X = {1,a,b, ¢, d} be a BE-algebra with the following table:

— = = = R =
=== o O O

QU O S Q | *
— e 2 = 2|
= S0 OO0
— Q2 2 o Q

Then X = (X;x*,1) is a BE-algebra. Define a neutrosophic set A on X as

follows:
0.85 ifz=1,a
Ta(x) = { 0.12 otherwise

and [4(z) = Fa(x) = 0.5, forall z € X.
Then clearly A = (T4, 14, F4) is a neutrosophic filter of X, butitis notan
implicative neutrosophic filter of X, since

Ta(bxc) 2 min{Ta(bx (dxc)), Ta(bxd)}.

Theorem 3.3. Let X be a self distributive BE-algebra. Then every neutrosophic
filter is an implicative neutrosophic filter.

Proof. Let A € NF(X) and z € X. Obvious that T4(z) < Ta(1), Ia(z) >
I4(1) and Fa(z) > Fa(1). By self distributivity and (NF2), we have

min{7Ta(zx(y*2)), Ta(zxy)} = min{Ta((x*xy)*(x*2)), Ta(x*xy)} < Th(z*2),

min{ls(x*(y*z2)), [a(x*y)} = min{ls((z*y)*(x*x2)), [4(z*xy)} > [a(x*2)

and

min{ Fa(z*(y*z)), Fa(z*xy)} = min{ Fs((zxy)*(x*2)), Fa(zxy)} > Fa(z*2).

Therefore A € INF(X).O
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Let t € [0, 1]. For a neutrosophic filter A of X, t-level subset which denoted
by U(A;t) is defined as follows:

UA;t) ={z € A:t <Ty(x),Is(z) < tand Fa(z) <t}
and strong t-level subset which denoted by U (A; 1)~ as

U(A;t)s :={x € A:t <Ta(x),1a(x) < tand Fu(x) < t}.

Theorem 3.4. Let A € NS(X). The following are equivalent:
(i) A€ NF(X),
(ii) (Vt €[0,1)) U(A;t) # 0 imply U(A;t) is a filter of X.

Proof. (i)=(ii). Let x,y € X be such that z,x xy € U(A;t), for any
t €[0,1). Thent < Ty(x)andt < Ty(z*y). Hence t < min{Ts(x), Ta(z*y)} <
Ta(y). Also, I4(z) < tand I4(zxy) < tandsot > min{l,(z), [a(x *xy)} >
I4(y). By a similar argument we have ¢t > min{Fa(x), Fa(z xy)} > Fa(y).
Therefore, y € U(A; ).

(i)=-(i). Let U(A;t) be a filter of X, for any ¢ € [0, 1] with U(A;t) # . Put
Ta(z) = Ia(x) = Fa(x) = t, forany 2 € X. Then z € U(A;t). Since U(A;t)
is a filter of X, we have 1 € U(A;t) and so T4(z) = ¢t < T4(1). Now, for any
z,y € X,letTy(z*y) =Ia(x xy) = Fa(x xy) = t,., and
Ta(x) = Is(x) = Fa(z) = t,. Putt = min{t,.y,t,}. Then z, 2 xy € U(A;t),
soy € U(A;t). Hence t < Tx(y),t > Ia(y),t > Fa(y) and so

min{Ts(z *y), Ta(z)} = min{t ., t.} =1t < Ta(y),

min{/(z xy), [4(z)} = min{t ., t.} =1t > I4(y),

and
min{ Fa(z *y), Fa(x)} = min{t,.,, t.} =t > Fa(y).
Therefore, A € NF(X).0

Theorem 3.5. Let A € NF(X). Then we have

(Va,b € X) (Vt € [0,1]) (a,b € U(A;t) = A(a,b) C U(A;1)).

66



Florentin Smarandache (author and editor) Collected Papers, IX

Proof. Assume that A € NF(X). Let a, b € X be such that a, b € U(A; t).
Then ¢t < Ty(a) and t < Ty(b). Let ¢ € A(a, b). Hence a * (b * ¢) = 1. Now, by
Proposition 3.1(v) and (BE3), we have

t <min{Ta(a), Ta(b)} < Tal(a* (bxc)xc))=Ta(lxc)="Ta(c),
t >min{l4(a), [a(b)} > Ia((a* (bxc)xc)) = I4(1 % c) = 1a(c)

and

t > min{F4(a), Fa(b)} > Fa((a* (bxc)*c)) = Fa(lxc) = Fa(c).

Then ¢ € U(A;t). Therefore, A(a,b) C U(A;t)).0

Corolary 3.1. Let A € NF(X). Then

(VE€[0,1) (UAst) #0 = Ut = |J Alab)
a,beU(A;t)

Proof. 1t is sufficient prove that U(A;t) C U A(a,b). For this, assume
a,beU(A;t)
that z € U(A;t). Since z * (1 x x) = 1, we have € A(x, 1). Hence

U(A;t) C A(z,1) C U Az, 1) U Az, y).

z€U (Ast) ac,yEU(A;t)

Theorem 3.6. Let X be a self distributive BE-algebra and A € NF(X). Then the
following conditions are equivalent:

(i) A€ INF(X),

(i) Taly* (y*z)) <Taly*z), Ia(y* (y*z)) > Ia(y *x x) and
Fa(y* (y+x)) 2 Faly x x),

(iii) min{Tx((z % (y * (y * 2))), Ta(2)} < Taly * ),

min{Za((z* (y* (y*x))), [a(2)} > Ia(y x x) and
min{Fu((z * (y * (y * 2))), Fa(2)} = Fa(y * ).
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Proof. (i)=-(ii). Let A € NF(X). By (INF1) and (BEI) we have

Ta(y * (y*x)) = min{Ta(y* (y *x)), Ta(1)}
min{T(y * (y * ), Taly *y) }
Ta(y * x),

IA

Ia(y * (y x ) min{ /4 (y * (y * x)), 1a(1)}
min{Za(y * (y * 2)), La(y * y)}

Ta(y x x)

AVARI

and

min{ Fa(y * (y * x)), Fa(1)}
min{ Fa(y x (y xx)), Fa(y *y)}
Fa(y * x).

Fa(y * (y*x))

(AVARRI

(i1)=-(iii). Let A be a neutrosophic filter of X satisfying the condition (ii). By
using (NF2) and (ii) we have

min{Tu(z * (y * (y xx))), Ta(z)} Taly * (y * z))

Ty(y * x),

IN TN

La(y * (y x x))
Is(y*x)

min{/a(z * (y * (y * 7)), La(2)}

AVARLY,

and

Fa(y* (y*z))
Fa(y *x).

min{Fy(z * (y * (y * 2))), Fa(2)}

AVARLY,

(ii1)=-(1). Since
x(yxz)=yx*(r*x2) < (zxy)*(xx*(rx*2)),

we have Ta(x * (y * 2)) < Ta((x *y) * (z * (x * 2))),

In(xx(yxz)) > Ia((x*y)* (z* (xxz)))and
Fa(xx (yx2)) > Fa((z *y) * (zx (x % 2))), by Proposition 3.1(i). Thus

* (@
min{Ts(z* (y*2)),Ta(xxy)} < min{Ta((zxy)* (x* (x*2))),Talx*y)}
< Ta(x*2).
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min{/4((z *y) * (z* (r % 2))), [a(z*y)}
Ta(x % 2)

min{/a(x * (y * 2)), la(z *y)}

(AVARAYS

and

min{Fy(z * (y * 2)), Fa(x xy)} > min{Fa((x *y) * (x* (zx 2))), Fa(x *
Y} = Falwxz).

Therefore, A € INF(X). Let f : X — Y be a homomorphism of BE-algebras

and A € NS(X).

Define tree maps 7" 47: X — [0, 1] such that T'ys(x) = Ta(f(2)),

I+ X — [0,1] such that [4s(x) = Ia(f(x)) and Fus : X — [0, 1] such that
Fyi(z) = Fa(f(x)), forall x € X. Then Tys, 14 and Fy; are well-define and
Al = (TAf, 1,y FAf) c NS(%)D

Theorem 3.7. Let f : X — Y be an onto homomorphism of BE-algebras and
A € NS(). Then A € NF(Q) (resp. A € INF(Q)) if and only if AY € NF(X)
(resp. AT € INF(X)).

Proof. Assume that A € NF(2)). For any = € X, we have
Tar(x) =Ta(f(2)) < Ta(ly) = Ta(f(1x)) = Tasr(1x),

Ly (w) = Ia(f(2)) = La(ly) = 1a(f(1x)) = Las(1x)
and
Fyr(x) = Fa(f(2)) =2 Fa(ly) = Fa(f(1x)) = Far(1x).
Hence (NF1) is valid. Now, let z,y € X. By (NFI) we have

min{Ts(f(z *xy)), Ta(f(x))}

min{Tys(z * y), Tar(z)} )
min{Tx(f(x) * f(y)), Ta(f(x))}

< Ta(f(y))
= Tus(y)
Also,
min{/s(x *y), [as(x)} = min{ls(f(x*y)),la(f(z))}
= min{Za(f(z) * f(y)), La(f(z))}
> Ta(f(y))
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By a similar argument we have min{ F4s (z * y), Fas(x)} > F4s(y). Therefore,
ATeNF(X).

Conversely, Assume that A’ € NF(X). Lety € Y. Since fis onto, there exists
x € X such that f(z) = y. Then

Ta(y) =Ta(f(x)) = Tas(z) < Tas(lx) = Ta(f(1x)) = Ta(ly),
Ia(y) = Ia(f(2)) = Las(x) > Tar(1x) = Ia(f(1x)) = Ta(1y)

and

Fu(y) = Fa(f(z)) = Far(xz) > Fas(1x) = Fa(f(1x)) = Fa(ly),

Now, let z, y € Y. Then there exists a, b € X such that f(a) = x and f(b) =
Hence we have

min{Ts(z * y), Ta(z)} = min{Ta(f(a)* f(b)),Ta(f(a))}

= min{Ty(f(axb)), Ta(f(a))}
= min{Tys(axb),Tys(a)}
Tas ()

Ta(f(D))

Ta(y).

IN

Also, we have

min{/a(z *y), La(x)} = min{la(f(a)* f(b)),La(f(a))}
min{/4(f(a b)), La(f(a))}
= min{lss(a*b),14s(a)}

45 (b)

L4(f(b))

I4(y).

By a similar argument we have min{ Fs(x x y), Fa(z)} > Fa(y).
Therefore, A € NF(9)).0

v

4 Conclusion

F. Smarandache as an extension of intuitionistic fuzzy logic introduced the
concept of neutrosophic logic and then several researchers have studied of some
neutrosophic algebraic structures. In this paper, we applied the theory of neu-
trosophic sets to BE-algebras and introduced the notions of (implicative) neutro-
sophic filters and many related properties are investigated.
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Abstract

In this paper, we introduce the homomorphism, the weak isomorphism, the co-weak
isomorphism, and the isomorphism of the bipolar single valued neutrosophic hyper-
graphs. The properties of order, size and degree of vertices are discussed. The
equivalence relation of the isomorphism of the bipolar single valued neutrosophic
hypergraphs and the weak isomorphism of bipolar single valued neutrosophic
hypergraphs, together with their partial order relation, is also verified.

Keywords

homomorphism, weak-isomorphism, co-weak-isomorphism, isomorphism, bipolar
single valued neutrosophic hypergraphs.

1 Introduction

The neutrosophic set - proposed by Smarandache [8] as a generalization of
the fuzzy set [14], intuitionistic fuzzy set [12], interval valued fuzzy set [11]
and interval-valued intuitionistic fuzzy set [13] theories - is a mathematical
tool created to deal with incomplete, indeterminate and inconsistent
information in the real world. The characteristics of the neutrosophic set are
the truth-membership function (t), the indeterminacy-membership function
(1), and the falsity membership function (f), which take values within the real
standard or non-standard unit interval ]-0, 1*[.
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A subclass of the neutrosophic set, the single-valued neutrosophic set (SVNS),
was intoduced by Wang et al. [9]. The same authors [10] also introduced a
generalization of the single valued neutrosophic set, namely the interval
valued neutrosophic set (IVNS), in which the three membership functions are
independent, and their values belong to the unit interval [0, 1]. The IVNS is
more precise and flexible than the single valued neutrosophic set.

More works on single valued neutrosophic sets, interval valued neutrosophic
sets and their applications can be found on http://fs.gallup.unm.edu/NSS/.

In this paper, we extend the isomorphism of the bipolar single valued
neutrosophic hypergraphs, and introduce some of their relevant properties.

1 Preliminaries

Definition 2.1

A hypergraph is an ordered pair H = (X, E), where:
(1) X= {xq, x4, ..., X, } 1s a finite set of vertices.
(2)E={E{,E,, ..., E,} 1s a family of subsets of X.
(3) Ej are non-void forj=1, 2, 3, ..., m, and Uj(Ej) = X.

The set X is called 'set of vertices', and E is denominated as the 'set of edges' (or
'"hyper-edges').

Definition 2.2

A fuzzy hypergraph H = (X, E) is a pair, where X is a finite set and E is a finite
family of non-trivial fuzzy subsets of X, such that X =U; Supp(Ej), Jj=
1,2,3,..,m.

Remark 2.3
The collection E = {E, E,, E5, ...., E;;, } 1s a collection of edge set of H.
Definition 2.4

A fuzzy hypergraph with underlying set X is of the form H = (X, E, R), where
E = {Ey,E;, E3, ..., Ep,} is the collection of fuzzy subsets of X, that is Ej : X —

[0,1],j=1,2,3, .., m and R: E - [0,1] is the fuzzy relation of the fuzzy
subsets Ej, such that:

R(xq, X2, oo, %) < min(E;(xy), ..., Ej(x;)), (D

for all { xq, x5, ..., x,} subsets of X.
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Definition 2.5

Let X be a space of points (objects) with generic elements in X denoted by x. A
single valued neutrosophic set A (SVNS A) is characterized by its truth member-
ship function T4(x), its indeterminacy membership function I4(x), and its falsity
membership function F,(x). For each point, x € X; T4(x), I4(x), F4(x) € [0, 1].

Definition 2.6

A single valued neutrosophic hypergraph is an ordered pair H = (X, E), where:
(1) X ={x4, x5, ..., x,} is a finite set of vertices.
(2)E={E} E;, .., E;;,} is a family of SVNSs of X.
(3)E; #0=(0,0,0)forj=1,2,3,.., m and U; Supp(E;) = X.
The set X is called set of vertices and E is the set of SVN-edges (or SVN-hyper-
edges).
Proposition 2.7

The single valued neutrosophic hypergraph is the generalization of fuzzy
hypergraphs and intuitionistic fuzzy hypergraphs.

Note that a given SVNHGH = (X, E, R), with underlying set X, where E = {E;, E;,
..., E;}, is the collection of the non-empty family of SVN subsets of X, and R is
the SVN relation of the SVN subsets Ej, such that:

RT(xl'xZJ 'xr) < min([TEj(xl)]' e [TEj(xr)DJ (2)
Ry (x1, %2, oo, %) = max([Ig, (x )], .., [Ig, (x)]), (3)
RF(xlle' 'xr) = max([FEj(xl)], ) [FEj(xr)D) (4‘)

for all {x;, x5, ..., x,-} subsets of X.
Definition 2.8

Let X be a space of points (objects) with generic elements in X denoted by x.

A bipolar single valued neutrosophic set A (BSVNS A) is characterized by the
positive truth membership function PT,(x), the positive indeterminacy
membership function P, (x), the positive falsity membership function PF,(x),
the negative truth membership function NT,(x), the negative indeterminacy
membership function NIj(x), and the negative falsity membership function
NF,(x).

For each point x €X; PTy(x), P1,4(x),PF4(x) € [0, 1], and NT,(x), Niy(x), NF4(x)
€ [-1,0].
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Definition 2.9
A bipolar single valued neutrosophic hypergraph is an ordered pair H = (X, E),
where:

(1) X ={xy, x5, ..., x,} is a finite set of vertices.

(2)E={E E,, .., E,;} is a family of BSVNSs of X.

(3) E;#0-= ([0,0],[0,0],[0,0])forj=1,2,3,.., m, and

U; Supp(E;)= X.
The set X is called the 'set of vertices' and E is called the 'set of BSVN-edges'
(or 'IVN-hyper-edges'). Note that a given BSVNHGH = (X, E, R), with

underlying set X, where E = { E;, E,, .., Ep,} is the collection of non-empty
family of BSVN subsets of X, and R is the BSVN relation of BSVN subsets E;

such that:
Rer (1, Xz, .. , %) < min([PTg,(x)], ..., [PTg, (x)]), (5)
Rpy (X1, %z, o, %,) = max([Plg, (x))], ..., [Pl (x.)]), (6)
Rpp (X1, Xz, o, %) 2 max([PFg, ()], ..., [PFg, (x.)]), (7)
Ryr (X1, Xz, o, %) = max([NTg, (X)), o, [NT (x)]),  (8)
Ryi (x1, Xz, oo, %) < min((NIg, (x)], ..., [NIg, (,)]), 9)
Ryp (X1, %z, o , %) < min([NFg, (x))], ..., [NFg, (x,)]), (10)

for all {x;, x,, ..., x,-} subsets of X.
Proposition 2.10

The bipolar single valued neutrosophic hypergraph is the generalization of
the fuzzy hypergraph, intuitionistic fuzzy hypergraph, bipolar fuzzy hyper-
graph and intuitionistic fuzzy hypergraph.

Example 2.11

Consider the BSVNHG H = (X, E, R), with underlying set X = {a, b, c}, where E =
{A, B}, and R defined in Tables below:

H A B
a (0.2,0.3,0.9,-0.2,-0.2, -0.3) (0.5,0.2,0.7,-0.4,-0.2, -0.3)
b (0.5,0.5,0.5,-0.4, -0.3,-0.3) (0.1, 0.6, 0.4, -0.9, -0.3,-0.4)
c (0.8,0.8,0.3,-0.9,-0.2, -0.3) (0.5,0.9,0.8,-0.1, -0.2, -0.3)
R Rpr Rpy Rpr Ryt Ry Ryr
A 0.2 0.8 0.9 -0.1 -0.4 -0.5
B 0.1 0.9 0.8 -0.1 -0.5 -0.6
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By routine calculations,

H = (X E, R) is BSVNHG.

3 Isomorphism of BSVNHGs

Definition 3.1
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A homomorphism f: H —»K between two BSVNHGs H = (X E, R) and K= (Y, F, S)

is a mapping f: X = Y which satisfies the conditions:

min[PTE]. (%)

max|[PI E; (%)

] < min[PTy,(f ()1,
] = max[Ply, (f(0)].

max[PFEj(x)] > max[PFFj(f(x))],
max[NTg,(x)] = maX[Nij(f(x))],

min[N/ Ej (%)

] < min[Nij(f(x))],

min[NFy,(x)] < min[NFy (f(0))],

for all x€ X.
Rpr(x1, X3,

Rpy (x4, x5,

o Xp) S Spr(f(x1), f(x2),

-":xr) = SPI(f(xl) ;f(xz)' -

s [ (),

- f (%)),

(11)
(12)
(13)
(14)
(15)
(16)

(17)
(18)

Rpp(x1, X3, o, xp) = Spp(f(x1) , f(x2), ey f (X)),
Ryr(x1, X2, w0y %) = Syr(f (x1) 5 f(x2), oon, £(X1)),

(19)
(20)

Ry (xq, %5,

---:xr) < SNI(f(xl) 'f(xz)' .
Ryp(x1, X2, s %) < Syp(f (x1) L f(x2), oo f (X)),

for all {xq, x5, ..., x,-} subsets of X.

Example 3.2

o F (),

(21)
(22)

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets
X={a b, c}and Y = {x, y, z}, where E = {4, B}, F = {C, D}, RandS, which are

defined in Tables given below:

H A B
a (0.2, 0.3,0.9,-0.2,-0.2,-0.3) (0.5,0.2,0.7,-0.4,-0.2,-0.3)
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.9,-0.3,-0.4)
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.3) (0.5,0.9, 0.8,-0.1,-0.2,-0.3)

K C D

X (0.3,0.2,0.2,-0.9,-0.2,-0.3) (0.2, 0.1, 0.3,-0.6,-0.1,-0.2)
y (0.2, 0.4, 0.2,-0.4,-0.2,-0.3) (0.3,0.2,0.1,-0.7,-0.2,-0.1)
z (0.5, 0.8, 0.2,-0.2,-0.1,-0.3) (0.9, 0.7, 0.1,-0.2,-0.1,-0.3)
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R Rpr Rp; Rpr | Ryt | Rni | Rar
A 0.2 0.8 09 | -0.1 | -04 | -0.5
B 0.1 0.9 0.8 -0.1 | -0.5 | -0.6
S Spr Spi Spr_| Snt | Sni | Snr
C 0.2 0.8 03 | -0.1 | -0.2 | -0.3
D 0.1 0.7 03 | -0.1 | -0.2 ] -0.3

and /- X = Y defined by: f(a)=x, f(b)=y and f(c)=z. Then, by routine calculations,
f: H— K is a homomorphism between H and K.

Definition 3.3

A weak isomorphism /- H — K between two BSVNHGs H = (X, E, R) and K =
(Y, F, S) is a bijective mapping /- X — Y which satisfies f'is homomorphism, such

that:
min[PTg,(x)] < min[PTg (f ()], (23)
max[Pl;(x)] = max[Plg (f(x))], (24)
max([PFg,(x)] = max[PFy (f(x))], (25)
max[NTg, (x)] = max[NTg, (f(x))], (26)
min[Nlg,(x)] < min[NIp (f(x))], (27)
min[NFg(x)] < min[NFs,(f(x))], (28)
for all x€ X.
Note

The weak isomorphism between two BSVNHGS preserves the weights of vertices.

Example 3.4

Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b c}and Y = {x, y, z}, where E = {4, B}, F = {C, D}, R and S, which are
defined by Tables given below, and f: X = Y defined by: f(a)=x, f(b)=y and f(c)=z.
Then, by routine calculations, /* H — K is a weak isomorphism between H and K.

H A B

a (0.2, 0.3,0.9,-0.2,-0.2,-0.3) (0.5,0.2,0.7,-0.4,-0.2,-0.3)
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.9,-0.3,-0.4)
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.3) (0.5,0.9, 0.8,-0.1,-0.2,-0.3)
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K C D
X (0.2,0.3,0.2,-0.9,-0.2,-0.3) (0.2, 0.1, 0.8,-0.6,-0.1,-0.4)
y (0.2,0.4,0.2,-0.4,-0.3,-0.3) (0.1,0.6, 0.5,-0.6,-0.2,-0.3)
v4 (0.5, 0.8, 0.9,-0.2,-0.2,-0.3) (0.9, 0.9, 0.1,-0.1,-0.3,-0.3)

R Rpr Rp; Rpp Ryt Ry Ry

A 0.2 0.8 0.9 -0.1 -0.4 -0.3

B 0.1 0.9 0.9 -0.1 -0.3 -0.5

S Spr Spi Spr SNT SNI SNF

C 0.2 0.8 0.9 -0.1 -0.3 -0.2

D 0.1 0.9 0.8 -0.1 -0.3 -0.4

Definition 3.5

A co-weak isomorphism f: H = K between two BSVNHGs H = (X, E, R) and K =
(Y, F, S) is a bijective mapping /> X = Y which satisfies f'is homomorphism, such

that:

Rpr(xy, X, vy %) = Spr(f(x1) , f(x2), -, f (1)),
Rpi(x1, %2, ., %) = Spi(f (1), f(x2), -, f (%)),
Rpp(x1, X3, oy %) = Spp(f(x1), f(x2), -, f (1)),
Ryr(xy, %2, o, %) = Syr(f (1), f(x2), -, (1)),
Ryi Gy, x5 0, x0) = Syi(f (1), f (32, -, £ (27)),
Ryp(xq, x5, o, x0) = Syp(f (x1) , £ (2), woos f(31))s

for all {x;, x5, ..., x,-} subsets of X.

Note

(29)
(30)
(31)
(32)
(33)
(34)

The co-weak isomorphism between two BSVNHGs preserves the weights of

edges.

Example 3.6

Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b c}and Y = {x, y, z}, where E = {4, B}, F = {C, D}, R and S, which are
defined in Tables given below, and f - X = Y defined by: f(a)=x , f(b)=y and
f(c)=z. Then, by routine calculations, /- H = K is a co-weak isomorphism between

Hand K.
H A B
a (0.2,0.3,0.9,-0.4,-0.2,-0.3) (0.5,0.2,0.7,-0.1,-0.2,-0.3)
b (0.5,0.5,0.5,-0.4,-0.2,-0.3) (0.1, 0.6, 0.4,-0.4,-0.2,-0.3)
c (0.8,0.8,0.3,-0.1,-0.2,-0.3) (0.5,0.9,0.8,-0.4,-0.2,-0.3)
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K C
X (0.3,0.2,0.2,-0.9,-0.2,-0.3) (0.2,0.1,0.3,-0.4,-0.2,-0.3)
y (0.2,0.4,0.2,-0.4,-0.2,-0.3) (0.3, 0.2,0.1,-0.9,-0.2,-0.3)
z (0.5,0.8,0.2,-0.1,-0.2,-0.3) (0.9,0.7,0.1,-0.1,-0.2,-0.3)
R Rpr Rp; Rpp Ryt Ry; Ryp
A 0.2 0.8 0.9 -0.1 -0.2 -0.3
B 0.1 0.9 0.8 -0.1 -0.2 -0.3
S Spr Spr Spr Snr Shi SnE
C 0.2 0.8 0.9 -0.1 -0.2 -0.3
D 0.1 0.9 0.8 -0.1 -0.2 -0.3
Definition 3.7

An isomorphism f: H — K between two BSVNHGs H = (X, E, R) and K = (Y, F,

S) 1s a bijective mapping /- X = Y which satisfies the conditions:

for all x€ X

min[PTg,(x)] = min[PTs (f (x))],
max[Plg,(x)] = max[PI(f(x))],
max|[PFg (x)] = max[PFFj(f(x))],
max[NTy, (x)] = max[NTe (f ()],
min[Nlg,(x)] = min[NIz (f(x))],
min[NFg,(x)] = min[NFs (f(x))],

Rpr(xy, X3, oy %) = Spr(f(x1) , f(x2), -, f (1)),
Rpi(x1, %2, ., %) = Spi(f (1), f (x2), -, f (1)),
Rpp(xy, X3, oy xr) = Spp(f(x1), f(x2), -, f (1)),
Ryr(xy, %2, o, %) = Syr(f (1), f(x2), -, (1)),
Ryi Gy, x5 0, x0) = Syi(f (1), f (32, -, £ (22)),
Ryp(xq, x5, o, x0) = Syp(f (x1) , £ (2), woes £ (31))s

for all {xq, x5, ..., x,-} subsets of X.

Note

(35)
(36)
(37)
(38)
(39)
(40)

(41)
(42)
(43)
(44)
(45)
(46)

The isomorphism between two BSVNHGSs preserves the both weights of vertices
and weights of edges.

79



Florentin Smarandache (author and editor) Collected Papers, IX

Example 3.8

Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b c}and Y = {x, y, z}, where E = {4, B}, F = {C, D}, R and S, which are
defined by Tables given below:

H A B
a (0.2, 0.3, 0.7,-0.2,-0.2,-0.3) (0.5,0.2,0.7,-0.6,-0.6,-0.6)
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.1,-0.2,-0.7)
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.4) (0.5,0.9, 0.8,-0.7,-0.2,-0.3)

K C D

X (0.2, 0.3, 0.2,-0.2,-0.2,-0.4) (0.2, 0.1, 0.8,-0.3,-0.2,-0.3)

y (0.2, 0.4, 0.2,-0.6,-0.2,-0.3) (0.1, 0.6, 0.5,-0.1,-0.2,-0.7)
z (0.5, 0.8, 0.7,-0.4,-0.3,-0.3) (0.9, 0.9, 0.1,-0.9,-0.6,-0.3)
R RPT RPI RPF RNT RNI RNF
Al 02 0.8 0.9 -0.1 0.3 -0.4
B| 00 0.9 0.8 0.1 -0.7 0.8
S Spr Spi SpF SNT SNI SNF
c| 02 0.8 0.9 0.1 -0.3 0.4
D| 00 0.9 0.8 0.1 -0.7 0.8

and /' X = Y defined by: f(a)=x, f(b)=y and f(c)=z. Then, by routine calculations,
f: H— K is an isomorphism between H and K.

Definition 3.9

Let H = (X, E, R) be a BSVNHG, then the order of H is denoted and defined by as
follows:

H
Z((i min <PTE]. (x)) , Z max (PIEj (x)) , Z max (PFE]. (x)),
S max (NTE]. (x)) S min (NIE]. (x)) Y min (NFE]. (x))) (47)
The size of H is denoted and defined by:
S(H) = (z Rpr(E;), z Rpi(Ep), Z Rpr(Ej), Z Ryr (),
Y Ry (E;), X Rur (Ej)) (48)
Theorem 3.10

Let H= (X E, R) and K = (Y, F, S) be two BSVNHGSs such that H is isomorphic
to K, then:
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(1) O(H) = O(K),
(2) S(H) = S(K).

Proof

Collected Papers, IX

Let /- H - K be an isomorphism between two BSVNHGs H and K with

underlying sets X and

Y respectively; then, by definition:

min[PTEj(x)] = min[PTFj(f(x))],
maX[PIEj(x)] = maX[PIFj(f(x))],
max[PFg (x)] = maX[Pij(f(x))],

max|[N T,

@)] = max[NT (£ ()],

min[NI;,(x)] = min[NIz,(f ()],
min[NFEj(x)] = min[NFFj(f(x))],

for all x€ X.

Rpr(xq, x,

Rp;(xy, x5, ...,
Rpp(xq, x5, ...,
Ryr(xq, x5, ...,
Ry (xq, X5, ..y

Ry (x4, x5, ...,

for all { xq, x5, ..., X}

Consider:

Opr(H) = X min PTy (x) = X min PTy, (£ (¥)) = Opr(K)

) ---:xr) = SPT(f(xl) 'f(xz): ""f(xr))a
xr) = Sp(f(x1), f(x2), e, f(37))s

Xr) = Sui(f (1), f(x2), oo f (X)),

xr) = SNF(f(xl) 'f(xz): ""f(xr))a
subsets of X.

xr) = Spr(f(x1), f(x2), s f (1)),
xr) = Snr(f(x1), f(x2), o, f(37)),

(49)
(50)
(51)
(52)
(53)
(54)

(55)
(56)
(57)
(58)
(59)
(60)

(61)

Onr(H) = ZmaXNTEJ.(x) = ZmaXNTFj(f(x)) = Onr(K) (62)

Similarly, Op;(H) = Op;(K) and Opr(H) = Opp(K) , Oyn;/(H) = Op;(K) and
Onp(H) = Onp(K), hence O(H) = O(K).

Next:
Spr(H) =
=2 Spr(f
Similarly,
Snr(H) =

Z Rpr(xy, x5, oy Xy)
(x1), f(x2), e, f () = Spr(K).

Z Ry (x4, %9, )y X;)

= XSt (f (x1), f(x2), e, f (%)) = Syr(K).
and Sp;(H) = Sp;(K), Spr(H) = Spp(K), Syi(H) = Sy (K), Syr(H) = Syp(K),

hence S(H) = S(K).
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Remark 3.11
The converse of the above theorem need not to be true in general.
Example 3.12

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets
X=1{a b c,d}and Y ={w, x, y, z}, where E = {4, B}, F = {C, D}, R and S are
defined in Tables given below:

H A B
a (0.2,0.5,0.3,-0.1,-0.2,-0.3) | (0.14,0.5,0.3,-0.1,-0.2,-0.3)
b (0.0,0.0,0.0, 0.0, 0.0, 0.0) (0.2, 0.5, 0.3, -0.4, -0.2, -0.3)
c (0.33,0.5,0.3,-0.4,-0.2,-0.3) | (0.16,0.5,0.3,-0.1, -0.2, -0.3)
d (0.5, 0.5, 0.3, -0.1, -0.2, -0.3) (0.0,0.0,0.0, 0.0, 0.0, 0.0)
K C D
w (0.14,0.5,0.3,-0.1, -0.2, -0.3) (0.2, 0.5, 0.33,-0.4, -0.2, -0.3)
X (0.16,0.5,0.3,-0.1, -0.2, -0.3) (0.33,0.5, 0.33, -0.1, -0.2, -0.3)
y (0.25,0.5,0.3,-0.1,-0.2, -0.3) (0.2, 0.5, 0.33,-0.1,-0.2, -0.3)
z (0.5, 0.5, 0.3, -0.4, -0.2, -0.3) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
R Rpr Rp; Rpp Ryt Ryj Ryr
A 0.2 0.5 0.3 0.1 | 02 | -03
B 0.14 0.5 0.3 0.1 | 02 | -03
S Spr Spi Spr SNT SN SNF
C 0.14 0.5 03 | -01 | -02 | -03
D 0.2 0.5 03 | -01 | -02 | -03

where f'is defined by: f(a)=w, f(b)=x, f(c)=y, f(d)=z.
Here, O(H) = (1.0,2.0, 1.2,-0.7,-0.8,-1.2) = O(K) and S(H)=(0.34, 1.0, 0.9, -0.2, -
0.4, -0.9)=S(K), but, by routine calculations, H is not an isomorphism to K.

Corollary 3.13

The weak isomorphism between any two BSVNHGs H and K preserves the orders.
Remark 3.14

The converse of the above corollary need not to be true in general.

Example 3.15

Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b c,d}and Y = {w, x, y, z}, where E = {4, B}, F = {C, D}, R and § are
defined in Tables given below, where f is defined by: fla)=w, f(b)=x, f(c)=y,
fd)=z:
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H A B
a (0.2, 0.5, 0.3,-0.1,-0.2,-0.3) (0.14, 0.5, 0.3,-0.4,-0.2,-0.3)
b (0.0,0.0,0.0,0.0,0.0,0.0) (0.2, 0.5, 0.3,-0.1,-0.2,-0.3)
c (0.33, 0.5, 0.3,-0.4,-0.2,-0.3) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3)
d (0.5, 0.5, 0.3,-0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0)
K C D
w | (0.14,0.5,0.3,-0.1,-0.2,-0.3) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3)
X (0.0, 0.0, 0.0,0.0,0.0,0.0) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3)
y (0.25, 0.5, 0.3,-0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3)
z (0.5, 0.5, 0.3,-0.1,-0.2,-0.3) (0.0, 0.0, 0.0,0.0,0.0,0.0)

Here, O(H)= (1.0, 2.0, 1.2, -0.4, -0.8, -1.2) = O(K), but, by routine calculations, H
is not a weak isomorphism to K.

Corollary 3.16

The co-weak isomorphism between any two BSVNHGs H and K preserves sizes.

Remark 3.17

The converse of the above corollary need not to be true in general.

Example 3.18

Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b, c, d} and Y = {w, x, y, z}, where E = {4, B}, F = {C, D},R and § are
defined in Tables given below,

H A B
a (0.2, 0.5, 0.3,-0.1,-0.2,-0.3) (0.14, 0.5, 0.3, -0.1,-0.2,-0.3)
b (0.0,0.0,0.0,0.0,0.0,0.0) (0.16, 0.5, 0.3, -0.1,-0.2,-0.3)
c (0.3,0.5,0.3, -0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3)
d (0.5, 0.5, 0.3, -0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0)
K C D
w (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.2, 0.5, 0.3, -0.1,-0.2,-0.3)
X (0.14,0.5,0.3, -0.1,-0.2,-0.3) (0.25, 0.5, 0.3, -0.1,-0.2,-0.3)
y (0.5,0.5, 0.3, -0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3)
z (0.3, 0.5, 0.3,-0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0)
R RPT RPI RPF RNT RNI RNF
A 0.2 0.5 03 | 0.1 | 02 | -03
B 0.14 0.5 03 | -01 | 02 | -03
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S SPT SPI SPF SNT SNI SNF
C 0.14 0.5 0.3 -0.1 02 | -03
D 0.2 0.5 0.3 -0.1 02 | -03

where f'is defined by: f{a)=w, f(b)=x, f(c)=y, f(d)=z.
Here S(H)= (0.34, 1.0, 0.6, -0.2, -0.4, -0.6) = S(K), but, by routine calculations, H
1s not a co-weak isomorphism to K.

Definition 3.19
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Let H = (X, E, R) be a BSVNHG, then the degree of vertex x;, which is denoted
and defined by:

deg(x;) =
(degpr(x;),degp;(x;), degpr(x;),
degnr(x;), degn;(x;), degnr(x;)

where:
degpr(x;) = X Rpr(xy, X3, v, Xp),
degp;(x;) = X Rp;(x1, %3, .., X)),
degpp(x;) = X Rpp(x1, X2, -, X7),
degnr(x;) = X Ryr(x1, Xz, o) X)),
degni(x;) = X Ry (xy, x5, -0, 1),
degnr(x;) = X Ryp(x1, X2, e, X)),

for x; # x,.

Theorem 3.20

(65)

(66)
(67)
(68)
(69)
(70)
(71)

If H and K be two isomorphic BSVNHGs, then the degree of their vertices are

preserved.

Proof

Let /- H - K be an isomorphism between two BSVNHGs H and K with

underlying sets X and Y respectively, then, by definition, we have:

mmwn#@]=mmwnxﬂwh,
mMW%QHZmHW%U@m,
max[PFy ,(x)] = max[PFy,(f())],
max[NTg,(x)] = max[NT; (f(x))],
min[NIz,(x)] = min[NIz,(f ()],
min[NFg,(x)] = min[NFz,(f ()],

84

(72)
(73)
(74)
(75)
(76)
(77)



Florentin Smarandache (author and editor)

for all x€ X.
Rpr(xy, X3, oy %) = Spr(f(x1) , f(x2), -, f (1)),
Rpi(x1, %2, ., %) = Spi(f (1), f(x2), -, f (%)),
Rpp(xy, X2, oy xr) = Spp(f (1), f(x2), oo, (1)),
Ryr(xy, %2, %) = Syr(f(x1), f(52), oo, £ (1)),
Ry (xy, x5, 0y %) = Sy (f (x1) , f (2), e, £ (22)),
Ryp(xq, x5, oy %) = Syp(f (x1) , £ (2), woes f (31))s

for all { x4, x5, ..., x,-} subsets of X.

Consider:

degpr(x;) = 2 Rpr(x1, X2, ey Xy)

= Sor(F G, 02, s f ()

= degpr (f (x;)),

and similarly:

Hence:

degnr(x;) = degnr (f (x:)),

degp;(x;) = degp;(f (x;)), degpr(x;) = degpr(f(x;))
degn;(x;) = degy;(f (x;)), degnr(x;) = degyr(f (x))

deg(x;) = deg(f (x;)).

Remark 3.21

The converse of the above theorem may not be true in general.

Example 3.22

(78)
(79)
(80)
(81)
(82)
(83)

(84)
(85)
(86)

(87)

(88)
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Consider the two BSVNHGs H = (X, E, R) and K = (7, F, S) with underlying sets
X={a b}and Y = {x, y}, where E = {4, B}, F = {C, D}, R and S are defined by
Tables given below:

H A
a (0.5, 0.5, 0.3,-0.1, -0.2, -0.3) (0.3,0.5,0.3,-0.1,-0.2, -0.3)
b (0.25,0.5,0.3,-0.1,-0.2,-0.3) | (0.2,0.5,0.3,-0.1,-0.2, -0.3)

K C

X (0.3,0.5,0.3,-0.1, -0.2, -0.3) (0.5,0.5,0.3, -0.1, -0.2, -0.3)

y (0.2, 0.5, 0.3, -0.1, -0.2, -0.3) (0.25,0.5,0.3,-0.1, -0.2, -0.3)

Spr Spi Spr SNT SN SNF
C 0.2 0.5 03 | -0.1 | -02 | -03
D 0.25 0.5 03 | -01 | -02 | -03
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R RPT RPI RPF RNT RNI RNF
A 0.25 0.5 03 | 01 | -02 | -03
B 0.2 0.5 03 | 01 | -02 | -03

where f'is defined by: f(a)=x, f(b)=y, here deg(a) = ( 0.8, 1.0, 0.6, -0.2, -0.4, -0.6)
=deg(x) and deg(b) = (0.45, 1.0, 0.6, -0.2, -0.4, -0.6) = deg(y).

But H is not isomorphic to K, i.e. H is neither weak isomorphic, nor co-weak
isomorphic to K.

Theorem 3.23
The isomorphism between BSVNHGS is an equivalence relation.
Proof

LetH=(X E, R), K= (Y, F,S) and M = (Z, G, W) be BSVNHGs with underlying
sets X, Y and Z, respectively:

Reflexive

Consider the map (identity map) /- X — X defined as follows: f(x) = x for all x €
X, since the identity map is always bijective and satisfies the conditions:

min[PTg,(x)] = min[PTg,(f(x))], (89)
max([Plg;(x)] = max[Plg(f(x))], (90)
max([PFg,;(x)] = max[PFg,(f(x))], (91)
max[NTEj(x)] = max [NTEj(f(x))], (92)
min[Nlg (x)] = min[NIg (f(x))], (93)
min[NFg,(x)] = min[NFg,(f(x))], (94)
for all x€ X.
Rpr(xy, %2, ., %) = Rpr(f (1), f(x2), o, f (%)), (95)
Rpy(x1, %3, ., %) = Rp (f (x1) , f (x2), -, f (1)), (96)
Rpp(x1, %3, ., %) = Rpp(f(x1) , f (x2), e, f (1)), (97)
Ryr(x1, %3, ., %) = Ryp(f(x1) , f(x2), o, f (1)), (98)
Ryi(x1, %2, s %) = Ry (f (1), f (x2), oo, f (1)), (99)
Ryp(x1, %2, ., %) = Ryp(f (1), f (x2), o, f (1)), (100)

for all { x4, x5, ..., x,-} subsets of X.

Hence f'is an isomorphism of BSVNHG H to itself.
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Symmetric

Let /> X — Y be an isomorphism of H and K, then f'is a bijective mapping defined
as f(x) =y forall x € X

Then, by definition:
min[PTg,(x)] = min[PTg (f(x))], (101)
max[Plg,(x)] = max[PI(f(x))], (102)
max[PFg,(x)] = max[PFp(f(x))], (103)
maX[NTEj(x)] = max[NTFj(f(x))], (104)
min[NIg,(x)] = min[NIg (f ()], (105)
min[NFg, (x)] = min[NFs (f(x))], (106)

for all x€ X.
Rpr(xy, X2, o, %) = Spr(f (1), f(x2), oo, f (1)), (107)
Rp;(x1, %3, ., %) = Spi(f (1), f(x2), o, f(2)), (108)
Rpp(x1, %5, o, %) = Spp(f (1), f(x2), o, f (1)), (109)
Ryr(x1, %3, -, %) = Snyr(f (1), f(32), -, £ (x1)), (101)
Ry;(x, x5, %) = Syi(f (x1) , f (2), -, £ (X)), (111)
Ryp(x1, %2, o, %) = Syp(f (x1) , f (32), -, £ (X)), (112)

for all {x;, x5, ..., x,-} subsets of X.
Since fis bijective, then we have:

f~Y(y) =x forally €Y.
Thus, we get:

min[PTy, (72 ()] = min[PTy, )], (113)
max[Pl, (f 2 (0)] = max[Ply, ()], (114)
max[PFy, (f ()] = max[PFy, ()], (115)
max[NTg,(f 7' (»))] = max[NT, ()], (116)
min[NIg (f~*(»))] = min[NIz ()], (117)
min[NFg,(f 7 (»))] = min[NFz,(y)], (118)

for all x€ X.

RPT(f_l(yl)'f_l(YZ)' ---:f_l(Yr)) =Spr(y1,¥y2 - ¥r),  (119)
RPI(f_l(Jﬁ)»f_l(J’z); ---’f_l(J’r)) = Sp1 (Y1, Y20 s ¥r)s (120)
RPF(f_l(%)'f_l(J’z)' ---;f_l()’r)) = Spr(V1, Y20 s Vi) (121)
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RNT(f_l(yl)'f_l(yZ)' ---'f_l(J’r)) = Snr (V1 Y25 oo Vi), (122)
Ry (f 7 ) 2D oo f7200)) = Sni(a» Y2 o Vi) (123)
Rye(f 2 f202) o fTH00)) = Swr 1, Y2 oY) (124)
for all {y;, V3, ..., ¥} subsets of Y.
Hence, we have a bijective map f~! : Y — X which is an isomorphism from X to
H.

Transitive

Letf:X —>Yandg:Y — Z be two isomorphism of BSVNHGs of H onto K and
K onto M, respectively. Then g o f is bijective mapping from X to Z, where g o f
is defined as (g o f)(x) = g(f(x)) forall x € X.

Since f is an isomorphism, then by definition f(x) = y forall x € X, which
satisfies the conditions:

min[PTg,(x)] = min[PTFj(f(x))], (125)
max[Plg, (x)] = max[PI(f(x))], (126)
maX[PFEj(x)] = max[PFFj(f(x))], (127)
max[NTg, ()] = max[NT, (f(x))] (128)
min[NIz,(x)] = min [Nl (f(2))] (129)
min[NFg,(x)] = min[NFs (f(x))], (130)
for all x€ X.
Rpr(x1, %2, ., %) = Spr(f(x1), f(x2), -, (1)), (131)
Rp;(x, %2, oy xp) = Spi(f (x1) , f (x2), +oe) [ (1)), (132)
Rpp(x1, %, ., %) = Spp(f (1), f(x2), o, f (1)), (133)
Ryr (1, %2, oy xr) = Syr(f (1), f (x2), e, (1)), (134)
Ryy Gy, %2, %) = Syi(f (1), £ (2, e, £ (31)), (135)
Ryp(x1, X2, oy xp) = Syp(f (1) , £ (2), oo, f (%)), (136)

for all {x;, x5, ..., x,-} subsets of X.

Since g : Y —» Z is an isomorphism, then by definition g(y) = zforally €
Y satisfying the conditions:

min[PTy,(¥)] = min[PT;,(9()], (137)

max[Plr, (y)] = max[Pls,(g(»))], (138)
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max[PFy, ()] = max[PFg,(g(»)].

max[NT, (y)] = max [NTGJ. (g(y))],

min[NIg,(y)] = min[Nlg,(g()],

min[NFy, ()] = min [NFs, (9))]

for all x€ X.

Spr (Y1, Y2, o)
Spr(V1, Y2, oo
Spr (V1 Y2, )
Snr (V1 Y2, wees
Sni(V1, Yy oo
SneV1 Yo e

¥r) = Wer(g1),9(v2), -, 9(¥r) ),
¥r) =Wp(9(y1), 92, -, () ),
¥r) = Wer(g1),9(v2), -, gr) ),
Vr) = Wyr(g1) , 9(v2)s -, 90 ),
¥r) =Wni(g), 92, . gr) ),
¥r) =Wye(g1), 9(v2), -, 9(0r) ),

for all {y;,V,, ..., ¥} subsetsof Y.

Thus, from above equations we conclude that:
min[PT, )] = min[PTg; (g(f NI,
max[Plg,(x)] = max[Plg,(g(f ()],

max[PFg (x)] = max[PFg,(g(f(x)))],

max[N T ()]

max [NTG,- (g(f(x)))],

min[NIg, (x)] = min[Nlg (g(f )],

min[NFEj(x)] = min[NFc;j(g(f(x)))],

for all x€ X.

Rpr(xy, ...,
RPI(xl, ey

Rpp (x4, ...,

RNT(xl, e

Ry (x4, ...,

RNF(xl,

xr) = WPT(g(f(xl))f ---'g(f(xr)))a
Xp) = WPI(g(f(xl))' ---;g(f(xr))),
xr) = WPF(g(f(xl))f ---:g(f(xr)))>

'xr) = WNT(g(f(x1)); 'g(f(xr))):

xr) = WNI(g(f(xl))’ ---'g(f(xr)))a

:xr) = WNF(g(f(xl)); 'g(f(xr))):

for all {x;, x5, ..., x,} subsets of X.

Therefore g o f is an isomorphism between H and M.
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Hence, the isomorphism between BSVNHGS is an equivalence relation.

Theorem 3.24

Collected Papers, IX

The weak isomorphism between BSVNHGS satisfies the partial order relation.

Proof

LetH=(X E, R), K= (Y, F,S) and M = (Z, G, W) be BSVNHGs with underlying
sets X, Y and Z, respectively:

Reflexive

Consider the map (identity map) /- X = X defined as follows: f{x)=x for all x € X,

since the identity map is always bijective and satisfies the conditions:

min[PTg, (x)] = min[PTg,(f ()],
max[Plz,(x)] = max[Plg,(f(x))],
max[PFy (x)] = max[PFg,(f(0))],
max[NTy, (x)] = max[NTg,(f ()],
min[Nlg, (x)] = min[NIg,(f (x))],
min[NFg (x)] = min[NFg,(f ()],

for all x€ X.

Rpr(xy, x5, oy %) < Rpp(f (1), f(x2), -, f () ),
Rpi(xy, %2, s %) 2 Rpi(f (1), f(x2), e, f () ),
Rpp(x1, %3, oy %) 2 Rpp(f(x1), f(x2), o, f(37)),
Ryr(x1, %3, o, %) = Ryp(f(x1) , f(32), o, (7)),
Ryi(xy, %2, %) < Ry (F (x1) , £ (x2), oo, f(21) ),
Ryp(xy, x5, o, %r) < Ryp(f (1), f(x2), o, f (1)),

for all {x;, x5, ..., x,-} subsets of X.
Hence, fis a weak isomorphism of BSVNHG H to itself.

Anti-symmetric

(161)
(162)
(163)
(164)
(165)
(166)

(167)
(168)
(169)
(170)
(171)
(172)

Let /' be a weak isomorphism between H onto K, and g be a weak isomorphic
between K and H, that is f:X — Y is a bijective map defined by: f(x) =
y for all x € X satisfying the conditions:

min[PTEj(x)] = min[PTFj(f(x))],
max[Plg;(x)] = maX[Plpj(f(x))],
max[PFg (x)] = maX[PFFj(f(x))],
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max[NTg;(x)] = max[NT,(f (x))], (176)
min[Nlg,(x)] = min[NIz (f(x))], (177)
min[NFg,(x)] = min[NFs (f ()], (178)
for all x€ X.
Rpr(xy, X3, oy %) = Spr(f(x1) , f(x2), o, (1) ), (179)
Rpi(xy, %2, o ) = Spi(f (x1) , f(x2), o, f () ), (180)
Rpp(x1, %3, oy %) = Spp(f(x1), f(x2), -, f (1) ), (181)
Ryt (x1, %9, o, %p) = Syr(f (x1), f(x2), on f (37 ), (182)
Ry (x1, %2, s %) = Sni(f (1), f(32), e, f () ), (183)
Ryp(xy, x5, o, %) = Syp(f (x1) , f(x2), oo, f(31) ), (184)

for all {x;, x5, ..., x,} subsets of X.

Since g is also bijective map g(y) = x for all y € Y satisfying the conditions:

min[PTy,(y)] = min[PTg,(9())], (185)
max[Plp;(y)] = max[PIz,(g(»)], (186)
max[PF;(y)] = max[PFg,(g()], (187)
max[NTz,(y)] = max[NTg,(g(»))], (188)
min[Nlp, ()] = min[NI5,(g())], (189)
min[NFz (y)] = min[NFg (g(»))], (190)
forall ye Y.
Rpr (0, y2, -, %) < Spr(9(v1), 9(¥2), -, 904 ), (191)
Rp1 (Y1, Y2s s ¥r) 2 Spi(fF (1), fF(2)s s fF () ), (192)
Rpr(Y1, Y2 0 ¥r) = Spr(f (1), f(2)s wes f OB ) (193)
Ryr (v, 2, -, %) = Snr(@1) , 92), -, 9(0r) )s (194)
Ryiu vz w0 ¥r) < Sui(f @), f2), s f O3 ), (195)
Ryve 1, Y2 0 0r) < Sve(F ) f(02), - f ) ), (196)

for all {y;, V3, ..., ¥} subsets of Y.

The above inequalities hold for finite sets X and Y only whenever H and K have
same number of edges and corresponding edge have same weights, hence H is
identical to K.

Transitive

Let f: X —» Y and g:Y — Z be two weak isomorphism of BSVNHGs of H onto K
and K onto M, respectively. Then g o f is bijective mapping from X to Z, where
go fisdefinedas (go f)(x) = g(f(x)) forallx € X.
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Since f'is a weak isomorphism, then by definition f(x) = y for allx € X which
satisfies the conditions:

min[PTg,(x)] = min[PTs (f (x))], (197)
max[Plg,(x)] = max[PI(f(x))], (198)
maX[PFEj(x)] = max[PFFj(f(x))], (199)
maX[NTEj(x)] = max[NTFj(f(x))], (200)
min[NIg,(x)] = min[NIg (f(x))], (201)
min[NFg, (x)] = min[NFs (f(x))], (202)
for all x€ X.
Rpr(xy, X2, ey %) < Spr(f(x1), f(x2), oo, f () ), (203)
Rpy(x1, %, o, %) 2 Sp(f (x1), f(x2), o, f(2) ), (204)
Rpp(x1, %5, s %) Z Spr(f (1), f(x2), o, £ (1) ), (205)
Ryr(x1, %3, o, %) 2 Snr(f (%), f(x2), o, f (37 ), (206)
Ry;(xy, %2, %) < Syp(f (1), f(2), -, (1) ), (207)
Ryp(x1, %2, oy %) < Syp(f(x1) , f(2), o, f (1) ), (208)

for all {xq, x5, ..., x,-} subsets of X.

Since g : Y — Z is a weak isomorphism, then by definition g(y) = zforally €
Y, satisfying the conditions:

min[PTy,(y)] = min[PT; (9()], (209)
max[Plr,(y)] = max[Pls;(g(»))], (210)
max[PFp,(y)] = max[PFg,(g(»)], (211)
max[NT, ()] = max[NTg,(g()], (212)
min[NIp,(y)] = min[Nig,(g()], (213)
min[NFz (y)] = min[NFg (g())], (214)
for all x€ X.
Spr Y2, oY) < Wer(gn) , 92), -, 9(0r) ), (215)
Sp(V1 Y2, - ¥r) Z Wpi(g(v1), 9(2), -, gO) ), (216)
Spr (V1 Y2, s ¥r) = Wpp(g(v1) . 9(2), -, 9 ) ), (217)
Snt (V1 Y2 0 V) 2 Wi (1) , 9 (02), -, 90 ), (218)
StV Yo 0 ¥r) < Whi(@(v1) , 9(v2), -, 90 ), (219)
SneYL Y2 0 ¥r) S Wip(g(v1) , 9(v2), - 90 ), (220)

for all {y;, V3, ..., ¥} subsetsof Y.
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Thus, from above equations, we conclude that:

min[PTg, (x)] = min[PTg (9(f (x)))], (221)
max[Plg;(x)] = max[Plg,(g(f ()], (222)
max[PFg,(x)] = max[PFg;(g(f(x)))], (223)
max[NTg, (x)] = max[NTg,(g(f (x)))], (224)
min[Nlg, (x)] = min[Nls,(g(f (x))], (225)
min[NFg, (x)] = min[NFg (g(f ()], (226)
for all x€ X.
Rpr (X1, s %) < Wor(g(f (1), .., g(f (X)), (227)
Rpy (x4, 0, %) 2 Wi ((f (x1)), -, g (F (X)), (228)
Rpp(x1, s %) 2 Wop(g(f (x)), -, g (f (x))), (229)
Ryr(xy, s %) 2 Wy (g(f (x1)), ., g(f (1)), (230)
Ry (1, v, %) < Wiyt (9(f (1)), e, g(f D)), (231)
Ryp (1, s %) < Wyp(g(f (x0)), s g(f (D)), (232)

for all {x;, x5, ..., x,-} subsets of X.
Therefore g o f is a weak isomorphism between H and M.

Hence, the weak isomorphism between BSVNHGS is a partial order relation.

4 Conclusion

The bipolar single valued neutrosophic hypergraph can be applied in various
areas of engineering and computer science. In this paper, the isomorphism
between BSVNHGs is proved to be an equivalence relation and the weak
isomorphism is proved to be a partial order relation. Similarly, it can be
proved that co-weak isomorphism in BSVNHGs is a partial order relation.
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Regular Bipolar Single Valued Neutrosophic
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Abstract. In this paper, we define the regular and totally
regular bipolar single valued neutrosophic hypergraphs,
and discuss the order and size along with properties of

regular and totally regular bipolar single valued neutro-
sophic hypergraphs. We extend work on completeness of
bipolar single valued neutrosophic hypergraphs.

Keywords: bipolar single valued neutrosophic hypergraphs, regular bipolar single valued neutrosophic hypergraphs and totally regu-

lar bipolar single valued neutrosophic hyper graphs.

1 Introduction

The notion of neutrosophic sets (NSs) was proposed by
Smarandache [8] as a generalization of the fuzzy sets [14],
intuitionistic fuzzy sets [12], interval valued fuzzy set [11]
and interval-valued intuitionistic fuzzy sets [13] theories.
The neutrosophic set is a powerful mathematical tool for
dealing with incomplete, indeterminate and inconsistent in-
formation in real world. The neutrosophic sets are charac-
terized by a truth-membership function (#), an indetermina-
cy-membership function (7) and a falsity membership func-
tion (f) independently, which are within the real standard
or nonstandard unit interval 10 , 1'[. In order to conven-
iently use NS in real life applications, Wang et al. [9] in-
troduced the concept of the single-valued neutrosophic set
(SVNS), a subclass of the neutrosophic sets. The same au-
thors [10] introduced the concept of the interval valued
neutrosophic set (IVNS), which is more precise and flexi-
ble than the single valued neutrosophic set. The IVNS is a
generalization of the single valued neutrosophic set, in
which the three membership functions are independent and
their value belong to the unit interval [0, 1]. More works
on single valued neutrosophic sets, interval valued neutro-
sophic sets and their applications can be found on
http://fs.gallup.unm.edu/NSS/.

Hypergraph is a graph in which an edge can connect more
than two vertices, hypergraphs can be applied to analyse
architecture structures and to represent system partitions,
Mordesen J.N and P.S Nasir gave the definitions for fuzzy
hypergraphs. Parvathy. R and M. G. Karunambigai’s paper
introduced the concepts of Intuitionistic fuzzy hypergraphs
and analyse its components, Nagoor Gani. A and Sajith
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Begum. S defined degree, order and size in intuitionistic
fuzzy graphs and extend the properties. Nagoor Gani. A
and Latha. R introduced irregular fuzzy graphs and dis-
cussed some of its properties.

Regular intuitionistic fuzzy hypergraphs and totally regular
intuitionistic fuzzy hypergraphs are introduced by Pra-
deepa. I and Vimala. S in [0]. In this paper we extend regu-
larity and totally regularity on bipolar single valued neu-
trosophic hypergraphs.

2 Preliminaries

In this section we discuss the basic concept on neutro-
sophic set and neutrosophic hyper graphs.

Definition 2.1 Let X be the space of points (objects) with
generic elements in X denoted by x. A single valued neu-
trosophic set A (SVNS 4) is characterized by truth mem-
bership function T4(x), indeterminacy membership func-
tion I4(x) and a falsity membership function F,(x). For
each point x €X; T 4(x), [ 4(x), Fa(x) € [0, 1].

Definition 2.2 Let X be a space of points (objects) with
generic elements in X denoted by x. A bipolar single
valued neutrosophic set 4 (BSVNS 4) is characterized by
positive truth membership function PT,(x), positive
indeterminacy membership function PI,(x) and a positive
falsity membership function PF,(x) and negative truth
membership function NT,4(x), negative indeterminacy
membership function NI,(x) and a negative falsity
membership function NF 4(x).
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For each point x € X; PT 4(x), Pl4(x), PF4(x) € [0, 1] and
NTA(X)a NIA(x)a NFA(X) € [_17 0]

Definition 2.3 Let A be a BSVNS on X then support of
A is denoted and defined by

Supp(A) = {x : x €X, PT 4(x) > 0, Pl4(x) > 0, PF 4(x) > 0,
NT 4(x) <0, Nl(x) <0, NF 4(x) <0}

Definition 2.4 A hyper graph is an ordered pair H = (X,

E), where
(1) X ={x}, x, ... ., x5} be a finite set of vertices.
(2Q)E ={E\, E,, ...., E;,;} be a family of subsets of

X.(3)Ejforj=1,23,..mand U(Ej= X.

The set X is called set of vertices and F is the set of edges
(or hyper edges).

Definition 2.5 A bipolar single valued neutrosophic
hypergraph is an ordered pair H = (X, E), where

(1) X = {x1, xy, ..., xp,} be a finite set of vertices.

() E={E,, Ey, ..., Ep} be a family of BSVNSs of X.

B)E;j#0 =(0,0,0) for j=1,2,3,...m and U; Supp(E j)= X.

The set X is called set of vertices and E is the set of
BSVN-edges (or BSVN-hyper edges).

Proposition 2.6 The bipolar single valued neutrosophic
hyper graph is the generalization of fuzzy hyper graphs,
intuitionistic fuzzy hyper graphs, bipolar fuzzy hyper
graphs and single valued neutrosophic hypergraphs.

3 Regular and totally regular BSVNHGs

Definition 3.1 The open neighbourhood of a vertex x in
bipolar single valued neutrosophic  hypergraphs
(BSVNHGs) is the set of adjacent vertices of x, excluding
that vertex and is denoted by N(x).

Definition 3.2 The closed neighbourhood of a vertex x in
bipolar single valued neutrosophic  hypergraphs
(BSVNHG:s) is the set of adjacent vertices of x, including
that vertex and is denoted by N/x/.

Example 3.3 Consider a bipolar single valued neutrosophic
hypergraphs H = (X, E) where, X = {a, b, ¢, d, e} and E =
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{P, O, R, S}, which is defined by
P={(a, 0.1,0.2,0.3,-0.4,-0.6 -0.8), (b, 0.4, 0.5, 0.6, -0.4, -0.6 -0.8)}

Q={(c,0.1,0.2,0.3,-0.4,-0.4-0.9), (d, 0.4, .5, 0.6, -0.3, -0.5 -0.6), (e, 0.7,
0.8,0.9,-0.7,-0.9, -0.2)}

R={(b,0.1,0.2,0.3,-0.2,-0.5, -0.8), (c, 0.4, 0.5, 0.6, -0.9, -0.7 -0.4)}

S$={(a,0.1,0.2,0.3,-0.7,-0.6,-0.9), (d, 0.9, 0.7, 0.6, -0.4, -0.7, -0.9)}

Then the open neighbourhood of a vertex a is the b and d,
and closed neighbourhood of a vertex b is b, a and c.

Definition 3.4 Let H = (X, E) be a BSVNHG, the open
neighbourhood degree of a vertex x, which is denoted and
defined by

deg(x) = (degpr(x), degp,(x), degpp(x), degnr(x), degy,(x), degyr(x))

where

degpr(x) = Xreney PTe(¥)
degpi(X) = Xxengo P1e ()
degpr(x) = Xrene) PFE(X)
degnr(X) = Xxeno NTe (%)
degn;(x) = ZxEN(x) NIg(x)

degnr(x) = erN(x) NFg(x)

Example 3.5 Consider a bipolar single valued neutrosoph-
ic hypergraphs H = (X, E) where, X = {a, b, ¢, d, e} and E
={P, O, R, S}, which are defined by

P={(a,.1,.2,.3,-0.1,-0.2,-0.3), (b, .4, .5, .6, -0.1, 0.2, -0.3)}

Q=1{(c .1,.2,.3,-0.1,-0.2, -0.3), (d, .4, .5, .6, -0.1,-0.2,-0.3), (e, .7, .8, .9,
-0.1,-0.2,-0.3)}

R={(b, .1,.2,.3,-0.1,-0.2,-0.3), (c, .4, .5, .6,-0.1,-0.2, -0.3)}
S={(a,.1,.2,.3,-0.1,-0.2,-0.3), (d, .4, .5, .6, -0.1, -0.2, -0.3)}
Then the open neighbourhood of a vertex a contain b and d

and therefore open neighbourhood degree of a vertex a is
(.8,1,1.2,-0.2,-0.4, -0.6).

Definition 3.6 Let H# = (X, E) be a BSVNHG, the
closed neighbourhood degree of a vertex x is denoted
and defined by
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deg[x] = (degpr(x], degp;[x], degpr(X], degnr(X], degy;[x], degyrlx])

which are defined by

degprlx] = degpr(x) + PTg(x)
degp;[x] = degp;(x) + Plg(x)
degprlx] = degpr(x) + PFg/(x)
degyrlx] = degnr(x) + NTg(x)
degn[x] = degy;(x) + NIg(x)
degnr[x] = degnp(x) + NFg(x)

Example 3.7 Consider a bipolar single valued neutrosophic
hypergraphs H = (X, E) where, X = {a, b, ¢, d, ¢} and E =
{P, O, R, S}, which is defined by
P={(a,0.1,0.2,03,-0.1,-0.2,-0.3), (b, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3)}

Q={(c, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3), (e,
0.7,0.8,0.9,-0.1,-0.2, -0.3)}

R={(b, 0.1,0.2,0.3,-0.1, -0.2, -0.3), (c, 0.4, 0.5, 0.6, -0.1, 0.2, -0.3)}
S={(a, 0.1,0.2,0.3,-0.1,-0.2,-0.3), (d, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3)}

The closed neighbourhood of a vertex a contain a, b and d,
hence the closed neighbourhood degree of a vertex a is
(0.9,.1.2,1.5,-0.3,-0.6, -0.9).

Definition 3.8 Let H = (X, E) be a BSVNHG, then H is
said to be an n-regular BSVNHG if all the vertices have the
same open neighbourhood degree n = (n;, ny, n3, ny ns, ng)

Definition 3.9 Let H = (X, E) be a BSVNHG, then H is said
to be m-totally regular BSVNHG if all the vertices have the
same closed neighbourhood degree m = (m;, m, m; my,
ms, Mmg).

Proposition 3.10 A regular BSVNHG is the generalization
of regular fuzzy hypergraphs, regular intuitionistic fuzzy
hypergraphs, regular bipolar fuzzy hypergraphs and regu-
lar single valued neutrosophic hypergraphs.

Proposition 3.11 A totally regular BSVNHG is the
generali-zation of totally regular fuzzy hypergraphs, totally
regular intuitionistic fuzzy hypergraphs, totally regular
bipolar fuzzy hypergraphs and totally regular single valued
neu-trosophic hypergraphs.

Example 3.12 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E) where, X = {a, b, ¢, d} and
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E={P, O, R, S} which is defined by
P={(a, 0.8 0.2,0.3,-0.1,-0.2,-0.3), (b, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)}
Q={(b, 0.8,0.2,0.3,-0.1,-0.2,-0.3), (c, 0.8, 0.2, 0.3,-0.1, -0.2, -0.3)}
R={(c,0.8,0.2,0.3,-0.1,-0.2,-0.3), (d, 0.8, 0.2, 0.3,-0.1, -0.2, -0.3)}
$=1{(d, 0.8,0.2,0.3,-0.1,-0.2,-0.3), (a, 0.8, 0.2, 0.3,-0.1, -0.2, -0.3)}
Here the open neighbourhood degree of every vertex is
(1.6, 0.4, 0.6, -0.2, -0.4, -0.6) hence H is regular BSVNHG
and closed neighbourhood degree of every vertex is (2.4,

0.6, 0.9, -0.3, -0.6, -0.9), Hence H is both regular and total-
ly regular BSVNHG.

Theorem 3.13 Let H = (X, E) be a BSVNHG which is
both regular and totally regular BSVNHG then £ is constant.

Proof: Suppose H is an n-regular and m-totally regular
BSVNHG. Then deg(x) = n = (n4, ny, n3, Ny, ns, ng) and deg[x]
=m = (my, m,, m3, my, ms, mg) Vx € E;. Consider deg[x] =
m. Hence by definition, deg(x) + E;(x) = m this implies
E;(x) =m—nforall x € E;. Hence E is constant.

Remark 3.14 The converse of above theorem need not to
be true in general.

Example 3.15 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E) where, X = {a, b, ¢, d} and
E ={P, O, R, S}, which is defined by

P={(a,0.8,0.2,0.3,-0.1,-0.2,-0.3), (b, 0.8,0.2, 0.3, -0.1, -0.2, -0.3)}
Q={(b,0.80.2,0.3,-0.1,-0.2,-0.3), (d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)}
R={(c, 0.8,0.2,0.3,-0.1,-0.2,-0.3), (d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)}
S=1{(d, 0.8,0.2,0.3,-0.1,-0.2,-0.3), (a, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)}
Here E is constant but deg(a) = (1.6, 0.4, 0.6, -0.2, -0.4, -
0.6) and deg(d) = (2.4, 0.6, 0.9, -0.3, -0.6, -0.9) i.e deg(a)
and deg(d) are not equals hence H is not regular BSVNHG.
Next degfa] = (2.4, 0.6, 0.9, -0.3, -0.6, -0.9) and deg[d]=
(3.2, 0.8, 1.2, -4, -0.8, -1.2), hence deg[a] and deg[d] are
not equals hence H is not totally regular BSVNHG, Thus
that H is neither regular and nor totally regular BSVNHG.

Theorem 3.16 Let H = (X, E) be a BSVNHG then E is con-
stant on X if and only if following are equivalent,

(1) His regular BSVNHG.
(2) His totally regular BSVNHG.

Proof: Suppose H = (X, E) be a BSVNHG and £ is constant
in A, thatis E;(x) =c=(c,c,c,c,c,c) VxekE.

98



Florentin Smarandache (author and editor)

Suppose H is n-regular BSVNHG, then deg(x) = n = (ny, n,,
n3, Ny, s, Ng) V'x € E;, consider deg/x] = deg(x) +E;(x) =n
+ ¢ Yx € E;, hence H is totally regular BSVNHG.

Next suppose that H is m-totally regular BSVNHG, then
deg[x] = m = (my, m,, m3, my, ms, mg) for all x € E;, that is
deg(x) + E;(x) = m Vx € E;, this implies that deg(x)=m—c

Vx € E;. Thus H is regular BSVNHG, thus (1) and (2) are
equivalent.

Conversely: Assume that (/) and (2) are equivalent. That is
H is regular BSVNHG if and only if H is totally regular
BSVNHG. Suppose contrary E is not constant, that is E;(x)
and E;(y) not equals for some x and y in X. Let H = (X, E)
be n-regular BSVNHG, then deg(x) = n = (ny, ny, n3, Ny, ns,
ng) for all x € E;. Consider

deg[x] = deg(x) + E;(x) =n + E;(x)
degly] = deg(y) + Ei( (y) = n + E;(y)

Since E;(x) and E;(y) are not equals for some x and y in X.
Hence deg/[x] and deg[y] are not equals, thus H is not to-
tally regular BSVNHG, which contradict to our assumption.

Next let H be totally regular BSVNHG, then deg/x] =
deg/y], that is deg(x) + E(x) = deg(y) + E;(v) and deg(x) —
deg(y) = E;(y) — Ei(x), since RHS of last equation is non-
zero, hence LHS of above equation is also nonzero, thus
deg(x) and deg(y) are not equals, so H is not regular
BSVNHG, which is again contradict to our assumption,
thus our supposition was wrong, hence E must be con-
stant, this completes the proof.

Definition 3.17 Let H = (X, E) be a regular BSVNHG,
then the order of BSVNHG H is denoted and defined by

O(H) = (p/ a rn s t, u)l where p=2xEXPTEi(x)I q=
ZxEXPIEi(x)-T = ZxEXPFEi(x)'S = erXNTEi(x):t = erXNIEi(x)»

u=Y,cxNF;(x). For every x € X and size of regular
BSVNHG is denoted and defined by S(H) = Yi;(Sg,),
where S(E)) = (a, b, ¢, d, e, f) which is defined by

a= ZX €EE; PTEi (x)

b= Zx €E; PIEL (x)
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¢ = Y er, PFg, (¥)
d = T e, NTg, ()
e =Yg Nlg, (%)
/= Tx e, NFg, (x)

Example 3.18 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E) where, X = {a, b, ¢, d} and

E={P, Q R, S}, which is defined by

P={(a,.8.2,.3-1,-2-3),(b.8.2.3-1-2-3)
-3)}
-3)}

-3)}

Q={(b, .8 .2,.3-1,-2-3),(c .8 .2 .3-1,-2,

R={(c, .8 .2,.3,-1,-.2,-3),(d, .8,.2,.3,-.1,-.2,

S={(d, .8 .2,.3,-1,-2,-3),(q,.8.2,.3-1,-2,

Here order and size of H are given (3.2, .8, 1.2, -.4, -.8, -
1.2) and (6.4, 1.6, 2.4, -.8, -1.6, -2.4) respectively.

Proposition 3.19 The size of an n-regular BSYNHG H = (H,
E) is nk/2, where [X[=k.

Proposition 3.20 If H = (X, E) be m-totally regular BSYNHG
then 25(H) + O(H) = mk, where [X[= k.

Corollary 3.21 Let H = (X, E) be a n-regular and m-totally
regular BSVNHG then O(H) = k(m - n), where | X|=k.

Proposition 3.22 The dual of n-regular and m-totally regu-
lar BSVNHG H = (X, E) is again an n-regular and m-
totally regular BSVNHG.

Definition 3.23 A bipolar single valued neutrosophic hy-
pergraph (BSVNHG) is said to be complete BSVNHG if
for every x in X, N(x) = {x: x in X-{x}}, that is N(x)
contains all remaining vertices of X except x.

Example 3.24 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E), where X = {a, b, ¢, d} and
E ={P, O, R}, which is defined by

P={(a, 0.4, 0.6, 0.3,-0.5,-0.2, -0.3), (c, 0.8, 0.2, 0.3,-0.1, -0.8, -0.3)}

Q={(a, 0.8,0.8 0.3 -0.1, -0.6, -0.3), (b, 0.8, 0.2, 0.1, -0.1, -0.2, -0.3), (d,
0.8,0.2,0.1,-0.1,-0.9, -0.3)}

R =1{(c, 0.4, 0.9, 0.9, -0.1, -0.2, -0.3), (d, 0.7, 0.2, 0.1, -0.5, -0.9, -0.3), (b,
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0.4, 0.2, 0.1, -0.8 -0.4, -0.2)}. Here N(a) = {b, ¢, d} , N(b) = {a,
¢, d}, N(c) ={a, b, d}, N(d) = {a, b, c} hence H is complete
BSVNHG.

Remark 3.25 In a complete BSVNHG H = (X, E), the
cardi-nality of N(x) is same for every vertex.

Theorem 3.26 Every complete BSVNHG H = (X, E) is
both regular and totally regular if £ is constant in H.

Proof: Let H = (X, E) be complete BSVNHG, suppose E is
constant in H, so that Ej(x) = ¢ = (c;, ¢5 €3 €4 Cs Cs)
Vx € E;, since BSYNHG is complete, then by definition for
every vertex x in X, N(x) = {x: x in X-{x}}, the open neigh-
bourhood degree of every vertex is same. That is deg(x) =
n = (ny, ny N3, ng ns, ng) Vx € E;. Hence complete
BSVNHG is regular BSVNHG. Also, deg[x] = deg(x) + E;(x) =
n+cVx € E;. Hence H is totally regular BSVNHG.

Remark 3.27 Every complete BSVNHG is
regular even if £ is not constant.

totally

Definition 3.28 A BSVNHG is said to be k-uniform if all
the hyper edges have same cardinality.

Example 3.29 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E), where X = {a, b, ¢, d} and

E ={P, Q R}, which is defined by
P=1{(a, 0.8, 0.4, 0.2,-0.4,-0.6, -0.2), (b, 0.7, 0.5, 0.3, -0.7, -0.1, -0.2)}
Q={(b, 0.9, 0.4, 0.8, -0.3,-0.2,-0.9), (c, 0.8, 0.4, 0.2, -0.4, -0.3, -0.7)}

R={(c, 0.8,0.6,0.4,-0.3,-0.7,-0.2), (d, 0.8, 0.9, 0.5, -0.4, -0.8, -0.9)}
4 Conclusion

Theoretical concepts of graphs and hypergraphs are uti-
lized by computer science applications. Single valued neu-
trosophic hypergraphs are more flexible than fuzzy hyper-
graphs and intuitionistic fuzzy hypergraphs. The concepts
of single valued neutrosophic hypergraphs can be applied
in various areas of engineering and computer science. In
this paper, we defined the regular and totally regular bipo-
lar single valued neutrosophic hyper graphs. We plan to
extend our research work to irregular and totally irregular
on bipolar single valued neutrosophic hyper graphs.
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Abstract

The theory of soluble groups and nilpotent groups is old and hence a generalized on. In this paper, we
introduced neutrosophic soluble groups and neutrosophic nilpotent groups which have some kind of
indeterminacy. These notions are generalized to the classic notions of soluble groups and nilpotent
groups. We also derive some new type of series which derived some new notions of soluble groups and
nilpotent groups. They are mixed neutrosophic soluble groups and mixed neutrosophic nilpotent groups as
well as strong neutrosophic soluble groups and strong neutrosophic nilpotent groups.

Key words: Soluble group, nilpotent group, neutrosophic group, neutrosophic soluble group, neutrosophic
nilpotent group.

1. Introduction

Smarandache [15] in 1980 introduced neutrosophy which is a branch of philosophy that studies the origin and
scope of neutralities and their interaction with ideational spectra. The concept of neutrosophic set and logic came
into being due to neutrosophy, where each proposition is approximated to have the percentage of truth in a subset T,
the percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F. Neutrosophic sets are the
generalization to all other traditional theories of logics. This mathematical framework is used to handle problems
with uncertaint, imprecise, indeterminate, incomplete and inconsistent etc. Kandasamy and Smarandache apply the
concept of indeterminacy factor in algebraic structures by inserting the indeterminate element | in the algebraic
notions with respect to the opeartaion *. This phenomenon generates the corresponding neutrosophic algebraic
notion. They called that indeterminacy element I, a neutrosophic element which is unknown in some sense. This
approach a relatively large structure which contain the old classic alegebraic structure. In this way, they studied
several neutrosophic algebraic structures in [9,10,11,12]. Some of them are neutrosophic fields, neutrosophic vector
spaces, neutrosophic groups, neutrosophic bigroups, neutrosophic N-groups, neutrosophic semigroups, neutrosophic
bisemigroups, neutrosophic N-semigroup, neutrosophic loops, neutrosophic biloops, neutrosophic N-loop,
neutrosophic groupoids, and neutrosophic bigroupoids and so on. Mumtaz et al.[1] introduced neutrosophic left
almost semigroup in short neutrosophic LA-semigroup and their generalization [2]. Further, Mumtaz et al. studied
neutrosophic LA-semigroup rings and their generalization.

Groups [5,7] are the most rich algebraic structures in the theory of algebra.They shared common features to all the
algebraic structures. Soluble groups [13,14] are important notions in the theory of groups as they are studied on the
basis of some kind of series structures of the subgroups of the group. A soluble group is constructed by using
abelian
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groups through the extension. A nilpotent group [13] is one whose which has finite length of central series. Thus a
nilplotent group is also a soluble group. It is a special type of soluble group because every soluble group has a
abelian series. A huge amount of literature on soluble groups and nilpotent groups can be found in [6,8,16,17,18].

In this paper, we introduced neutrosophic soluble groups and neutrosophic nilpotent groups and investigate some
of their propertied. The organization of this paper is as follows: In section 1, we give a brief introduction of
neutrosophic algebraic structures in terms of I and soluble groups and nilpotent groups. In the next section 2, some
basic concept have been studied which we have used in the rest of the paper. In section 3, we introduced

neutrosophic soluble groups and investigate some of their basic properties. In section 4, the notions of
neutrosophic nilpotent groups are introduced and studied their basic properties. Conclusion is placed in section 5.

2. Fundamental Concepts

Definition 2.1: Let (G, *) be a group . Then the neutrosophic group is generated by G and I under * denoted
by N (G) = {(G Ul >, *} . The identity element is represented by e and {e} represents the trivial subgroup of G.

1 is called the indeterminate element with the property /> = I .Foraninteger n , n + I and nl are

-1
neutrosophic elementsand 0./ = 0 . I ,theinverse of I is not defined and hence does not exist.

Definition 2.2: Let N(G') be a neutrosophic group and H be a neutrosophic subgroup of N(G'). Then H isa
neutrosophic normal subgroup of N(G) if zH = Hz forall x € N(G).

Definition 2.3: Let N(G') be a neutrosophic group. Then center of N((G) is denoted by C(N(G)) and defined
as C(N(G@)) = {z € N(G) : ax = za forall a € N(G)}.

Definition 2.4: Let G beagroupand H,,H,,...,H  be the subgroups of G. Then

{e}=H,<H, <H,<..<H ,<H =G

is called subgroup series of G .

Definition 2.5: Let G be a group and e be the identity element. Then
{fe} =H,<H <H,<..<H_ , <H =G

is called subnormal series. That is Hj is normal subgroup of H . . forall j.

j+1
Definition 2.6: Let

{fe} =H,<H <H,<..<H_ , <H =G
be a subnormal series of G. If each HJ. isnormal in G forall ], then this subnormal series is called normal

series.

Definition 2.7: A normal series
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{e} =H,<H, <H,<..<H, , <H, =G

is called an abelian series if the factor group = 1+ H is an abelian group.
i

Definition 2.8: A group G is called a soluble group if G has an abelian series.
Definition 2.9: Let G be a soluble group. Then length of the shortest abelian series of G is called derived length.

Definition 2.10: Let G be a group. The series

{e} =H,<H, <H,<..<H, , <H, =G

is called central series if Hj% c’Z (% j forall j.
i i

Definition 2.11: A group G is called a nilpotent group if G has a central series.
3. Neutrosophic Soluble Groups

Definition 3.1: Let N(G) =(G U I ) be a neutrosophic group and let H,, H,,...,H  be the neutrosophic

subgroups of N(G) . Then a neutrosophic subgroup series is a chain of neutrosophic subgroups such that
fel=H,<H,<H,<..<H,  <H = N(G).

Example 3.2: Let N(G) = (Z Ul > be a neutrosophic group of integers. Then the following are the neutrosophic

subgroups series of the group N(G). Here the identity element is 0 and {0} is the trivial subgroup of Z.
{01<42<27<(2201)<(Z V1),
0} <(4zu1)<(2201)<(Z 1),
{01<4Z <27.<7.<(ZU1).

Definition 3.3:Let{e}=H, <H, <H, <..<H,  <H_ = N(G) be aneutrosophic subgroup series of the
neutrosophic group N (G) . Then this series of subgroups is called a strong neutrosophic subgroup series if each

H; is a neutrosophic subgroup of N (G) forall j.
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Example 3.4: Let N(G) = <Z U > be a neutrosophic group. Then the following neutrosophic subgroup series of

N (G) is a strong neutrosophic subgroup series:
(0}<{(4ZU1)<(2Z V1) <(ZU]).

Theorem 3.5: Every strong neutrosophic subgroup series is trivially a neutrosophic subgroup series but the converse
is not true in general.

Definition 3.6: If some Hj 'S are neutrosophic subgroups and some H, 'S are just subgroups of N (G). Then

that neutrosophic subgroups series is called mixed neutrosophic subgroup series.

Example 3.7: Let N(G) = <Z Ul > be a neutrosophic group. Then the following neutrosophic subgroup series of

N (G) is a mixed neutrosophic subgroup series:
{0<4Z<27.<(22.01)<(ZUl).

Theorem 3.8: Every mixed neutrosophic subgroup series is trivially a neutrosophic subgroup series but the converse
is not true in general.

Definition 3.9: If H,'sinfe}=H, <H, <H, <..<H_, <H_ =N(G) are only subgroups of the

neutrosophic group N (G), then that series is termed as subgroup series of the neutrosophic group N (G).

Example 3.10: Let N(G) = (Z X > be a neutrosophic group. Then the following neutrosophic subgroup series

of N(G) is just a subgroup series:
{0}<4Z<2Z<Z<(ZU1).
Theorem 3.11: A neutrosophic group N (G) has all three type of neutrosophic subgroups series.
Theorem 3.12: Every subgroup series of the group G is also a subgroup series of the neutrosophic group N(G).
Proof: Since G is always contained in N (G) . This directly followed the proof.

Definition 3.13:Let{e}=H,<H, <H, <..<H_, <H_ =N(G) be aneutrosophic subgroup series of the

neutrosophic group N(G). If
fe}=Hy<H, <H,<..<H_;<H =N(G)............... @

That is each HJ. is normal in H .

N(G).

Then (1) is called a neutrosophic subnormal series of the neutrosophic group
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Example 3.14: Let N(G) = <A4 U > be a neutrosophic group, where A4 is the alternating subgroup of the

permutation group 54 . Then the following is the neutrosophic subnormal series of the group N(G).
{e}<C, aV, <(V,ul)<(AUI).

Definition 3.15: A neutrosophic subnormal series is called strong neutrosophic subnormal series if all HJ. 'S are

neutrosophic normal subgroups in (1) forall j.

Example 3.16: Let N(G) = <Z u > be a neutrosophic group of integers. Then the following is a strong

neutrosophic subnormal series of N (G).
{0}<(4Z 0 1)< (2ZU 1)y <(Z V).

Theorem 3.17: Every strong neutrosophic subnormal series is trivially a neutrosophic subnormal series but the
converse is not true in general.

Definition 3.18: A neutrosophic subnormal series is called mixed neutrosophic subnormal series if some Hj 'S are

neutrosophic normal subgroups in (1) while some H, 'S are just normal subgroups in (1) for some j and k.

Example 3.19: Let N(G) = <Z u > be a neutrosophic group of integers. Then the following is a mixed

neutrosophic subnormal series of N(G).
{0}<94Z <122 < (220 1) <(Z U 1).

Theorem 3.20: Every mixed neutrosophic subnormal series is trivially a neutrosophic subnormal series but the
converse is not true in general.

Definition 3.21: A neutrosophic subnormal series is called subnormal series if all Hj 'S are only normal subgroups

in (1) forall J.

Theorem 3.22: Every subnormal series of the group G is also a subnormal series of the neutrosophic group

N(G).

Definition 3.23: If H; are all normal neutrosophic subgroups in N (G) . Then the neutrosophic subnormal series

(1) is called neutrosophic normal series.

Theorem 3.24: Every neutrosophic normal series is a neutrosophic subnormal series but the converse is not true.

For the converse, see the following Example.

Example 3.25: Let N(G) = (A4 U > be a neutrosophic group, where A, is the alternating subgroup of the

permutation group S4 . Then the following are the neutrosophic subnormal series of the group N(G).
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e}« C, av, a(V,ul)<(AUI).

This series is not neutrosophic normal series as C2 (cyclic group of order 2) is not normal in V, (Klein four group).

Similarly we can define strong neutrosophic normal series, mixed neutrosophic normal series and normal series
respectively on the same lines of the neutrosophic group N(G).

Definition 3.26: The neutrosophic normal series

{e}=H,<H, <H,<..<H, ;<H, =N(G)......... (2)

is called neutrosophic abelian series if the factor group = /% yoare all abelian for all | .
j

Example 3.27: Let N(G) = <83 (X > be a neutrosophic group, where 33 is the permutation group. Then the

following is the neutrosophic abelian series of the group N (G).
{e} <A (AU <(S,Ul).
We explain it as following:

Since (85w %Az Ul) =7, and 7, is cyclic which is abelian. Thus (85 %A& Ul) is an abelian

neutrosophic group.

Also,

<A3 vl > A = 7., and this is factor group is also cyclic and every cyclic group is abelian. Hence <A3 ~ % is

also ablian group. Finally,

A% = 7, which is again abelian group. Therefore the series is a neutrosophic abelian series of the group N(G).

Thus on the same lines, we can define strong neutrosophic abelian series, mixed neutrosophic abelian series and
abelian series of the neutrosophic group N (G).

Definition 3.28: A neutrosophic group N (G) is called neutrosophic soluble group if N(G) has a neutrosophic
abelian series.

Example 3.29: Let N(G) = <83 ul > be a neutrosophic group, where S; is the permutation group. Then the

following is the neutrosophic abelian series of the group N(G),

fe}a A, <(AUI)<a(S,Ul).
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Then clearly N(G) is a neutrosophic soluble group.
Theorem 3.30: Every abelian series of agroup G is also an abelian series of the neutrosophic group N (G).

Theorem 3.31: If agroup G is a soluble group, then the neutrosophic group N (G) is also soluble neutrosophic
group.

Theorem 3.32: If the neutrosophic group N (G) is an abelian neutrosophic group, then N (G) is a neutrosophic
soluble group.

Theorem 3.33: If N(G) = C(N(G)), then N(G) is a neutrosophic soluble group.

Proof: Suppose the N (G) = C(N(G)). Then it follows that N (G) is a neutrosophic abelian group. Hence by

above Theorem 3.35, N(G) is a neutrosophic soluble group.

Theorem 3.34: If the neutrosophic group N (G) is a cyclic neutrosophic group, then N (G) is a neutrosophic
soluble group.

Definition 3.35: A neutrosophic group N (G) is called strong neutrosophic soluble group if N(G) has a strong
neutrosophic abelian series.

Theorem 3.36: Every strong neutrosophic soluble group N (G) is trivially a neutrosophic soluble group but the
converse is not true.

Definition 3.37: A neutrosophic group N (G) is called mixed neutrosophic soluble group if N (G) has a mixed
neutrosophic abelian series.

Theorem 3.38: Every mixed neutrosophic soluble group N (G) is trivially a neutrosophic soluble group but the
converse is not true.

Definition 3.39: A neutrosophic group N (G) is called soluble group if N(G) has an abelian series.

Definition 3.40: Let N (G) be a neutrosophic soluble group. Then length of the shortest neutrosophic abelian
series of N(G) is called derived length.

Example 3.41: Let N(G) = <Z U > be a neutrosophic soluble group. The following is a neutrosophic abelian
series of the group N(G).

{0}<4Z <27 <1 (22U 1) <(ZU).

Then N(G) has derived length 4.

Remark 3.42: Neutrosophic group of derive length zero is trivial neutrosophic group.

Proposition 3.43: Every neutrosophic subgroup of a neutrosophic soluble group is soluble.
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Proposition 3.44: Quotient neutrosophic group of a neutrosophic soluble group is soluble.
4. Neutrosophic Nilpotent Groups

Definition 4.1: Let N(G) be a neutrosophic group. The series

{ej=H,<H,<H, <. <H ;<H =N(G)................ (3)

H. .
is called neutrosophic central series if J% cC ( N (% j forall J.
i i

Definition 4.2: A neutrosophic group N(G) is called a neutrosophic nilpotent group if N(G) has a neutrosophic
central series.

Theorem 4.3: Every neutrosophic central series is a neutrosophic abelian series.

Theorem 4.4: If N(G) =C(N(G)), then N(G) is a neutrosophic nilpotent group.

Theorem 4.5: Every neutrosophic nilpotent group N (G) is a neutrosophic soluble group.

Theorem 4.6: All neutrosophic abelian groups are neutrosophic nilpotent groups.

Theorem 4.7: All neutrosophic cyclic groups are neutrosophic nilpotent groups.

Theorem 4.8: The direct product of two neutrosophic nilpotent groups is nilpotent.

Definition 4.9: Let N(G') be a neutrosophic group. Then the neutrosophic central series (3) is called strong

neutrosophic central series if all Hj 's are neutrosophic normal subgroups for all 7.

Theorem 4.10: Every strong neutrosophic central series is trivially a neutrosophic central series but the converse is
not true in general.

Theorem 4.11: Every strong neutrosophic central series is a strong neutrosophic abelian series.

Definition 4.12: A neutrosophic group IN(G) is called strong neutrosophic nilpotent group if N(G') has a strong
neutrosophic central series.

Theorem 4.13: Every strong neutrosophic nilpotent group is trivially a neutrosophic nilpotent group.

Theorem 4.14: Every strong neutrosophic nilpotent group is also a strong neutrosophic soluble group.
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Definition 4.15: Let N () be a neutrosophic group. Then the neutrosophic central series (3) is called mixed
neutrosophic central series if some Hj 's are neutrosophic normal subgroups while some Hk 's are just normal
subgroups for 7, k.

Theorem 4.16: Every mixed neutrosophic central series is trivially a neutrosophic central series but the converse is
not true in general.

Theorem 4.17: Every mixed neutrosophic central series is a mixed neutrosophic abelian series.

Definition 4.18: A neutrosophic group IN(G) is called mixed neutrosophic nilpotent group if N(G') has a mixed
neutrosophic central series.

Theorem 4.19: Every mixed neutrosophic nilpotent group is trivially a neutrosophic nilpotent group.

Theorem 4.20: Every mixed neutrosophic nilpotent group is also a mixed neutrosophic soluble group.

Definition 4.21: Let N(G) be a neutrosophic group. Then the neutrosophic central series (3) is called central

series if all Hj 's are only normal subgroups for all ;.

Theorem 4.22: Every central series is an abelian series.
Definition 4.23: A neutrosophic group IN(G) is called nilpotent group if N(G') has a central series.
Theorem 4.24: Every nilpotent group is also a soluble group.

Theorem 4.25: If G is nilpotent group, then N(G) is also a neutrosophic nilpotent group.

5. Conclusion

In this paper, we initiated the study of neutrosophic soluble groups and neutrosophic nilpotent groups which are
the generalization of soluble groups and nilpotent groups. We also investigate their properties. Strong
neutrosophic soluble and strong neutrosophic nilpotent groups are introduced which are completely new in their
nature and properties. We also study the notions of mixed neutrosophic soluble groups and mixed neutrosophic
nilpotent groups. These notions are studied on the basis of their serieses. In future, a lot of study can be carried out
on neutrosophic nilpotent groups and neutrosophic soluble groups and their related properties.
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Operators on Single-Valued Neutrosophic Oversets,
Neutrosophic Undersets, and Neutrosophic Offsets

Florentin Smarandache

Florentin Smarandache (2016). Operators on Single-Valued Neutrosophic Oversets,
Neutrosophic Undersets, and Neutrosophic Offsets. Journal of Mathematics and Informatics
5, 63-67

Abstract. We have defined Neutrosophic Over-/Under-/Off-Set and Logic for the first
time in 1995 and published in 2007. During 1995-2016 we presented them to various
national and international conferences and seminars. These new notions are totally
different from other sets/logics/probabilities.

We extended the neutrosophic set respectively to Neutrosophic Overset {when
some neutrosophic component is > 1}, to Neutrosophic Underset {when some
neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic
components are off the interval [0, 1], i.e. some neutrosophic component > 1 and
other neutrosophic component < 0}.

This is no surprise since our real-world has numerous examples and applications of
over-/under-/off-neutrosophic components.

Keywords. neutrosophic overset, neutrosophic underset, neutrosophic offset,
neutrosophic over logic, neutrosophic under logic, neutrosophic off logic, neutrosophic
over probability, neutrosophic under probability, neutrosophic off probability,
over membership (membership degree > 1), under membership (membership degree <
0), off membership (membership degree off the interval [0, 1]).

1. Introduction

In the classical set and logic theories, in the fuzzy set and logic, and in intuitionistic fuzzy
set and logic, the degree of membership and degree of non-membership have to belong to,
or be included in, the interval [0, 1]. Similarly, in the classical probability and in imprecise
probability the probability of an event has to belong to, or respectively be included in, the
interval [0, 1].

Yet, we have observed and presented to many conferences and seminars around
the globe {see [12]-[33]} and published {see [1]-[8]} that in our real world there are many
cases when the degree of membership is greater than 1. The set, which has elements whose
membership is over 1, we called it Overset.
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Even worst, we observed elements whose membership with respect to a set is
under 0, and we called it Underset.

In general, a set that has elements whose membership is above 1 and elements
whose membership is below 0, we called it Offset (i.e. there are elements whose
memberships are off (over and under) the interval [0, 1]).

2. Example of over membership and under membership
In a given company a full-time employer works 40 hours per week. Let’s consider the
last week period.

Helen worked part-time, only 30 hours, and the other 10 hours she was absent
without payment; hence, her membership degree was 30/40 =0.75 < 1.

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with
respect to this company.

But George worked overtime 5 hours, so his membership degree was (40+5)/40 =
45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work
overtime, and those who work full-time or part-time. That’s why we need to associate a
degree of membership strictly greater than 1 to the overtime workers.

Now, another employee, Jane, was absent without pay for the whole week, so her
degree of membership was 0/40 = 0.

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last
week at all (0 worked hours), but he produced, by accidentally starting a devastating fire,
much damage to the company, which was estimated at a value half of his salary (i.e. as he
would have gotten for working 20 hours that week). Therefore, his membership
degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s
degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0.

Consequently, we need to make distinction between employees who produce
damage, and those who produce profit, or produce neither damage no profit to the
company.

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to
take them into consideration.

Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were
extended to respectively Neutrosophic Over-/Unde-r/Off-Logic, -Measure, -Probability, -
Statistics etc. [Smarandache, 2007].

3. Definition of single-valued neutrosophic overset

Let U be a universe of discourse and the neutrosophic set A;C U.

Let T(x), I(x), F(x) be the functions that describe the degrees of membership,
indeterminate-membership, and nonmembership respectively, of a generic element x € U,
with respect to the neutrosophic set A;:

T(x), I(x), F(x) : U >[0,Q]
where 0 <1 <€, andQ) is called overlimit.

A Single-Valued Neutrosophic Overset A is defined as:
Ar = {(x, <T(x), I(x), F(x)>), x € U},
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such that there exists at least one element in A; that has at least one
neutrosophic component that is > 1, and no element has neutrosophic components that
are < 0.

For example: A; = {(xi1, <1.3, 0.5, 0.1>), (x2, <0.2, 1.1, 0.2>)}, since T(x;) = 1.3 > 1,
I(x2) = 1.1 > 0, and no neutrosophic component is < 0.

Also O, = {(a, <0.3, -0.1, 1.1>)}, since [(a) =- 0.1 <0 and F(a) = 1.1 > 1.

4. Definition of single-valued neutrosophic underset

Let U be a universe of discourse and the neutrosophic set A, C U.

Let T(x), I(x), F(x) be the functions that describe the degrees of membership,
indeterminate-membership, and nonmembership respectively, of a generic element x € U,
with respect to the neutrosophic set A;:

T(x), I(x), Fx) : U > [Y,1]

where ¥ <0 <1, and ¥ is called underlimit.

A Single-Valued NeutrosophicUndersetA,is defined as:

A = {(x, <T(x), I(x), F(x)>), x € U},

such that there exists at least one element in A that has at least one neutrosophic
component that is < 0, and no element has neutrosophic components that are > 1.

For example: A; = {(x1, <-0.4, 0.5, 0.3>), (x2, <0.2, 0.5, -0.2>)}, since T(x;) =-0.4 <0,
F(x2) =-0.2 <0, and no neutrosophic component is > 1.

5. Definition of single-valued neutrosophic offset

Let U be a universe of discourse and the neutrosophic set A3 U.

Let T(x), I(x), F(x) be the functions that describe the degrees of membership,
indeterminate-membership, and nonmembership respectively, of a generic element x € U,
with respect to the set As:

T(x), I(x), F(x) : U 2> [V, Q]

where W <0 <1<Q,and V¥ is called under limit, while Q is called overlimit.

A Single-Valued Neutrosophic Offset Az is defined as:

As= {(x, <T(x), 1(x), F(x)>), x € U},

such that there exist some elements in Aj that have at least one neutrosophic component
that is > 1, and at least another neutrosophic component that is < 0.

For examples: Az = {(x1, <1.2, 0.4, 0.1>), (x2, <0.2, 0.3, -0.7>)}, since T(x;)=1.2>1
and F(xz) =-0.7 <0.

Also, B3 = {(a, <0.3, -0.1, 1.1>)}, since [(a) =- 0.1 <0 and F(a) = 1.1 > 1.

6. Neutrosophic overset / underset / offset operators

Let U be a universe of discourse and A = {(x, <Ta(x), [a(x), Fa(x)>), x € U} and

and B = {(x, <Ts(x), Is(x), Fs(x)>), x € U} be two single-valued neutrosophic oversets /
undersets / offsets.

Ta(x), Ia(x), Fa(x), Ts(x), Is(x), Fs(x): U 2> [V, Q]
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where W <0 <1<Q, and V¥ is called underlimit, while € is called overlimit.

We take the inequality sign < instead of < on both extremes above, in order to comprise all
three cases: overset {when'¥' =0, and 1 <Q}, underset {when'¥ < 0, and 1 =Q }, and
offset{when¥ <0, and 1 <Q }.

Neutrosophic Overset / Underset / Offset Union.
Then AUB = {(x, <max{Ta(x), Te(x)}, min{Ia(x), [g(x)},min{Fa(x), Fs(x)}>), x€ U}

Neutrosophic Overset / Underset / Offset Intersection.
Then ANB = {(x, <min{Ta(x), Ts(x)}, max{Ia(x), Is(x)},max{Fa(x), Fs(x)}>), x€ U}

Neutrosophic Overset / Underset / Offset Complement.
The complement of the neutrosophic set A is

((A) = {(x, <Fax), ¥+ Q - Ia(x), TA(X)>), x € U}.

7. Conclusion

The membership degrees over 1 (over membership), or below 0 (undermembership) are
part of our real world, sotheydeserve more study in the future. The neutrosophic over set /
under set / off set together with neutrosophic over logic / under logic / off logic and
especially neutrosophic over probability / under probability / and off probability have many
applications in technology, social science, economics and so on that the readers may be
interested in exploring.
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Paper ID: 55416-01, 4 p.

Abstract-We have proposed since 1995 the existence of
degrees of membership of an element with respect to a
neutrosophic set to also be partially or totally above 1 (over-
membership), and partially or totally below 0 (under-
membership) in order to better describe our world problems
[published in 2007].

Keywords-interval neutrosophic overset, interval neutrosophic
underset, interval neutrosophic offset, interval neutrosophic
overlogic, interval neutrosophic underlogic, interval
neutrosophic offlogic, interval neutrosophic overprobability,
interval neutrosophic underprobability, interval neutrosophic
offprobability, interval overmembership (interval membership
degree partially or totally above 1), interval undermembership
(interval membership degree partially or totally below 0),
interval offmembership (interval membership degree off the
interval [0, 1]).

. INTRODUCTION

“Neutrosophic” means based on three components T (truth-
membership), | (indeterminacy), and F (falsehood-non-
membership). And “over” means above 1, “under” means
below 0, while “offset” means behind/beside the set on both
sides of the interval [0, 1], over and under, more and less, supra
and below, out of, off the set. Similarly, for “offlogic”,
“offmeasure”, “offprobability”, “offstatistics” etc..

It is like a pot with boiling liquid, on a gas stove, when the
liquid swells up and leaks out of pot. The pot (the interval [0,
1]) can no longer contain all liquid (i.e., all neutrosophic
truth/indeterminate/falsehood values), and therefore some of
them fall out of the pot (i.e., one gets neutrosophic
truth/indeterminate/falsehood values which are > 1), or the pot
cracks on the bottom and the liquid pours down (i.e., one gets
neutrosophic truth/indeterminate/falsehood values which are <
0).

Mathematically, they mean getting values off the interval
[0, 1].

The American aphorism “think outside the box” has a
perfect resonance to the neutrosophic offset, where the box is
the interval [0, 1], yet values outside of this interval are
permitted.
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Il.  EXAMPLE OF MEMBERSHIP ABOVE 1 AND MEMBERSHIP

BELOW 0

Let’s consider a spy agency S = {S;, Sy, ..., Sio} Of @
country Atara against its enemy country Batara. Each agent S;,
j € {1,2, ..., 1000}, was required last week to accomplish 5
missions, which represent the full-time
contribution/membership.

Last week agent S,; has successfully accomplished his 5
missions, so his membership was T(S,;) = 5/5 = 1 = 100%
(full-time membership).

Agent Sz, has accomplished only 3 missions, so his
membership is T(Ss)) = 3/5 0.6 = 60% (part-time
membership).

Agent S,; was absent, without pay, due to his health
problems; thus T(S4;) = 0/5 = 0 = 0% (null-membership).

Agent Asz has successfully accomplished his 5 required
missions, plus an extra mission of another agent that was
absent due to sickness, therefore T(Ss3) = (5+1)/5=6/5=1.2 >
1 (therefore, he has membership above 1, called over-
membership).

Yet, agent S;5 is a double-agent, and he leaks highly
confidential information about country Atara to the enemy
country Batara, while simultaneously providing misleading
information to the country Atara about the enemy country
Batara. Therefore Ass is a negative agent with respect to his
country Atara, since he produces damage to Atara, he was
estimated to having intentionally done wrongly all his 5
missions, in addition of compromising a mission of another
agent of country Atara, thus his membership T(Szs) = - (5+1)/5
= - 6/5 = -1.2 < 0 (therefore, he has a membership below 0,
called under-membership).

I1l.  DEFINITION OF INTERVAL-VALUED NEUTROSOPHIC

OVERSET

Let U be a universe of discourse and the neutrosophic set
A; C U. Let T(x), I(x), F(x) be the functions that describe the
degrees of membership, indeterminate-membership, and non-
membership respectively, of a generic element x € U, with
respect to the neutrosophic set A;:

T(X), 1(x), F(x) : U > P([0,Q2] ),
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where 0 <1 <€, and €2 is called over limit,

T(x), I(x), F(x) €[0,Q], and P([0, C2]) is the set of all
subsets of [0, €2].

An Interval-Valued Neutrosophic Overset 4, is defined as:

A = {(x <T(x), I(x), F(x)=). x € U},

such that there exists at least one element in A, that has at
least one neutrosophic component that is partially or totally
above 1, and no element has neutrosophic components that is
partially or totally below O.

For example: A; = {(x,, <(1, 1.4], 0.1, 0.2=), (x,, <0.2,
[0.9, 1.1], 0.2=)}, since T(x;) = (1, 1.4] is totally above 1, I(x,)
= [0.9, 1.1] 1s partially above 1, and no neutrosophic
component 1s partially or totally below 0.

IV.  DEFINITION OF INTERVAL-VALUED NEUTROSOPHIC
UNDERSET
Let U be a universe of discourse and the neutrosophic set
Ay C U Let T(x), I(x), F(X) be the functions that describe the
degrees of membership, indeterminate-membership, and
nonmembership respectively, of a generic element x € U, with
respect to the neutrosophic set A;:

T, I(x), Fx) - U > [\, 1],
where W =0 <1, and WV is called underlimit,

T(x), I(x), Fx) <[',1], and B[, 1]) is the set of all
subsets of ['F,1].

An Tnterval-Valued Neutrosophic Underset A; is defined
as:

Ay = {(x, <T(x), I(x), F(x)=), x € U},

Such that there exists at least one element in A, that has at
least one neutrosophic component that is partially or totally
below 0, and no element has neutrosophic components that are
partially or totally above 1.

For example: A; = {(xy, <(-0.5,-0.4), 0.6, 0.3>), (g, <0.2,
0.5, [-0.2, 0.2]=)}, since T(xy) = (-0.5, -0.4) is totally below 0,
F(xy) = [-0.2, 0.2] is partially below 0, and no neutrosophic
component is partially or totally above 1.

V. DEFINITION OF INTERVAL-V ALUED NEUTROSOPHIC
OFFSET
Let U be a universe of discourse and the neutrosophic set
Ay < U. Let T(x), I(x), F(X) be the functions that describe the
degrees of membership, indeterminate-membership, and
nonmembership respectively, of a generic element x € U, with
respect to the set Aj:

T, I(x), F(x) : U > P( [\, 2] ),
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where Y. 0<l< Q , and b4 1s called underlimit, while

Q s called overlimit,

Tx), I(x), Fix) €[V, €] , and P{ [P, €2] ) is the set of
all subsets of [V, €2] .

An Interval-Valued Neutrosophic Offset A; is defined as:
AB = {(X= <T(X)= I(X)a F(X)>): XE U}:

such that there exist some elements in A; that have at least
one neutrosophic component that is partially or totally above 1,
and at least another neutrosophic component that is partially or
totally below O.

For examples: Az = {(xg, <[1.1, 1.2], 0.4, 0.1=), (x5, <0.2,
0.3, (-0.7, -03)>)}, since T(x;) = [1.1, 1.2] that 1s totally above
1, and F(xp) = (-0.7, -0.3) that 13 totally below 0.

Also B; = {(a, <0.3, [-0.1, 0.1], [1.05, 1.10]=)}, since I(a) =

[- 0.1, 0.1] that is partially below 0, and F(a) = [1.05, 1.10] that
is totally above 1.

VI. INTERVAL-VALUED NEUTROSOPHIC OVERSET /

UNDERSET / OFFSET OPERATORS
Let Ube a unuiverse of discourse and A = {(x, <Ta(x), [a(x),
Fa(x)=), x € U} and B = {(x, <Tp(x0), In(0), Fp(3)>), x € U} be
two interval-valued neutrosophic oversets / undersets / offsets.

T (), Ta(x), Fal), Tex), Tp(x), Fpix): U 2P [\, 2] ).

where P( [W,€2] ) means the set of all subsets of
['P.€] .

and T a(x), Ta(x), Falx), Te(x), [a(x), Fex) € [\, Q] ,

with V=0 =1 < Q, and ¥ is called underlimit, while
Q2 is called overlimit.

We take the inequality sign < instead of < on both extremes
above, in order to comprise all three cases: overset {when 't =
0, and 1 < €2}, underset {when¥' < 0, and 1 = €2}, and
offset {when 'V <0, and 1 < €2 }.

A. Interval-Valued Neutrosophic Overset / Underset / Offset
Union

Then AUB =
{(x, <[max{inf(T A(x)), mf{ Te(x))}. max{sup(TA(x)).
sup(Tn(x)}].
[min{inf(Ta(x)), inf(Tp(x))}, minfsup(T,(x)),
sup(Ig(x)}],
[min{inf(F 4(x)), mf(Fp(x)}, min{sup(F 4(x)),
sup(Fp(x)}]> x € U}.

X
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[2]
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B. Interval-Valued Neutrosophic Overset / Underset / Offset
Intersection
Then ANB =
{(x, <[min{inf(Ta(X)), inf(Te(x))}, min{sup(Ta(x)),
sup(Te(x)}1,
[max{inf(la(x)), inf(ls(x))}, max{sup(la(x)),
sup(ls(¥)}1,
[max{inf(Fa(x)), inf(Fe(x))}, max{sup(Fa(x)),
sup(Fg(x)}]>, x € U}

C. Interval-Valued Neutrosophic Overset / Underset / Offset

Complement
The complement of the neutrosophic set A is
C(A) = {3 <Fa(¥), O

¥ [+ -ep{a}  +  -inf{lao}],

Ta(X)>), x € U}

VII. CONCLUSION

After designing the neutrosophic operators for single-
valued neutrosophic overset/underset/offset, we extended them
to interval-valued neutrosophic  overset/underset/offset
operators. We also presented another example of membership
above 1 and membership below 0.

Of course, in many real world problems the neutrosophic
union, neutrosophic intersection, and neutrosophic complement
for interval-valued neutrosophic overset/underset/offset can be
used. Future research will be focused on practical applications.
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Subtraction and Division

of Neutrosophic Numbers

Florentin Smarandache

Florentin Smarandache (2016). Subtraction and Division of Neutrosophic Numbers.
Critical Review XIII, 103-110

Abstract

In this paper, we define the subtraction and the division of neutrosophic single-
valued numbers. The restrictions for these operations are presented for
neutrosophic  single-valued  numbers and neutrosophic  single-valued
overnumbers / undernumbers / offnumbers. Afterwards, several numeral
examples are presented.

Keywords

neutrosophic calculus, neutrosophic numbers, neutrosophic summation,
neutrosophic multiplication, neutrosophic scalar multiplication, neutrosophic
power, neutrosophic subtraction, neutrosophic division.

1 Introduction

Let A = (t,i1,f1) and B = (t,,i,,f;) be two single-valued neutrosophic
numbers, where t;,ij, f1,t5, 05, f, €[0,1] , and 0 <ty,i;,f; <3 and 0<
tz, iz,fz S 3

The following operational relations have been defined and mostly used in the
neutrosophic scientific literature:

1.1 Neutrosophic Summation

A® B = (ty +t; — tity, iyly, f1f3) (1)
1.2 Neutrosophic Multiplication

AQ B = (t1ty, iy + iy —igly, f1 + fo — f1f2) (2)
1.3 Neutrosophic Scalar Multiplication

>\A:(1_(1_t1)>\,i]>_\,f1>\ ), (3)
where X€ R, and x> 0.
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1.4 Neutrosophic Power

A =0r1-0-i)n1-A-f)™), (4)

where € R, and x> 0.

2 Remarks

Actually, the neutrosophic scalar multiplication is an extension of
neutrosophic summation; in the last, one has x= 2.

Similarly, the neutrosophic power is an extension of neutrosophic
multiplication; in the last, one has x= 2.

Neutrosophic summation of numbers is equivalent to neutrosophic union of
sets, and neutrosophic multiplication of numbers is equivalent to neutrosophic
intersection of sets.

That's why, both the neutrosophic summation and neutrosophic
multiplication (and implicitly their extensions neutrosophic scalar
multiplication and neutrosophic power) can be defined in many ways, i.e.
equivalently to their neutrosophic union operators and respectively
neutrosophic intersection operators.

In general:

A@ B = (t, Viy iy Ny, fi A f2), (5)
or

ADB=(t;VtyiyViyfiVf), (6)
and analogously:

AQB=(t; Nty i1 Viy fiVf2) (7)
or

ARB = (t; ANty i1 ANiy, 1V [2), (8)

where "V" is the fuzzy OR (fuzzy union) operator, defined, for a, 8 € [0, 1], in
three different ways, as:

a,B=a+p—ap (9)
or

a? B = max{a, B}, (10)
or

aiﬁ =min{x +y,1}, (11)

etc.
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While "A" is the fuzzy AND (fuzzy intersection) operator, defined, for o, 5 €
[0, 1], in three different ways, as:

aiB =ap, (12)
or

a, B = min{a, B}, (13)
or

a’B =max{x+y—1,0} (14)
etc.

Into the definitions of A @ B and 4 & B it's better if one associates \1/ with 7,
. 1. A 2 . A 3 : A

since |, is opposed to v and y with y and v with y for the same reason. But other

associations can also be considered.

For examples:

A® B = (t; +t, — tyty, iy + iy — i1y, f1f2), (15)
or

A @ B = (max{ty, t,}, min{iy, i}, min{fy, f2}), (16)
or

A @ B = (max{ty, t,}, max{iy, i}, min{fy, f>}), (17)
or

A @ B = (min{t; + t,, 1}, max{i; + i, — 1,0}, max{f; + 5 —
1,0}). (18)

where we have associated \1/ with 7, and \2/ with 7, and \3/ with 7.

Let's associate them in different ways:

A EB B = (tl + t2 - t1t2»min{i1' iZ}r min{fli fZ}): (19)
where \1/ was associated with /2\ and /3\; or:
A @ B = (max{ty, t,}, iy, i, max{f; + f, — 1,0}), (20)

where \2/ was associated with /1‘ and /3‘; and so on.

Similar examples can be constructed for A & B.

3 Neutrosophic Subtraction
We define now, for the first time, the subtraction of neutrosophic number:

A e B = (tl' il'fl) e (tZ'iZ'fZ) = (%'%'%) = C' (21)
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for all t, iy, fi,ts, s, f> € [0, 1], with the restrictions that: t, # 1, i, # 0, and
fa # 0.

So, the neutrosophic subtraction only partially works, i.e. when t, # 1,i, # 0,
and f, # 0.

The restriction that

(2=2,2,8) e (10,1}, [0, 11, [0, 1]) )

1—t2 ! iz 2

is set when the classical case when the neutrosophic number components
t,i, f are in the interval [0, 1].

But, for the general case, when dealing with neutrosophic overset / underset
/offset [1], or the neutrosophic number components are in the interval [¥, Q],
where VW is called underlimit and Q) is called overlimit, with ¥ <0 <1 < (), i.e.
one has neutrosophic overnumbers / undernumbers / offnumbers, then the
restriction (22) becomes:

(ﬂ b ﬁ) € ([¥, Q)] [¥, Q] [¥, Q]). (23)

1-t; i’ fi
3.1 Proof

The formula for the subtraction was obtained from the attempt to be
consistent with the neutrosophic addition.

One considers the most used neutrosophic addition:
(a1, b1, ¢1) @ (az, by, c2) = (ag + a; — a1a,, biby, ¢163), (24)

We consider the © neutrosophic operation the opposite of the @ neutro-
sophic operation, as in the set of real numbers the classical subtraction — is
the opposite of the classical addition +.

Therefore, let's consider:
(t1, i1, f1) © (ta, iz, f2) = (x,¥,2), (25)
@ (tZJ iZJ fZ) @ (tz, iZ) fZ)

where x,y,z € R.

We neutrosophically add @ (t,, i,, f,) on both sides of the equation. We get:
(ty, i1, f1) = (0, 3,2) @ (L, i3, f2) = (x + t; — xt3, Y15, 2f3). (26)

Or,
ti—ty
t; = x +t, — xt,, whence x = T
—t2
iy = yi,,whencey = =1 (27)
L2
\ fi = zf,, whence z = L

2

123



Florentin Smarandache (author and editor)

3.2 Checking the Subtraction

1-t; "iy" )’
where ty, iy, fi,t2, 12, f> € [0,1],and t, # 1,i, # 0, and f, # 0, we have:
ASB=C. (28)
Then:
t{—t ti—t
B@C—(tz,lztfz)@(l 2 ll fl)z(tz‘l‘ L Z—tz'
lz f 1—t2
tl—tz . l_1 _1) — (tz—t2+t1—t2—t1t2+t2 . ) —
1-t, ll21- 'fZ; 1-t, 'llifl
t (1 t) .
(%, 1;f1) = (ty,11, f1)- (29)
¢ t1—ty
. ti—t, iy f 1T iy f
AOC=(t,i1,f1) © ( - 2,.—1,—1) = %—g'%'ﬁ =
1-t; "2 f2 1—E o 7
t1—t1tp—t1+to
1-t . tit,+t, .
<W»lz,fz> = (e g, iz f2) =
1-ty
t ( t +1) .
( 2 1— i ) ZIfZ) - (tZ'lZIfZ) (30)
4 Division of Neutrosophic Numbers

We define for the first time the division of neutrosophic numbers:

AQ@ B = (ty,i1,f1) @ (ty, i3, f2) = (t1 A 12 f11 ;;2) =D, (31)

where ty, iy, fi, t5, 05, f> € [0, 1], with the restriction that t, # 0, i, # 1, and
fo # 1.

Similarly, the division of neutrosophic numbers only partially works, i.e. when
t, #0,i, # L,and f, # 1.

In the same way, the restriction that

(t1 ii—iz f1 fz) E([O 1], [0, 1], [0, 1]) (32)

tz 112 lf

is set when the traditional case occurs, when the neutrosophic number
components t, i, f are in the interval [0, 1].

But, for the case when dealing with neutrosophic overset / underset /offset
[1], when the neutrosophic number components are in the interval [, (1],
where ¥ is called underlimit and (1 is called overlimit, withW <0< 1<, i.e.
one has neutrosophic overnumbers / undernumbers / offnumbers, then the
restriction (31) becomes:
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(&=, Ay € (qw, a, [w, 0], [, Q). (33)

4.1 Proof

In the same way, the formula for division (/) of neutrosophic numbers was
obtained from the attempt to be consistent with the neutrosophic
multiplication.

We consider the (@ neutrosophic operation the opposite of the &
neutrosophic operation, as in the set of real numbers the classical division +
is the opposite of the classical multiplication X.

One considers the most used neutrosophic multiplication:

(a1, b1, ¢1) ® (az, by, c3)

= (ayay, by + by — b1by,c; + ¢, — c1C3), (34)
Thus, let's consider:

(t1,01, /1) @ (t2, 12, f2) = (%, ¥, 2), (35)

Q(tz, iz, f2) Q(t2, iz, f2)

where x,y,z € R.
We neutrosophically multiply ® both sides by (t,, i5, f;). We get

(ty, i1, f1) = (6,5, 2)Q (L2, iz, f2)

= (xty, y + iy, —yiy,z+ fo — 2f,). (36)
Or,

t
t; = xt,,whence x = t—l; :
2

iy =y + i, —yi,,whencey = % ; (37)
| fi =2+ f2 — zf, whence z =%.
—J2

4.2 Checking the Division

. . . ty i1—i -
WlthA = (tl, ll'fl)lB = (tz, lz,fz), andD = (é,%,%),

where ty,iq, fi,t5, 05, f, €[0,1],and t, # 0,i, # 1,and f, # 1, one has:

A*B=D. (38)
Then:
ty i1—ip f1 fz) ( =iy .
= (tz»erfz)X( PRy ty - —, iy + =i, L
11 12 f1 fz _ it fz) —
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(t ip—i5+iy—ip—iqip+i3 fz—f22+f1—f2—f1f2+f22) _
1 -

1-i, ! 1-£,
i1(1-i3) f1(1-f2)\ _ . _
(t1: 1 1o = (t1,iy, f1) = A (39)
2 f2
Also:
. i i1—ip i fi-r2
é — (tlllllfl) _ <t_1 17— iz 1-fo _
D (tata=i2 fa—f2\ T N\t _ba-ip’ . fi—-fa | T
(tz’l—iz "1-f2 ) ty 1 1-ip 1 1-fo
i1—iqip—ia+ia fi—faf2-f1+/2 i2(=i1+1) fa(=f1t+1)
1—iy 1-fo _ 1—ip 1-f2 —
<t2’ 1-ip—iq+ip ? 1-fa—f1+f2 > - <t2’ 1-ip ’  1-f1 > -
1—ip 1-f2 1-ip 1-f3
I,(1-i1) f2(1-f1) ,
(tz, PR e ) = (t2,02,f2) = B. (40)
=1 1-f1
5 Conclusion

We have obtained the formula for the subtraction of neutrosophic numbers &
going backwords from the formula of addition of neutrosophic numbers .

Similarly, we have defined the formula for division of neutrosophic numbers
@ and we obtained it backwords from the neutrosophic multiplication .

We also have taken into account the case when one deals with classical
neutrosophic numbers (i.e. the neutrosophic components t, i, f belong to [0, 1])
as well as the general case when ¢, i, f belong to [¥, 2], where the underlimit

6

< 0 and the overlimit 2 > 1.
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On Neutrosophic Quadruple Algebraic Structures
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Abstract. In this paper we present the concept of neutro-
sophic quadruple algebraic structures. Specially, we

study neutrosophic quadruple rings and we present their
elementary properties.

Keywords: Neutrosophy, neutrosophic quadruple number, neutrosophic quadruple semigroup, neutrosophic quadruple group, neu-
trosophic quadruple ring, neutrosophic quadruple ideal, neutrosophic quadruple homomorphism.

1 Introduction

The concept of neutrosophic quadruple numbers was
introduced by Florentin Smarandache [3]. It was shown in
[3] how arithmetic operations of addition, subtraction, mul-
tiplication and scalar multiplication could be performed on
the set of neutrosophic quadruple numbers. In this paper,
we studied neutrosophic sets of quadruple numbers togeth-
er with binary operations of addition and multiplication
and the resulting algebraic structures with their elementary
properties are presented. Specially, we studied neutrosoph-
ic quadruple rings and we presented their basic properties.

Definition 1.1 [3]

A neutrosophic quadruple number is a number of the
form (a, bT, cl,dF), where T, I, F have their usual neutro-
sophic logic meanings and a, b,c,d € R or C. The set NQ
defined by

NQ = {(a,bT,cl,dF): a,b,c,d € RorC} (1)

is called a neutrosophic set of quadruple numbers. For a
neutrosophic quadruple number (a, bT, cl, dF), represent-
ing any entity which may be a number, an idea, an object,
etc., a is called the known part and (bT, cl, dF) is called
the unknown part.

Definition 1.2
Let
a = (ay,a2T,a3l,a4F),
b = (b1,b2T,b3l,bsF ) € NQ.
We define the following:
a+b= ()
(a1 + b1, (a2 + b2)T, (a3 + b3)1, (a4 + ba)F)
a—b= (3)

(a1 — by, (az — b2)T, (a3 — b3)1, (a4 — ba)F).
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Definition 1.3

Let
a = (ay,a3T,a3l,asF ) € NQ

and let a be any scalar which may be real or complex, the
scalar product a. a is defined by

a.a = a.(ay,a2T,a3l,a4F ) =
(aa1, aapT, aa3l, aasF) @)

If a =0, then we have 0.a = (0,0,0,0) and for
any non-zero scalars m and n and b=
(by, b, T, bsl, b, F), we have:

(m+n)a =ma + na,

m(a + b) = ma + mb,

mn(a) = m(na),

—a = (—ay,—a,T,—asl, —a,F).

Definition 1.4 [3] [Absorbance Law]

Let X be a set endowed with a total order x < y,
named “x prevailed by y” or “x less strong than y” or “x
less preferred than y”. x < y is considered as “x prevailed
by or equal to ¥y or “x less strong than or equal to y” or “x
less preferred than or equal to y”.

For any elements x,y € X, with x < y, absorbance law
is defined as

x-y = y-x = absorb(x,y)
= max{x,y} = y (5)
which means that the bigger element absorbs the smaller

element (the big fish eats the small fish). It is clear from (5)
that

x-x = x? = absorb(x,x) = max{x,x} =x (6)
and

Xyt Xyt Xy = max{xl, Xo, :xn}' (7)
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Analogously, if x > y, we say that “x prevails to y” or “x
is stronger than y” or “x is preferred to y”. Also, if x2y,
we say that “x prevails or is equal to y” or “x is stronger
than or equal to y” or “x is preferred or equal to y”.

Definition 1.5

Consider the set {T, I, F}. Suppose in an optimistic way
we consider the prevalence order T > 1 > F. Then we
have:

TI =IT =max{T,1} =T, (®)
TF = FT = max{T,F} =T, 9
IF = Fl =max{[,F} =1, (10)
TT=T?=T, (11)
n=1rI=l, (12)
FF=F*=F. (13)

Analogously, suppose in a pessimistic way we consider
the prevalence order T < [ < F. Then we have:

TI = IT = max{T,I} = I, (14)

TF = FT = max{T,F} = F, (15)

IF = FI = max{l,F} = F, (16)

TT = T? =T, (17

I =1% =1, (18)

FF = F? = F. (19)
Definition 1.6

Let

a = (aq,a,T,asl, a,F),

b = (bll sz, b3[, b4F) € NQ

Then (20)

a.b = (aq,a,T,a31,a,F).(by, b,T, b1, b, F)
= (ayby, (a1b, + azb,
+ a,b,)T,(a1b; + ayb; + asb,
+ azb, + asbs)l, (a b, + ayb,, aszb,
+ asb; + azb, + asb; + a,b,)F).

2 Main Results

All neutrosophic quadruple numbers to be considered
in this section will be real neutrosophic quadruple numbers
i.e a,b,c,d € R for any neutrosophic quadruple number
(a,bT,cl,dF) € NQ.

Theorem 2.1
(NQ, +) is an abelian group.
Proof.

Suppose that

a = (aq,a,T,asl,a,F),
b = (bll sz, b31,
¢ =(cy,c;T,c31,c,F € NQ
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are arbitrary.
It can easily be shown that

a+b=b+a-a+b+c)=
(a+b)+c-a+(00,0,0)=(0000)=a

and
a+ (—a) =-a+a=(0,0,0,0).

Thus, 0 = (0,0,0,0) is the additive identity element in
(NQ@,+) and for any a € NQ, —a is the additive inverse.
Hence, (NQ, +) is an abelian group.

Theorem 2.2

(NQ,.) is a commutative monoid.

Proof.
Let

a = (ay,a,T, azl, a,F),
b = (by,b,T, b3l,
¢ =(cy, 3T, c31, ¢, F
be arbitrary elements in NQ. It can easily be shown that
ab = ba - a(bc) = (ab)c-a-(1,0,0,0) =a.

Thus, e = (1,0, 0,0) is the multiplicative identity ele-
ment in (NQ,.). Hence, (NQ,.) is a commutative monoid.

Theorem 2.3
(NQ,.) is not a group.

Proof.
Let

x = (a,bT,cl,dF)

be any arbitrary element in NQ.

Since we cannot find any element y = (p, qT,7l,sF) €
N@ such that xy=yx=e=(1,0,0,0), it follows
that x — 1 does not exist in NQ for any given a, b,c,d € R
and consequently, (N@,.) cannot be a group.

Example 1.
Let X = {(a,bT,cl,dF): a,b,c,d € Z,}. Then (X, +)
is an abelian group.

Example 2.
Let

[(a, bT,cl,dF) (e, fT,gl, hF)]
(Myys,.) = (i,jT, kI, IF) (m,nT,pl,qF)
a,b,cdefghijklmnpq€R

Then (M,,,.) is a non-commutative monoid.

Theorem 2.4

(NQ, +,.) is a commutative ring.
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Proof.
It is clear that (NQ, +) is an abelian group and (NQ,.)
is a semigroup. To complete the proof, suppose that

a = (a4, a,T,azl,a,F),
b = (bli sz, b31,
¢ =(cy,c;T,c31,cF € NQ

are arbitrary. It can easily be shown that a(b +c) = ab +
ac,(b + c¢)a = ba + ca and ab = ba. Hence, (NQ,+,.)
is a commutative ring.

From now on, the ring (NQ, +,.) will be called neutro-
sophic quadruple ring and it will be denoted by NQR. The
zero element of NQR will be denoted by (0, 0, 0, 0) and the
unity of NQR will be denoted by (1, 0, 0, 0).

Example 3.

(1) Let X be as defined in EXAMPLE 1. Then (X, +,.)
is a commutative neutrosophic quadruple ring called a neu-
trosophic quadruple ring of integers modulo n.

It should be noted that NQR(Z,,) has 4™ elements and
for NQR(Z,)we have

NQR(Z,) =

= {(0,0,0,0),(1,0,0,0),(0,T,0,0),(0,0,1,0),(0,0,0, F),

(0,1,1,F),(0,0,1,F),(0,T,1,0),(0,T,0,F),(1,T,0,0),

(1,0,1,0),(1,0,0,F),(1,T,0,F),(1,0,1,F),(1,T,1,0),

(1,T,1,F)}.

(i1)) Let M,y, be as defined in EXAMPLE 2. Then
(M,5,.) is a non-commutative neutrosophic quadruple
ring.

Definition 2.5
Let NQR be a neutrosophic quadruple ring.

(i) An element a € NQR is called idempotent if a? = a.

(i) An element a € NQR is called nilpotent if there
existsn € Z* such that a™ = 0.

Example 4.

(1) InNQR(Z,), (1,T,1,F) and (1,T,1,0) are idempo-
tent elements.

(ii) In NQR(Z,), (2,2T, 21, 2F) is a nilpotent element.

Definition 2.6

Let NQR be a neutrosophic quadruple ring.

NQR is called a neutrosophic quadruple integral do-
main if for x,y € NQR, xy =0 implies that x =0
ory = 0.

Example 5.
NQR(Z) the neutrosophic quadruple ring of integers is
a neutrosophic quadruple integral domain.

Definition 2.7

Let NQR be a neutrosophic quadruple ring.
An element x € NQR is called a zero divisor if there
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exists a nonzero element y € NQR such that xy = 0. For
example in NQR(Z,), (0,0,1,F) and (0,T,1,0) are zero
divisors even though Z, has no zero divisors.

This is one of the distinct features that characterize
neutrosophic quadruple rings.

Definition 2.8

Let NQR be a neutrosophic quadruple ring and let NQS
be a nonempty subset of NQR. Then NQS is called a neu-
trosophic quadruple subring of NQR if (NQS, +,.) is itself
a neutrosophic quadruple ring. For example, NQR(nZ) is a
neutrosophic quadruple subring of NQR(Z) for n =
1,2,3,-

Theorem 2.9

Let NQS be a nonempty subset of a neutrosophic quad-
ruple ring NQR. Then NQS is a neutrosophic quadruple
subring if and only if for all x,y € NQS, the following
conditions hold:

(i) x —y € NQS
and
(i) xy € NQS.

Proof.
Same as the classical case and so omitted.
Definition 2.10

Let NQR be a neutrosophic quadruple ring.
Then the set

Z(NQR) = {x e NQR:xy = yxV y € NQR}
is called the centre of NQR.
Theorem 2.11

Let NQR be a neutrosophic quadruple ring.
Then Z(NQR) is a neutrosophic quadruple subring of
NQR.

Proof.
Same as the classical case and so omitted.

Theorem 2.12

Let NQR be a neutrosophic quadruple ring and let
NQ@S; be families of neutrosophic quadruple subrings of

NQR. Then
j=1

is a neutrosophic quadruple subring of NQR.

Definition 2.13

Let NQR be a neutrosophic quadruple ring.
If there exists a positive integer n such that nx = 0 for
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each x € NQR, then the smallest such positive integer is
called the characteristic of NQR. If no such positive integer
exists, then NQR is said to have characteristic zero. For
example, NQR(Z) has characteristic zero and NQR(Z,)
has characteristic n.

Definition 2.14

Let NQJ be a nonempty subset of a neutrosophic quad-
ruple ring NQR. NQJ is called a neutrosophic quadruple
ideal of NQR if for all X,y € NQJ, r € NQR, the following
conditions hold:

(i) x —y € NQJ.
(ii) xr € NQJ and rx € NQJ.

Example 6.

(i) NQR(3Z) is a neutrosophic quadruple ideal of
NQR(Z).

(ii) Let

NQJ =

{(0,0,0,0), (2,0,0,0), (0,2T, 21, 2F), (2,2T, 21, 2F)}

be a subset of NQR(Z,). Then NQJ is a neutrosophic
quadruple ideal.

Theorem 2.15

Let NQJ and NQS be neutrosophic quadruple ideals of
NQR and let

{NQJ;}i=1

be a family of neutrosophic quadruple ideals of NQR.
Then:

() NQ/ + NQJ = NQJ.
(il)) x + NQJ = NQJ for all x € NQJ.
(iii)

ﬂ nNQS;
j=t
is a neutrosophic quadruple ideal of NQR.

(iv) NQJ + NQ@S is a neutrosophic quadruple ideal of
NQR.

Definition 2.16

Let NQJ be a neutrosophic quadruple ideal of NQR.
The set

NQR/NQJ = {x + NQJ : x € NQR}

is called a neutrosophic quadruple quotient ring.

If x + NQJ and y + NQJ are two arbitrary elements of
NQR/NQJ and if @ and © are two binary operations on
NQR/NQ]J defined by:

(x + NQHD(y +4NQ)) = (x + y) + NQJ,
(x + NQH Oy + NQJ)) = (xy) + NQJ,
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it can be shown that @ and © are well defined and that
(NQR/NQJ, @, ©) is a neutrosophic quadruple ring.

Example 7.
Consider the neutrosophic quadruple ring NQR(Z) and
its neutrosophic quadruple ideal NQR(2Z). Then
NQR(Z)
NQR(2Z) ~
{NQR(2Z),(1,0,0,0) + NQR(2%Z),(0,T,0,0)
+ NQR(27Z),(0,0,1,0) + NQR(2Z),(0,0,0,F)
+ NQR(2Z),(0,T,I,F) + NQR(27Z),(0,0,1,F)
+ NQR(2Z),(0,T,1,0) + NQR(2Z),(0,T,0,F)
+ NQR(2Z),(1,T,0,0) + NQR(2Z),(1,0,1,0)
+ NQR(27Z),(1,0,0,F) + NQR(2Z),(1,T,0,F)
+ NQR(2Z),(1,0,1,F) + NQR(2Z),(1,T,I1,0) +
NQR(2Z),(1,T,I,F) + NQR(2Z)}.

which is clearly a neutrosophic quadruple ring.

Definition 2.17

Let NQR and NQS be two neutrosophic quadruple
rings and let @ : NQR — NQS be a mapping defined for
all x,y € NQR as follows:

Do +y) = o) + o).

(i) p(xy) = () ().

(iii) (T) = T,@() = I and ¢(F) = F.
(iv) 9(1,0,0,0) = (1,0,0,0).

Then ¢ is called a neutrosophic quadruple homomor-
phism. Neutrosophic quadruple monomorphism, endomor-
phism, isomorphism, and other morphisms can be defined
in the usual way.

Definition 2.18

Let ¢ : NQR — NQS be a neutrosophic quadruple
ring homomorphism.

(i) The image of ¢ denoted by Ime is defined by the
set Imp = {y € NQS: y = ¢p(x) , for some x €
NQR}.

(i1) The kernel of ¢ denoted by Ker¢ is defined by the
set Kerop = {x € NQR: ¢(x) = (0,0,0,0)}.

Theorem 2.19

Let ¢ : NQR — NQS be a neutrosophic quadruple
ring homomorphism. Then:

(i) Im¢ is a neutrosophic quadruple subring of NQS.

(i1) Ker is not a neutrosophic quadruple ideal of NQR.

Proof.

(1) Clear.

(i1) Since T, I, F cannot have image (0,0,0,0) under ¢,
it follows that the elements (0, T, 0,0), (0,0, I, 0), (0,0,0, F)
cannot be in the Kerg. Hence, Kerg cannot be a neutro-
sophic quadruple ideal of NQR.
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Example 8.
Consider the projection map
¢ : NQR(Z,) X NQR(Z,) — NQR(Z,)
defined by ¢ (x,y) = x forallx,y € NQR(Z,).
It is clear that ¢ is a neutrosophic quadruple homo-
morphism and its kernel is given as
Kergp =
{{((0,0,0,0), (0,0,0,0)), ((0,0,0,0), (1,0,0,0)),
(0,0,0,0),(0,T,0,0)),((0,0,0,0),(0,0,1, 0)),
(0,0,0,0), (0,0,0,F)),((0,0,0,0),(0,T,I,F)),
(0,0,0,0),(0,0,1,F)),((0,0,0,0),(0,T,1,0)),
(0,0,0,0),(0,T,0,F)),((0,0,0,0),(1,T,0,0)),
(0,0,0,0),(1,0,1,0)),((0,0,0,0), (1,0,0, F)),
(0,0,0,0),(1,T,0,F)),((0,0,0,0), (1,0, 1, F)),
((0,0,0,0),(1,T,1,0)),((0,0,0,0), (1, T, 1, F))}.

Theorem 2.20

Let ¢: NQR(Z) — NQR(Z)/NQR(nZ) be a mapping de-
fined by ¢(x) =x + NQR(nZ) for all x € NQR(Z) and n =
1, 2, 3, ... . Then o is not a neutrosophic quadruple ring
homomorphism.
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Neutrosophic quadruple algebraic hyperstructures

A.A.A. Agboola, B. Davvaz, Florentin Smarandache

A.A.A. Agboola, B. Davvaz, Florentin Smarandache (2017). Neutrosophic quadruple
algebraic hyperstructures. Annals of Fuzzy Mathematics and Informatics 14(1), 29-42

ABSTRACT. The objective of this paper is to develop neutro-
sophic quadruple algebraic hyperstructures. Specifically, we develop neu-
trosophic quadruple semihypergroups, neutrosophic quadruple canonical
hypergroups and neutrosophic quadruple hyperrings and we present ele-
mentary properties which characterize them.

Keywords: Neutrosophy, Neutrosophic quadruple number, Neutrosophic
quadruple semihypergroup, Neutrosophic quadruple canonical hypergroup,
Neutrosophic quadruple hyperrring.

1. INTRODUCTION

The concept of neutrosophic quadruple numbers was introduced by Florentin

Smarandache [18]. Tt was shown in [18] how arithmetic operations of addition, sub-
traction, multiplication and scalar multiplication could be performed on the set of
neutrosophic quadruple numbers. In [1], Akinleye et.al. introduced the notion

of neutrosophic quadruple algebraic structures. Neutrosophic quadruple rings were
studied and their basic properties were presented. In the present paper, two hyper-
operations + and x are defined on the neutrosophic set NQ of quadruple num-
bers to develop new algebraic hyperstructures which we call neutrosophic quadru-
ple algebraic hyperstructures. Specifically, it is shown that (NQ, x) is a neutro-
sophic quadruple semlhypergroup7 (NQ,+) is a neutrosophic quadruple canonical
hypergroup and (NQ, +, X) is a neutrosophic quadruple hyperrring and their basic
properties are presented.

Definition 1.1 ([18]). A neutrosophic quadruple number is a number of the
form (a, bT, cI,dF) where T, I, F have their usual neutrosophic logic meanings and
a,b,c,d € R or C. The set NQ defined by

(1.1) NQ ={(a,bT,cl,dF) : a,b,c,d € R or C}
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is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple
number (a,bT, cI,dF) representing any entity which may be a number, an idea, an
object, etc, a is called the known part and (b7, ¢, dF) is called the unknown part.

Definition 1.2. Let a = (a1,a2T,asl,a4F),b = (b1,boT,b3l,b4F) € NQ. We
define the following:

(1.2) a+b = (a1 + by, (a2 + bg)T, (a3 + bg)[, (a4 + b4)F),
(13) a—b = (a1 - bl, (a2 - bg)T, (a3 - bg)I, (a4 — b4)F)

Definition 1.3. Let a = (a1,a2T,a3l,a4F) € NQ and let « be any scalar which
may be real or complex, the scalar product «.a is defined by

(1.4) a.a = a.(ar,a9T,a3l, a4 F) = (aay, aasT, caszl, aasF).

If & = 0, then we have 0.a = (0,0,0,0) and for any non-zero scalars m and n and
b= (b1,boT, b3, byF), we have:

(m+n)a = ma+ na,
m(a+b) = ma+mb,
mn(a) = m(na),
—a = (—a1,—axT,—a3l,—asF).

Definition 1.4 ([18]). [Absorbance Law] Let X be a set endowed with a total order
x < y, named ” x prevailed by y” or "z less stronger than y” or "z less preferred
than y”. = < y is considered as "z prevailed by or equal to y” or ”x less stronger
than or equal to y” or "z less preferred than or equal to y”.

For any elements z,y € X, with « < y, absorbance law is defined as

(1.5) x.y = y.x = absorb(z,y) = max{z,y} =y
which means that the bigger element absorbs the smaller element (the big fish eats
the small fish). It is clear from (1.5) that
(1.6) r.x = x?=absorb(r,x) =max{z,z} =2 and
(1.7) X1.x9 Xy, = max{Ti,To, -, Ty}
Analogously, if x > y, we say that "z prevails to y” or "z is stronger than y” or

7z is preferred to y”. Also, if z > y, we say that "z prevails or is equal to y” or "z
is stronger than or equal to y” or ”x is preferred or equal to y”.

Definition 1.5. Consider the set {7, 1, F'}. Suppose in an optimistic way we con-
sider the prevalence order T' > I > F'. Then we have:

(1.8) TI = IT =max{T,I} =T,
(1.9) TF = FT=max{T,F}=T,
(1.10) IF = FI=max{I,F}=1,
(1.11) T = T?=T,
(1.12) I = 1*’=1,
(1.13) FF = F?=F.
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Analogously, suppose in a pessimistic way we consider the prevalence order T <
I < F. Then we have:

(1.14) TI = IT=max{T,I} =1,
(1.15) TF = FT=max{T,F}=F
(1.16) IF = FI=max{I,F}=F,
(1.17) T = T*=T,
(1.18) I = =1,
(1.19) FF = F?=F.

Except otherwise stated, we will consider only the prevalence order T' < I < F
in this paper.

Definition 1.6. Let a = (a1, a7, asl,asF),b = (b1,bT,b3,b4F) € NQ. Then

ab = (CLl,CLQT, a3I, a4F).(b1,b2T, bg[,b4F)
= (a1b1, (a1bg + azby + a2b2)T, (a1bs + azbs + asby + azby + asbs)I,
(1.20) (a1b4 ~+ agby, azby + asby + asbs + agbs + a4b4)F).

Theorem 1.7 ([1]). (NQ,+) is an abelian group.
Theorem 1.8 ([1]). (NQ,.) is a commutative monoid.
Theorem 1.9 ([1]). (NQ,.) is not a group.

Theorem 1.10 ([1]). (NQ,+,.) is a commutative ring.

Definition 1.11. Let NQR be a neutrosophic quadruple ring and let NQS be a
nonempty subset of NQR. Then N@S is called a neutrosophic quadruple subring of
NQR, if (NQS, +,.) is itself a neutrosophic quadruple ring. For example, NQR(nZ)
is a neutrosophic quadruple subring of NQR(Z) for n =1,2,3,---

Definition 1.12. Let N@QJ be a nonempty subset of a neutrosophic quadruple
ring NQR. NQJ is called a neutrosophic quadruple ideal of NQR, if for all z,y €
NQJ,r € NQR, the following conditions hold:

(i) z —y e NQJ,

(ii) xr € NQJ and rx € NQJ.

Definition 1.13 ([1]). Let NQR and NQS be two neutrosophic quadruple rings
and let ¢ : NQR — NQS be a mapping defined for all z,y € NQR as follows:

(i) o(z+y) = o(x) + o(y),

(i) ¢(zy) = ( )o(y),

(iii) ¢(T) =T, ¢(I) =1 and ¢(F) = F,

(iv) ¢(1,0,0, 0) (1,0,0,0).

Then ¢ is called a neutrosophic quadruple homomorphism. Neutrosophic quadruple
monomorphism, endomorphism, isomorphism, and other morphisms can be defined
in the usual way.

Definition 1.14. Let ¢ : NQR — NQ@S be a neutrosophic quadruple ring homo-
morphism.
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(i) The image of ¢ denoted by Im¢ is defined by the set
Im¢ ={y e NQS :y = ¢(x),for some x € NQR}.
(ii) The kernel of ¢ denoted by Ker¢ is defined by the set
Ker¢ ={x € NQR : ¢(x) = (0,0,0,0)}.

Theorem 1.15 ([1]). Let ¢ : NQR — NQ@S be a neutrosophic quadruple ring
homomorphism. Then:

(1) Img is a neutrosophic quadruple subring of NQS,

(2) Kerd is not a neutrosophic quadruple ideal of NQR.

Theorem 1.16 ([1]). Let ¢ : NQR(Z) - NQR(Z)/NQR(nZ) be a mapping defined
by &(z) = x + NQR(nZ) for allx € NQR(Z) andn = 1,2,3,.... Then ¢ is not a

neutrosophic quadruple ring homomorphism.

Definition 1.17. Let H be a non-empty set and let + be a hyperoperation on H.
The couple (H,+) is called a canonical hypergroup if the following conditions hold:

)z+y=y+ua foral xz,y € H,

(i)z+(y+2)=@+y)+z foralz,y 2z e H,

(iii) there exists a neutral element 0 € H such that x +0 = {2} = 0 + =, for all
r e H,

(iv) for every © € H, there exists a unique element —z € H such that 0 €
z+ (—z)N(—z) + =,

(v) z€xz+yimpliessy € —x+zand x € z —y, for all z,y,z € H.

A nonempty subset A of H is called a subcanonical hypergroup, if A is a canonical
hypergroup under the same hyperaddition as that of H that is, for every a,b € A,
a—be A If in addition a + A —a C A for all a € H, A is said to be normal.

Definition 1.18. A hyperring is a tripple (R, +,.) satisfying the following axioms:
(i) (R, +) is a canonical hypergroup,
(ii) (R,.) is a semihypergroup such that 2.0 = 0.z = 0 for all z € R, that is, 0 is
a bilaterally absorbing element,
(iii) for all z,y,z € R,

z.(y+z2)=zy+z.zand (r+y)z=z2+y.2
That is, the hyperoperation . is distributive over the hyperoperation +.

Definition 1.19. Let (R,+,.) be a hyperring and let A be a nonempty subset of
R. A is said to be a subhyperring of R if (A4, +,.) is itself a hyperring.

Definition 1.20. Let A be a subhyperring of a hyperring R. Then

(i) A is called a left hyperideal of R if r.a C A for all 7 € R,a € A,
(if) A is called a right hyperideal of R if a.r C A for all r € R,a € A,
(iii) A is called a hyperideal of R if A is both left and right hyperideal of R.

Definition 1.21. Let A be a hyperideal of a hyperring R. A is said to be normal
inR ifr+A—rCA,forall r € R.

For full details about hypergroups, canonical hypergroups, hyperrings, neutro-
sophic canonical hypergroups and neutrosophic hyperrings, the reader should see

[3, 14]
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2. DEVELOPMENT OF NEUTROSOPHIC QUADRUPLE CANONICAL HYPERGROUPS
AND NEUTROSOPHIC QUADRUPLE HYPERRINGS

In this section, we develop two neutrosophic hyperquadruple algebraic hyper-
structures namely neutrosophic quadruple canonical hypergroup and neutrosophic
quadruple hyperring . In what follows, all neutrosophic quadruple numbers will be
real neutrosophic quadruple numbers i.e a,b, ¢, d € R for any neutrosophic quadru-
ple number (a,bT,cl,dF) € NQ.

Definition 2.1. Let 4+ and . be hyperoperations on R that is x+y C R, z.y C R for
allz,y € R. Let + and X be hyperoperations on NQ. For x = (21, 22T, 231,24 F ),y =
(y1,y2T,ysI, ys F) € NQ with z;,y; € Rji = 1,2,3,4, define:

zt+y = {(a,bT,cl,dF):a € z1 +y1,b € T2 + Yo,
(2.1) ¢ € x3+ys,d € T4+ ya},
rxy = {(a,bT,cl,dF):a € x1.y1,b € (x1.92) U (x2.y1) U (22.2), ¢ € (21.y3)
U(w2.y3) U (23.91) U (23.92) U (13.93),d € (21.y4) U (v2.94)
(2.2) U(l‘3.y4) U ($4.y1) U ($4.y2) U (l‘4.y3) U ($4.y4)}.

Theorem 2.2. (NQ,+) is a canonical hypergroup.
Proof. Let @ = (z1, 22T, 231, 24F),y = (y1,92T, ysL, yaF), 2 = (21, 22T, 231, 24F) €
NQ@ be arbitrary with x;,y;,2; € Rji =1,2,3,4.
(i) To show that x+y = y+x, let
z+y = {a = (a1,a2T,a3l,a4F) : a1 € 1 + y1,02 € T2+ Yo2,a3 € T3 + Y3,
R ay € x4 + y4},
y+z = {b= (b1,b2T,b31,bsF") : by € y1 + T1,ba € Y2 + 72,3 € y3 + b3,
by € ys + x4} ) R
Since a;,b; € R,1 =1,2,3,4, it follows that z+y = y+=.
(ii) To show that that x+(y+2) = (z+y)+2, let
y+z = {w = (w1, waT, w3, waF) : wy € y1 + 21, w2 € Yo + 22,
w3 € Y3 + 23, w4 € Ys + 24} Now,
rH(y+z) = atw
= {p= (p1,p2T,p3l,psF) : p1 € T1 + w1, P2 € T2 + w2, p3 € T3 + w3,
P4 € g+ w4}
{p = (1, 2T, p3l,paF) : p1 € x1 + (Y1 + 21), P2 € 22 + (y2 + 22),
p3 € 23+ (Y3 + 23),pa € Ta + (Ya + 24) }-
Also, let x4y = {u = (u1,ueT,uzl,usF) : uy € 21 + y1,us € T2 + Yo, u3 € T3 +
Y3, Ug € T4+ Ya} so that
= {¢=(01,9T,q31,q4F) : 1 € u1 + 21,92 € uz + 22,q3 € u3 + 23,
qa € Ug + 21}
= {¢=(01,0T,q31,qF) : q1 € (x1 +y1) + 21,92 € (2 + y2) + 22,
a3 € (x3 +y3) + 23,q1 € (T4 + ya) + 24}.
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Since u;, pi, ¢i, Wi, Ti, Yi, 2 € Ryi = 1,2,3,4, it follows that z+(y+2) = (v+y)+z.
(iii) To show that 0 = (0,0,0,0) € NQ is a neutral element, consider

24(0,0,0,0) = {a= (a1,a2T,a3l,a4F):a; € 1 +0,as € x9 +0,a3 € x3 + 0,
as € vy + 0}
= {a=(a1,a2T,a3l,a4F) : a1 € {z1},a2 € {x2},a3 € {3},
as € {z4}}

= {z}.

Similarly, it can be shown that (0,0, 0,0)+z = {z}. Hence 0 = (0,0,0,0) € NQ is a
neutral element.

(iv) To show that that for every x € N@Q, there exists a unique element —2 € NQ
such that 0 € z+(—x) N (=z)+z, consider

zH(—x)N(—z)+z = {a=(a1,a2T,a3l,a4F): a1 € 21 — x1,a2 € T3 — T2,
a3 € x3 — 3,04 € T4 — x4} N{b = (b1, 02T, b3, b4 F) :
by € —x1 +x1,by € —x9 + x2,b3 € —x3 + x3,bs € —x4 + x4}
= {(0,0,0,0)}.

This shows that for every x € NQ, there exists a unique element —2 € NQ such
that 0 € z+(=2) N (—x)+a.

(v) Since for all z,y,z € NQ with x;,91,2 € R,i = 1,2,3,4, it follows that
z € z+y implies y € ~24+z and = € z+(~y). Hence, (NQ,+) is a canonical
hypergroup. U

Lemma 2.3. Let (NQ,+) be a neutrosophic quadruple canonical hypergroup. Then

(1) =(~2) ==z for all x € NQ,

(2) 0=(0,0,0,0) is the unique element such that for every x € NQ, there is an
element —x € NQ such that 0 € z+(—x),

(3) ~0=0,

(4) ~(z+y) = ~x=y for all z,y € NQ.

Example 2.4. Let NQ = {0, 7, y} be a neutrosophic quadruple set and let + be a
hyperoperation on N@Q defined in the table below.

+10 x y
010 T Y
z | x| {0,z,y} Y
yly Y 10,y}

Then (NQ, +) is a neutrosophic quadruple canonical hypergroup.
Theorem 2.5. (NQ, X) is a semihypergroup.

Proof. Let @ = (z1, 22T, 231, 24F),y = (Y1, Y2, ysl, yaF), 2 = (21, 22T, 231, 24 F) €
NQ@ be arbitrary with z;, y;, z; € R, 1 =1, 2, 3, 4.
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exy = {a=(a1,a2T,a3l,a4F): a1 € z1y1,a2 € 1y2 U2ys Uxaya, a3 € T1Y3
Uzoys U z3ys Uxsys Ux3ys,as € £1Ys U Tays
Uzzys Uzayr U gy U gy U gy}
C NQ.
(ii) To show that zx(yxz) = (zxy)xz, let

yxz = {w= (w1, waT,w3l,wsF) :wy € y121,ws € Y122 Uyaz Uyaza,
w3 € Y123 U Y223 Uyzzr Uysze Uyszs, ws € y124) Uya2y
(2.3) Uysza Uyazr Uyazo Uyszz Uyaza}
so that
rx(yxz) = xxXw

= {p= (1, 2T, p3l,psF) : p1 € T1W1, P2 € Trw2 U x2w1 U T2W]2,
P3 € x1w3s U xgws Uxzw; Uxzws Ux3ys,ps € T1wa U xowy

(2.4) Uzgwy U zqwy U zqwy U xqws U 24wy}
Also, let
exy = {u= (ur,uoT,usl,usF) : uy € T1y1,up € T1y2 Uxay1 U Toya, u3 € T1Y3
Uzoys Uzayr Uxgys U X3ys, Us € T1Ya U Tays
(2.5) Uzgys Uzgyr Uxaye Uzays Uzgys}
so that
(rxy)xz = uxz

= {¢=(q1,0T,q31,q4F) : q1 € u121,G2 € urzo Uz Uugzo,
g3 € U123 Uugzz Uuzzr Uuzze Uuszzsz,qq € w124 Uugzy

(2.6) Uugzzg Uugzy Uugzo Uugzg U U4Z4}.

Substituting w; of (2.3) in (2.4) and also substituting w; of (2.5) in (2.6), where
i =1,2,3,4 and since p;, ¢;, u;, wi, T;, 2 € R, it follows that xx(yxz) = (zxy)xz.
Consequently, (NQ, x) is a semihypergroup which we call neutrosophic quadruple
semihypergroup. 0
Remark 2.6. (NQ, x) is not a hypergroup.

Definition 2.7. Let (NQ,+) be a neutrosophic quadruple canonical hypergroup.
For any subset NVH of N@Q, we define
~NH ={‘z:xe NH}.

A nonempty subset NH of N(Q is called a neutrosophic quadruple subcanonical
hypergroup, if the following conditions hold:

(i) 0=(0,0,0,0) e NH,

(ii) ~y C NH for all z,y € NH.
A neutrosophic quadruple subcanonical hypergroup N H of a netrosophic quadruple
canonical hypergroup N(@ is said to be normal, if z +NH -~z C NH for all z € NQ.
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+) be a neutrosophic quadruple canonical hypergroup.

Definition 2.8. Let (NQ,
,3...,n € N, the heart of NQ denoted by NQ,, is defined

For z; € NQ with i =1,
by

i=1
In Example 2.4, NQ, = NQ.

Definition 2.9. Let (NQ1, +) and (NQ2, JAr/) be two neutrosophic quadruple canon-
ical hypergroups. A mapping ¢ : NQ1 — NQ- is called a neutrosophic quadruple
strong homomorphism, if the following conditions hold:

(i) ¢lxty) = gb(x)—?lqﬁ(y) for all z,y € NQ1,

(ii) o(T) =T,
(iii) o(1) =1,
(iv) o(F) = F,
(v) ¢(0) =0.

If in addition ¢ is a bijection, then ¢ is called a neutrosophic quadruple strong
isomorphism and we write NQ1 = NQs.

Definition 2.10. Let ¢ : NQ1 — N@2 be a neutrosophic quadruple strong ho-
momorphism of neutrosophic quadruple canonical hypergroups. Then the set {z €
NQ; : ¢(x) = 0} is called the kernel of ¢ and it is denoted by Ker¢g. Also, the set
{#(x) : x € NQ1} is called the image of ¢ and it is denoted by I'mdg.

Theorem 2.11. (NQ,+, X) is a hyperring.

Proof. That (NQ,+) is a canonical hypergroup follows from Theorem 2.2. Also,
that (NQ, x) is a semihypergroup follows from Theorem 2.4.
Next, let = (x1,22T, 23], z4F) € NQ be arbitrary with z;,y;,2; € Rji =

1,2,3,4. Then
ex0 = {u= (u1,u2T,uzl,usF) : ug € 1.0,u3 € 11.0U 22.0 U 2.0, u3 € 71.0
Uze.0Ux3.0Uz3.0U23.0,u4 € 21.0U2x2.0Ux3.0U 24.0U 24.0
U£B4.0U1’4.0}

= {u=(ur,usT,usl,usF) : uy € {0}, us € {0}, us € {0}, uq € {0}}
= {0}

Similarly, it can be shown that Oxx = {0}. Since x is arbitrary, it follows that
rx0 = 0xz = {0}, for all z € NQ. Hence, 0 = (0,0,0,0) is a bilaterally absorbing
element.

To complete the proof, we have to show that zx(y+z) = (zxy)+(zx2), for all
x,y,2 € NQ. To this end, let z = ($1,$2T,$3I,$4F),y = (ylay2T,yBI7y4F)aZ =

(21, 22T, 231,24 F) € NQ be arbitrary with x;,y;,2; € R, =1,2,3,4. Let

y+z = {w=(wi,wo T, w3l,wsF) : wy € y1 + 21, w2 € Y2 + 22, w3 € Y3 + 23,
(27) Wy € Ya+ 24}
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so that
rx(y+z) = zxw
= {p = (p1,p2T,p3l,paF) : p1 € T1w1, P2 € T1wa U raws U 0wy,
p3 € x1ws U xzgws Uxzw; Uxzws Ux3ys,ps € v1wa U xowy
(2.8) Uzzwy U zqwy U x4we U z4ws U Tgwy}.

Substituting w;, i = 1,2, 3,4 of (2.7) in (2.8), we obtain the following:

(2.9) p1€xi(yr +21),

(2.10) p2 € x1(y2 + 22) Uza(yr + 21) U za(ya + 22),

(2.11) p3 € 21(ys + 23) Uma(ys + 23) Uzs(yr + 21) Uxg(ye + 22) Uzs(ys + 23),
Pa € T1(Ys + 22) Uma(ya + 24) Uzz(ya + 24) Uza(ys + 21) Uza(yz + 22),

(2.12)  Uza(ys + 23) U T4 (ya + 2a).

Also, let
exy = {u=(u,uaT,uzl,usF) : uy € T1y1,u2 € T1y2 U zay1 U T2y,
uz € 1Y3 U 22y3 Ux3y1 U X3y Uxays, us € T1Y4 U T2y
(2.13) Ursys U 24y Uzaye U ray3 U 24ys}
rxz = {v=(vi,vT,v3],v4F) : vy € x121,v2 € T122 U To2; U To2y,
V3 € x123 Uxozg Uxszy Uxszo Uxgzs, vy € 124 U Xo2y
(2.14) Uzgzg Uxgzy Uzgzo Umgzg Uxgzg}
so that
(rxy)F(xxz) = utv
= {¢=(01,0T,q31,qF) : q1 € u1 +v1,q2 € uz + v,
(2.15) g3 € uz +v3,q4 € ug + v4}.

Substituting u; of (2.13) and v; of (2.14) in (2.15), we obtain the following:

(2.16) @ €ur +v1 Czyr + 7121 C 21 (Y1 + 21),
q2 € uz +v2 C (v1y2 U z2y1 U T2y2)
+(z122 Uoz1 Uxa(22)
(2.17)  Cx1(y2 + 22) Uza(yr + 21) Uza(ya + 22),
q3 € uz +v3 C (T1y3 Uz2ys U r3y1) U3y U x3y3)
+(z123 Uzozs Uxsgzr) Uwgze Uxs2s)
(2.18)  Cx1(ys + 23) Uza(ys + 23) Uzs(yr + 21) Uas(yz + 22) Uxs(ys + 23).
qa € ug +vg C (21Y4 U Tays U a3ys) Uzays U Tay2) U zay3 U 24Ya)
(124 Umozg Uxsgzg) Urgzy Uxgze) Uxgzs Uxgzg)
C 21 (ya + 22) Uma(ya + 24) Urs(ya + 24) Uza(yr + 21) Uza(y + 22)
(2.19)  Uza(ys + 2z3) Uza(ya + 24).
Comparing (2.9), (2.10), (2.11) and (2.12) respectively with (2.16), (2.17), (2.18)
and (2.19), we obtain p; = ¢;, i = 1, 2, 3, 4. Hence, x x (y+2) = (2 xy) +(z % 2), for all
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2,9,z € NQ. Thus, (NQ, +, X) is a hyperring which we call neutrosophic quadruple
hyperring. O

Theorem 2.12. (NQ,+,0) is a Krasner hyperring where o is an ordinary multi-
plicative binary operation on NQ.

Definition 2.13. Let (NQ, +, X) be a neutrosophic quadruple hyperring. A nonempty
subset NJ of NQ is called a neutrosophic quadruple subhyperring of NQ, if (N J, +, x)
is itself a neutrosophic quadruple hyperring.
N J is called a neutrosophic quadruple hyperideal if the following conditions hold:

(i) (NJ,+) is a neutrosophic quadruple subcanonical hypergroup.

(ii) For all z € NJ and r € NQ, xxr,rxx C NJ.
A neutrosophic quadruple hyperideal NJ of N@ is said to be normal in NQ, if
z+NJZx C NJ, for all z € NQ.

Definition 2.14. Let (NQ1,+, x) and (NQ-, 4’, >A</) be two neutrosophic quadru-
ple hyperrings. A mapping ¢ : N@Q1 — NQ- is called a neutrosophic quadruple
strong homomorphism, if the following conditions hold:

(i) dlaty) = o(x)+ ¢(y), for all 2,y € NQ,

(i) p(zxy) = ¢(x)% ¢(y), for all z,y € NQ1,
(iii) ¢(T) =T,

(iv) ¢(I) =1,

(v) ¢(F) =F,

(vi) ¢(0) =0.

If in addition ¢ is a bijection, then ¢ is called a neutrosophic quadruple strong
isomorphism and we write N@Q1 = NQ-.

Definition 2.15. Let ¢ : NQ1 — NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple hyperrings. Then the set {x € NQ; : ¢(x) = 0}
is called the kernel of ¢ and it is denoted by Ker¢. Also, the set {¢(x): 2 € NQ1}
is called the image of ¢ and it is denoted by Imdg.

Example 2.16. Let (NQ,+, X) be a neutrosophic quadruple hyperring and let
N X be the set of all strong endomorphisms of N@Q. If & and ® are hyperoperations
defined for all ¢,9 € NX and for all x € NQ as

loXss) = {v(z):v(z) € ¢(x)+(x)},
(0X0, = {v(z):v(z) € p(x)xyY()},
then (NX,®,®) is a neutrosophic quadruple hyperring.
3. CHARACTERIZATION OF NEUTROSOPHIC QUADRUPLE CANONICAL

HYPERGROUPS AND NEUTROSOPHIC HYPERRINGS

In this section, we present elementary properties which characterize neutrosophic
quadruple canonical hypergroups and neutrosophic quadruple hyperrings.

Theorem 3.1. Let NG and NH be neutrosophic quadruple subcanonical hyper-
groups of a neutrosophic quadruple canonical hypergroup (NQ,+). Then
(1) NG N NH is a neutrosophic quadruple subcanonical hypergroup of NQ,
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(2) NG x NH is a neutrosophic quadruple subcanonical hypergroup of NQ.

Theorem 3.2. Let NH be a neutrosophic quadruple subcanonical hypergroup of a
neutrosophic quadruple canonical hypergroup (NQ,+). Then

(1) NH+NH = NH,

(2) *+NH = NH, for allz € NH.

Theorem 3.3. Let (NQ,+) be a neutrosophic quadruple canonical hypergroup.
NQ@., the heart of NQ is a normal neutrosophic quadruple subcanonical hypergroup

of NQ.

Theorem 3.4. Let NG and NH be neutrosophic quadruple subcanonical hyper-
groups of a neutrosophic quadruple canonical hypergroup (NQ,+).

(1) If NG C NH and NG is normal, then NG is normal.
(2) If NG is normal, then NG+NH is normal.

Definition 3.5. Let NG and NH be neutrosophic quadruple subcanonical hy-
pergroups of a neutrosophic quadruple canonical hypergroup (NQ,+). The set
NG+ NH is defined by

(3.1) NG+NH ={z4y:2 € NG,y € NH}.
It is obvif)us that NG+NH is a neutrosophic quadruple subcanonical hypergroup
of (NQ,+).
If € NH, the set x+NH is defined by
(3.2) 4+ NH = {zty:yc NH}.

If x and y are any two elements of NH and 7 is a relation on NH defined by
a7y if x € y+NH, it can be shown that 7 is an equivalence relation on NH and the
equivalence class of any element x € NH determined by 7 is denoted by [z].

Lemma 3.6. For any x € NH, we have
(1) [¢] = z+NH,

(2) [=a] = =[a].
Proof. (1)
] = {yeNH:zry}
= {ye NH:ycziNH}
= z+NH.
(2) Obvious. O

Definition 3.7. Let NQ/N H be the collection of all equivalence classes of x € NH
determined by 7. For [z],[y] € NQ/NH, we define the set [z]®[y] as

(3.3) [z]&ly] = {[2] : 2 € 2y}
Theorem 3.8. (NQ/NH,3) is a neutrosophic quadruple canonical hypergroup.

Proof. Same as the classical case and so omitted. O
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Theorem 3.9. Let (NQ,+) be a neutrosophic quadruple canonical hypergroup and
let NH be a normal neutrosophic quadruple subcanonical hypergroup of NQ. Then,
for any x,y € NH, the following are equivalent:

(1) z € y+NH,

(2) y—2 C NH,

(3) (y—x)NNH #2

Proof. Same as the classical case and so omitted. O

Theorem 3.10. Let ¢ : NQ1 — NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple canonical hypergroups. Then

(1) Ker¢ is not a neutrosophic quadruple subcanonical hypergroup of NQ1,
(2) Im¢ is a neutrosophic quadruple subcanonical hypergroup of NQs.

Proof. (1) Since it is not possible to have ¢((0,T,0,0)) = ¢((0,0,0,0)), #((0,0,I,0))
#((0,0,0,0)) and ¢((0,0,0, F)) = ¢((0,0,0,0)), it follows that (0,7,0,0),(0,0,1,0)
and (0,0,0, F) cannot be in the kernel of ¢. Consequently, Ker¢$ cannot be a neu-
trosophic quadruple subcanonical hypergroup of N@Q;.

(2) Obvious. O

Remark 3.11. If ¢ : NQ; — NQ- is a neutrosophic quadruple strong homomor-
phism of neutrosophic quadruple canonical hypergroups, then Ker¢ is a subcanon-
ical hypergroup of NQ1.

Theorem 3.12. Let ¢ : NQ1 — NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple canonical hypergroups. Then

(1) NQ1/Ker¢ is not a neutrosophic quadruple canonical hypergroup,

(2) NQ1/Ker¢ is a canonical hypergroup.

Theorem 3.13. Let NH be a neutrosophic quadruple subcanonical hypergroup of
the neutrosophic quadruple canonical hypergroup (NQ,+). Then the mapping ¢ :
NQ — NQ/NH defined by ¢(x) = x+NH is not a neutrosophic quadruple strong
homomorphism.

Remark 3.14. Isomorphism theorems do not hold in the class of neutrosophic
quadruple canonical hypergroups.

Lemma 3.15. Let NJ be a neutrosophic quadruple hyperideal of a neutrosophic
quadruple hyperring (NQ,+, x). Then

(1) =NJ =NJ,

(2) 2+NJ = NJ, for allz € NJ,

(3) xNJ = NJ, for allz € NJ.

Theorem 3.16. Let NJ and NK be neutrosophic quadruple hyperideals of a neu-
trosophic quadruple hyperring (NQ,+, x). Then

(1) NJNNK is a neutrosophic quadruple hyperideal of NQ,
(2) NJ x NK is a neutrosophic quadruple hyperideal of NQ,
(3) NJ+NK is a neutrosophic quadruple hyperideal of NQ.

Theorem 3.17. Let NJ be a normal neutrosophic quadruple hyperideal of a neu-
trosophic quadruple hyperring (NQ,+, x). Then
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(1) (z+NJ)+(y+NJ) = (z+y)+NJ, for all z,y € NJ,
(2) (z+NJ)x(y+NJ) = (xxy)+NJ, for all z,y € NJ,
(3) a+NJ =y+NJ, for ally € z+NJ.

Theorem 3.18. Let NJ and NK be neutrosophic quadruple hyperideals of a neu-
trosophic quadruple hyperring (NQ, +, X) such that NJ is normal in NQ. Then
(1) NJNNK is normal in NJ,
(2) NJ+NK is normal in NQ,
(3) NJ is normal in NJ+NK.

Let NJ be a neutrosophic quadruple hyperideal of a neutrosophic quadruple
hyperring (NQ, +, X). For all x € NQ, the set NQ/NJ is defined as

(3.4) NQ/NJ ={z+NJ:z € NQ}.

For [z], [y] € NQ/NJ, we define the hyperoperations & and ® on NQ/NJ as follows:
(3.5) [2)®ly] = {[2] : 2 € aty},

(3.6) [2)&[y] = {[z] : 2 € xy}.

It can easily be shown that (NQ/NH, &, ®) is a neutrosophic quadruple hyperring.

Theorem 3.19. Let ¢ : NQ — NR be a neutrosophic quadruple strong homomor-
phism of neutrosophic quadruple hyperrings and let NJ be a neutrosophic quadruple
hyperideal of NQ. Then

1) Ker¢ is not a neutrosophic quadruple hyperideal of NQ,

) Im¢ is a neutrosophic quadruple hyperideal of NR,

) NQ/Kerg is not a neutrosophic quadruple hyperring,

) NQ/Im¢ is a neutrosophic quadruple hyperring,

) The mapping ¢ : NQ — NQ/NJ defined by 1(z) = x+N.J, for allz € NQ
s not a neutrosophic quadruple strong homomorphism.

(
(2
(3
(4
(5

Remark 3.20. The classical isomorphism theorems of hyperrings do not hold in
neutrosophic quadruple hyperrings.

4. CONCLUSION

We have developed neutrosophic quadruple algebraic hyperstrutures in this pa-
per. In particular, we have developed new neutrosophic algebraic hyperstructures
namely neutrosophic quadruple semihypergroups, neutrosophic quadruple canonical
hypergroups and neutrosophic quadruple hyperrings. We have presented elementary
properties which characterize the new neutrosophic algebraic hyperstructures.
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Neutrosophic N-Structures Applied
to BCK/BCIl-Algebras
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Young Bae Jun, Florentin Smarandache, Hashem Bordbar (2017). Neutrosophic N-Structures Applied
to BCK/BCI-Algebras. Information 8, 128; DOI: 10.3390/info8040128

Abstract:  Neutrosophic N -structures with applications in BCK/BCl-algebras is discussed.
The notions of a neutrosophic A -subalgebra and a (closed) neutrosophic MN-ideal in a
BCK/BCl-algebra are introduced, and several related properties are investigated. Characterizations
of a neutrosophic N -subalgebra and a neutrosophic N\ -ideal are considered, and relations between a
neutrosophic N -subalgebra and a neutrosophic N -ideal are stated. Conditions for a neutrosophic
N-ideal to be a closed neutrosophic N -ideal are provided.

Keywords: neutrosophic N -structure; neutrosophic N -subalgebra; (closed) neutrosophic A -ideal

1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and
they have been applied to many branches of mathematics, such as group theory, functional analysis,
probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets
(MV-algebras). Additionally, Iséki introduced the notion of a BCI-algebra, which is a generalization of
a BCK-algebra (see [2]).

A (crisp) set A in a universe X can be defined in the form of its characteristic function y 4:
X — {0,1} yielding the value 1 for elements belonging to the set A and the value 0 for elements
excluded from the set A. So far, most of the generalizations of the crisp set have been conducted
on the unit interval [0, 1], and they are consistent with the asymmetry observation. In other words,
the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp
point {1} into the interval [0, 1]. Because no negative meaning of information is suggested, we now
feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical
tool. To attain such an object, Jun et al. [3] introduced a new function, called a negative-valued
function, and constructed N -structures. Zadeh [4] introduced the degree of membership/truth (t)
in 1965 and defined the fuzzy s et. As a generalization of fuzzy sets, Atanassov [5] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache
introduced the degree of indeterminacy/neutrality (i) as an independent component in 1995 (published
in 1998) and defined the neutrosophic set on three components:

(t, i, f) = (truth, indeterminacy, falsehood)
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In this paper, we discuss a neutrosophic N -structure with an application to BCK/BClI-algebras.
We introduce the notions of a neutrosophic N -subalgebra and a (closed) neutrosophic A-ideal in a
BCK/BCl-algebra, and investigate related properties. We consider characterizations of a neutrosophic
N -subalgebra and a neutrosophic A -ideal. We discuss relations between a neutrosophic A -subalgebra
and a neutrosophic N-ideal. We provide conditions for a neutrosophic N-ideal to be a closed
neutrosophic A -ideal.

2. Preliminaries

We let K(7) be the class of all algebras with type T = (2,0). A BCI-algebra refers to a system
X := (X, *,0) € K(7) in which the following axioms hold:

D ((x*xy)*(x*xz))*(zxy) =0,
D) (xx(xxy))xy =96,

(III) x*xx =126,

(IV) xxy=yxx=60 = x=y.

forall x,y,z € X. If a BCI-algebra X satisfies 6 x x = 6 for all x € X, then we say that X is a BCK-algebra.
We can define a partial ordering < by

(Vr,yeX)(x =y = xxy=2~0)
In a BCK/BCl-algebra X, the following hold:

(Vx e X) (xx6 =x) 1)
(Vx,y,z € X) ((x*y) xz = (x*2z)*y) (2)

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x xy € S for all
x,y €8S.
A subset I of a BCK/BClI-algebra X is called an ideal of X if it satisfies the following:

1) 0 €,
12) (Vx,yeX)(xxyelLyel =xel).

We refer the reader to the books [6,7] for further information regarding BCK/BClI-algebras.
For any family {a; | i € A} of real numbers, we define

\A{ai|ieA}:= max{a; ‘.i €A} ifAis finite
Sup{ai | 1€ A} otherwise

, min{a; | i € A} if Ais finite
i A} =
Mailieny { inf{a; |i € A}  otherwise

We denote by F (X, [—1,0]) the collection of functions from a set X to [—1,0]. We say that an
element of F(X,[—1,0]) is a negative-valued function from X to [—1,0] (briefly, N-function on X).
An N-structure refers to an ordered pair (X, f) of X and an N-function f on X (see [3]). In what
follows, we let X denote the nonempty universe of discourse unless otherwise specified.

A neutrosophic N -structure over X (see [8]) is defined to be the structure:

o X _
XN = mimy = {menesm | * € X ®)
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where Ty, Iy and Fy are N-functions on X, which are called the negative truth membership function,
the negative indeterminacy membership function and the negative falsity membership function, respectively,
on X.

We note that every neutrosophic N -structure Xy over X satisfies the condition:

(Vx € X) (=38 < Tn(x) + In(x) + Fn(x) <0)

3. Application in BCK/BCI-Algebras

In this section, we take a BCK/BCI-algebra X as the universe of discourse unless
otherwise specified.

Definition 1. A neutrosophic N -structure Xy over X is called a neutrosophic N -subalgebra of X if the
following condition is valid:

Tn(xxy) < V{Tn(x), Tn(y)}
(Vx,y e X) | In(xxy) = A{In(x), In(y) } @)
En(x+y) < ViEN(x), En(y)}

Example 1. Consider a BCK-algebra X = {6, a, b, c} with the following Cayley table.

a S D ¥
a S x DD
QO QDD DN
a D S
D N DN

The neutrosophic N -structure

X = 0 a b c
N (—0.7,—02,—0.6)” (—0.5,—0.3,—0.4)” (—0.5,—0.3,—04)” (—0.3,—0.8,—0.5)

over X is a neutrosophic N -subalgebra of X.

Let Xn be a neutrosophic A -structure over X and let &, B,y € [—1,0] be such that -3 < a + B +
v < 0. Consider the following sets:

T = {x € X | Ty(x) < a}
If]::{xEXHN(x)Zﬁ}
Fli={x € X | Fy(x) <}

The set
Xnu(a, B,7) 1= {x € X | Ty(x) < &, Iy(x) > B, F(x) < 7}
is called the («, B, v)-level set of Xn. Note that
Xn(w B,7) = Ty N I8 N FY

Theorem 1. Let Xy be a neutrosophic N -structure over X and let o, B,y € [—1,0] be such that —3 <
a+ B+ <0. If XN is a neutrosophic N -subalgebra of X, then the nonempty («, B, y)-level set of X is a
subalgebra of X.
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Proof. Letwa, B,y € [—1,0] besuch that =3 < a+ B +v < 0and XN(&,B,7) # D. If x,y € Xn(a, B,7),
then Ty (x) < a, In(x) > B, Fn(x) < 7, Tn(y) < a, IN(y) > B and Fy(y) < v. It follows from
Equation (4) that

Tn(xxy) < V{Tn(x), Tn(y)} <«
In(xxy) =2 AM{IN(x), In(y)} = B

Fn(xxy) < V{En(x), En(y)} <
)

Hence, x x y € XN(a, B, y), and therefore XN («, B, y) is a subalgebra of X. [I

Theorem 2. Let Xy be a neutrosophic N'-structure over X and assume that T¥;, If] and F); are subalgebras of
X forall a, B,y € [—1,0] with =3 < a + B+ v < 0. Then Xy is a neutrosophic N -subalgebra of X.

Proof. Assume that there exista, b € X such that Ty(axb) > \V{Tn(a), Tny(b)}. Then Ty (axb) > t, >
V{Tn(a), Tn(b)} for some f, € [—1,0). Hence a,b € Tlt\‘}‘ buta*b ¢ Ti, which is a contradiction. Thus

Tn(xxy) < V{Tn(x), Tn(y)}
forall x,y € X. If Iy(axb) < N{In(a), IN(b)} for some a,b € X, then

In(axb) < tg < /\{IN(Q), In(b)}

where tg = IHiIn(axb) + A{In(a), In(b)}}. Thus a,b € I;\? and axb ¢ It*g, which is a
contradiction. Therefore

In(x*y) = AM{In(x), IN(y) }
for all x,y € X. Now, suppose that there exist a,b € X and t, € [—1,0) such that

En(axb) > t, > \/{FN(a),FN(b)}
Thena,b € FIt\} andaxb ¢ F t”, which is a contradiction. Hence

Fy(xxy) < \/{Fn(x), Fn(v)}

for all x,y € X. Therefore Xy is a neutrosophic N -subalgebra of X. [

Because [—1,0] is a completely distributive lattice with respect to the usual ordering, we have the
following theorem.

Theorem 3. If {Xy; | i € N} is a family of neutrosophic N-subalgebras of X, then ({Xy, | i € N}, C) forms
a complete distributive lattice.

Proposition 1. If a neutrosophic N -structure Xy over X is a neutrosophic N -subalgebra of X, then Ty (0) <
Tn(x), In(0) > In(x) and Fn(0) < Fy(x) forall x € X.

Proof. Straightforward. O

Theorem 4. Let Xy be a neutrosophic N'-subalgebra of X. If there exists a sequence {ay} in X such that
nlgn Tn(ay) = —1, nlgn In(ay) = 0and nlgn Fn(ay) = =1, then Tn(0) = —1, In(6) = 0and Fy(6) = —1.

Proof. By Proposition 1, we have Tyx(0) < Tn(x), IN(0) > In(x) and Fy(60) < Fy(x) for all x €

X. Hence Tn(0) < Tn(an), In(an) < IN(0) and Fy(0) < Fy(ay) for every positive integer n. It
follows that
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~1< Tn(6) < lim Ty (a,) = 1

0> In(6) > lim Iy(an) =0

~1< Fy(0) < lim Fy(a,) = 1
Hence Ty (0) = —1, In(#) =0and Fy(0) = —1. O

Proposition 2. If every neutrosophic N -subalgebra Xy of X satisfies:

In(x*y) < Tn(y), In(x *y) > In(y), En(x *y) < En(y) (5)

forall x,y € X, then X is constant.

Proof. Using Equations (1) and (5), we have T (x) = Tn(x x0) < Tn(0), In(x) = In(x % 0) > In(0)
and Fy(x) = Fy(xx0) < Fy(0) for all x € X. It follows from Proposition 1 that Ty (x) = Tn(0),
In(x) = IN(0) and Fy(x) = Fy(6) for all x € X. Therefore Xy is constant. [

Definition 2. A neutrosophic N -structure Xy over X is called a neutrosophic N -ideal of X if the following
assertion is valid:

Tn(0) < Tn(x) < V{TIn(xxy), Tn(y)}
(Vx,y € X) | In(0) = In(x) = A{In(x *y), IN(y)} Q)
Fn(0) < Fn(x) < V{Fn(x*y), Fn(y)}

Example 2. The neutrosophic N -structure Xy over X in Example 1 is a neutrosophic N -ideal of X.

Example 3. Consider a BCI-algebra X :=Y x Z where (Y, *,0) is a BCI-algebra and (Z, —,0) is the adjoint
BClI-algebra of the additive group (Z,+,0) of integers (see [6]). Let XN be a neutrosophic N structure over X
given by

Xy = {W lx €Y x (Nu{O})}u{ o | Y x (Nu{O})}
where o,y € [—1,0) and B € (—1,0]. Then Xy is a neutrosophic N'-ideal of X.

Proposition 3. Every neutrosophic N'-ideal X of X satisfies the following assertions:

(ryeX)(x 2y = Tn(x) <Tn(y) In(x) = In(y), En(x) < En(y)) )
Proof. Let x,y € X be such that x < y. Then x *y = 6, and so

Tn(x) < V{Tn(x*y), Tn(y)} = V{Tn(D), Tn(y)} = Tn(y)
In(x) > MIn(xxy), In(y)} = MIn(), IN(y)} = IN(y)
Fn(x) < V{Fn(x*y), Fn(y)} = V{Fn(0), Fn(y)} = Fn(y)

This completes the proof. [

Proposition 4. Let XN be a neutrosophic N -ideal of X. Then

(1) Tn(xxy) < Tn((xxy) xy) < Tn((xxz)* (y+2)) < Tn((x*y) *2)
@) In(xxy) > In((xxy) xy) & In((xx2) * (y*2)) > In((x*y) *2)
©B) En(xxy) <En((xxy) xy) < En((xx2)* (y*z)) < En((x*y) *2)

forallx,y,z € X.

> 1
<F
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Proof. Note that
((xx(y*xz))*xz)*xz <X (x*y)*z (8)

forall x,y,z € X. Assume that Ty (xxy) < Tn((x*y) *y), IN(x*y) > In((x*y) *y) and Fy(x xy) <
Fx((xxy) xy) for all x,y € X. It follows from Equation (2) and Proposition 3 that

Tn((xxz) * (y+2)) = Tn((x* (y *2)) * 2)
<Tn(((xx (yxz)) *xz)*z)

and

forall x,y € X.
Conversely, suppose

Tn((xxz)x(y*xz)) < Tn((x*xy) *z)
IN((xxz) % (y*z)) > IN((x xy) *2) )
Fn((xxz)* (y*xz)) < EN((x*y) xz)

for all x,y,z € X. If we substitute z for y in Equation (9), then

Tn(xxz) =Tn((xxz)%0) = Tny((xxz) x (z*x2)) < Tn((x*2) *2)

IN(xxz) =In((xx2)%x0) = IN((x % 2) *x (z%2))

Fy(x*z) = Fn((xxz) % 0) = Fy((x % z) % (2% 2))
for all x,z € X by using (III) and Equation (1). O

Theorem 5. Let XN be a neutrosophic N-structure over X and let w,p,v € [—1,0] be such that
-3 < a+ B+ < 0. If Xn is a neutrosophic N-ideal of X, then the nonempty («, B, y)-level set of
XN is an ideal of X.

Proof. Assume that Xn(a,B,7) # @ fora,B,v € [—1,0] with =3 < a4+ B+ < 0. Clearly, 0 €
Xn(a,B,7). Letx,y € X besuch thatxxy € Xn(a,B,7) and y € Xn(a,B,7). Then Ty(x*xy) < a,
InN(x*xy) > B, Fn(x*xy) <7, Tn(y) <w, IN(y) > Band Fy(y) < 7. It follows from Equation (6) that
T (x) < VA{Tn(x*y), Tn(y )}
In x > /\{IN x*y IN }
(x) < V{En(x*y), En(y)} <

so that x € Xn(«, B, 7). Therefore Xn(a, B, y) is an ideal of X. [
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Theorem 6. Let Xy be a neutrosophic N-structure over X and assume that Tg, ﬁ, and Fy; are ideals of X for
all a, B,y € [—1,0] with =3 < a + B+ v < 0. Then Xy is a neutrosophic N -ideal of X.

Proof. If there exist a,b,c € X such that Ty(0) > Tn(a), IN(f) < In(b) and Fn(68) > Fn(c),
respectively, then Tny(0) > a; > Tyn(a), IN(0) < b; < In(b) and Fy(0) > ¢ > Fy(c) for some
ag, ¢y € [-1,0) and b; € (—1,0]. Then 0 ¢ Tﬁ;, 0 ¢ IN and 6 ¢ FNf. This is a contradiction.
Hence, Tn(0) < Tn(x), IN(0) > In(x) and Fy(0) < Fy(x) for all x E X. Assume that there exist
at, by, a;, b, af, by € X such that Tn(ar) > V{Tn(arxbe), Tn(be)}, In(a;) < A{In(a; xb;), IN(b;)} and
En(ag) > V{Fn(as*bs), Fn(bf)}. Then there exist s, s € [—1,0) and s;i € (—1,0] such that

TN(IZt) > S¢ Z \/{TN(at * bt),TN(bt)}
In(ai) <si < N{In(a;i*b;), In(b;) }
Fn(ag) >s¢ > \/{Fn(agxbs), Fn(bf)}

It follows that a; by € Ty, by € Ty, a; % b; € I, b; € I3, apxbs € F;If and by € F;{. However,
ar ¢ T, a; & Ils\l'] and ag ¢ FIS\{. This is a contradiction, and so

Tn(x) < \/{Tn(xxy), Tn(y)}
In(x) > N {In(x*y), In(y)}
Fn(x) < \/{Fn(x*y),Fn(y)}

for all x,y € X. Therefore Xy is a neutrosophic N-idealof X. O
Proposition 5. For any neutrosophic N -ideal Xn of X, we have

Tn(x) < V{Tn(y), Tn(2)}
(Vx,y,zeX) | xxy =<z =< In(x) > AN{IN(y), IN(2)} (10)

Fn(x) < V{En(y), En(2)}

Proof. Let x,y,z € X be such that x xy < z. Then (x * y) *z = 6, and so

Tn(xxy) < \VA{TIn((x*y) *2), Tn(2)} = \/{Tn(0), Tn(2)} = Tn(2)
In(x*y) > N{In((x*y) x2), In(2)} = A{IN(B), In(2)} = IN(2)
Fy(x*y) < VA{EN((x*y) *z),Fn(z)} = \/{Fn (), Fn(2)} = Fn(2)

It follows that

Tn(x) < VA{Tn(xxy), Tn(y)} < \V{Tn(y), Tn(2)}
() = AMInGexy), In)} = AIn(), In(2)}
Fn x <\/{FN x*y FN }<\/{FN /FN(Z)}

This completes the proof. [
Theorem 7. In a BCK-algebra, every neutrosophic N -ideal is a neutrosophic N -subalgebra.

Proof. Let Xy be a neutrosophic A -ideal of a BCK-algebra X. For any x,y € X, we have
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Tn(xxy) < V{Tn((xxy) #x), Tn(0)} = V{Tn((x*2) #y), Tn(2)}
= VA{Tn(0+y), Tn(x)} = V{Tn (), Tn(2)}
S \/{TN(X)/TN(]/)}

In(xxy) = A{In((x xy) xx), In(x)} = /\{IN((X*X)*}/),IN(x)}
= NMIn(0xy), In(x)} = A{In(6), In(x)}
> NIn(y), In(x)}

and

En(xxy) < V{EN((x#y) = x), En(x)} = \{En((x % x) * y), En(x)}
= V{En(0*y) Fn(x)} = \/{Fn(6), Fn(x)}
< VA{En(x), En(y)}

Hence Xy is a neutrosophic N -subalgebra of a BCK-algebra X. O

The converse of Theorem 7 may not be true in general, as seen in the following example.

Example 4. Consider a BCK-algebra X = {6,1,2,3,4} with the following Cayley table.

B W R | %
B W R oo
B W R, D DR
B WD D DN
WD m D D W
TDT DD D

Let XN be a neutrosophic N -structure over X, which is given as follows:

Xn = 6 1
N (—0.8,0,—1)’ (—0.8,—0.2,—0.9)”

2 3 4
(=02,—0.6,—05)” (—0.7,—0.4,—0.7)” (—0.4,—0.8,—0.3) }

Then XN is a neutrosophic N-subalgebra of X, but it is not a neutrosophic N-ideal of X as
n(2) = =02 > —0.7 = \V{Tn(2%3),Tn(3)}, IN(4) = —0.8 < —04 = A{IN(4%3),IN(3)}, or
Fn(4) = —03 > —0.7 = \/{Fn(4%3),Fn(3)}.

Theorem 7 is not valid in a BCI-algebra; that is, if X is a BCI-algebra, then there is a neutrosophic
N-ideal that is not a neutrosophic N -subalgebra, as seen in the following example.

Example 5. Consider the neutrosophic N-ideal X of X in Example 3. If we take x := (6,0) and y := (6,1)
inY x (NU{0}), then xxy = (6,0)* (0,1) = (6,—1) ¢ Y x (NU{0}). Hence

Tn(x*y) =0>a=\/{Tn(x), TN(y)}
In(x*y) =B < 0= A{In(x),In(y)} or
Fy(xsy) =0> 9= \/{Fn(x ,FN(V)}

Therefore Xn is not a neutrosophic N'-subalgebra of X.
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For any elements w;, w;, w 1S X, we consider sets:
XN = {x € X|In(x) < Tn(wr)}
X$ = {x € X | In(x) = Iy(w;)}
X *{x€X|FN( )<FN(wf)}
Clearly, w; € Xy', w; € Xy’ and wys € X;f }

Theorem 8. Let wy, w; and wy be any elements of X. If Xn is a neutrosophic N-ideal of X, then XN X§
Wf .
and Xy are ideals of X.

Proof. Clearly, 6 ewX%t, 0 € Xy and 6 € X;f. Let x,y € X be such that x x y € X' N Xy N X;f and
Y€ XN Xy N Xy - Then

Tn(x*y) < Tn(wt), Tn(y) < Tn(wt)
In(xxy) > In(wi), IN(y) > IN(w;)
Fn(x*y) < En(wy), En(y) < Fn(wy)

It follows from Equation (6) that

Tn(x) < VA{Tn(x*y), Tn(y)} < T(wr)
N x) > NIn(xxy), In(y)} > In(w;)
En(x) < \/{Fn(x*y), Fn(y)} < En(wy)

Hence x € X' N Xy N X;f , and therefore Xy, Xﬁ" and X;;f areideals of X. 0O

Theorem 9. Let wy, w;, w reX and let Xy be a neutrosophic N -structure over X. Then

(1) IFXy, X§' and XN are ideals of X, then the following assertion is valid:
TN(X) > V{Tn(y*2), Tn(z)} = Tn(x) > Tn(y)
In(

)
(Vx,y,z € X) (x) < Min(y*2), In(z)} = In(x) < In(y) 11
N(x) = V{En(y *2), En(2)} = En(x) > En(y)

(2) If XN satisfies Equation (11) and
(Vx € X) (Tn(0) < T (x), In(0) > In(x), Fn(6) < Fn(x)) (12)
then Xy, Xy and XN are ideals of X for all w; € Im(Ty), w; € Im(Iy) and wy € Im(Fy).

Proof. (1) Assume that X%’, X;}i and X;f are ideals of X for wy, w;, w re X Letyy,ze X be such

that Ty (x) > V{Tn(y * z),Taz\}](z)}, In(x) < NMIn(y * 22;’ In(z)} and Fy(x) > V{Fn(y % 2), Fn(2) }.
Then y xz € Xy N Xy N XN and z € Xy N XN N XNf, where w = w; = wy = x. It follows

from (I2) that y € Xy' N Xy ﬂX for wy = cul = wy = x. Hence Ty(y) < Tn(wt) = Tn(x),
IN(y) = In(wi) = IN( )and FN(y) < Fn(wy) = Fn(x).
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(2) Let wt € Im(Ty), w; € Im(Iy) and wy € Im(Fy) and suppose that Xy satisfies Equations (11)
and (12). Clearly, 8 € X' N Xy’ N Xi)]f by Equation (12). Let x,y € X be such that x x y € Xy N Xx' N
Xy and y € X&' N Xy N Xy Then

Tn(x*y) < Tn(wr), Tn(y) < Tn(wt)
In(xxy) > In(wi), In(y) = In(w;)
Fy(xxy) < Fn(wy), Fn(y) < En(wy)

which implies that \/{Tn(x xy), Tn(y)} < Tn(wt), A{IN(x*y), IN(y)} > In(w;i), and V{Fn(x *
¥),En(y)} < Fn(wy). It follows from Equation (11) that Tyy(wt) > Tn(x), In(w;) < In(x) and

wf

Fn(wf) > Fy(x). Thus, x € XN N Xy N ng, and therefore Xy, Xy’ and X,/ are ideals of X. [
Definition 3. A neutrosophic N -ideal XN of X is said to be closed if it is a neutrosophic N -subalgebra of X.

Example 6. Consider a BCI-algebra X = {6,1,a,b, c} with the following Cayley table.

O S~ D ¥
O SN ~k DD
O T Q D D
SR SUEES SN )
QD0 S
TR T 0 a|n

Let XN be a neutrosophic N -structure over X which is given as follows:

Xn = 0 1 a
N (—09,-03,-08)’ (—07,—04,-07) (—0.6,08,03)"

b c
(—0.2,—0.6,—0.3)” (—0.2,—0.8,—0.5) }

Then X is a closed neutrosophic N -ideal of X.

Theorem 10. Let X be a BCI-algebra, For any aq,a3,v1,7v2 € [—1,0) and By, B2 € (—1,0] with aq < ay,
Y1 < Y2 and B1 > B, let XN := (TNIXTN) be a neutrosophic N -structure over X given as follows:

ap ifx e Xy

Ty : X — |—1,0|, x+— .
N [ b x { ay otherwise

B ifxe X4
In: X = [-1,0], x+— .
N | I x { B> otherwise

if X
Fy:X — [-1,0], xH{ T X E Ay
Y2 otherwise

where X4+ = {x € X | 8 < x}. Then Xy is a closed neutrosophic N -ideal of X.

Proof. Because 6 € X, we have Tx(0) = a1 < Tn(x), IN(0) = B1 > In(x) and Fy(0) = 71 < Fx(x)
forallx € X. Letx,y € X. If x € X, then

Tn(x) = a < \V{Tn(x*y), Tn(y)}
In(x) = B1 > N{In(xxy), In(y)}
Fn(x) =711 < V{En(x*y), Fn(y)}
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Suppose that x ¢ X, . If xxy € Xy theny ¢ X, andif y € X then x xy ¢ X, . In either case,
we have
Tn(x) = a2 = \/{Tn(x*y), Tn(y)}
In(x) = B2 = NMIn(x+y), In(y)}
Fn(x) = 72 = \{Fn(x*y), Fn(y)}

For any x,y € X, if any one of x and y does not belong to X, then

Tn(xxy) <ap = \/{TN y)}
In(x*y) > B2 = N\{In(x) }
Fn(x*y) <72 = \/{FN y)}

Ifx,y € Xy, thenx xy € X,. Hence

TN(x*y =N = \/{TN }
In(xxy) =1 = NIn(x) }
Fn(xxy) = \/{FN )}

Therefore Xy is a closed neutrosophic A-ideal of X. [
Proposition 6. Every closed neutrosophic N-ideal X of a BCI-algebra X satisfies the following condition:
(Vx € X) (Tn(0xx) < Tn(x), IN(0*x) > In(x), Fy(0%x) < Fy(x)) (13)

Proof. Straightforward. [

We provide conditions for a neutrosophic N -ideal to be closed.

Theorem 11. Let X be a BCI-algebra. If XN is a neutrosophic N-ideal of X that satisfies the condition of
Equation (13), then Xy is a neutrosophic N -subalgebra and hence is a closed neutrosophic N -ideal of X.

Proof. Note that (x *y) *x < 6y for all x,iy € X. Using Equations (10) and (13), we have

Tn(xxy) < VA{Tn(x), Tn(@*y)} < \/{Tn(x), Tn(y)}
In(xxy) > N{In(x), In0xy)} > A{In(x), In(y)}
Fn(xxy) < \/{Fn(x), En(0xy)} < \/{Fn(x), Fn(y)}

Hence Xy is a neutrosophic A -subalgebra and is therefore a closed neutrosophic N-idealof X. O
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Abstract: The notion of a neutrosophic commutative N -ideal in BCK-algebras is introduced,
and several properties are investigated. Relations between a neutrosophic N -ideal and a neutrosophic
commutative N -ideal are discussed. Characterizations of a neutrosophic commutative N -ideal
are considered.

Keywords: neutrosophic N -structure; neutrosophic N -ideal; neutrosophic commutative N -ideal

1. Introduction

As a generalization of fuzzy sets, Atanassov [1] introduced the degree of nonmembership/
falsehood (f) in 1986 and defined the intuitionistic fuzzy set.

Smarandache proposed the term “neutrosophic” because “neutrosophic” etymologically comes
from “neutrosophy” [French neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] which
means knowledge of neutral thought, and this third/neutral represents the main distinction
between “fuzzy” /“intuitionistic fuzzy” logic/set and “neutrosophic” logic/set, i.e., the included middle
component (Lupasco-Nicolescu’s logic in philosophy), i.e., the neutral/indeterminate/unknown
part (besides the “truth”/“membership” and “falsehood”/“non-membership” components that
both appear in fuzzy logic/set). Smarandache introduced the degree of indeterminacy/neutrality
(i) as an independent component in 1995 (published in 1998) and defined the neutrosophic set on
three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more details, refer to the site http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

Jun et al. [2] introduced a new function which is called negative-valued function, and
constructed A -structures. Khan et al. [3] introduced the notion of neutrosophic N -structure
and applied it to a semigroup. Jun et al. [4] applied the notion of neutrosophic N -structure to
BCK/BClI-algebras. They introduced the notions of a neutrosophic N -subalgebra and a (closed)
neutrosophic N -ideal in a BCK/BCI-algebra, and investigated related properties. They also considered
characterizations of a neutrosophic N -subalgebra and a neutrosophic N -ideal, and discussed relations
between a neutrosophic N -subalgebra and a neutrosophic N -ideal. They provided conditions for
a neutrosophic N -ideal to be a closed neutrosophic A-ideal. BCK-algebras entered into mathematics in
1966 through the work of Imai and Iséki [5], and have been applied to many branches of mathematics,
such as group theory, functional analysis, probability theory and topology. Such algebras generalize
Boolean rings as well as Boolean D-posets (= MV-algebras). Also, Iséki introduced the notion of
a BClI-algebra which is a generalization of a BCK-algebra (see [6]).
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In this paper, we introduce the notion of a neutrosophic commutative N -ideal in BCK-algebras,
and investigate several properties. We consider relations between a neutrosophic N -ideal and

a neutrosophic commutative N -ideal. We discuss characterizations of a neutrosophic commutative
N-ideal.

2. Preliminaries

By a BCl-algebra, we mean a system X := (X, %,0) € K(7) in which the following axioms hold:

0 ((xxy)*(xxz))* (zxy) =0,
() (ex (xxy))*y =0,

I xxx=0,

(IV) xxy=yxx=0= x=y

forall x,y,z € X.If a BCl-algebra X satisfies 0 x x = 0 for all x € X, then we say that X is a BCK-algebra.
We can define a partial ordering < by

(Vx,ye X)(x <y = xxy=0).
In a BCK/BCl-algebra X, the following hold:

(Vx € X) (xx0=x), (1)
(Vx,y,z € X) ((xxy) xz = (x*z) xy). )

A BCK-algebra X is said to be commutative if it satisfies the following equality:
(Vx,y € X) (x* (xxy) =y *(y*x)). ®)
A subset I of a BCK/BClI-algebra X is called an ideal of X if it satisfies

0el, (4)
(Vx,yeX)(xxyelLLyel = xel). (5)

A subset [ of a BCK-algebra X is called a commutative ideal of X if it satisfies (4) and
(Vx,y,ze X)((xxy)xzel,zel = xx(yx(yxx)) €l). (6)
Lemma 1. An ideal I is commutative if and only if the following assertion is valid.
(Vr,yeX)(xxyel = xx(yx(y*xx)) €l). (7)

We refer the reader to the books [7,8] for further information regarding BCK/BCI-algebras.
For any family {a; | i € A} of real numbers, we define
\/{ai i € A} = max{a; |.z e A} ifAis f'mlte,
sup{a; |i € A} otherwise.
. min{a; | i € A} if Ais finite,
i A} =
Nai i€ A} { inf{a; | i € A}  otherwise.
Denote by F (X, [—1,0]) the collection of functions from a set X to [—1, 0]. We say that an element of
F(X,[—1,0]) is a negative-valued function from X to [—1,0] (briefly, N'-function on X). By an N -structure,

we mean an ordered pair (X, f) of X and an N -function f on X (see [2]). A neutrosophic N -structure
over a nonempty universe of discourse X (see [3]) is defined to be the structure
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. X _
Xni= gy = { menesm | * € X ®)

where Ty, Iy and Fy are N-functions on X which are called the negative truth membership function,
the negative indeterminacy membership function and the negative falsity membership function, respectively,
on X.

Note that every neutrosophic N -structure Xy over X satisfies the condition:

(Vx € X) (=3 < Ty(x) + In(x) + En(x) < 0).

3. Neutrosophic Commutative A -Ideals

In what follows, let X denote a BCK-algebra unless otherwise specified.

Definition 1 ([4]). A neutrosophic N -structure Xy over X is called a neutrosophic N -ideal of X if the
following assertion is valid.

Tn(0) < Tn(x) < V{Tn(x*y), Tn(y)}
(Vx,y € X) | In(0) > In(x) > AM{IN(x*y), IN(y) } . 9
En(0) < Fn(x) < V{Fn(x*y), FN(v)}

Definition 2. A neutrosophic N-structure Xy over X is called a neutrosophic commutative N -ideal of X if
the following assertions are valid.

(Vx € X) (Tn(0) < Tn(x), In(0) > In(x), Fn(0) < Fn(x)), (10)
Tn(xx(y* (y*x))) < V{ Tn((x*y) xz), Tn(2) }

(Vxy,ze X) | In(xx(y*(y+x))) > AM{IN((x*y) x2), IN(z)} |- (11)
Fn(x s (y* (y+x))) < V{EN((x*y) *z), Fn(2)}

Example 1. Consider a BCK-algebra X = {0,1,2,3,4} with the Cayley table which is given in Table 1.

usr

Table 1. Cayley table for the binary operation

*

= W nN = o

B wWNRFR, O o
B WUNOO| =
B WorRrOoON
O NRFR Ol W
S WN R~ O

The neutrosophic N -structure

Xn — 0 1 2 3 4
N (—08,-02,—09)’ (—0.3,-09,-05)’ (—0.7,—0.7,—04)” (—0.3,—0.6,—0.7)’ (—0.5,—0.3,—0.1)

over X is a neutrosophic commutative N -ideal of X.
Theorem 1. Every neutrosophic commutative N -ideal is a neutrosophic N -ideal.

Proof. Let Xy be a neutrosophic commutative N -ideal of X. For every x,z € X, we have
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Tn(x) = Tn(x# (0% (0% x))) < \/{Tn((x%0) *z), Tn(2)} = \/{Tn(x %2), Tn(2)},
In(x) = In(x% (0% (0% x))) > /\{IN((x*O) xz),IN(2)} = /\{IN(x*z),IN(Z)},
Fy(x) = Fn(x % (0% (0% x))) < \/{Fn((x%0) *z), Fy(2)} = \/{Fn(x % 2), Fn(2)}

by putting y = 0 in (11) and using (1). Therefore, Xy is a neutrosophic commutative N-ideal of X. [

The converse of Theorem 1 is not true in general as seen in the following example.
Example 2. Consider a BCK-algebra X = {0,1,2,3,4} with the Cayley table which is given in Table 2.

Table 2. Cayley table for the binary operation “*”

*

= W nN = o

B W, oo
B WONOO| M
B Wo R OoON
WO OO O| W
O OO OO

The neutrosophic N -structure

X — 0 1 2 3 4
N (—08,—01,—07)’ (—0.7,—0.6—06)’ (—0.6,—02,—04)” (—0.3,—0.8,—04)’ (—0.3,—0.8,—04)
over X is a neutrosophic N'-ideal of X. But it is not a neutrosophic commutative N -ideal of X since Fy (2 * (3
(3%2)) = Fy(2) = =04 £ —0.7 = V{En((2%3) x0), Fy(0) }.

We consider characterizations of a neutrosophic commutative A -ideal.

Theorem 2. Let Xy be a neutrosophic N -ideal of X. Then, Xy is a neutrosophic commutative N -ideal of X if
and only if the following assertion is valid.

Tn(xx (y* (y*x))) < Tn(x*y),
(Vx,ye X) | In(x*x(y*(y*xx))) > In(xxy), |- (12)
En(x+ (y+ (y+x))) < En(x*y)
Proof. Assume that Xy is a neutrosophic commutative N -ideal of X. The assertion (12) is by taking

z = 0in (11) and using (1) and (10).
Conversely, suppose that a neutrosophic N -ideal Xy of X satisfies the condition (12). Then,

Tn(xxy) < V{Tn((x xy) *2), Tn(2)}
(Ve ye X) | In(xxy) 2 MIn((x*y) *2), In(2)} |- (13)
Fn(xxy) < V{En((x*y) *2), En(2)}

It follows that the condition (11) is induced by (12) and (13). Therefore, Xy is a neutrosophic
commutative N -ideal of X. [

Lemma 2 ([4]). For any neutrosophic N -ideal Xn of X, we have

Tn(x) < V{Tn(y), Tn(2)}
(Vxy,zeX) [ xxy=z =< In(x) > AN{In(), In(2)} - (14)
Fn(x) < V{Fn(y), En(2)}
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Theorem 3. In a commutative BCK-algebra, every neutrosophic N -ideal is a neutrosophic commutative
N-ideal.

Proof. Let XN be a neutrosophic N -ideal of a commutative BCK-algebra X. For any x,y,z € X,
we have

((rx(y* (yxx)))* ((xxy) x2)) * 2
= ((ex (yx (y*x))) 2) % ((x x y) *2)
S (ax(yx(yxx)) o« (xxy)

= (xx (xxy)) *x (y* (y*x)) =0,

thatis, (x * (y* (¥ *x))) * ((x *y) * z) =< z. It follows from Lemma 2 that

Tn(x# (y = (y+x))) < V{Tn((x*y) *2), Tn(2)},
In(xx (y* (y*x)) > A{In((x+y) *2), In(2)},
En(x (y+ (y+x))) < V{En((xxy) +2), En(2)}.

Therefore, Xy is a neutrosophic commutative NV-ideal of X. [

Let Xn be a neutrosophic A -structure over X and let &, B,y € [—1,0] be such that -3 < a + B +
v < 0. Consider the following sets.

Ty = {x € X | Tn(x) < a},
F = {xeX|Iykx) > B},
Fy:={x e X | Fy(x) <7}

The set
XN(w B, y) = {x € X[ Tn(x) < In(x) = B, Fn(x) < 7}
is called the («, B, v)-level set of Xn. It is clear that
Xn(&, B,y) = TE N IE N FYL

Theorem 4. If Xy is a neutrosophic N -ideal of X, then Ty, Ifj and F}, are commutative ideals of X for all
a, B,y € [—1,0] with =3 < a + B+ v < 0 whenever they are nonempty.

We call Ty, I f] and Fg, level commutative ideals of Xy.

Proof. Assume that Ty, If] and FI?I are nonempty for all o, B, 7 € [—1,0] with =3 < a+ B+ < 0.
Then, x € T}, y € II% and z € F}, for some x,y,z € X. Thus, Ty(0) < Tn(x) < a, IN(0) > IN(y) > B,
and Fy(0) < Fy(z) < v, thatis, 0 € Ty N Ifj NFY. Let (x*y)xz € T% and z € TY. Then,
Tn((x*y) *z) < aand Ty(z) < a, which imply that

Tn(x# (y=(y*x)) < V{Tn((x*y) *2), Tn(2)} <,

thatis, x x (y x (y xx)) € T If (axb) xc € Iﬁ, and c € If,, then Iny((axb) xc) > B and In(c) > B.
Thus

In(ax(bx(bxc))) > /\{IN((a xb)xc), In(c)} > B,
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and so ax (b (bxc)) € II’%,. Finally, suppose that (uxv)*w € F} and w € F). Then,
Fy((uv)*xw) < yand Fy(w) < «. Thus,

Fy(ux(vx(vsxw))) < \/{FN((u xv)xw), Fn(w)} <7,
thatis, u * (v* (v*w)) € Fy. Therefore, T§, Iﬁj and FII\Y] are commutative ideals of X. [

Corollary 1. Let XN be a neutrosophic N-structure over X and let o, B,y € [—1,0] be such that
=3 <a+pB+v <0.If XN is a neutrosophic commutative N -ideal of X, then the nonempty (a, B, y)-level
set of XN is a commutative ideal of X.

Proof. Straightforward. 0O

Lemma 3 ([4]). Let XN be a neutrosophic N -structure over X and assume that T%,, Ifj and FI'\V] are ideals of X
foralla, B,y € [—1,0] with =3 < a + B+ v < 0. Then Xy is a neutrosophic N -ideal of X.

Theorem 5. Let X be a neutrosophic N-structure over X and assume that TY,, If, and FX] are commutative
ideals of X for all «, B,y € [—1,0] with =3 < a4+ B+ < 0. Then, XN is a neutrosophic commutative
N-ideal of X.

Proof. If T, I f, and FIZ, are commutative ideals of X, then they are ideals of X. Hence, Xy is a

neutrosophic A-ideal of X by Lemma 3. Let x,y € X and a, B,y € [-1,0] with -3 < a+ B+ <0

such that Ty(x xy) = «, In(x xy) = Band Fy(x*y) = 7. Then, xxy € Ty N If, N Fy. Since

TN II’%] N FY is a commutative ideal of X, it follows from Lemma 1 that x * (y * (y * x)) € T N Iﬁ] NEY.
Hence

Tn(xx (y* (y*x))) <a=Tn(x*y),
In(xx (y* (y*x))) > p= In(xxy),
En(xx (v (yx))) < v = En(xxy).

Therefore, Xy is a neutrosophic commutative N-ideal of X by Theorem 2. [

Theorem 6. Let f : X — X be an injective mapping. Given a neutrosophic N -structure Xy over X,
the following are equivalent.

(1)  Xn is a neutrosophic commutative N -ideal of X, satisfying the following condition.
TN(f(X)) = TN( )

(VxeX) | IN(f(x)) = In(x) |- (15)
En(f(x)) = Fn(x)

@ T If] and Fy; are commutative ideals of X, satisfying the following condition.
F(TR) = TR FUR) = % f(RY) = (16)

Proof. Let Xy be a neutrosophic commutative N -ideal of X, satisfying the condition (15). Then, T%,,
Iﬁ, and Fy are commutative ideals of Xy by Theorem 4. Let « € Im(Ty), B € Im(Iy), v € Im(Fy) and
x € T{N Ifj N F. Then Ty (f(x)) = Tn(x) < o, IN(f(x )) In(x) > Band Fy(f(x)) = Fy(x) < 7.
Thus, f(x) € TN 11/31 N F, which shows that f(T%) C T f(I’S) - 1’5 and f(FY) C F. Lety € X
be such that f(y) = x. Then, Ty(y) = Tn(f(y)) = Tn (X) < a IN(y) = In(f(y)) = In(x) = B
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and Fy(y) = Fn(f(y)) = En(x) < v, which imply that y € TN Iﬁ, NF). Thus, x = f(y) €
F(TR) ﬁf(Iﬁ,) N f(FY), and so T% C f(T%), Ifj C f(IZ/f,) and F{; C f(FY)). Therefore (16) is valid.
Conversely, assume that Ty, I I/f, and F;(] are commutative ideals of X, satisfying the condition (16).

Then, Xy is a neutrosophic commutative N -ideal of X by Theorem 5. Let x,y,z € X be such that
Tn(x) = &, IN(y) = B and Fy(z) = 7. Note that

Tn(x) = < x € Ty and x ¢ Ty foralla > &,

IN(y) =B <=y e andy ¢ If forall < §,
Fy(z) =7 <=z € Fjandz ¢ F forall ¢ > 4.

and Fy(f(z)) < 7. Let& = Tn(f(x)), B = In(f(y)) and 7 = Fy(f(2)). If « > & then f(x) € T},
f (T%), and thus x € T%, since f is one to one. This is a contradiction. Hence, T (f(x)) = & = T (

If B < B, then f(y) € II3 =f (I p ) which implies from the injectivity of f thaty € i3 , a contradiction.
Hence, IN(f(x)) = B = In(x). If ¥ > 4, then f(z) € FITI =f (F;’]) Since f is one to one, we have
z € F;’] which is a contradiction. Thus, Fy(f(x)) = v = Fx(x). This completes the proof. [

It follows from (16) that f(x) € T, f(y) € If, and f(z) € F,. Hence, Ty (f(x)) < &, IN(f(y)) > B
(@)

For any elements w;, w;, w f € X, we consider sets:

XN i={x e X | Ty(x) < Tn(wy)},
Xy = {x € X | In(x) > In(w;)},

w
Xy = {x € X | Fy(x) < FN(wf)}.
Obviously, w; € Xy, w; € Xy and wy € X;f.

Lemma 4 ([4]). Let w;, w; and wy be any elements of X. If X is a neutrosophic N'-ideal of X, then Xy,
X and Xy are ideals of X.

Theorem 7. Let wt, w; and wy be any elements of X. If X is a neutrosophic commutative N-ideal of X,
then Xﬁf , Xﬁ" and X;f are commutative ideals of X.

Proof. If Xy is a neutrosophic commutative N -ideal of X, then it is a neutrosophic N -ideal of X and
SO Xﬁ’, X(I(I”' and X;;f are ideals of X by Lemma 4. Let x x y € Xﬁt N X;J{ N ng for any x,y € X. Then,
Tn(x*y) < Tn(wi), IN(x*y) > Tn(w;) and Fy(x xy) < Fy(wy). It follows from Theorem 2 that

Tn(x*y) < Tn(wr),
In(x*y) > In(wi),
Fn(x*y) < Fy(wy).

Tn(xx (y* (y*x))) <
In(xx (y* (y +x))) =
Ey(xcx (y  (y x %)) <

Hence, x * (y x (y *x)) € X§' N Xp' N X;f , and therefore Xy, Xy and X;f are commutative
ideals of X by Lemma 1. [

Theorem 8. Any commutative ideal of X can be realized as level commutative ideals of some neutrosophic
commutative N-ideal of X.

Proof. Let A be a commutative ideal of X and let Xy be a neutrosophic A -structure over X in which
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o if x €A,

Ty : X -1
N = [-1,0], x'_){ 0 otherwise,

B ifxeA,
Iy : X -1
N = [F1L0) x> { —1 otherwise,

v if x € A,

Fy: X — |—1,0], x+— .
N [ box { 0 otherwise

where «,7 € [—1,0) and B € (—1,0]. Division into the following cases will verify that Xy is
a neutrosophic commutative A-ideal of X.
If (xxy)*z€ Aandz € A, then x * (y * (y *x) € A. Thus,

Ty((x#y) #2) = T(z) = T (x5
IN((x*y) *z) = In(z) = In(x* (y

and so (11) is clearly verified.
If (xxy)*xz¢ Aandz ¢ A, then Ty((x xy) xz) = Tn(z) =0, IN((x *xy) xz) = IN(z) = —1 and
Fx((x *y) *z) = Fx(z) = 0. Hence

Tn(x* (y= (y+x))) < V{Tn((x*y) *2), Tn(2)},
In(xx (y+ (y+x)) = N{In((x+y) *2), In(2)},
En(xx (y+ (y+x))) < V{En((x+y) *2), En(2)}-

If (xxy)xz€ Aandz ¢ A, then Ty((xxy) xz) =a, Tn(z) =0, IN((x xy) x2z) = B, In(z) = —1,
Fn((xxy) *z) = v and Fy(z) = 0. Therefore,

Tn(x# (yx (y+x))) < V{Tn((x*y) *2), Tn(2)},
In(xx (y+ (y+2)) = A{In((x+y) *2), In(2)},
En(x (y* (y+))) < V{En((x+y) *2), En(2)}.

Similarly, if (x xy) xz ¢ A and z € A, then (11) is verified. Therefore, X yis a neutrosophic
commutative A-ideal of X. Obviously, T§, = A, Iﬁ] = Aand FJ; = A. This completes the proof. [

4. Conclusions

In order to deal with the negative meaning of information, Jun et al. [2] have introduced a
new function which is called negative-valued function, and constructed N\ -structures. The concept
of neutrosophic set (NS) has been developed by Smarandache in [9,10] as a more general platform
which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued
intuitionistic fuzzy set. In this article, we have introduced the notion of a neutrosophic commutative
N-ideal in BCK-algebras, and investigated several properties. We have considered relations between
a neutrosophic N -ideal and a neutrosophic commutative N -ideal. We have discussed characterizations
of a neutrosophic commutative N\ -ideal.
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Compact Open Topology and Evaluation Map
via Neutrosophic Sets

R. Dhavaseelan, S. Jafari, F. Smarandache

R. Dhavaseelan, Saeid Jafari, Florentin Smarandache (2017). Compact Open Topology
and Evaluation Map via Neutrosophic Sets. Neutrosophic Sets and Systems 16, 35-38

Abstract: The concept of neutrosophic locally compact and neutrosophic compact open topology are introduced and

some interesting propositions are discussed.

Keywords: neutrosophic locally Compact Hausdorff space; neutrosophic product topology; neutrosophic compact open
topology; neutrosophic homeomorphism; neutrosophic evaluation map; Exponential map.

1 Introduction and Preliminaries

In 1965, Zadeh [19] introduced the useful notion of a fuzzy set
and Chang [6] three years later offered the notion of fuzzy topo-
logical space. Since then, several authors have generalized nu-
merous concepts of general topology to the fuzzy setting. The
concept of intuitionistic fuzzy set was introduced and studied
by Atanassov [1] and subsequently some important research pa-
pers published by him and his colleagues [2,3,4]. The concept
of fuzzy compact open topology was introduced by S.Dang and
A . Behera[9]. The concepts of intuitionistic evaluation maps by
R.Dhavaseelan et al[9]. After the introduction of the concepts
of neutrosophy and neutrosophic set by F. Smarandache [[11],
[12]], the concepts of neutrosophic crisp set and neutrosophic
crisp topological spaces were introduced by A. A. Salama and S.
A. Alblowi[10].

In this paper the notion of neutrosophic compact open topol-
ogy is introduced. Some interesting properties are discussed.
Moreover, neutrosophic local compactness and neutrosophic
product topology are developed. We have also utilized the no-
tion of fuzzy locally compactness due to Wong[17], Christoph
[8] and fuzzy product topology due to Wong [18].

Throughout this paper neutrosophic topological spaces
(X,T7),(Y,S) and (Z, R) will be replaced by X,Y and Z respec-
tively.

Definition 1.1. Let T,I,F be real standard or non standard subsets
of |07, 1F[, with supr = tsup, infr = tins

Supr = isup>in I = Zznf

SUpp = fsupa anF = finf

n—sup = tsup + Z.sup + fsup

n—inf = ting+iins+ finy . TLF are neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =

{(z, 14 (@), 0,(2),7,(2)) = @ € X}, where p, (2),0,(x)
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and 7, () which represent the degree of membership function
(namely p, (x)), the degree of indeterminacy (namely o, (z))
and the degree of nonmembership (namely ~, (z)) respectively
of each element x € X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{z,p,(x),0,(x),7,(x)) x € X} can be identi-
fied to an ordered triple (u,,o0,,v,) in ]J0~,17[ on
X.

(2) For the sake of simplicity, we shall use the symbol
A = {u,,0,,7v,) for the neutrosophic set A =

{(z, 14 (2), 0, (2), 7, (2)) : w € X}
We introduce the neutrosophic sets 0, and 1, in X as follows:

Definition 1.3. 0, =
{{z,1,1,0) : z € X}.

{{(£,0,0,1) : € X} and 1, =

Definition 1.4. [8] A neutrosophic topology (NT) on a nonempty
set X consists of a family 7" of neutrosophic sets in X which
satisfies the following:

(i 0,,1, €T,
(i) G1 NGy € T forany G1,G2 € T,
(ili) UG; € T for arbitrary family {G; | i € A} C T.

In this case the ordered pair (X, T) or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of aNOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 1.5. [8] Let A be a neutrosophic subset of a neutro-
sophic topological space X. The neutrosophic interior and neu-
trosophic closure of A are denoted and defined by

Nint(A) = |J{G | G is a neutrosophic open set in X and
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G C A}
Ncl(A) = N{G | G is a neutrosophic closed set in X and
G D A}

2 Neutrosophic Locally Compact and
Neutrosophic Compact Open Topology

Definition 2 .1.Let X bea nonemptysetandz € X a fixed
element in X. If r;t € Iy = (0,1] and s € I; = [0,1) are
fixed real numbers such that 0 < r + ¢ + s < 3, then z,.; s = (z,
r, t, s) is called a neutrosophic point (in short NP) in X, where r
denotes the degree of membership of z, ; 5, ¢ denotes the degree
of indeterminacy and s denotes the degree of nonmembership of
Zrt,s and x € X the support of , ; .

The neutrosophic point x,.; ¢ is contained in the neutrosophic
A(zry s € A)ifand only if r < pa(x),t < oa(x),s > va(z).

Definition 2.2. A neutrosophic set A = (x,u,,0,,7,) in a
neutrosophic topological space (X,T') is said to be a neutro-
sophic neighbourhood of a neotrosophic point z,; s, € X, if
there exists a neutrosophic open set B = (z, fi,,0,,7,) With
x'r',t,s g B g A

Definition 2.3. Let X and Y be neutrosophic topological
spaces.A mapping f : X — Y is said to be a neutrosophic
homeomorphism if f is bijective, neutrosophic continuous and
neutrosophic open.

Definition 2.4. An neutrosophic topological space (X,T) is
called a neutrosophic Hausdorff space or Ts-space if for any
pair of distinct neutrosophic points(i.e., neutrosophic points with
distinct supports) Ty ;s and Y, . ., there exist neutrosophic open
sets U and V such that ;s € U,yypvw € VandU AV =0

Definition 2.5. An neutrosophic topological space (X, T) is said
to be neutrosophic locally compact if and only if for every neu-
trosophic point x,; s in X, there exists a neutrosophic open set
U € T such that x,; s € U and U is neutrosophic compact,i.e.,
each neutrosophic open cover of U has a finite subcover.

Definition 2.6. Let A = (z,pa(x),04(x),v4(x)) and
B = (y,us(v),o8(y),v8(y)) be neutrosophic sets of X and' Y
respectively.The product of two neutrosophic sets A and B in a
neutrosophic topological space X is defined as
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Definition 2.8. A mapping f : X — Y is neutrosophic continu-
ous iff for each neutrosophic point z,; s in X and each neutro-
sophic neighbourhood B of f (x4 ) in Y, there is a neutrosophic
neighbourhood A of z,; s in X such that f(A) C B.

Definition 2.9. A mapping f : X — Y is said to be neutrosophic
homeomorphism if f is bijective ,neutrosophic continuous and
neutrosophic open.

Definition 2.10. A neutrosophic topological space X is called
a neutrosophic Hausdorff space or Ty space if for any distinct
neutrosophic points T,y s and Yy . w.there exists neutrosophic
open sets G and G, such that x4 s € G1,Yy,v,w € Go and
Gi1 NGy =0.

Definition 2.11. A neutrosophic topological space X is said to
be a neutrosophic locally compact iff for any neutrosophic point
Tp 1,5 in X, there exists a neutrosophic open set U € T such that
Zrt,s € U and U is neutrosophic compact that is, each neutro-
sophic open cover of U has a finite subcover.

Proposition 2.1. In a neutrosophic Hausdorff topological space
X, the following conditions are equivalent.

(a) X is a neutrosophic locally compact

(b) for each neutrosophic point z,.; s in X, there exists a neu-
trosophic open set G in X such that z,; s € G and Ncl(G)
is neutrosophic compact

Proof. (a) = (b) By hypothesis for each neutrosophic point
Zr+,s in X, there exists a neutrosophic open set G' which is neu-
trosophic compact.Since X is neutrosophic Hausdorff (neutro-
sophic compact subspace of neutrosophic Hausdorff space is neu-
trosophic closed), G is neutrosophic closed, thus G = Ncl(G).
Hence 2, s € G and Ncl(G) is neutrosophic compact.

(b) = (a) Proof is simple. O

Proposition 2.2. Let X be a neutrosophic Hausdorff topological
space.Then X is neutrosophic locally compact at a neutrosophic
point z, ; s in X iff for every neutrosophic open set G containing
Zr 1,5 there exists a neutrosophic open set V' such that z,.; s € V,
Ncl(V) is neutrosophic compact and Ncl(V) C G.

Proof. Suppose that X is neutrosophic locally compact at a
neutrosophic point x,:s. By Definition 2.11, there exists
a neutrosophic open set G such that z,;, € G and G is
neutrosophic compact. Since X is a neutrosophic Hausdorff
space,(neutrosophic compact subspace of neutrosophic Haus-
dorff space is neutrosophic closed), G is neutrosophic closed.

(AxB)(x,y) = ((x,y), min(ua(z), us(y)), min(oca(x),op(y))Thus G = Ncl(G). Consider a neutrosophic point z,; s € G.

max(ya(x),vs(y))) forall (z,y) € X X Y.

Definition 2.7. Let f1 : X1 — Yy and fo : Xo — Yo. The
product fi X fo : Xy x Xo — Y] X Y3 is defined by: (f1 X
f2)(x1,m2) = (f1(21), fo(22)) V(71,22) € X1 X Xo.

Lemma 2.1. Let f; : X; — Y; (i = 1,2) be functions and
U, V are neutrosophic sets of Y1, Ya, respectively, then (f1 X
f) U xV)=f7HU)x f{(V)VU xV €Yy x Yy

Since X is neutrosophic Hausdorff space, by Definition 2.10,
there exist neutrosophic open sets C' and D such that z,.; s € C,
Yupw € Dand CND = 0.. Let V = C N G. Hence
V C G implies Ncl(V) C Ncl(G) = G. Since Ncl(V) is
neutrosophic closed and G is neutrosophic compact, (every neu-
trosophic closed subset of a neutrosophic compact space is neu-
trosophic compact) it follows that N¢l(V') is neutrosophic com-
pact. Thus z,; s € Ncl(V) C G and Ncl(G) is neutrosophic
compact.
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The converse follows from Proposition 2.1(b). O

Definition 2.12. Let X and Y be two neutrosophic topological
spaces.The function T : X x Y — Y x X defined by T'(z,y) =
(y, x) for each (x,y) € X x Y is called a switching map.

Proposition 2.3. The switchingmap7 : X xY — Y x X
defined as above is neutrosophic continuous.

We now introduce the concept of a neutrosophic compact open
topology in the set of all neutrosophic continuous functions from
a neutrosophic topological space X to a neutrosophic topological
space Y.

Definition 2.13. Let X and Y be two neutrosophic topological
spaces and let YX = {f : X — Y such that f is neutrosophic
continuous}. We give this class Y a topology called the neutro-
sophic compact open topology as follows: Let K = {K € I :
K is neutrosophic compact on X} and V = {V € IY : V
is neutrosophic open in Y }.For any K € K and V. € V,let
SK,V ={fe€ v f(K) SV}

The collection of all such {S,. ,, : K € K,V € V} is a neutro-
sophic subbase to generate a neutrosophic topology on the class
YX. The class YX with this topology is called a neutrosophic
compact open topological space.

3 Neutrosophic Evaluation Map and Ex-
ponential Map

We now consider the neutrosophic product topological space
Y X x X and define a neutrosophic continuous map from Y X x X
into Y.

Definition 3.1. The mapping e : YX x X — Y defined by
e(fyxris) = f(xr1,s) for each neutrosophic point x,; s € X
and f € YX is called the neutrosophic evaluation map.

Definition 3.2. Let X,Y,Z be neutrosophic topological spaces
and f : Z x X — Y be any function. Then the induced map
[:X = Y7 is defined by (f(xT,t,S))(Zt,u,’U) = f(zt,u,v;xr,t,s)
for neutrosophic point x,; ; € X and 244, € Z.

Conversely, given a function f : X — Y?, a corresponding
function f can also be defined by the same rule.

Proposition 3.1. Let X be a neutrosophic locally compact Haus-
dorff space. Then the neutrosophic evaluation map e : Y X x
X — Y is neutrosophic continuous.

Proof. Consider (f,z,;s) € Y* x X,where f € Y and
zrts € X.Let V be a neutrosophic open set containing
fzres) = e(f,zr1s) in Y. Since X is neutrosophic lo-
cally compact and f is neutrosophic continuous, by Proposi-
tion 2.2, there exists a neutrosophic open set U in X such that
Zrt.s € Ncl(U) is neutrosophic compact and f(Ncl(U)) C V.

Consider the neutrosophic open set .S xUinYX x X.
Clearly (f,zyts) €S x U

Nel(U),V

Nel(U),V

xU.Let (g,x¢n) €S

Ncl(U),V
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be arbitrary. Thus g(Ncl(U)) C V. Since x4, € U,we have
9(w¢w) € Vand e(g,7¢u) = g(z,u) € V.Thus e(Sy, v X
U) C V .Hence e is neutrosophic continuous. O

Proposition 3.2. Let X and Y be two neutrosophic topological
spaces with Y being neutrosophic compact. Let z,; , be any
neutrosophic point in X and N be a neutrosophic open set in the
neutrosophic product space X x Y containing {z, s} x Y. Then
there exists some neutrosophic neighbourhood W of z,; s in X
such that {z, , s} xY CW xY C N.

Proposition 3.3. Let Z be a neutrosophic locally compact
Hausdorff space and X, Y be arbitrary neutrosophic topological
spaces. Then amap f : Z x X — Y is neutrosophic continuous
iff f: X — Y7 is neutrosophic continuous,where fis defined

~

by the rule (f(‘rr,t,s))(zt,u,v) = f(zt,u,'m xr,t,s)'

Proposition 3.4. Let X and Z be a neutrosophic locally compact
Hausdorff spaces. Then for any neutrosophic topological space
Y the function E: Y~ — (YZ)X defined by E(f) = f(that
is E(f)(@r,t,s)(Ztaw) = (2o @res) = (f(@rs) (Zou0)

forall f: Z x X — Y is a neutrosophic homeomorphism.
Proof. (a) Clearly E is onto.

(b) For FE to be injective, let E(f) = E(g) for f,g: Z x X —
Y. Thus f = g, where f and § are the induced map of f and
g, respectively. Now for any neutrosophic point z,; ; in X
and any neutrosophic point z; ., in Z, f(2tuu, Trts) =

(f(zr,t,s)(zt,u,v)) = (E(Ir,t,s)(zt,u,v)) = g(zt,u,vyxr,t,s)-
Thus f = g.

(c) For proving the neutrosophic continuity of E, consider any
neutrosophic subbasis neighbourhood V' of fin (YZ )X, ie
V' is of the form S, ,, where K is a neutrosophic compact
subset of X and W is neutrosophic open in Y'#. Without
loss of generality, we may assume that W = S, ,, where
L is a neutrosophic compact subset of Z and U is a neu-
trosophic open set in Y. Then f(K) C S, = W and this
implies that f(K )(L) C U. Thus for any neutrosophic point
Zr¢,s in K and for every neutrosophic point z; 4, ,, in L, we
have (f(@r15))(2tu0) € U, thatis f(ziuv, Tris) € U
and therefore f(L x K) C U. Now since L is a neutro-
sophic compact in Z and K is a neutrosophic compact in
X, L x K is also a neutrosophic compact in Z x X[7] and
since U is a neutrosophic open set in Y, we conclude that
fes, kv C Y7 We assert that E(S, xu) S Skw-
Let g € S, be arbitrary. Thus g(L x K) C U,
i.e g(zt,u,vaxr,t,s) = (./g\(xr,t,s»(zt,u,v) € U for all neu-
trosophic points z;,., € L C Z and for every neutro-
sophic point z,; s € L C X. So (g(zr5))(L) C U
for every neutrosophic point z,;, € K C X , that is
(9(2r,s)) € S,, = W for every neutrosophic points
rrps € K C X, thatis g(z,.) € S, , = W for ev-
ery neutrosophic point z,; , € K C U. Hence we have
g(K) C W, thatisg = E(g) € Sy, forany g € S

LXK,U"*
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Thus E(S,, ;) € Sy This proves that E is a neutro-
sophic continuous.

For proving the neutrosophic continuity of E~!,we con-
sider the following neutrosophic evaluation maps: e;
(YZ)X x X — Y7 defined by e1(f,7,45) =

(d

f(xr,t,s)
where f € (Y% )X and z,.; s is any neutrosophic point in X
and ey : YZ x Z — Y defined by €2(g, zt.u,0) = 9(2t,u.0)s
where g € YZ and Z¢ u,v 1 @ neutrosophic pointin Z. Let
denote the composition of the following neutrosophic con-
tinuous functions ¥ : (Z x X) x (YZ)* L (v2)" x (Z x
X) 2 (v x (X x2) S (Y2)" x X)) x 2 222,
(Y? )X Z 22, Y, where 7, i denote the neutrosophic iden-
tity maps on (YZ )X and Z, respectively and T, ¢ denote
the switching maps. Thus : (Z x X) x (YZ)X —
Y, thatis € Y(ZXX)X(YZ)X We consider the map
~ 7. X 7. X

B Y@xXOx(T) 0 (y(@xX) (Y7 (a5 defined in the
statement of the Proposition 3.4 in fact it is E). So E(1)) :
(YZ)" — Y(ZxX)_ Now for any neutrosophic points
Ztuw € Zyxrps € X and f € Y (ZxX) " again we have

that (E(/w) o E)(f)(zt,u,'m xr,t,s) = f(zt,u,'m xr,t,s);hence
E(z/}) o E=identity. Similarly for any g € (YZ)X and neu-
trosophic points ;s € X, 24,0 € Z, SO we have that
(B O~E(¢))(§)(xr,t757 Ztuw) = (G(@rt,s))(2t,u,0)shence
E o E(y)=identity. Thus F is a neutrosophic homeomor-
phism.

O

Definition 3.3. The map E in Proposition 3.4 is called the expo-
nential map.

As easy consequence of Proposition 3.4 is as follows.

Proposition 3.5. Let XY, Z be neutrosophic locally compact
Hausdorff spaces. Then the map N : YX x Z¥ — Z¥X defined
by N(f,g) = g o f is neutrosophic continuous.

Proof. Consider the following compositions: X x YX x ¥ 1,
VXX ZY x X 255 7Y Yy X x X S 2 x (VX x X) 22
ZY xY 25 Z, where T,t denote the switching maps, ix,i
denote the neutrosophic identity functions on X and ZY, re-
spectively and e, denotes the neutrosophic evaluation maps. Let
@ =eg0 (i Xeg)o (txix)oT. By proposition 3.4, we have
an exponential map E : ZX*Y xZ" _, (ZX)YXXZY. Since
p € 2V Bp) e (257 Let N = E(yp)
thatis, N : YX x Z2¥ — ZX is neutrosophic continuous. For
f € YX g € ZY and for any neutrosophic point z,.; s € X,it
easy to see that N(f, g)(zrt.s) = g(f(zr1s))- O
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On Neutrosophic Semi-Supra Open Set and Neutrosophic
Semi-Supra Continuous Functions
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Abstract: In this paper, we introduce and investigate a new class
of sets and functions between topological space called neutrosophic

semi-supra open set and neutrosophic semi-supra open continuous
functions respectively.

Keywords: Supra topological spaces; neutrosophic supra-topological spaces; neutrosophic semi-supra open set.

1 Introduction and Preliminaries

Intuitionistic fuzzy set is defined by Atanassov [2] as a general-
ization of the concept of fuzzy set given by Zadesh [14]. Using
the notation of intuitionistic fuzzy sets, Coker [3] introduced the
notion of an intuitionistic fuzzy topological space. The supra
topological spaces and studied s-continuous functions and s*-
continuous functions were introduced by A. S. Mashhour [6] in
1993. In 1987, M. E. Abd El-Monsef et al. [1] introduced the
fuzzy supra topological spaces and studied fuzzy supra contin-
uous functions and obtained some properties and characteriza-
tions. In 1996, Keun Min [13] introduced fuzzy s-continuous,
fuzzy s-open and fuzzy s-closed maps and established a num-
ber of characterizations. In 2008, R. Devi et al. [4] introduced
the concept of supra a-open set, and in 1983, A. S. Mashhour
et al. introduced the notion of supra-semi open set, supra semi-
continuous functions and studied some of the basic properties for
this class of functions. In 1999, Necla Turan [11] introduced the
concept of intuitionistic fuzzy supra topological space. The con-
cept of intuitionistic fuzzy semi-supra open set was introduced
by Parimala and Indirani [7]. After the introduction of the con-
cepts of neutrosophy and a neutrosophic se by F. Smarandache
[[9], [10]], A. A. Salama and S. A. Alblowi[8] introduced the
concepts of neutrosophic crisp set and neutrosophic topological
spaces.

The purpose of this paper is to introduce and investigate a new
class of sets and functions between topological space called neu-
trosophic semi-supra open set and neutrosophic semi-supra open
continuous functions, respectively.

Definition 1.1. Let T, I, I be real standard or non standard sub-
sets of |07, 17, with supr = tsup, infr = tins

supr = Z‘supv an[ = Zznf

SUpp = fsup7 anF = fznf

170

n — sup = tsup + isup + fsup
n—inf =ting +iins + finy . T I, F are neutrosophic compo-
nents.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =
{2, pa (@), 0, (2),7,(2)) = @ € X}, where p,(2),0,(x)
and v, (x) represent the degree of membership function (namely
i 4, (x)), the degree of indeterminacy (namely o, (x)) and the de-
gree of nonmembership (namely ~y, (x)) respectively of each el-
ement x € X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{{z, 1, (x),0,(x), 7, (2)) x € X} can be identi-
fied to an ordered triple (u,,o0,,v,) in J0~,17[ on
X.

(2) For the sake of simplicity, we shall use the symbol
A = {u,,0,,7,) for the neutrosophic set A =

{2, 1 (@), 0,4 (2),7, (@) 2 € X

Definition 1.3. Let X be a nonempty set and the neutrosophic
sets A and B in the form

A = {(z,p,(@),0,(),7,(@) : =
{z,p,(x),0,(x),v5(x)) : x € X}. Then

@) AC Biff p,(x) < py(x), 0,(x) < 0,(x) and v, (2)
v, (z) forall z € X;

€ X} B

Y

(b) A= Biff AC Band B C A;

© A= {<x’fYA(I’)7o-A(‘T)7:u“A(I’)>
of A]

: ¢ € X}; [Complement

@ AN B = {(z, 1, (2) A py(2),0,(2) Aoy (@),7,(2) v
Vp(2)) v € X}
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() AUB = {{x,p,(x) V py(2),0,() Vo, (x),7,(x) A
V5 (x)) 1z € X}

O [1A={z,p,(z),0,(x),1l —p,(z)):x € X};
(2) <>A = {<LE,1 7FYA(‘I)7UA(I)’7A(I)> HES X}

Definition 1.4. Let {A4; :
trosophic sets in X. Then

(@) ﬂAZ = {<‘T7 /\:U‘Ai (CE), /\UAi (93), \/’YAi (iE)) HEUES X};
(b) UAZ = {<£€, \/:U'Ai (.TC), \/O—Ai (iL’), /\’YAi (Z)) HEES X}

Since our main purpose is to construct the tools for developing
neutrosophic topological spaces, we must introduce the neutro-
sophic sets 0, and 1, in X as follows:

i € J} be an arbitrary family of neu-

Definition 1.5. 0, =
{{z,1,1,0) : z € X }.

{<£L’,0,0,1> NS X} and ]_N =

Definition 1.6. [5] A neutrosophic topology (NT) on a nonempty
set X is a family 7" of neutrosophic sets in X satisfying the fol-
lowing axioms:

(1) 04,1y
(i1) G1 NGy eT for any Gl, GoeT,

eT,

(iii) UG; € T for arbitrary family {G; |i € A} C T.

In this case the ordered pair (X, T') or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of aNOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 1.7. [5] Let A be a neutrosophic set in a neutrosophic
topological space X. Then

Nint(A) = U{G | G is a neutrosophic open set in X and
G C A} is called the neutrosophic interior of 4;

Ncl(A) = ({G | G is a neutrosophic closed set in X and
G D A} is called the neutrosophic closure of A.

Definition 1.8. Let X be a nonempty set. If r, ¢, s be real stan-
dard or non standard subsets of J0~, 17|, then the neutrosophic
set x,.; s is called a neutrosophic point(in short NP )in X given

by
(
xr,t@‘(xp) = {(

for z, € X is called the support of ;. ; ,, where r denotes the de-
gree of membership value ,¢ denotes the degree of indeterminacy
and s is the degree of non-membership value of z, ; s.

r? t? S)’
0,0,1),

ifx=ux,
ifx # x,

Now we shall define the image and preimage of neutrosophic
sets. Let X and Y be two nonempty sets and f : X — Y be a
function.

Definition 1.9. [5]
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@ If B = {4,115 (¥),05 ()75 (y)) : y € Y} is a neutro-
sophic set in Y, then the preimage of B under f, denoted by

f~1(B), is the neutrosophic set in X defined by

FHB) = {(@ fH ) (@), £ (o) (@), f7H () (@)
x e X}

) If A = {(x,pn,(x),0,(x),7,(x)) : € X} is a neutro-
sophic set in X, then the image of A under f, denoted by
f(A), is the neutrosophic set in Y defined by

FA) = {{y, Fp) W), Flo) (), (1 = fF(L =7,))(y)) :
y € Y}. where

_ SU'pwEf—l(l)MAO;)’ iff_l(y) #0,
Fua)ly) = {O, ’ otherwise,

_ ) SUPgeg-1( )UA(‘T)7 jff_l(y) 7é (2)7
fe)w) = {0, ’ otherwise,

infyep1(y)va(2), if fty) #0,
1, otherwise,

(I=fA=7))w) = {

For the sake of simplicity, let us use the symbol f_(v,) for
1- f(l - FYA)'

Corollary 1.1. [5] Let A, A;(i € J) be neutrosophic sets in

X, B, B;(i € K) be neutrosophic setsinY and f : X - Y a
function. Then

(a) A1 C Ay = f(A1) C f(A2),

(b) By C By = f~1(By) C f~1(Ba),

() AC f1(f(A)) { If fis injective,then A = f~1(f(A)) },
(d) f(f~X(B)) C B {Iffis surjective,then f(f~1(B)) = B},
@ fHUB) =Uf(8By),

® f7HNBy) =NF1(B)).

(@ f(U4)=U/[(4),

) f(NA4:) € Nf(A4;) { If f is injective,then f((A4;) =
Nf(A)}

M fH(1y) =1y,

() f7H0y) =0y,

(&) f(1y)=1,,if fis surjective
M) f(Oy) =0y,

(m) f(A) C f(A),if fis surjective,

) f~4(B) = f~1(B).
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2 Main Results

Definition 2.1. A neutrosophic set A in a neutrosophic topolog-
ical space (X, T) is called

1) a neutrosophic semiopen set (NSOS) if A -
Necl(Nint(A)).
2) a neutrosophic « open set (NaOS) if A C

Nint(Ncl(Nint(A))).
3) a neutrosophic preopen set (NPOS) if A C Nint(Ncl(A)).

4) a neutrosophic regular open set (NROS) if A =
Nint(Ncl(A)).

5) a neutrosophic semipre open or /3 open set (N0.S) if A C
Ncl(Nint(Ncl(A))).

A neutrosophic set A is called a neutrosophic semiclosed set,
neutrosophic « closed set, neutrosophic preclosed set, neutro-
sophic regular closed set and neutrosophic 3 closed set, respec-
tively (NSCS, NaCS, NPCS, NRCS and NSCS, resp), if the
complement of A is a neutrosophic semiopen set, neutrosophic
a-open set, neutrosophic preopen set, neutrosophic regular open
set, and neutrosophic /3-open set, respectively.

Definition 2.2. Let (X, T") ba a neutrosophic topological space.
A neutrosophic set A is called a neutrosophic semi-supra open set
(briefly NSSOS) if A C s-Nel(s-Nint(A)). The complement of
a neutrosophic semi-supra open set is called a neutrosophic semi-
supra closed set.

Proposition 2.1. Every neutrosophic supra open set is neutro-
sophic semi-supra open set.

Proof. Let A be a neutrosophic supra open set in (X, 7). Since
A C s-Ncl(A), we get A C s-Ncl(s-Nint(A)). Then
s-Nint(A) C s-Ncl(s-Nint(A)). Hence A C s-Necl(s-
Nint(A)). O

The converse of Proposition 2.1., need not be true as shown
in Example 2.1.

Example 2.1. Let X = {a,b}. Define the neutrosophic sets A,
B and C'in X as follows:
A = <$, (i

= (7, (g% 59) (3% 59) (3> 53))- Then the families

T = {0,,1 j,B,A U B} is neutrosophic topology on X.
Thus, (X,T) is a neutrosophic topological space. Then C' is
called neutrosophic semi-supra open but not neutrosophic supra
open set.

Proposition 2.2. Every neutrosophic a-supra open is neutro-
sophic semi-supra open
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Proof. Let A be a neutrosophic a-supra open in (X,T), then
A C s-Nint(s-Ncl(s-Nint(A))). It is obvious that s-Nint(s-
Ncl(s-Nint(A))) C s-Nel(s-Nint(A)). Hence A C s-Nel(s-

Nint(A)).
The converse of Proposition 2.2., need not be true as shown
in Example 2.2. O

Example 2.2. Let X = {a,b}. Define the neutrosophic sets A,
B and C in X as follows:
A =

(, (555 02) (31 02)» (3% 08))

and C' = (7, (5%, &)7 (o5 &), (o5 &» Then the families
T = {0,,1,,A4,B,A U B} is neutrosophic topology on

X.Thus, (X,T) is a neutrosophic topological space. Then C
is called neutrosophic semi-supra open but not neutrosophic
«-supra open set.

Proposition 2.3. Every neutrosophic regular supra open set is
neutrosophic semi-supra open set

Proof. Let A be a neutrosophic regular supra open set in (X, T).
Then A C (s-Ncl(A)). Hence A C s-Ncl(s-Nint(A)).

The converse of Proposition 2.3., need not be true as shown
in Example 2.3. O

Example 2.3. Let X = {a,b}. Define the neutrosophic sets A,
B and C'in X as follows:
A =

S, &), (o5 &» Then the families
T } is neutrosophic topology on X.
Thus, (X,T) is a neutrosophic topological space. Then C is
neutrosophic semi-supra open but not neutrosophic regular-supra

open set.

I
—~—
2
—
2

Definition 2.3. The neutrosophic semi-supra closure of a set A is
denoted by semi-s-Ncl(A) = |J{ G :G is aneutrosophic semi-
supra open set in X and G C A} and the neutrosophic semi-
supra interior of a set A is denoted by semi-s-Nint(A) = ({G
:G is a neutrosophic semi-supra closed set in X and G D A}.

Remark 2.1. It is clear that semi-s-Nint(A) is a neutrosophic
semi-supra open set and semi-s-Ncl(A) is a neutrosophic semi-
supra closed set.

Proposition 2.4. i) semi — s — Nint(A) = semi s-Ncl (A)

ii) semi — s — Ncl(A) = semi s-int (A)

iii) if A C B then semi-s-Ncl(A) C semi-s-Ncl(B) and
semi-s-Nint(A) C semi-s-Nint(B)

Proof. Tt is obvious. O

Proposition 2.5. (i) The intersection of a neutrosophic supra
open set and a neutrosophic semi-supra open set is a neutro-
sophic semi- supra open set.
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(i) The intersection of a neutrosophic semi-supra open set and
aneutrosophic pre-supra open set is a neutrosophic pre-supra
open set.

Proof. 1t is obvious. O

Definition 2.4. Let (X, T) and (Y, .S) be two neutrosophic semi-
supra open sets and I be a associated supra topology with T'. A
map f : (X,T) — (Y,95) is called neutrosophic semi- supra
continuous map if the inverse image of each neutrosophic open
setin Y is a neutrosophic semi- supra open in X.

Proposition 2.6. Every neutrosophic supra continuous map is
neutrosophic semi-supra continuous map.

Proof. Let f : (X,T) — (Y, 5) be a neutrosophic supra contin-
uous map and A is a neutrosophic open set in Y. Then f~1(A)
is a neutrosophic open set in X. Since R is associated with 7.
Then T' C R. Therefore f~!(A) is a neutrosophic supra open
set in X which is a neutrosophic supra open set in X. Hence f is
aneutrosophic semi-supra continuous map. O

Remark 2.2. Every neutrosophic semi-supra continuous map
need not be neutrosophic supra continuous map.

Proposition 2.7. Let (X,7T) and (Y,S) be two neutrosophic
topological spaces and R be a associated neutrosophic supra
topology with 7. Let f be a map from X into Y. Then the
following are equivalent.

i) fis a neutrosophic semi-supra continuous map.

ii) The inverse image of a neutrosophic closed sets in Y is a
neutrosophic semi closed set in X.

iii) Semi-s-Ncl(f~1(A4)) € f~1(Ncl(A)) for every neutro-
sophic set Ain Y.

iv) f(semi-s-Ncl(A)) C Necl(f(A)) for every neutrosophic
set A in X.
v) f7Y(Nint(B)) C semi-s-Nint(f~1(B)) for every neu-

trosophic set Bin Y.

Proof. (i) = (ii) : Let A be a neutrosophic closed set in Y.
Then A is neutrosophic open in Y, Thus f~1(A4) = f~1(A) is
neutrosophic semi-open in X. It follows that f ~*(A) is a neutro-
sophic semi-s closed set of X.

(#4) = (i4i) : Let A be any subset of X. Since Ncl(A) is neutro-
sophic closed in Y then it follows that f~*(Ncl(A)) is neutro-
sophic semi-s closed in X. Therefore, f~1(Ncl(A)) = semi-s-
Nel(f~Y(Nel(A)) D semi-s-Nel(f~1(A))

(i4i) = (iw) : Let A be any subset of X. By (iii) we ob-
tain f~H(Nel(f((A))) D semi-s-Ncl(f~H(f(A))) D semi-s-
Ncl(A) and hence f(semi-s-Ncl(A)) C Ncl(f(A)).

(w) = (v) : Let f(semi-s-Ncl(A)) C f(Ncl(A) for
every neutrosophic set A in X. Then semi-s-Ncl(A)) C
FYUNcl(f(A). semi—s— Ncl(A) D f~1(Necl(f(4)))
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and semi-s-Nint(A) 2 f~Y(Nint(f(A))). Then semi-s-
Nint(f~Y(B)) 2 f~Y(Nint(B)). Therefore f~!(Nint(B)) C
s-Nint(f~1(B)) forevery BinY.

(v) = (i) : Let A be a neutrosophic open set in Y.
Therefore f~'(Nint(A)) C semi-s-Nint(f~'(A)), hence
Y (A) C semi-s-Nint(f~1(A)). But we know that semi-
s-Nint(f~1(A)) C f~1(A), then f~1(A) = semi-s-
Nint(f~1(A)). Therefore f~1(A) is a neutrosophic semi-s-
open set. O

Proposition 2.8. Ifamap f : (X,T) — (Y, .5) is a neutrosophic
semi-s-continuous and ¢ : (Y, S) — (Z, R) is neutrosophic con-
tinuous, Then g o f is neutrosophic semi-s-continuous.

Proof. Obvious. O

Proposition 2.9. Let amap f : (X,T) — (Y,S5) be a neu-
trosophic semi-supra continuous map, then one of the following
holds

i) f~1(semi-s-Nint(A)) C Nint(f~1(A)) for every neutro-
sophic set AinY.

ii) Nel(f~1(A)) € f~(semi-s-Ncl(A)) for every neutro-
sophic set AinY.

iii) f(Necl(B)) C semi-s-Ncl(f(B)) for every neutrosophic
set B in X.

Proof. Let A be any neutrosophic open set of Y, then condition
(i) is satisfied, then f~!(semi-s-Nint(A)) C Nint(f~1(A)).
We get, f~1(A) C Nint(f~1(A)). Therefore f~1(A) is a neu-
trosophic supra open set. Every neutrosophic supra open set is
a neutrosophic semi supra open set. Hence f is a neutrosophic
semi-s-continuous function. If condition (ii) is satisfied, then we
can easily prove that f is a neutrosophic semi -s continuous func-
tion if condition (iii) is satisfied, and A is any neutrosophic open
setof Y, then f~1(A)isasetin X and f(Necl(f~1(A)) C semi-
s-Nel(f(f~1(A))). This implies f(Ncl(f~1(A))) C semi-s-
Ncl(A). This is nothing but condition (ii). Hence f is a neutro-
sophic semi-s-continuous function. O
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Neutrosophic Regular Filters and Fuzzy Regular Filters
in Pseudo-BClI Algebras

Xiaohong Zhang, Yingcang Ma, Florentin Smarandache

Xiaohong Zhang, Yingcang Ma, Florentin Smarandache (2017). Neutrosophic Regular Filters
and Fuzzy Regular Filters in Pseudo-BCl Algebras. Neutrosophic Sets and Systems 17, 10-15

Abstract. Neutrosophic set is a new mathematical tool
for handling problems involving imprecise, indetermi-
nacy and inconsistent data. Pseudo-BCI algebra is a
kind of non-classical logic algebra in close connection
with various non-commutative fuzzy logics. Recently,
we applied neutrosophic set theory to pseudo-BCI al-
gebras. In this paper, we study neutrosophic filters
in pseudo-BCI algebras. The concepts of neutrosophic
regular filter, neutrosophic closed filter and fuzzy regular

filter in pseudo-BCI algebras are introduced, and
some basic properties are discussed. Moreover, the
relationships among neutrosophic regular filter, fuzzy
filters and anti-grouped neutrosophic filters are prese-
nted, and the results are proved: a neutrosophic filter
(fuzzy filter) is a neutrosophic regular filter (fuzzy
regular filter), if and only if it is both a neutrosophic
closed filter (fuzzy closed filter) and an anti-grouped
neutrosophic filter (fuzzy anti-grouped filter).

Keywords: Neutrosophic set, Pseudo-BCI algebra, Neutrosophic Filter, Neutrosophic Regular Filter, Fuzzy Regular Filter.

1 Introduction

In 1998, Florentin Smarandache introduced the concept
of a neutrosophic set from a philosophical point of view
(see [16, 17, 18]). The neutrosophic set is a powerful gen-
eral formal framework that generalizes the concept of
fuzzy set and intuitionistic fuzzy set. In this paper we work
with special neutrosophic sets, they are called single val-
ued neutrosophic set (see [21]). The neutrosophic set the-
ory is applied to many scientific fields (see [18, 19, 20]),
and also applied to algebraic structures (see [1, 2, 15, 19]),
it is similar to the applications of fuzzy set (soft set, rough
set) theory in algebraic structures (see [11, 14, and 23]).

In 2008, W. A. Dudek and Y. B. Jun [3] introduced the
notion of pseudo-BCI algebra as a generalization of BCI
algebra, it is also as a generalization of pseudo-BCK alge-
bra (which is close connection with various non-
commutative fuzzy logic formal systems, see [4, 24, 26, 27,
28, and 32]). For non-classical logic algebra systems, the
theory of filters (ideals) plays an important role (see [9, 12,
13, 25, and 30]). In [7], the notion of pseudo-BCI filter
(ideal) of pseudo-BCI algebras is introduced. In 2009,
some special pseudo-BCI filters (ideals) are discussed in
[10]. Since then, some articles related filters of pseudo-
BCI algebras are published (see [29, 31, 33, and 34]).

Recently, we applied neutrosophic set theory to pseudo
-BCI algebras in [35]. This paper we further study on the
applications of neutrosophic sets to pseudo-BCI algebras.
We introduce the new concepts of neutrosophic regular fil-

ter, neutrosophic closed filter and fuzzy regular filter in
pseudo-BCI algebras, and investigate their basic properties
and present relationships among neutrosophic regular fil-
ters, anti-grouped neutrosophic filter and fuzzy filters.

Note that, the notion of pseudo-BCI algebra in this pa-
per is a dual of the original definition in [3], so the notion
of filter is a dual of (pseudo-BCI) ideal in [7, 10].

2 Some basic concepts and properties
2.1 On neutrosophic sets

Definition 2.1"'" ' ! Let X be a space of points (ob-
jects), with a generic element in X denoted by x. A neutro-
sophic set 4 in X is characterized by a truth-membership
function T,(x), an indeterminacy-membership function /,(x),
and a falsity-membership function F,(x). The functions
Ty(x), L4(x), and F,(x) are real standard or non-standard
subsets of J°0, 17[. That is, T,,(x): X— 170, 1'[, L(x): X—> ]0,
1'[, and F,(x): X— 170, 1'[. Thus, there is no restriction on
the sum of T4(x), 1,(x), and F4(x), so "0 < supT4(x) + su-
pLy(x) + supF(x) < 3".

Definition 2.2*"! Let X be a space of points (objects)
with generic elements in X denoted by x. A simple valued
neutrosophic set 4 in X is characterized by truth-
membership function T7,(x), indeterminacy-membership
function 7,(x), and falsity-membership function F4(x). Then,
a simple valued neutrosophic set 4 can be denoted by

A={(x, Ty(x), Li(x), Fy(x) ) | x X},
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where T4(x), 14(x), F4(x)€[0, 1] for each point x in X.
Therefore, the sum of T,(x), I,(x), and F,(x) satisfies the
condition 0 < T4(x) + L,(x) + F4(x) < 3.

Definition 2.3""! The complement of a simple valued
neutrosophic set 4 is denoted by A° and is defined as

(VxeX)
T .(xX)=Fx),1,.(x)=1-1,(x), F (x)=T,(x).
Then
A={x, Fux), 1=Ly(x), Ty(x)) | xeX}.

Definition 2.4%'"" A simple valued neutrosophic set 4 is
contained in the other simple valued neutrosophic set B, de-
note ACB, if and only if Ty(x)< Tp(x), Ly(x) < Ip(x), Fy(x)=
Fp(x) for any x in X.

Definition 2.5”"! Two simple valued neutrosophic sets
A and B are equal, written as 4 = B, if and only if AcB and
BcA.

For convenience, “simple valued neutrosophic set” is
abbreviated to “neutrosophic set” later.

Definition 2.6"" The union of two neutrosophic sets 4
and B is a neutrosophic set C, written as C=4AUB, whose
truth-membership, indeterminacy-membership and falsity-
membership functions are related to those of 4 and B by

Te(x)=max(T(x), T(x)), Ic(x)=max(L(x), I5(x)),
Fe(x)=min(F4(x), Fp(x)), VxeX.
Definition 2.7%Y The intersection of two neutrosophic
sets 4 and B is a neutrosophic set C, written as C=ANB,

whose truth-membership, indeterminacy-membership and
falsity-membership functions are related to those of 4 and B
by
T{x)y= min(Ty(x), T5(x)), Icx)=min(L4(x), I5(x)),
Fo(x)=max(F4(x), Fp(x)), VxeX.

Definition 2.8 Let 4 be a neutrosophic set in X and
a, B, yel0, 1] with 0La+4+y <3 and (o, S, y)-level set of 4
denoted by 4”7 is defined as:

A“PI={ xeX | Tox)2a, [(x)>P, FA(x)<p}.

2.2 On pseudo-BCl algebras

Definition 2.9"' A pseudo-BCI algebra is a structure (X;
<, >, ~», 1), where “<” is a binary relation on X, “—” and
“~~” are binary operations on X and “1” is an element of X,
verifying the axioms: for all x, y, ze X,

(1) y—z2(z—>x)~=(y—x), y~z2(z=x)>(y~~X);

(2) xS(x—>p)~=p, XS(x~=Y) >y,

(3) x<x;

(4) x<y, y<x = x=y;

65) xxy o x-oy=l @xwy=l
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If (X; £, >, ~», 1) is a pseudo-BCI algebra satisfying
x—y =x~-y for all x, yeX, then (X; —, 1) is a BCI-algebra.

Proposition 2.1% 1% Let (X; <, —, ~», 1) be a pseudo-
BCI algebra, then X satisfy the following properties (Vx, y,
zeX):

1) 1=x=x=1;

2) xy = y—o>z5x—0z, yazx~oz;

3) xy, y<z = x<z;

@ x> (y=2)=y—>(x~2);

5) xy—z < Yz

(6) x—>Y<(z—x)>(2Y), x~=y<(z~=X)~>(2~-));

(7)) xXy = zox<z>Y, zvx<z~Y);

(8) 1->x=x, 1~x=x;

9) ((y—=x)~x)>x=y—x, (Y~X)—X)~>X=p~>X;

(10) x—=>y<(y—x)~1, x~=y <(y~x)—1;

(1) G9)> 1= 1) 1),

(o)1= D=y 1);

(12) x—>1=x~~1.

Definition 2.10""! A nonempty subset F of pseudo-BCI
algebra X is called a pseudo-BClI filter (briefly, filter) of X
if it satisfies:

(F1) leF;

(F2) xeF, x—>yeF = yeF,

(F3) xeF, x~»yeF = yeF.

Definition 2.11%"' A pseudo-BCI algebra X is said to be
anti-grouped pseudo-BCI algebra if it satisfies the follow-
ing identity:

(G1) Vx,y, zeX, (x—y)>(x—z)=y—z,

(G2) Vx, y, zeX, (x~>y)~(x~=z)= y~sz.

Proposition 2.2 ' A pseudo-BCI algebra X is an anti-
grouped pseudo-BCI algebra if and only if it satisfies:

VxelX, (x—>1)>1=x or (x~~1)~1=x.

Definition 2.12"*"' A filter F of a pseudo-BCI algebra X
is called an anti-grouped filter of X if it satisfies

(GF) VxeX, (x—>1)>1eF or (x~1)w1eF=xeF.

Definition 2.13"*"' A filter F of a pseudo-BCI algebra X
is called a closed filter of X if it satisfies
(CF) VxeX, x—>1€F.

Definition 2.14™ A filter F of pseudo-BCI algebra X is
said to be regular if it satisfies:
(RF1) Vx,yeX, yeF and x—>yeF = xeF.

(RF2) Vx,yeX, yeF and x~»yeF = xeF.

Proposition 2.3 ** Let X be a pseudo-BCI algebra, F a
filter of X. Then F is regular if and only if F is anti-grouped
and closed.
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Definition 2.15%"%! A fuzzy set 4 in pseudo-BCI alge-
bra X is called fuzzy filter of X if it satisfies:

(FF1) VxeX, wi(x)<ua(1);

(FF2) Vx, yeX, min{pu(x), wi(x—y)<ua(v);

(FF3) Vx, yeX, min{u(x), wa(x~y)} <pa(y)-

Definition 2.16"" A fuzzy set 4: X —[0, 1] is called a
fuzzy closed filter of pseudo-BCI algebra X if it is a fuzzy
filter of X such that:

(FCF) ps(x—1) = pry(x), VxeX.

Definition 2.17°" A fuzzy set 4 in pseudo-BCI algebra
X is called fuzzy anti-grouped filter of X if it satisfies:

(1) VxeX, uwa(x)=pa(1);

(2) Vx, y, zeX, min{u,(y), ua((x—=y)>(x—2))} a(2);

() Vx, y, zeX, min{uy(y), pa((x~=y)~=(x~>2)) Spia(2).

Proposition 2.4%" Let 4 be a fuzzy filter of pseudo-
BCI algebra X. Then 4 is a fuzzy anti-grouped filter of X if
and only if it satisfies:

VxeX, wi0)2ua((x=>1)=>1), pa()2p4((e~> 1)~ 1).

Definition 2.18" A neutrosophic set A in pseudo-BCI
algebra X is called a neutrosophic filter in X if it satisfies:
Vx, yelX,

(NSF1) Ty(x)<T4(1), Li(x)<L4(1) and F4(x)=F4(1);

(NSF2) min{T4(x), T4(x—>y)}<T(), min{l(x), L{(x—)}
<I(y) and max{F(x), Fi(x—y)}2Fuy);

(NSF3) min{7(x), T4(x~~y)}<Ty(y), min{Ly(x), Li(x~-y)}

<I,(y) and max {F(x), F4(x~>y)}=>F ).

Proposition 2.5 Let 4 be a neutrosophic filter in
pseudo-BCI algebra X, then Vx, yeX,
(NSF4) x<y = Ty(0)<T4(y), Lx)<L4(y) and F4(x)=F ().

Definition 2.19™! A neutrosophic set 4 in pseudo-BCI
algebra X is called anti-grouped neutrosophic filter in X if it
satisfies: Vx, y, ze X,

(1) T4y()ST(1), Lo(x)<L4(1) and F4(x)=F4(1);

(2) min{T,(y), Ti((x=y)>(x—2))} < Ty(2), min{Ly(y),
L((x—y)>(x—2))} < Ifz) and max{F,(x), Fi(x—)
—=(x—2))} 2 Fy(2);

(3) min{T(y), Tu((e~=p)~(x~2))} < Ty(z), min{ly(y),
L)~} < L) and max{Fyx), Fi(rey)

~(x2))} 2 Fy(2).

Proposition 2.6 Let 4 be a neutrosophic set in pseu-
do-BCI algebra X. Then A4 is a neutrosophic filter in X if
and only if 4 satisfies:

(i) T4 is a fuzzy filter of X;

(i1) 1, is a fuzzy filter of .X;

(iii) 1-F, is a fuzzy filter of X, where (1-F)(x) =
1-F(x), VxeX.

Proposition 2.7% Let 4 be a neutrosophic set in pseu-
do-BCI algebra X. Then 4 is an anti-grouped neutrosophic
filter in X if and only if 4 satisfies:

(1) 74 is a fuzzy anti-grouped filter of X;
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(ii) 4 is a fuzzy anti-grouped filter of X;
(iii) 1-F, is a fuzzy anti-grouped filter of X, where
(1=F)(x)=1-F4(x), VxeX.

3 Neutrosophic regular filters and neutrosophic
closed filters

Definition 3.1 A neutrosophic set 4 in pseudo-BCI al-
gebra X is called a neutrosophic regular filter in X if it is a
neutrosophic filter in X such that: Vx, yeX,

(NSRF1) min{T,(y), T4(x—y)}<T(x), min{l(y),
Li(x—y)}<I4(x) and max {F,(y), Fi(x—p)}=F,(x);
(NSRF2) min{T(y), T x~y)}<T(x), min{l,(y),

Li(x~y)}<L4(x) and max{F4(y), F4(x~~y)}=F4(x).

Definition 3.2 A neutrosophic set 4 in pseudo-BCI al-
gebra X is called a neutrosophic closed filter in X if it is a
neutrosophic filter in X such that: VxeX,

(NSCF) T (x> 1)2T(x), Li(x—>1)=14(x), F4(x—>1)<F4(x).

Proposition 3.1 Let 4 be a neutrosophic regular filter in
pseudo-BCI algebra X. Then 4 is closed.

Proof: Suppose xeX. By Definition 2.9 (2) and Proposi-

tion 2.1 (12) we have
x< (x> )w1=(@x—>1)->1.
From this and Proposition 2.5 we get
T(x)ST((x—>1)>1), Lx)<L((x—>1)—>1),
F (x)2F ((x—>1)>1).

Moreover, by Definition 2.18 (NSF1) and Definition 3.1
(NSRF1)

T((x=>1)>1D)=min{T4(1), T((x—>1)>1)}<T(x—>1),
L(x—>1)>1D)=min{l(1), L(x—>1)—>1)}<L,(x—>1),
Fy(x—>1)>1)=max{F,(1), Fy(x—>1)>1)}2F (x—1).

Thus,
T()LT (x> 1) 1D)LTy(x— 1),
LO)LL((x—>1)> DL (x—>1),
F x)2T((x>1)>1)>T(x—1).
By Definition 3.2 we know that 4 is closed.

By Proposition 2.4 and Proposition 2.7 we can get the
following proposition.

Proposition 3.2 Let 4 be a neutrosophic filter of pseu-
do-BCI algebra X. Then A4 is an anti-grouped neutrosophic
filter of X if and only if it satisfies: VxeX,

T2 TA((x—> D)o 1), TR T((x~1)~=1);
L= 1) 1), LI (e 1)1);
FA0<FA(—1)->1), FoR)<F((x~1)~1).

Proposition 3.3 Let 4 be a neutrosophic regular filter in
pseudo-BCI algebra X. Then 4 is anti-grouped.

Proof: Suppose xeX. By Definition 2.9 and Proposition
2.1 we have

x=>((x—=>1)->D=x>((x—>1)~1)=1.
From this we get
T4(x=>((x—>1)—>1D)=T4(1), Lx—>((x—>1)—>1)=L,(1),
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F(x—>((x—>1)>1)=F4(1).
Thus, applying Definition 3.1 (NSRF1) we get
T (x)z2min{7T((x—>1)>1), T/(x—>((x—>1)—1))}
=min{7((x—>1)—>1), T4(1)}=T((x—>1)—>1),
Lix)zmin{L,((x—>1)>1), Li(x—>((x—>1)—1))}
=min{l((x—>1)—>1), L) }=L((x—>1)>1),
Fi(x)<max{F,((x—>1)>1), Fi(x—>((x—>1)>1))}
=max {F4(x—>1)>1), F4(1)}=F ((x—>1)—>1).
Similarly, we can prove that
Ty()2T (x> 1)~ 1), L4 (x0)2L((x~> 1)~ 1),

FAQOSF((x~>1)~1).
By Proposition 3.2 we know that 4 is anti-grouped.

Proposition 3.2 Assume that 4 is both an anti-grouped
neutrosophic filter and a neutrosophic closed filter in pseu-
do-BCI algebra X. Then 4 satisfies: VxeX,

Ti(x)=T(x—>1), Li(x)=L;(x—1), F(x)=F 4(x—>1).

Proof: For any xe.X, by Definition 3.2 we have
TA(X—)I)ZTA(X), IA(X—)I)ZIA(X), FA(x—>1)SFA(x).
Moreover, VxeX, by Definition 2.19 and Definition 3.2,
T4(x)>2min{7((x—1)—>(x—x)), T4(1)}
=min{7T((x—>1)—>1), Ty(1)}
=T((x—>1)>1D)2T (x—>1),
L(x)zmin{l,((x—1)—>(x—x)), L(1)}
=min{l,((x—>1)—>1), [,(1)}
=L((x—>1)—>1)2L(x—>1),
F(x)<max {F((x—>1)>(x—x)), F4(1)}
=max {F((x—>1)—>1), Fy(1)}
=F((x—>1)—>1D<F(x—1).
That is,
T(x)2T(x—>1), Li(x)2L(x—>1), F(x)<F(x—1).
Therefore,
VxeX, Ty(x)=Ts(x—>1), Li(x)=Li(x—>1), F4(x)=F4(x—1).

Theorem 3.1 Let 4 be a neutrosophic filter in pseudo-
BCI algebra X. Then the following conditions are equiva-
lent:

(1) 4 is both an anti-grouped neutrosophic filter and a
neutrosophic closed filter in X;

(i1) A satisfies: VxeJX,

TAx)=Ta(x—>1), Lx)=Ly(x—>1), F4(x)=F4(x—>1).
(iii) 4 is a neutrosophic regular filter in X.

Proof: (i) = (ii) See Proposition 3.2.
(ii1) = (i) See Proposition 3.1 and Proposition 3.3.
(1) = (iii) Suppose that 4 satisfies: VxeX,
TA(X):TA(X—) 1 ), [A(X):[A(X—)l), FA(X):FA(X—) 1 )
For any x, ye X, using Proposition 2.1 (6) we have
1=212(x>y) > (x> 1).
From this, applying Propostion 2.5,
Ty (= DSTA(—9)—>(r—1)),
L= D<L((x—9)—(x—>1)),
F,—>1)2F (x—>p)—=>(x—1)).
From these, by Definition 2.18 we get
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min{7,(y—1), T4(x—y)}
<min{T((x—=>y)=>—1)), T(x—y)}=T(x—1),
min{Z,(y—1), L;(x—y)}
<min{l((x—>y)—=>(x—1)), Li(x—y)}=L(x—1),
max{F,(y—1), F(x—>y)}
>max {F((x—y)—=>(x—1)), Fy(x—p)}=F(x—1).
Moreover, by condition (ii),
TAy—>D=T40), Ta(x—>1)=Ty(x);
Ly D=Ly), L(x—>1)=L(x);
Fiy—=>1)=Fu(y), Fa(x—>1)=F4(x).
Therefore,
min{7(y), T4(x—>y)}<Ty(x),
min{Z(y), L{x—y)} < Ly(x),
max{F,(y), Fax—>y)}2F4(x).
Similarly, we can get
min{7(y), Ta(x~y)}<Tu(x),
min{Z,(y), L(x~>y)}< Iy(x),
max {F(y), Fu(x~~y)} 2F4(x).

By Definition 3.1 we know that 4 is a neutrosophic regular
filter in X.

4 Fuzzy regular filters and neutrosophic filters

Definition 4.1 A fuzzy filter 4 in pseudo-BCI algebra X
is called to be regular if it satisfies:

(FRF1) Vx, yeX, min{u(y), uax—>y)} Spa(x);
(FRF2) Vx, yeX, min{u(y), ux~y)} Sus(x).

Lemma 4.1° %’ Let X be a pseudo-BCI algebra. Then a
fuzzy set 12 X—[0, 1] is a fuzzy filter of X if and only if the
level set 1, ={ xeX | t(x)=t} is filter of X for all teIm(u).

Theorem 4.1 Let X be a pseudo-BCI algebra. Then a
fuzzy set 12 X—[0, 1] is a fuzzy regular filter of X if and
only if the level set 1, ={ xeX | u(x)=t} is regular filter of X
for all reIm(p).

Proof: Assume that g is fuzzy regular filter of X. By
Lemma 4.1, for any telm(y), we have
M ={xeX| px)=t} is filter of X.
If ye i, and x—y e i, then

H(Y)2t, i X—>Y)21.
From this and Definition 4.1 (FRF1) we get

pa()Zmin{uy(v), pa(x—y)}= t.
This means that xe 4. Similarly, we can prove that

yey and X~y E => XE L.
By Definition 2.14 we know that 4 is regular filter of X

Conversely, assume that the level set 1, ={ xeX | p(x)>t}
is regular filter of X for all te/m(u). By Lemma 4.1 we
know that z: X—[0, 1] is a fuzzy filter of X. Let x, yeX, de-
note f=min {14(), ws(x—y)}, then tyeIm(y) and

H(Y)2to, t X—>Y)2o.
This means that ye £, and x—ye 1, . Since 4, is regular

filter of X, by Definition 2.14 we have xe M, s that is

178



Florentin Smarandache (author and editor)

M) ty=min {f(y), a(x—p)} .
It follows that Definition 4.1 (FRF1) holds. Similarly, we

can prove that Vx, ye X, min{uy(y), ps(x~>y)}<u(x). There-
fore, 1o X—[0, 1] is a fuzzy regular filter of X.

Similar to Theorem 4.1 we can get the following propo-
sition (the proofs are omitted).

Proposition 4.1 Let X be a pseudo-BCI algebra. Then a
fuzzy set 12 X—[0, 1] is a fuzzy closed filter of X if and on-
ly if the level set g, ={ xeX | (x)>t} is closed filter of X for
all teIm(u).

By Theorem 6 in [31] we have

Theorem 4.2 Let x4 be a fuzzy filter of pseudo-BCI al-
gebra X. Then the following conditions are equivalent:

(1) u is fuzzy closed anti-grouped filter of .X;

(i) VxeX, pa(x—1)=p(x).

(iii) u is a fuzzy regular filter of X.

Theorem 4.3 Let 4 be a neutrosophic set in pseudo-BCI
algebra X. Then 4 is a neutrosophic closed filter in X if and
only if 4 satisfies:

(i) T4 is a fuzzy closed filter of .X;

(i1) 1, is a fuzzy closed filter of X;

(i) 1-F is a fuzzy closed filter of X, where (1-F4)(x)
=1-F(x), VxeX.

Proof: Assume that 4 is a neutrosophic closed filter in
X. By Definition 3.2 we have (VxeX)

TA(x—>l)2TA(x), IA(X—)I)ZIA(X), FA(X—)I)SFA(X)
Thus,

(1-F x> 1)=1-F4(x—>1)21-F4(x)=(1-F.)( x).
Therefore, using Definition 2.16, we get that 7,, I, and
1-F, are fuzzy closed filters of X.

Conversely, assume that 7,, I, and 1-F, are fuzzy
closed filters of X. Then, by Definition 2.16,
TA(X—)I)ZTA()C), IA(X%I)ZIA(X),
(1-F)x—>1)2(1-F)(x).
Thus,

F (x—>1D)=1-(1-F ) (x> D1-(1-F)(x)=F 4(x).
Hence, applying Definition 3.2 we get that 4 is a neutro-
sophic closed filter 4 in X.

By Theorem 4.2, Theorem 4.3, Theorem 3.1 and Propo-
sition 2.7 we can get the following results.

Theorem 4.4 Let 4 be a neutrosophic set in pseudo-BCI
algebra X. Then 4 is a neutrosophic regular filter in X if and
only if 4 satisfies:

(i) T4 is a fuzzy regular filter of .X;

(i1) 1, is a fuzzy regular filter of X;

(iii) 1-F is a fuzzy regular filter of X, where (1—F)(x)
=1-F(x), VxeX.

Theorem 4.5 Let X be a pseudo-BCI algebra, 4 be a
neutrosophic set in X such that T,(x)>ap, Li(x)>f and
F(0)<n, VxeX, where opelm(T,), foclm(ly) and pe
Im(F ). Then A is a neutrosophic closed filter in X if and on-
ly if (&, B, p)-level set A““#7 is closed filter of X for all
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aelm(Ty), pelm(ly) and yelm(F,).

Proof: Assume that 4 is neutrosophic closed filter in X.
By Theorem 4.3 and Proposition 4.1, for any aelm(T)),
Pelm(l,) and yelm(F,), we have

(Toa=1xeX| Tyx)za}, (I)p={xeX | [4(x)2f} and
(1=F1, ={xeX | (1-F)(x)= -y }={xeX | F4x)< y } are
closed filters of X.

Thus (T4) e N(La)p N(1=F1)1-, is a closed filters of X. More-
over, by Definition 2.8, it is easy to verify that (a, 5, »-
level set A'*27=(T,), N(Ly)p N(1=F )1, . Therefore, A =D
is closed filter of X for all aelm(T,), feim(l,) and ye
Im(F ).

Conversely, assume that 4/“#7 is closed filter of X for
all aelm(T,), pelm(ly) and yelm(F,). Since T, (x)=cy,
L(x)=f and F 4(x)<p, VxeX, then

(T ={weX | Tx)2a=(Ts), XX
=(T)a () y, N (=Fa) ., = A7

(L)p={xeX | Lx)2p=X N (L) "X
=(Ta) o, ") pN(1-Fy) ., = AlePro)

(1=Fy) 1 ={xeX | (1-F)(x)z1-y }
= XNXN{xeX| F(x)<y}
= (1) 4, N (L) 5, N XX | Fyx)<7} = A @hor)
Thus,

(To=1xeX| Tyx)za}, () p={xeX | I4(x)2f} and
(1=Fp) 1, ={xeX | (1-F)x)=1-y}={xeX | FAx)<y} are
closed filters of X.

From this, applying Proposition 4.1, we know that 7, I,
and 1-F are fuzzy closed filters of X. By Theorem 4.3 we
get that 4 is neutrosophic closed filter in X.

Similarly, we can get

Lemma 4.2 Let X be a pseudo-BCI algebra, 4 be a
neutrosophic set in X such that T,(x)>ap, I4(x)>f and
F,x)<n, VxeX, where ayelm(T,), foclm(l,) and pe
Im(F4). Then 4 is a (anti-grouped) neutrosophic filter in X if
and only if (&, B, y)-level set 4*#7 is (anti-grouped) filter
of X for all aeIm(T},), felm(ly) and yelm(F,).

Combining Theorem 4.5, Lemma 4.2 and Theorem 3.1
we can get the following theorem.

Theorem 4.6 Let X be a pseudo-BCI algebra, 4 be a
neutrosophic set in X such that T,(x)>ap, I4(x)>f and
F,x)<n, VxeX, where ayelm(T,), foclm(l,) and pe
Im(F ). Then A is a neutrosophic regular filter in X if and
only if (a, 3, p)-level set 4*#7 is regular filter of X for all
aelm(Ty), pelm(ly) and yelm(F,).



Florentin Smarandache (author and editor)

Conclusion

The neutrosophic set theory is applied to many scien-
tific fields, and also applied to algebraic structures.
This paper applied neutrosophic set theory to pseudo-
BCI algebras, and some new notions of neutrosophic
regular filter, neutrosophic closed filter and fuzzy
regular filter in pseudo-BCI algebras are introduced.
In addition to studying the basic properties of these new
concepts, this paper also considered the relationships
between them, and obtained some necessary and
sufficient conditions.
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Abstract: The notions of the neutrosophic triplet and neutrosophic duplet were introduced by
Florentin Smarandache. From the existing research results, the neutrosophic triplets and neutrosophic
duplets are completely different from the classical algebra structures. In this paper, we further study
neutrosophic duplet sets, neutrosophic duplet semi-groups, and cancellable neutrosophic triplet groups.
First, some new properties of neutrosophic duplet semi-groups are funded, and the following important
result is proven: there is no finite neutrosophic duplet semi-group. Second, the new concepts of weak
neutrosophic duplet, weak neutrosophic duplet set, and weak neutrosophic duplet semi-group are
introduced, some examples are given by using the mathematical software MATLAB (MathWorks, Inc.,
Natick, MA, USA), and the characterizations of cancellable weak neutrosophic duplet semi-groups
are established. Third, the cancellable neutrosophic triplet groups are investigated, and the following
important result is proven: the concept of cancellable neutrosophic triplet group and group coincide.
Finally, the neutrosophic triplets and weak neutrosophic duplets in BCI-algebras are discussed.

Keywords: neutrosophic duplet; neutrosophic triplet; weak neutrosophic duplet; semi-group;
BCl-algebra

1. Introduction

Florentin Smarandache introduced the concept of a neutrosophic set from a philosophical
point of view (see [1-3]). The neutrosophic set theory is applied to many scientific fields and also
applied to algebraic structures (see [4-10]). Recently, Florentin Smarandache and Mumtaz Ali
in [11], for the first time, introduced the notions of a neutrosophic triplet and neutrosophic triplet
group. The neutrosophic triplet is agroup of three elements that satisfy certain properties with
some binary operation; it is completely different from the classical group in the structural properties.
In 2017, Florentin Smarandache wrote the monograph [12] that is present the latest developments in
neutrodophic theories, including the neutrosophic triplet, neutrosophic triplet group, neutrosophic
duplet, and neutrosophic duplet set.

In this paper, we focus on the neutrosophic duplet, neutrosophic duplet set, and neutrosophic
duplet semi-group. We discuss some new properties of the neutrosophic duplet semi-group and
investigate the idempotent element in the neutrosophic duplet semi-group. Moreover, we introduce
some new concepts to generalize the notion of neutrosophic duplet sets and discuss weak
neutrosophic duplets in BCI-algebras (for BCl-algebra and related generalized logical algebra systems,
please see [13-26]).
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2. Basic Concepts

2.1. Neutrosophic Triplet and Neutrosophic Duplet

Definition 1. ([11,12]) Let N be a set together with a binary operation *. Then, N is called a neutrosophic

triplet set if for any a € N, there exist a neutralof “a” called neut(a) different from the classical algebraic unitary
element, and an opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N, such that:

a * neut(a) = neut(a) *a =a;
a * anti(a) = anti(a) * a = neut(a).

The elements a, neut(a), and anti(a) are collectively called as a neutrosophic triplet, and we denote
it by (a, neut(a), anti(a)). By neut(a), we mean neutral of a and, apparently, a is just the first coordinate of
a neutrosophic triplet and nota neutrosophic triplet. For the same element “a” in N, there may be more
neutrals to it neut(a) and more opposites of it anti(a).

Definition 2. ([11,12]) The element b in (N, *) is the second component, denoted as neut(-), of a neutrosophic
triplet, if there exists other elements a and c in N such thata *b=b*a=aanda *c=c *a =b. The formed
neutrosophic triplet is (a, b, c).

Definition 3. ([11,12]) The element c in (N, *) is the third component, denoted as anti(-), of a neutrosophic
triplet, if there exists other elements a and b in N such thata*b=b*a=aanda*c=c *a = b. The formed
neutrosophic triplet is (a, b, c).

Definition 4. ([11,12]) Let (N, *) be a neutrosophic triplet set. Then, N is called a neutrosophic triplet group,
if the following conditions are satisfied:

(1) If(N,*) is well-defined, i.e., forany a, b € N, onehasa *b € N.
(2) If(N,*)is associative, i.e., (a *b) *c=a* (b *c) foralla, b, c € N.

The neutrosophic triplet group, in general, is not a group in the classical algebraic way.

Definition 5. ([11,12]) Let (N, *) be a neutrosophic triplet group. Then, N is called a commutative neutrosophic
triplet group if for alla, b € N, we havea *b =5 *a.

Definition 6. ([12]) Let U be a universe of discourse, and a set A C U, endowed with a well-defined law *.We say
that (a, neut(a)), where a, neut(a) € A, is a neutrosophic duplet in A if:

(1) neut(a) is different from the unit element of A with respect to the law * (if any);
(2) a*neut(a) =neut(a) *a=a;
(3) thereis no anti(a) € A such that a * anti(a) = anti(a) * a = neut(a).

Remark 1. In the above definition, we have A C U. When A = U, “neutrosophic duplet in A” is simplified as
“neutrosophic duplet”, without causing confusion.

Definition 7. ([12]) A neutrosophic duplet set, (D, *), is a set D, endowed with a well-defined binary law ¥,
such that Ya € D, 3 a neutrosophic duplet(a, neut(a)) such that neut(a) € D. If associative law holds in
neutrosophic duplet set (D, *), then call it neutrosophic duplet semi-group.

Remark 2. The above definition is different from the original definition of a neutrosophic duplet set in [12].
In fact, the meaning of Theorem I1X.2.1 in [12] is not consistent with the original definition of a neutrosophic
duplet set. The original definition is modified to ensure that Theorem IX.2.1 in [12] is still correct.

Remark 3. In order to include richer structure, the original concept of a neutrosophic triplet is generalized
to neutrosophic extended triplet by Florentin Smarandache. For a neutrosophic extended triplet that is a
neutrosophic triplet, the neutral of x (called “extended neutral”) is allowed to also be equal to the classical
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algebraic unitary element (if any). Therefore, the restriction “different from the classical algebraic unitary
element, if any” is released. As a consequence, the “extended opposite” of x is also allowed to be equal to the
classical inverse element from a classical group. Thus, a neutrosophic extended triplet is an object of the form
(x, neut(x), anti(x)), for x € N, where neut(x) € N is the extended neutral of x, which can be equal or different
from the classical algebraic unitary element, if any, such that: x * neut(x) = neut(x) * x = x, and anti(x) € N is
the extended opposite of x, such that: x * anti(x) = anti(x) * x = neut(x). In this paper, “neutrosophic triplet”
means “neutrosophic extended triplet”, and “neutrosophic duplet” means “neutrosophic extended duplet”.

2.2. BCI-Algebras

Definition 8. ([15,22]) A BCl-algebra is an algebra (X; —, 1) of type (2,0) in which the following axioms
are satisfied:

(i) (x—=y)—=>(y—2z2—x—=2)=1,
(i) x—x=1,

GGii)) 1 —x=x,

(iv) ifx—y=y—x=1thenx=y.

In any BCl-algebra (X; —, 1) one can define a relation < by putting x < yifand onlyifx - y =1,
then < is a partial order on X.

Definition 9. ([16,20]) Let (X; —, 1) be a BCI-algebra. The set {x|x < 1} is called the p-radical (or BCK-part)
of X. A BCl-algebra X is called p-semisimple if its p-radical is equal to {1}.

Definition 10. ([16,20]) A BCI-algebra (X; —, 1) is called associative if
(x—=y)»z=x— Yy —2),VryzeX

Proposition 1. ([16]) Let (X; —, 1) be a BCI-algebra. Then the following are equivalent:

(i) X is associative;
(ii) x—1=xVxeX;
(iii) x—=>y=y—x VxyecX

Proposition 2. ([16,24]) Let (X; +, —, 1) be anAbel group. Define (X; <, —, 1), where

x—=y=—x+yx<yifandonlyif-x+y=1,Vxy e X

Then, (X; <, —, 1) is a BCl-algebra.

3. New Properties of Neutrosophic Duplet Semi-Group

For a neutrosophic duplet set (D, *), if a € D, then neut(a) may not be unique. Thus, the symbolic
neut(a) sometimes means one and sometimes more than one, which is ambiguous. To this end, this paper
introduces the following notations to distinguish:

neut(a): denote any certain one of neutral of 4;

{neut(a)}: denote the set of all neutral of a.

Remark 4. In order not to cause confusion, we always assume that: for the same a, when multiple neut(a) are
present in the same expression, they are always are consistent. Of course, if they are neutral of different elements,
they refer to different objects (for example, in general, neut(a) is different from neut(b)).
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Proposition 3. Let (D, *) be a neutrosophic duplet semi-group with respect to * and a € D. Then, for any
X,y € {neut(a)}, x *y € {neut(a)]. That is,

{neut(a)} * {neut(a)} C {neut(a)}.
Proof. For any a € D, by Definition 7, we have
a * neut(a) = a, neut(a) * a = a.
Assume x, y € {neut(a)}, then
a*x=x*a=ma*y=y*a=a.
From this, using associative law, we can get
a*(x*y)=@x*y)*a=a.

It follows that x *y is a neutral of a. That is, x * y € {neut(a)}. This means that
{neut(a)} * {neut(a)}C {neut(a)}. O

Remark 5. If neut(a) is unique, then
neut(a) * neut(a) = neut(a).
But, if neut(a) is not unique, for example, assume {neut(a)} = {s, t} € D, then neut(a) denote any one
of s, t. Thus neut(a) * neut(a)represents one of s *s, and ¢ * t; and {neut(a)} * {neut(a)} = {s *s,s *t, t*s, t *t}.
Proposition 3 means thats *s,s *t,t *s, t *t € {neut(a)} = {s, t}, that is,
s*s=s,0ors*s=ts*t=s,ors*t="t.

t*s=s,ort*s=tt*t=s,ort*t=t.
In this case, the equation neut(a) * neut(a) = neut(a) may not hold.
Proposition 4. Let (D, *) be a neutrosophic duplet semi-group with respect to * and let a, b, c € D. Then

(1) neut(a) *b=neut(a) *c=a*b=a*c.
(2) b*neut(a)=c *neut(a) = b*a=c*a.

Proof. (1) Assume neut(a) * b = neut(a) * c. Then
a* (neut(a) * b) = a* (neut(a) * c).
By associative law, we have
(a *neut(a)) * b = (a *neut(a)) * c.

Thus,a *b=a*c. Thatis, (1) holds.
Similarly, we can prove that (2) holds. [

Theorem 1. Let (D, *) be a commutative neutrosophic duplet semi-group with respect to *and a, b € D. Then

neut(a) * neut(b) € {neut(a * b)}.
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Proof. For any a, b € D, we have
a * neut(a) * neut(b) * b = (a * neut(a)) * (neut(b) *b) =a*b.
From this and applying the commutativity and associativity of operation * we get
(neut(a) * neut(b)) * (a * b) = (a * b) * (neut(a) * neut(b)) =a*b.
This means thatneut(a) * neut(b) € {neut(a * b)}. O

Theorem 2. Let (D, ) be a neutrosophic duplet set with respect to *. Then there is no idempotent element in D,
that is,
YaeD,a*a#a.

Proof. Assume that there is a € D such that a * a = a. Then a € {neut(a)}, and a € {anti(a)}, This is a
contraction with Definition 6 (3). O

Since the classical algebraic unitary element is idempotent, we have

Corollary 1. Let (D, *) be a neutrosophic duplet set with respect to *. Then there is no classical unitary element
in D, that is, there isno e € D such thatVa € D,a*e=¢*a=a.

Theorem 3. Let (D, *) be a neutrosophic duplet semi-group with respect to *. Then D is infinite. That is, there
is no finite neutrosophic duplet semi-group.

Proof. Assume that D is a finite neutrosophic duplet semi-group with respect to *. Then, for any a € D,

2

3 n
a,a*a=a",a*a*a=a>,...,a",... €D.

Since D is finite, so there exists natural number m, k such that

Case 1: if k = m, then a™ = a?", that is, a" = a™ * a™, a™ is an idempotent element in D, this is a
contraction with Theorem 2.
Case 2: if k > m, then from a” = a"** we can get

k m*akfm:

& =a mk w gkm _ 2k _ ks gk

a a =a a .

This means that a* is an idempotent element in D, this is a contraction with Theorem 2.

Case 3: if k <m, then from a™ = a"*K we can get
m m+k m s -k m+k % k m+2k.
a=a =a"*a"=a *a* =a ;
a = am+2k =g"* aZk — am+k * aZk — am+3k/,
a" = am+mk

Since m and k are natural numbers, then mk > m. Therefore, from a™ = a"*"*, applying Case 1 or
Case 2, we know that there exists an idempotent element in D, this is a contraction with Theorem 2. [

Theorem 4. Let (D, *) be a neutrosophic duplet semi-group with respect to *and a € D. Then

neut(neut(a)) € {neut(a)}.
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Proof. For any a € D, by the definition of neut(-), we have
neut(a) * neut(neu(a)) = neut(a);

neut(neut(a)) * neut(a) = neut(a).

Then
a* (neut(a) * neut(neut(a))) = a * neut(a);

(neut(neut(a)) * neut(a)) * a = neut(a) * a.

wrong, because the asso
(b*a)*c=a*c=c,butb*@*c)=b*c="0.

4. Weak Neutrosophic Duplet Set (and Semi-Group)

From Theorems 3 and 5, we can see that the structure of the neutrosophic duplet semi-group
is very scarce. What are the reasons for that? The key reason is that under the original definition of
neutrosophic duplet, the idempotent element is not allowed (since it has a corresponding opposite
element). In fact, for any idempotent element a4, we have a € {neut(a)} and a € {anti(a)}, that is, (a, a, a)
is a neutrosophic triplet. Therefore, in order for us to study it more widely, we slightly relaxed the
condition that allowed such (g, 4, a) to exist in a neutrosophic duplet set and introduced a new concept

as follows.

Definition 11. A weak neutrosophic duplet set, (D, *), is a set D, endowed with a well-defined binary law
* such that Va € D, ifa  {neut(a)}, then 3a neutrosophic duplet (a, neut(a)) such that neut(a) € D. If the
associative law holds in weak neutrosophic duplet set (D, *), then call it a weak neutrosophic duplet semi-group.

The situation is quite different from that of the neutrosophic duplet semi-group, as there are many
finite weak neutrosophic duplet semi-groups. See the following examples.

Example 1. Let D = {1, 2, 3}. The operation * on D is defined as Table 1. Then, (D, *) is a commutative
neutrosophic duplet semi-group.

Table 1. Weak neutrosophic duplet semi-group (1).

*1 2 3
112 3
2 2 2 2
33 2 2

In fact, we can verify that (D, *) is a neutrosophic duplet semi-group by MATLAB programming,
as shown in Figure 1.
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Figure 1. Verity weak neutrosophic duplet semi-group by MATLAB.
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Example 2. Let D = {1, 2, 3. The operation * on D is defined as Table 2. Then, (D, *) is a non-commutative

neutrosophic duplet semi-group.

Table 2. Weak neutrosophic duplet semi-group (2).

*1 2
111
212
333
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In this example, “1”, “2”, and “3” are idempotent elements in D, and {neut(1)} = {1, 2},neut(2) = 2,
{neut(3)} = {2, 3}.

Example 3. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 3. Then, (D, *) is a commutative
neutrosophic duplet semi-group.

Table 3. Weak neutrosophic duplet semi-group (3).

*12 3 4
1 3144
2 1234
3 43 4 4
4 4 4 4 4

In this example, “2” and “4” are idempotent elements in D, and neut(2) = 2,{neut(4)} = {1, 2, 3, 4}.
neut(1) = 2, {anti(1)} = @; neut(3) = 2, {anti(3)} = @.

Example 4. Let D = {1, 2, 3, 4{. The operation * on D is defined as Table 4. Then, (D, *) is a non-commutative
neutrosophic duplet semi-group.

Table 4. Weak neutrosophic duplet semi-group (4).

*

= W N~

NN =
N NDNDNIN
W W W W Ww
B W N -

In this example, “2”, “3”, and “4” are idempotent elements in D, and neut(1) = 4,{anti(1)} = @.

Now, we explain all of the neutrosophic duplet semi-groups with three elements. In total, we can
obtain 50 neutrosophic duplet semi-groups with three elements, some of which may be isomorphic.
They are funded by MATLAB programming, as shown in Figure 2.

Definition 12. A weak neutrosophic duplet semi-group (D, *) is called to be cancellable, if it satisfies
Ya,b,ceD,a*b=a*c=b=c;
Va,b,ce D,b*a=c*a=Db=c.

The weak neutrosophic duplet semi-groups in Examples 14 are not cancellable. We give a
cancellable example as follows.
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end

36 - end
37 - for p=1:3
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break
end
for ¢=1:3
if T1(p,@)==p && Il(q,p)==p
np=q;
if (T1(p, 1)==np && T1(1,p)==np) | | (T1(p, 2)==np && T1(2,p)==np)
=0;
break

Figure 2. Find weak neutrosophic duplet semi-group by MATLAB

In this example, for any element a in D, and neut(a) = 0.

Theorem 6. Let (D, *) be a cancellable weak neutrosophic duplet semi-group with respect to *. Then

(1) Va € D, neut(a) is unique.
(2) ¥a € D, neut(a) * neut(a) = neut(a).

(3) Va € D, neut(a) * neut(a) = neut(a * a).

(4) Va,b e D, neut(a) = neut(b).

Proof. (1) For any a € D, we have
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Case 1: if a € {neut(a)}, thena * a = a. Thus
a*a=a=a*neut(a).

By Definition 12, we have a = neut(a). This means that {neut(a)} = {a}, that is, neut(a) is unique.
Case 2:ifa {neut(a)}, assume x, y € {neut(a)}, then

a*x=a=a*y.
By Definition 12, we havex = y. This means that | {neut(a)}| = 1, that is, neut(a) is unique.
(2) If a € {neut(a)}, then a * a = a, by (1) we get a = neut(a), so neut(a) * neut(a) = neut(a).
Ifa {neut(a)}, by the same way with Proposition 3, we can prove that

{neut(a)} * {neut(a)} C {neut(a)}.

Using (1) we have neut(a) * neut(a) = neut(a).
(3) For any a € D, since (by associative law)

(neut(a) * neut(a)) * (a*a)=a*a;
(a*a)* (neut(a) * neut(a)) =a*a.
This means that neut(a) * neut(a) € {neut(a * a)}, but by (1) |{neut(a)}| =1, thus
neut(a) * neut(a) = neut(a * a).
(4) For any a, b € D, since (by associative law)
a * neut(a) * neut(b) *b =a * b.
From this, applying Definition 12,
neut(a) * neut(b) * b = b.
neut(a) * neut(b) * b = b = neut(b) * b.
Applying Definition 12 again,
neut(a) * neut(b) = neut(b).

Similarly, we can get
neut(a) * neut(b) = neut(a).

Hence, neut(a) = neut(b). O

Theorem 7. Let (D,) be a cancellable weak neutrosophic duplet semi-group with respect to *. If D is a finite set,
then D is a single point set, that is, |1D1 =1.

Proof. By Theorem 6, we know that {neut(a) | a € D} is a single point set. Denote neut(a) = e (Va € D).
Assume that D is a finite set, if |D| # 1, then there exists x € D such that x # e. Denote 1D | =n,
D ={ay,ay, ..., a,}. In the table of operation *, consider the line in which the x is located:

xX*ay,x*ay, ..., x*ay
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Since D is cancellable, then x * a1, x * ay, ... , x * ayare different from each other. Thus, Ja; such
that x * a; = e. It follows that (x, neut(x) = e) is not a neutrosophic duplet. Applying Definition 11,
x € {neut(x)} = {e}. Thatis, x # e. This is a contraction with the hypothesis x # e. Hence ID| = 1.
Applying Theorems 2 and 6, we can get the following theorem. [

Theorem 8. Let (D, *) be a neutrosophic duplet semi-group with respect to *. Then D is not cancellable. That is,
there is no cancellable neutrosophic duplet semi-group.

5. On Cancellable Neutrosophic Tripet Groups

Definition 13. A neutrosophic triplet group (D, *) is called to be cancellable, if it satisfies
Va,b,ce D,a*b=a*c=b=c;
Va,b,ce D,b*a=c*a=Db=c.

Example 7. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 5. Then, (D, *) is a cancellable
neutrosophic triplet group.

Table 5. Cancellable neutrosophic triplet group.

* 12 3 4
1 123 4
2 2143
3 3412
4 4321

In this example, neut(1) = neut(2) = neut(3) = neut(4) = 1, and anti(l) = 1, anti(2) = 2, anti(3) = 3,
anti(4) = 4.

Theorem 9. Let (D, *) be a cancellable neutrosophic triplet group with respect to *. Then

(1) Va € D, neut(a) is unique.

(2) Va € D, anti(a) is unique.

(3) Va,be D, neut(a) = neut(b).

(4) (D, *)is a group, the unit is neut(a), Va € D.

Proof. (1) For any a € D, assume x, y € {neut(a)}, then
A*x=a=a*y.

By Definition 13, we have x = y. This means that | {neut(a)} | =1, that is, neut(a) is unique.
(2) For any a € D, using (1), neut(a) is unique. Assume x, y € {anti(a)}, then

a*x=neut(a)=a*y.

By Definition 13, we have x = y. This means that | {anti(a)}| =1, that is, anti(a) is unique.
(3) For any a, b € D, since (by associative law)

neut(a) * b = neut(a) * neut(b) * b.
From this, applying Definition 13,

neut(a) = neut(a) * neut(b).
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On the other hand, since (by associative law)
a * neut(b) = a * (neut(a) * neut(b)).
From this, applying Definition 13 again,
neut(b) = neut(a) * neut(b).

Thus, neut(a) = neut(b).
(4) It follows from (1)~(3). O

Since any group is a cancellable neutrosophic triplet group, by Theorem 9 (3), we have
Theorem 10. The concepts of neutrosophic triplet group and group coincide.

The following example shows that there exists a non-cancellable neutrosophic triplet group,
in which (Va € D) neut(a) is unique and anti(a) is unique.

Example 8. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 6. Then, (D, *) is a non-cancellable
neutrosophic triplet group, but (Va € D) neut(a) is unique and anti(a) is unique.

Table 6. Non-cancellable neutrosophic triplet group.

* 123 4
1 123 4
2 1234
3 1234
4 12 3 4

In this example, neut(1) = anti(1) = 1, neut(2) = anti(2) = 2, neut(3) = anti(3) = 3, neut(4) = anti(4) = 4.

Definition 14. A neutrosophic triplet group (D, *) is called to be weak cancellable, if it satisfies
Va,b,ce D,(a*b=a*candb*a=c*a)=b=c.

Obviously, acancellable neutrosophic triplet group is weak cancellable, but a weak cancellable
neutrosophic triplet group may not be cancellable. In fact, the (D, *) in Example 8 is weak cancellable,
but is not cancellable.

Theorem 11. Let (D, *) be a weak cancellable neutrosophic triplet group with respect to *. Then

(1) Va € D, neut(a) is unique.
(2) Va € D, anti(a)is unique.

Proof. (1) For any a € D, assume x, y € {neut(a)}, then
a*x=a=a*y.

Xfa=a=y*a.

By Definition 14, we have x = y. This means that | {neut(a)} | =1, that is, neut(a) is unique.
(2) For any a € D, using (1), neut(a) is unique. Assume x, y € {anti(a)}, then

a*x=neut(a)=a*y.

X *a=neut(a) =y *a.

By Definition 14, we have x = y. This means that | {anti(a)}| =1, that is, anti(a) is unique.
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The following example shows that there exists a neutrosophic triplet group in which (Va € D)
neut(a) is unique and anti(a) is unique, but it is not weak cancellable. O

Example 9. Let D = {1, 2, 3}. The operation * on D is defined as Table 7. Then, (D, *) is a neutrosophic triplet
group, and (Va € D) neut(a) is unique and anti(a) is unique. However, it is not weak cancellable, since

2*%1=2%2,1*2=2%*2,1#2.

Table 7. Not weak cancellable neutrosophic triplet group.

*

)
WN =
WNN|N
N W W W

In this example, we have
neut(1) = anti(l) = 1, neut(2) = anti(2) = 2, neut(3) = anti(3) = 2.

The following example shows that there exists a commutative neutrosophic triplet group which
(3a € D) anti(a) is not unique.

Example 10. Consider (Z6, *), where * is classical multiplication. Then, (Z6, *) is a commutative neutrosophic
triplet group, the binary operation * is defined in Table 8. For each a € Z6, we have neut(a) in Z6. That is,

neut([0]) = [0], neut([1]) = [1], neut([2]) = [4],

neut([3]) = [3], neut([4]) = [4], neut([5]) = [1];
fanti([O])} =1{[0], [1], 2], [3], [4], [3]},
tanti([1])} = {[1]},
fanti([2])} = {[2], [5]},

{anti([3])} = {[1], [3], [5]},
{anti([4])} = {[1], [4]},
fanti([5])} = {[5]}.

Table 8. Cayley table of (Zg, *).

* (o1 [ 21 31 [ [5]

] o1 [op [0] [0] [0o] @ [0]
] o1 [ 21 81 4 [5]
2] (0] [21 [4 [0] [2] [4]
3] [0 Bl [0] 3 [0] [3]
4] [0] [4 [21 [0] [4 [2]
(5] [0o] [51 [4 [3] [2] [1]

6. Neutrosophic Triplets and Weak Neutrosophic Duplets in BCI-Algebras
Now, we discuss BCl-algebra (X; —, 1).
Theorem 12. Let (X; —, 1) be a BCl-algebra. Then

(1) Vxe X, if{neut (x)} # D andy € {neut (x)}, thenx - 1=x,y -+ 1=1
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(2)  Vx e X, if{neut (x)} # @ and {anti (x)} # @, then z — 1 = x for any z € {anti (x)}.

Proof. (1) Assume y € {neut(x)}, then
X—=y=y—=x=x
Using the properties of BCl-algebras, we have
x=l=x—-Y—=y=y—-x—-y=y—>x=x

y—=l=y—=x—=x)=x—=y—-x)=x—>x=1.
(2) Assume z € {anti(x)}, then
Z — x =x — z = neut(x).
Using (1) and the properties of BCI-algebras, we have
1=neutlx) > 1=z—=x)—=1=cz—=1)—=x—=>1)=z—1) —=x
1=neut(x) > 1l=x—2)—=>1l=x—>1)—=>z—1)=x—Ez—1).

Hence,z —+ 1 =x. O

Example 11. Let D ={a, b, ¢, 1}. The operation — on D is defined as Table 9. Then, (D, —) is a BCI-algebra
(it is a dual form of 1455 in [16]), and (c, 1, c) is a neutrosophic triplet in (D, —).

Table 9. Neutrosophic triplet in BCI-algebra.

— a b ¢ 1
a 1 ¢ ¢ 1
b c 1 1 c
c b a 1 c
1 a b ¢ 1

Theorem 13. Let (X; —, 1) be a BCl-algebra. Then (X, —) is a neutrosophic triplet group if and only if
(X; —, 1) is an associative BCI-algebra.

Proof. Suppose that (X; —) is a neutrosophic triplet group. Then Vx € X, {neut(x)} # @. By Theorem 12,
x — 1 =x. Using Proposition 1, (X; —, 1) is an associative BCI-algebra.

Conversely, suppose that (X; —, 1) is an associative BCl-algebra. Then (X; —, 1) is a group.
Hence, (X; —) is a neutrosophic triplet group. [

Example 12. Let D ={a, b, c, 1}. The operation — on D is defined as Table 10. Then, (D; —, 1) is a BCl-algebra
(it is a dual form of 14.1.1 in [16]), and (D, —) is a neutrosophic triplet group.

Table 10. Neutrosophic triplet group and BClI-algebra.

— a b ¢ 1
a 1 ¢ ¢ 1
b c 1 1 c
c b a 1 c
1 a b ¢ 1

Theorem 14. Let (X; —, 1) be a BCl-algebra. Then (X, —) is not a neutrosophic duplet semi-group.
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7. Conclusions

This paper is focused on the neutrosophic duplet semi-group. We proved some new properties of
the neutrosophic duplet semi-group, and proved that there is no finite neutrosophic duplet semi-group.
We introduced the new concept of weak neutrosophic duplet semi-groups and gave some examples
by MATLAB. Moreover, we investigated cancellable neutrosophic triplet groups and proved that
the concept of cancellable neutrosophic triplet group and group coincide. Finally, we discussed
neutrosophic triplets and weak neutrosophic duplets in BCI-algebras.
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Further results on (¢, €)-neutrosophic subalgebras
and ideals in BCK/BC'I-algebras

G. Muhiuddin, Hashem Bordbar, Florentin Smarandache, Young Bae Jun

G. Muhiuddin, Hashem Bordbar, Florentin Smarandache, Young Bae Jun (2018). Further
results on (g, €,)-neutrosophic subalgebras and ideals in BCK/BCl-algebras. Neutrosophic
Sets and Systems 20, 36-43.

Abstract: Characterizations of afe, €)-neutrosophic ideal are €)-neutrosophic subalgebra to bg@, €)-neutrosophic ideal are
considered. Any ideal ia BCK/BC1-algebra will be realized as provided. Using a collectioof ideals in aBC' K/ BCI-algebra, an
level neutrosophic ideals of songe, €)-neutrosophic ideal. The re- (€, €)-neutrosophic ideal is established. Equivalence relations on
lation between(e, €)-neutrosophic ideal anfk, €)-neutrosophic the family of all (€, €)-neutrosophic ideals are introduced, and re-
subalgebra in &BC K-algebrais discussed. Conditions for gk, lated properties are iestigated.

Keywords: (€, €)-neutrosophic subalgebrggs, €)-neutrosophic ideal.

1 Intr oduction vestigated by seral researchers.

By a BC'I-algebra, we mean a s&f with a special elemertt
Neutrosophic set (NS) developed by Smarandachg,[50] in- anda binary operatior that satisfies the following conditions:
troduced neutrosophic sSgdS) as a more general platform which
extends the concepts of the classic set and fuzzy set, intuitionfé: (Vz,y,2 € X) (((z*y) * (xx2)) * (2 y) = 0),
tic fuzzy set and interval valued intuitionistic fuzzy set. NeutrcE“) (Va,y € X) (z * (xxy)) *y = 0),
sophic set theory is applied to various part which is refered to the

site my (Ve e X) (zxx=0),

http://fs.gallup.unm.edu/neutrosophy.htm. (V) (Vz,ye X) (zxy=0,yxx=0 = z=y).
Jun et al studied neutrosophic subalgebras/ideals Ifia BCI-algebraX satisfies the following identity:
BCK/BCI-algebras based on neutrosophic points (see [1], [(\}) (Vo € X) (0% 2 = 0),

and [1).
In this paper, wecharacterize afe, €)-neutrosophic ideal in athen X is called aBC K -algebra. Any BC K/BCI-algebraX

BCK/BCI-algebra. We show that any ideal ifBC' K/BCI- satisfies the following conditions:

algebra can be realized as level neutrosophic ideals of some

(€, €)-neutrosophic ideal. We investigate the relation between (Vz € X) (z 0 =z), (2.1)
(€, €)-neutrosophiddeal and(e, €)-neutrosophic subalgebra r<y = zxz<y*z -
in a BCK-algebra. V& provide conditions for arfe, €)- (Vz,y,2 € X) <y = zky<zkz )’ (2.2)
neutrosophic subalgebralte a(<, €)-neutrosophic ideal. Using (Va2 € X) (zsy) # 2 = (3%2) +y), 2.3)

a collection of ideals ira BCK/BC1I-algebra, we establish an
(€, €)-neutrosophic ideal. We discuss equivalence relations on  (V4: 4,2 € X) ((z % 2)  (y * 2) < w xy) (2.4)

the family ofall -neut hic ideals, and i tigate re- . :
Iateeda[;rrl:)};;grtiis(e’ €)-neutrosophic ideals, and investigate rE\}/vheregc < yif and only ifz x y = 0. A nonempty subsef of a

BCK/BCI-algebraX is called asubalgebreof X if z xy € S
forall z,y € S. A subsetl ofa BOCK/BC1I-algebraX is called

2 Preliminaries anideal of X if it satisfies:
A BCK/BCI-algebra is an important class of logical algebras 0el, (2.5)
introduced by K. I&ki (see [2] and [3]) and was extensively in- VeeX)Vyel)(zxyel = xzel). (2.6)
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We refer the reader to the books [],for further information
regardingBC K/ BCI-algebras.

For any family{a; | ¢ € A} of real numbers, we define
\/{ai | i€ A} :=sup{a; | i € A}
and

Ndai i€ A} :=inf{a; | i € A},

If A ={1,2}, we will also usez; V as anda; A as instead of
VH{a; | i € A} andA{a; | i € A}, respectively.

Let X be a non-empty set. Aeutrosophic sefNS) in X (see
[9]) is a structure of the form:

Ao = {{2: Ar(2), Ar (), Ap(2)) | « € X}

where Ay : X — [0,1] is a truth membership function
A; : X — [0,1] is an indeterminate membership function, al
Ar : X — [0,1] is a false membership function. For the sake
simplicity, we shall use the symbdl.. = (A, A;, Ar) for the
neutrosophic set

Ao = {{z; Ar(z), Ar(z), Ap(z)) | © € X}.

Given a neutrosophic set.. = (Ar, A;, Ar) in a setX,
a, 8 € (0,1] and~y € [0, 1), we consider the following sets:

Te(Avsa) :i={z € X | Ar(z) > a},
Ie(Av; B) = A{z € X [ As(x) = B},
Fe(Av;y) i ={z e X | Ap(z) <~}

We sayTc(A-; ), Ic(Av; B) and Fe (A~ ;) areneutrosophic
€-subsets.

A neutrosophic setd.. = (Ar,A;, Ar) in a BCK/BCI-
algebraX is called an(e, €)-neutrosophic subalgebraf X (see
[5]) if the following assertions are valid.

€ Te(Avian), y € Te(Avs ay)
= axy € Tc(Av; oz N ay),

v € Ic(Av; Be), y € Ie(A; By)
= xxy € Ic(A; By A By),

T € Fe(Av;va), y € Fe(Avsyy)
= %y € Fe(Av;vz V)

(Va,y € X) 2.7)

forall ag, ay, Bz, By € (0,1] and~y,, v, € [0,1).

A neutrosophic setd.. = (Ar,A;, Ar) in a BCK/BCI-
algebraX is called an(e, €)-neutrosophic ideabf X (see [7])
if the following assertions are valid.

) (2.8)

(VxEX)(

x€Te(Av;az) = 0€ Te(An; )
S IG(A“‘;ﬁm) = 0¢€ IE(AN;ﬂx)
z € Fe(Avive) = 0€ Fe(Av;va)

Collected Papers, IX

and

rxy € Te(Avsag), y € Te(An; ay)
= e Te(Av;ag Nay)

v xy € Ie(Av; Ba), y € Ic(An; By)
= x € Ic(Av; Ba N By)

rxy € Fe(Av;va), y € Fe(An;yy)
=z € Fc(Av; vz Vyy)

(Vz,y € X)

2.9)

for all oy, vy, Bz, By € (0,1] @and-y,, vy, € [0,1).

3 (€&, €)-neutrosophic subalgebras and

ideals

We first provide characterizations of g, €)-neutrosophic
ideal.

r']'gheorem 3.1. Given a neutrosophic set.. = (Ar, Ar, Ar)in

BCK/BCTI-algebra X, the following assertions are equiva-

(1) A~ = (Ar, A1, Ar) is an(g, €)-neutrosophic ideal oX .

(2) A. = (Ar, A;, Ar) satisfies the following assertions.

) (3.1)
) (3.2)

Proof. Assume thatA.. (Ap, A1, Ap) is an (g€, €)-
neutrosophic ideal ofX. Suppose there exist b,c € X be
such thatAr(0) < Ar(a), A7(0) < Ar(b) and Ap(0) >
Ap(c). Thena € Tc(Av;Ar(a)), b € Ic(Av; Ar(b)) and
c € Fe(A; Ar(c)). But

Ar(0) > Ar(z),
(V.Z‘ S X) ( A[(O) > A[((ﬂ),
Ar(0) < Ar(z)

and

Ar(x) > Ar(z *y) A Ar(y)
Ap(z) > Ar(x xy) AN Ar(y)

(Vz,y € X) (
Ap(x) < Ap(z*y)V Ar(y)

0¢ Te(Av; Ar(a)) NIe(Av; Ar(b)) N Fe(An; Ap(c)).

This is a contradiction, and thudr(0) > Ar(x), A;(0) >
Aj(z) and Ap(0) < Ap(z) for all x € X. Suppose that
AT(IL') < AT(IC * y) N AT(y), A[(a) < A[(a * b) N A](b)
andAp(c) > Ap(cxd) vV Ap(d) for somez, y, a,b, ¢,d € X.
Takinga := Ar(zxy)ANAr(y), B := Ar(axb) AAr(b) andy :=
Ap(cxd)V Ap(d) imply thatzxy € Te(Av; ),y € Te(Av; @),
axb € Ic(A;B),b € Ic(Av;B), cxd € Fc(Av;v) and
d € Fe(Av;). Butz ¢ Te(Av;a), a ¢ Ic(A-;B) and
¢ ¢ Fc(A~;~). Thisis impossible, and so (3.2) is valid.
Conversely, supposé.. = (Ar, A;, Ar) satisfies two con-
ditions (3.1) and (3.2). For any,y,z € X, leta, 5 € (0,1]
andy € [0,1) be such that € Te(A-; ),y € Ic(A; 3) and
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z € Fe(A~;7). Itfollows from (3.1) thatdr(0) > Ar(z) > «,

Ar(0) > As(y) > B andAp(0) < Ap(z) < 7 and so that
0eTc(Av;)NIc(Av; B)NFe(Av;y). Leta, b, e, d,z,y € X

be such thatt x b € Tc(Av;a,), b € Te(Av;ap), cxd €

Ie(Av;Be), d € Ie(AviBa), v xy € Fe(Av;v:), andy €

Fe(A~;ny) for aq, o, Be, Ba € (0,1] and~,, v, € [0,1). Us-

ing (3.2), we have

AT( ) > AT(a* b) /\AT(b) > g N\ ap
A[(C)>A[(C*d)/\A[( )Z /\ﬁd
Ap(z) < Ap(zxy) VvV Ap(y )<%\/7y

Hencea € Tc(Av;aq A ), ¢ € Ic(A; B A Bq) andax €
Fe(Av;vz V). Therefored., = (Ap, Ar, Ar) is an(e, €)-
neutrosophic ideal ok . O

Theorem 3.2. Let A.. = (Ar, A;, Ar) be a neutrosophic set
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that

AT(.%') < AT(;E * y) A AT(y),
A[(G) < AI(a*b)/\A[(b),
Ap(u) > Ap(uxv)V Ap(v)

for somezx, y,a,b,u,v € X. Takinga := Ar(x xy) A Ar(y),
B :=Ar(a*b) NAr(b) andy := Ap(u=*v) vV Ap(v) imply that
a,f € (0,1],y €[0,1), xxy € Te(Av;a),y € Te(Av; ),
axb € Ic(A;0),b € Ic(Av;8), uxv € Fe(Av;y) and
v € Fe(Av;n). Butz ¢ Te(Av; ), a ¢ Ie(Av; 3) andu ¢
Fc(A-;~). Thisis a contradiction sSinCB- (A ; «), Ic(A~; )
andF¢ (A ;) are ideals ofX. Thus

Ar(z) > Ar(z *y) A Ar(y),
Ar(w) > Ar(z xy) A Ar(y),
Ap(z) < Ap(zxy) V Ap(y)

ina BCK/BC1I-algebraX. Then the following assertions are

equivalent.

(1) A~ = (Ap, A;, Ap)is an(€, €)-neutrosophic ideal ok

(2) The nonempty neutrosophice-subsets Te(A; ),
Ic(A.;B8) and Fc(A.;vy) are ideals of X for all
a,B € (0,1l andy € [0,1).

Proof. Let A = (Ar, A1, Ar) be an(e, €)-neutrosophic ideal
of X and assume th&8t-(A; «), Ic(A~; 8) andFc (A ;) are
nonempty fora, 5 € (0,1] and~ € [0,1). Then there exist
x,y,2z € X suchthatr € Tc(Av;a), y € Ic(A;8) andz €
Fe(A; ). It follows from (2.8) that

0€Te(Av;a) NIe(Av; B) N Fe(Avsy).
Let z,y,a,b,u,v € X be such thatr x y € Tc(A;q),

y € Te(Av;a), axb € Ic(Av;B), b € Ie(Av;B), uxv €
Fc(Av;y)andv € Fc(A;y). Then

Ar(x) > Ar(zxy) NAr(y) > aha =«
Ar(a) > Ar(axb) NA(b) > BAB=0
Ap(u) < Ap(uxv)V Ap(v) <yVy=17y

by (3.2), and sox € Tc(A~;a), a € I(A-;0) a

u € Fe(A~;7). Hence the nonempty neutrosopkﬂesubsets
Tc(Av;a), Ic(Av; B) and Fe(A~; ) are ideals ofX for all
a,f € (0,1] andy € [0,1).

Conversely, letA.. = (Ar, A;, Ar) be a neutrosophic
set in X for which Te(Av;a), Ic(A;B) and Fe(Av;v)
are nonempty and are ideals &f for all a,3 € (0,1] and
v € [0,1). Assume thatdr(0) < Ar(z), Ar(0) < Ar(y)
and Ap(0) > Ap(z) for somez,y,z € X. Thenz €
Te(Av; Ar(2)), y € Ie(Av; Ar(y)) andz € Fe(Av; Ap(2)),
that is, Tc(A; @), Ic(A~; ) and Fc(A.;~) are nonempty.
But0 ¢ Te(Av; Ar(x)) N Ie(Av; Ar(y)) N Fe(Av; Ap(2)),
which is a contradiction sinc&c: (A-; Ar(z)), Ic(Av; Ar(y))
and F¢(A.; Ap(z)) are ideals ofX. HenceAr(0) > Ar(x),
Ar(0) > Aj(xz) andAp(0) < Ap(z) forallz € X. Suppose
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for all x,y € X. ThereforeA. = (Ar, A;, Ar) is an (€,
€)-neutrosophic ideal oK by Theorens.1. O

Proposition 3.3. Every (€, €)-neutrosophic idealA.
(Ar, A;, Ar) of a BCK/BC1I-algebra X satisfies the follow-
ing assertions.

(Va,y € X) (mgy:{

(Vz,y,2 € X) (gc*ygz =

(3.3)

Proof. Letx,y € X be such that < y. Thenz * y = 0, and so

Ar(z) > Ar(zxy) N Ar(y) = AT(O)AAT(y)=AT(y)7
Ar(z) = Ar(zxy) A Ar(y) = Ar(0) A Ar(y) = Ar(y),
Ap(z) < Ap(x*y) V Ar(y) = Ar(0) V Ar(y) = Ar(y)

by Theorem3.1. Hence (3.3) is valid. Let,y,z € X be such
thatx * y < z. Then(z x y) * z = 0, and thus

Ar(z) = Ar(z +y) A Ar(y)
> (Ar((z xy) * 2) N Ap(2)) A Ar(y)
> (Ar(0) A Ar(2)) A Ar(y)
> Ar(z) N Ar(y),
Ar(z) > Ar(zxy) AN Ar(y)
1((zxy) = 2) NAr(z)) N Ar(y)
( )N AL(2)) N Ar(y)
z) NAr(y)

’:.;

A

—~

(AVARAVAR VARV

h>
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and

Ap(z) < Ap(zxy) V Ar(y)
Ar((z*xy) x2)V Ar(2)) V Ar(y)
A ( )V AR(2)) vV Ar(y)

z)V Ar(y)

—

VAN VAN VAN VAN

{L
A*q

by Theorens.1.

Theorem 3.4. Any ideal of aBC' K /BCI-algebraX can be re-
alized as level neutrosophic ideals of sofre €)-neutrosophic
ideal of X.

Proof. Let I be an ideal of aBCK/BCI-algebraX and let

A. = (Ar, A;, Ar) be a neutrosophic set iX given as fol-
lows:
a ifzel,
Ar: X —[0,1], 20— { 0 otherwise,
6 ifxel,
Ar: X - [0, { 0 otherwise,
A X 0.1 v ifxel,
piX = [01], w0y otherwise
where(a, 3, ) is a fixed ordered triple if0, 1] x (0,1] x [0, 1).
ThenTc(Av;a) = I, Ic(A;B8) =1 andFe(AN,y) I
<

Obviously,AT( ) > Ar(x), Ar(0) > Aj(z) and Ap(0)
Ap(z)forallz € X. Letz,y € X. If zxy € I andy € I, then
x € I. Hence

Ar(z xy) = AT(y) Ar(z) = a,
Ar(z xy) = Ar(y) = Ar(z) = 3,
Ap(zxy) = Ap(y) = Ar(z) =7,
and so
Ar(z) > Ar(z *y) A Ar(y),
Ar(x) > Ar(z xy) AN Ar(y),
Ap(r) < Ap(z*y) vV Ar(y).

If x+xy ¢ I andy ¢ I, then

Ar(zxy) =
Ar(z xy) =
Ap(xzxy) =

Ar(y) =
Ar(y) =
Ar(y)

Thus

zxy) A Ar(y),
rxy) AN Ar(y),

(x*xy)V Ap(y).

> Ar
> A
< Ap
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If zxy € Iandy ¢ I, then

Ar(xxy) = aandAr(y) =0,
Ar(zxy) = gandA;(y) = 0,
Ap(x*xy) =vandAp(y) =1,

It follows that

Ar(z) 2 0 = Ar(z xy) A Ar(y),
Ar(z) 2 0= Ar(zxy) A Ar(y),
Ap(z) <1=Ap(zxy)V Ar(y).

Y

Similarly, if x x y ¢ I andy € I, then

Ar(x) > Ap(z +y) A Ar(y),
A[(.’lﬁ) Z A[(SL’ * y) N A[(y),

ThereforeA.. = (Ar, Ar, Ar) is an(€, €)-neutrosophic ideal
of X by Theorens.1. This completes the proof. O

Lemma 3.5 ([5]). A neutrosophic sefl.. = (Ar, A7, Ar)ina
BCK/BCI-algebraX is an(e, €)-neutrosophic subalgebra of
X ifand only if it satisfies:

) . (3.5)

Theorem 3.6. In a BCK-algebra, every(€, €)-neutrosophic
ideal is an(e, €)-neutrosophic subalgebra.

Ar(z*y) > Ar(z) N Ar(y)
Ar(z*xy) > Ar(z) A Ar(y)

(Va,y € X) (
Ar(zxy) < Ap(x) V Ap(y)

Proof. Let A = (Ar, A, Ar) be an(e€, €)-neutrosophic ideal
ofaBCK-algebraX. Sincerxy < xforall z,y € X, it follows
from Propositior3.3and (3.2) that

Ar(z*y) 2 Ar(z) = Ap(z xy) A Ar(y) = Ar(z) A Ar(y),
Ar(zxy) > Ar(z) > Ar(zxy) ANAr(y) > Ar(z) A Ar(y),
Ap(zxy) < Ap(z) < Ap(zxy) V Ar(y) < Ap(z) V Ar(y).

ThereforeA.. = (Ar, A1, Ar) is an(€, €)-neutrosophic subal-
gebra ofX by Lemma3.5. O

The following example shows that the converse of Theorem

3.6is not true in general.

Example 3.7. Consider a seX = {0,1,2,3} with the binary
operation« which is given in Tablel.
Then(X;«,0) is aBCK-algebra (see [6]). Lefi .
Ar) be a neutrosophic set i defined by Table
It is routine to verify thatd.. = (Ar, Ar, Ar) is an(e, €)-
neutrosophic subalgebra of. We know that/-(A.;3) is an
ideal of X forall 8 € (0,1]. If « € (0.3,0.7], thenT¢ (A~; ) =
{0,1,3} is not an ideal ofX. Also, if v € [0.2,0.8), then
Fc(Ao;v) = {0,1,3} is not an ideal ofX. ThereforeA..
(Ar, A;, Ar) is not an(e, €)-neutrosophic ideal X by The-
orem3.2.

- (AT7 AIv
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. i i t :
Table 1: Cayley table for the binary operation “+” NG tWo cases

N 0 1 B 3 a=\/{ie A" |i<a}anda # \/{i e A" |i<a}.

0 0 0 0 0 ) N

1 1 0 0 1 First case implies that

; § :1,) g (2) x€Tc(Av;a) & x e Dforalli < « (3.9)

@I’EQ{D1|Z<OL}

Hencelc(A.;a) = N{D; | i < a}, whichis an ideal ofX. For
the second case, we claim thHat(A;a) = U{D; | i > a}.

Table 2: Tabular representation.df. = (Ar, A;, A ) )
P (Ar, Ar, Ar) If € U{D; | i > a}, thenz € D, for somei > «. Thus

X Ar(z) Ar(z) Ap(x) Ar(z) >i> a,and s € Te(Av;a). If x ¢ U{D; | i > a},
0 0.7 0.9 0.2 thenz ¢ D, foralli > . Sincea # \/{i € AT | i < a},
1 0.7 0.6 0.2 there existg > 0 such thala — ¢,) N AT = (). Hencer ¢ D;
2 0.3 0.6 0.8 for all i > o« — ¢, which means that it € D, theni < o — «.
3 0.7 0.4 0.2 ThusAr(z) < a —e < o, and sar ¢ Te(A~;«). Therefore

Te(Av; o) = U{D; | i > a} which is an ideal ofX since{Dy,}
forms a chain. Similarly, we can verify that (A ; 3) is an ideal

) N _ of X. Finally, we consider the following two cases:
We give a condition for afie, €)-neutrosophic subalgebra to

be an(e, €)-neutrosophic ideal. = /\{j e A |y < j}andy # /\{j e AF |y <j}.

Theorem 3.8. Let A.. = (Ar, A;, Ar) be a neutrosophic set
ina BCK-algebraX. If A. = (Ap, A7, Ap) is an (g, €)-
neutrosophic subalgebra of that satisfies the conditiog8.4), z € Fe(Av;y) & x e Djforallj >y

then it is an(e, €)-neutrosophic ideal oX . saeeniD,|j > (3.10)

For the first case, we have

Proof. Takingz = y in (3.5) and using (IIl) induce the condition

: : and thusFe (A;v) = N{D, | 7 > ~} which is an ideal ofX.
(3.1). Sincer x (x*xy) < yforallz,y € X, it follows from (3.4) The second case implies tht (A:) = U{D; | j < ~}. In

that fact, if € U{D; | j < v}, thenz € D; for somej < ~. Thus
Ap(z) > Ap(z «y) A Ap(y), Ap(z) < j < v, thatis,z € Fe(A~;v). HenceU{D; | j <
Ar(z) > Ar(z x y) N Ar(y), 7} C Fe(Av;y). Nowif o ¢ U{D; | j < v}, thenz ¢ D; for
Ap(z) < Ap(z+y) V Ar(y) all j < . Sincey # A{j € AT | v < j}, there existg > 0

such thaty, y+)NAT is empty. Hence ¢ D; forall j < y+e,
for all z,y € X. ThereforeA. = (Ar, A;, Ap)is an(e, andsoifr € D;,thenj > vy+e. ThusAp(z) > v+¢ > v, and
€)-neutrosophic ideal ok by Theorens.1. O hencer ¢ Fe(A~;v). ThusFe(Av;y) CU{D; | j <~}, and

) thereforeFc (A;v) = U{D; | j < v} which is an ideal ofX.
Theorem 3.9. Let{D;, | k € AT U AT U AT} be a collection of Consequentlyd.. — (Ar, /Jlu Ap) is an(e, €)-neutrosophic
ideals of aBC'K/BCI-algebra X, whereA”, A" and A" are 4oa of ¥ by Theorens.2. O

nonempty subsets ff, 1], such that

T I F A mappingf : X — Y of BCK/BCI-algebras is called
X={DalacA }U{Ds|[BeA}U{Dy|7vEA (}3’6) a homomorphisnif f(z % y) = f(z)  f(y) for all z,y € X.
: Note that if f : X — Y is a homomorphism oBCK/BC1I-
(Vi,j e A"UANM UAF) (i > 5 & D;C Dy). (3.7) algebras, therf(0) = 0. Given a homomorphisnf : X — Y
of BCK/BC1I-algebras and a neutrosophic get = (Ar, Aj,
LetA. = (A7, A;, Ar) be a neutrosophic set iX defined as Ap)in'Y, we define a neutrosophic séf. = (A%, A{, Aj;) in
follows: X, which is called thénduced neutrosophic set, as follows:
Ar: X = [0,1], z— V{a € AT |z € D,},

Ar: X — 00,1, = \/{Be€ Al |z € Dg}, (3.8)
Ap: X — 0,1, z— AN{y € AF |z € D,}.

Al X —[0,1], z — Ap(f(2)),
AT X —[0,1], z — Af(f(2)),
AL X —[0,1], @ — Ap(f(z)).

Theorem 3.10. Let f : X — Y be a homomorphism of
Proof. Leta, 5 € (0,1]andy € [0,1) besuchthalc (A.; ) # BCK/BCI-algebras. IfA. = (Ar, A1, Ap) is an (€,
0, Ic(A~; B) # 0 andFc(A~;y) # 0. We consider the follow- €)-neutrosophic ideal ot”, then the induced neutrosophic set

ThenA. = (Ar, Ar, Ar) is an(&, €)-neutrosophic ideal oX .
[0,
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Af = (AL A Al)in X is an(e, €)-neutrosophic ideal ok .

Proof. For anyz € X, we have

Al (2) = Ar(f(x)) < Ar(0) = Ar(f(0)) = A%(0),
Al(x) = A;(f(2)) < A7(0) = Ar(£(0)) = A} (0),
Al (z) = Ap(f(z)) > Ap(0) = Ap(£(0)) = AL(0)

Letx,y € X. Then

and

ThereforeA!, = (Af., A, AL)is an(e, €)-neutrosophic ideal for all A,

of X by TheorenB.1. O

Theorem 3.11.Let f : X — Y be an onto homomorphism o

BCK/BCI-algebras and letA.. = (Ar, A;, Ar) be a neutro-

sophic set irf”. If the induced neutrosophic sdf’, = Aé, Af,
A{;) in X is an(e, €)-neutrosophic ideal ok, thenA.. = (Ar,
Aj, Ar)is an(eg, €)-neutrosophic ideal of".

Proof. Assume that the induced neutrosophic 8¢t = (A7,

Al ATYin X is an (€, €)-neutrosophic ideal of¢. For any
x €Y, there existss € X such thatf(a) = x sincef is onto.
Using (3.1), we have

Ar(z) = Ar(f(a)) = Al(a) < AL(0) = Ar(£(0)) = Ar(0)
Ar(z) = Ar(f(a)) = Af(a) < AJ(0) = Ar(£(0)) = A;(0),
Ap(z) = Ap(f(a)) = AL(a) > AL(0) = Ap(f(0)) = Ap(0)

Letz,y € Y. Thenf(a) = x and f(b) = y for somea,b € X.
It follows from (3.2) that
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and

ThereforeA.. = (Ar, A7, Ar) is an(€, €)-neutrosophic ideal
of Y by Theorens.1. O

Let Vic,e)(X) be the collection of al(€, €)-neutrosophic
ideals of X and leta, 8 € (0,1] and~y € [0,1). Define binary
relationsR§, Rf andR}. on N ¢ (X) as follows:

AIR’?BI & Ic(Av; B) = Ie(B; B)
ArREBr & Fe(Av;y) = Fe(Ba;v)

(3.11)

= (AT, A[, AF) and B. = (BT, By, BF) in
/\/(e,e)(X)-

Clearly R$, RY and R}, are equivalence relations on

(ee X. For anyA. = (Ar, A, Ap) € N o)(X),
~]r (resp., [A.]; and [A.]r) denote the equivalence
class ofA. = (Ar, A1, Ap) in Nic ¢)(X) underR$ (resp.,

R} andR},). Denote byN ¢ ¢)(X)/R%, Nic.c)(X)/R} and
N(e,e)(X)/R}. the collection of all equivalence classes under
R$, RY andR7,, respectively, that is,

Ne.o)(X)/Rg = {[A]r [ A~
Nie.o)(X)/R] = {[A]1 | A
Ne.oy(X)/Rp ={[A~]r | A~

X) denote the family of all ideals oX. Define

= (Ar, A1, Afp) € Me,e)(X)v
= (ATaAvaF) € MG,G)(X)'
= (ATvAIaAF) € -A/(E,E)(X)'

Now let Z(

' mapsf,, g andh,, from N ¢)(X) to Z(X) U {0} by

fa(AL) =Te(Avsa), gp(An) = Ie(Av; B) and

hy(Ax) = Fe(Ax;7),
respectively, for allA. = (Ar, A7, Ar) in N ¢)(X). Then
far g3 andh., are clearly well-defined.

Theorem 3.12. For any«, 5 € (0,1] and~ € [0,1), the maps
far gp @andh., are surjective fromV¢ ¢y (X) to Z(X) U {0}.

Proof. Let0.. := (07, 07, 1r) be a neutrosophic set i where
Or, Oy and 1p are fuzzy sets inX defined byOr(z) = 0,

01( ) = 0andlg(z) = 1 for all z € X. Obviously,
= (0, 07, 1p) is an (€, €)-neutrosophic ideal ofX.
Also fa(0~) = Te(0ns0) = 0, g5(0~) = Ic(0~;8) =
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and h,(0~) = Fe(0~;y) = 0. For any ideall of X, let Proof. Consider thge, €)-neutrosophic ided.. := (07, Oy,
A. = (Ar, A1, Ar) be the(g, €)-neutrosophic ideal o 1) of X which is given in the proof of Theoref12. Then
in the proof of Theoren3.4. Thenf,(A.) = Te(Av; ) = I,

98(A) = Ie(Av;B) = T andhy(A) = Fe(Aw;y) = 1. $al02) = fa(0~) Nha(0) = Te(0~; ) N Fe (005 0) =0,
Thereforef.,, g5 andh., are surjective. O #s(0~) = g5(0~) Nhg(0~) = Ie(0~; B) N Fe(0~; 8) = 0.

. ., For any ideall of X, consider the(c, €)-neutrosophic ideal
Theorem ~ 3.13. The quotient sets N(G’e)_(X)/R " Ao = (Ar, A7, Ap) of X in the proof of Theorens.4. Then
N(e,e)(X)/Rg and N e (X)/R}, are equivalent to
Z(X)U {0} foranya, 8 € (0,1] andy € [0, 1). Val(A) = fa(AL) Nho(AL)

Proof. Let A = (Ap, A, Ap) € Nic,¢)(X). Foranya, 5 € = TelA~ia)nFe(Ania) =1

(0,1) andy € [0,1), define and
fi: Neoy(X) /R — T(X) U {0}, [A]r — fa(AL), (AL) = gs(A) Nha(AL)
95+ Nie.o)(X)/RY = Z(X) U{0}, [A]r = gs(A), - Ziz(AN;ﬂ) ﬁﬁFe(AN;ﬁ) =1

h:: Nie,e)(X)/RE — Z(X) U {0}, [Al]p — hy(AL).

Y

Thereforep, andyg are surjective. O
Assume thatf,(A~) = fa(B~), g8(A~) = gp(B~) and

hy(A~) = hy(B.) for B. = (Br, Br, Br) € Ne)(X).
ThenTe(Av;a) = Te(Bwja), Ie(Av; B) = Ie(Bw; f) and
Fe(An;7) = Fe(B.;~) whichimply thatA; R Br, A;RY By
and AFR’]Y?BF Hence [AN]T = [BN}T, [AN][ = [BN]]
and [A.]r = [B.]r. Thereforef;, g5 and h are injec-
tive. Consider thge, €)-neutrosophic idead.. := (0r, Oy,
1r) of X which is given in the proof of Theore®.12. Then
Fa((0-]7) = fa(02) = Te(0~;a) = 0, g5([0~]1) = gs(0~) = Proof. Givena, 3 € (0,1), define two maps;, andyj as fol-
Ie(0~;8) = 0, andh3([0~]p) = hy(0~) = Fe(0-;7) = 0. lows:
For any ideall of X, consider the(e, €)-neutrosophic ideal .

: %:/\/(e,@(X)/%—J(X)U{ },[ ~IRa H%(A )
oy e o et mwomad men 3 e TR Bl

()—I(N;ﬂ)—landh*([])—h(fl) o . _
FG(AN,V) _EI Hencef;, g5 andh* arerurjectlve and thehc o ([Ar.) = @5 ([B~]r,) and @B([AN]RLJ) -

proof is over. O #5 ([B-lr,) for all [Al]z,,[Blr, € Nee)(X)/¢a and
[A ]Rg’ [BN]Rﬁ € '/V.(E,E)(X)/Qoﬁ’ then

Theorem 3.15. For any «,8 € (0,1), the quotient sets
Nie,e)(X)/pa and N ¢)(X)/pp are equivalent taZ(X) U

For anya, 8 € [0, 1], we define another relatiorfs, andR FalA) N ha(A) = fa(Bo) N ho(Bo)
on N ¢y (X) as follows:
(e:€)
and
(Av,B.) € Ry & Te(Av;a) N Fe(An; )
=Te(Bio) N Fe(Buia) (599 98(A~) Nhg(AL) = gs(B~) Nhg(B~),
(Av, Br) € Rp & 1e(Av; B) N Fe(Ax; B) i
= Ic(B~; B) N Fe(B-; 3) thatis,
forall A. = (Ar, A;, Ap) and B = (Br, By, Bp) in Te(Av;o) NFe(Avia) = Te(Basa) N Fe(Brs )

N(e,e)(X). Then the relation®,, andR s are also equivalence
relations onV¢ ¢ (X). and

Theorem 3.14. Givena, 3 € (0, 1), we define two maps Ie(Av; B) N Fe(Ani f) = Ie(B~i B) N Fe(Brs )
Hence(A.,B.) € R, and(A.,B.) € Rgs. It follows that
a M X)u{n B
po: Mee(X ) (f EA {) b ha(AL), [A-lr, = [B.lr, and[AJz, = [B~lr,. Thusy; andyj
o5 Nic o (X ) 7(x) U {0}, (3.13) are injective. Consider thes, €)-neutrosophic idedl .., := (07,
e s g(A) N hg(AL) 07, 1r) of X which is given in the proof of Theoreﬁllz Then
for eachA. = (A7, A1, Ar) € Nic,e)(X). Theny, and g o ([0~]Ro) = Pa(0~) = fa(0~) N ha(0~)
are surjective. =Tc(0o;a) N Fe(0;a) =0
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and

¢% ([0~]rs) = ©5(0~) = gs(0~) Nha(0.)
=1c(0~; 8) N Fe(0-; 8) = 0.

For any ideall of X, consider the(e, €)-neutrosophic ideal
A. = (Ar, Ay, Ap) of X in the proof of Theoren3.4. Then

P ([Ax]ra) = @a(An) = fa(An) Nha(AL)
=Tc(Av;a)NFe(Av;a) =1

and

o5 ([Ax]r,) = 0p(Ax) = gs(A~) N h(AL)
=Ic(A;B)NFe(Av; B) = 1.

Thereforep?, and ¢j; aresurjective. This completes the proof.
O
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Algebraic Structure of Neutrosophic Duplets
in Neutrosophic Rings (ZU ), (QU I)and (RU I)

W.B. Vasantha Kandasamy, llanthenral Kandasamy, Florentin Smarandache

W.B. Vasantha Kandasamy, llanthenral Kandasamy, Florentin Smarandache (2018). Algebraic Structure
of Neutrosophic Duplets in Neutrosophic Rings <Z U 1>, <Q U I> and <R U I>. Neutrosophic Sets and
Systems 23, 85-95

Abstract: The concept of neutrosophy and indeterminacy I was introduced by Smarandache, to deal with neutralies.
Since then the notions of neutrosophic rings, neutrosophic semigroups and other algebraic structures have been de-
veloped. Neutrosophic duplets and their properties were introduced by Florentin and other researchers have pursued this
study.In this paper authors determine the neutrosophic duplets in neutrosophic rings of characteristic zero. The
neutrosophic duplets of (Z U I), (Q U I) and (R U I); the neutrosophic ring of integers, neutrosophic ring of rationals
and neutrosophic ring of reals respectively have been analysed. It is proved the collection of neutrosophic duplets
happens to be infinite in number in these neutrosophic rings. Further the collection enjoys a nice algebraic structure like
a neutrosophic subring, in case of the duplets collection {a—al|a € Z} for which 1—T acts as the neutral. For the other
type of neutrosophic duplet pairs {a — al, 1 — dI} where a € R" and d € R, this collection under component wise
multiplication forms a neutrosophic semigroup. Several other interesting algebraic properties enjoyed by them are
obtained in this paper.

Keywords: Neutrosophic ring; neutrosophic duplet; neutrosophic duplet pairs; neutrosophic semigroup; neu-
trosophic subring

1 Introduction

The concept of indeterminacy in the real world data was introduced by Florentin Smarandache [1, 2] as Neu-
trosophy. Existing neutralities and indeterminacies are dealt by the neutrosophic theory and are applied to real
world and engineering problems [3, 4, 5]. Neutrosophic algebraic structures were introduced and studied by
[6]. Since then several researchers have been pursuing their research in this direction [7, 8, 9, 10, 11, 12].
Neutrosophic rings [9] and other neutrosophic algebraic structures are elaborately studied in [6, 7, 8, 10].
Related theories of neutrosophic triplet, neutrosophic duplet, and duplet set was studied by Smarandache
[13]. Neutrosophic duplets and triplets have interested many and they have studied [14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24]. Neutrosophic duplet semigroup [18], the neutrosophic triplet group [12], classical group
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of neutrosophic triplet groups[22] and neutrosophic duplets of {Z,,,,, x } and {Z,,, x } [23] have been recently
studied.

Here we mainly introduce the concept of neutrosophic duplets in case of of neutrosophic rings of character-
istic zero and study only the algebraic properties enjoyed by neutrosophic duplets, neutrals and neutrosophic
duplet pairs.

In this paper we investigate the neutrosophic duplets of the neutrosophic rings (Z U I), (Q U I) and (R U
I). We prove the duplets for a fixed neutral happens to be an infinite collection and enjoys a nice algebraic
structure. In fact the collection of neutrals for fixed duplet happens to be infinite in number and they too enjoy
a nice algebraic structure.

This paper is organised into five sections , section one is introductory in nature. Important results in this
paper are given in section two of this paper. Neutrosophic duplets of the neutrosophic ring (Z U I), and
its properties are analysed in section three of this paper. In the forth section neutrosophic duplets of the rings
(QUI) and (RUI); are defined and developed and several theorems are proved. In the final section discussions,
conclusions and future research that can be carried out is described.

2 Results

The basic definition of neutrosophic duplet is recalled from [12]. We just give the notations and describe the
neutrosophic rings and neutrosophic semigroups [9].

Notation: (Z U I) = {a + bl|a,b € Z,I*> = I} is the collection of neutrosophic integers which is a
neutrosophic ring of integers. (Q U I) = {a + bl|a,b € @, I?> = I} is the collection of neutrosophic rationals
and (RUI) = {a+ blla,b € R, I? = I} is the collection of neutrosophic reals which are neutrosophic ring
of rationals and reals respectively.

Let S be any ring which is commutative and has a unit element 1. Then (SU I) = {a + bl|a, b€ S, *=1I,
+, x } be the neutrosophic ring. For more refer [9].

Consider U to be the universe of discourse, and D a set in U, which has a well-defined law #.

Definition 2.1. Consider (a, neut(a)), where a, and neut(a) belong to D. It is said to be a neutrosophic duplet
if it satisfies the following conditions:

1. neut(a) is not same as the unitary element of D in relation with the law # (if any);
2. a# neut(a) = neut(a) # a=a;

3. anti(a) ¢ D for which a # anti(a) = anti(a) # a = neut(a).

The results proved in this paper are

1. All elements of the form @ — al and al — a with 1 — [ as the neutral forms a neutrosophic duplet,
a € Z\ {0}

2. Infact B={a—al/a € Z\ {0}} U {0}, forms a neutrosophic subring of S.

3. Let S = {{QUI), +, x } be the neutrosophic ring. For every nI withn € Q\{0} we have a+bI € (QUI)
witha +b=1;a,b € Q \ {0}. such that {nI, a + bI'} is a neutrosophic duplet.

4. The idempotent = 1 — [ acts as the neutral for infinite collection of elements a — al where a € ().
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5. Forevery a — al € S where a € ), 1 — dI acts as neutrals for d € Q).

6. The ordered pair of neutrosophic duplets B = {(nl,m — (m — 1)I);n € R,m € R U {0}} forms a
neutrosophic semigroup of S = (R U [) under component wise product.

7. The ordered pair of neutrosophic duplets D = {(a — al,1 —dI);a € R";d € R} forms a neutrosophic
semigroup under product taken component wise.

3 Neutrosophic duplets of (7 U I') and its properties

In this section we find the neutrosophic duplets in (Z U ). Infact we prove there are infinite number of neutrals
for any relevant element in (Z U I). Several interesting results are proved.
First we illustrate some of the neutrosophic duplets in (Z U I).

Example 3.1. Let S = (Z U I) = {a + bI|a,b € I,I? = I} be the neutrosophic ring. Consider any element
x =91 € (ZUI); we see the element 16 — 15/ € (ZUI) is such that 97 x 16 — 151 = 1441 —135] = 9] = «x.
Thus 16 — 157 acts as the neutral of 97 and {97, 16 — 15/} is a neutrosophic duplet.

Cconsider 15/ =y € (Z U I); 151 x 16 — 151 = 151 = y. Thus {151, 16 — 157} is again a neutrosophic
duplet. Let =97 = s € (ZUI); =91 x 16 — 151 = —1441 + 1351 = —91 = s,s0 {—91,16 — 15/} is a
neutrosophic duplet. Thus {£97, 16 — 157} happens to be neutrosophic duplets.

Further n/ € (Z U I) is such that nJ x 16 — 151 = 16n] — 15n/ = nl. Similarly —nl x 16 — 15] =
—16nl + 15nf = —nl. So {nl,16 — 151} is a neutrosophic duplet for all n € Z \ {0}. Another natural
question which comes to one mind is will 16/ — 15 act as a neutral for n/; n € Z \ {0}, the answer is yes for
nl x (161 —15) = 16nI — 15nl = nl. Hence the claim.

We call 0/ = 0 as the trivial neutrosophic duplet as (0, ) is a neutrosophic duplet for all z € (Z U I).
In view of this example we prove the following theorem.

Theorem 3.2. Let S = (Z U I) = {a + bl|a,b € Z,I> = I} be a neutrosophic ring. Every +nl € S;n €
Z \ {0} has infinite number of neutrals of the form

eml—(m—-1)=x
em—(m—1)I=y
e (m—1)—ml =—x
e (m—1)1—mlI=—y
where m € Z\ {1,0}.
Proof. Consider nl € (Z U I) we see
nl xx=nlml —(m —1)] =nnl —nml +nl =nl.
Thus {nl, mI — (m — 1)} form an infinite collection of neutrosophic duplets for a fixed n and varying m €

Z7\ {0, 1}. Proof for other parts (ii), (iii) and (iv) follows by a similar argument. H
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Thus in view of the above theorem we can say for any nl;n € Z \ {0}, n is fixed; we have an infinite
collection of neutrals paving way for an infinite collection of neutrosophic duplets contributed by elements
x,1y, —x and —y given in the theorem. On the other hand for any fixed x or y or —x or —y given in the theorem
we have an infinite collection of elements of the form n/;n € Z \ {0} such that {n, z,or y or —z or —y} is a
neutrosophic duplet.

Now our problem is to find does these neutrals collection {z, y, —x, —y} in theorem satisfy any nice alge-
braic structure in (Z U I).

We first illustrate this using some examples before we propose and prove any theorem.

Example 3.3. Let S = (Z U ) = {a + bl|a,b € Z,I* = I} be the ring. {9, X} is a commutative semigroup
under product []. Consider the element x = 5] — 4 € (Z U I). 5] — 4 acts as neutral for all elements
nl € (ZUI),n € Z\{0}. Consider x x © = 5I — 4 x 51 — 4 = 251 — 201 — 20 + 16 = —15 + 16 = 2.
Now —157 + 16 x nl = —15n1 + 16nI = nl. Thus if {nl, 2} a neutrosophic duplet so is {nI, z*}. Consider

1 =2* x 1 = (=151 + 16) x (51 — 4)

= —751 + 801 + 601 — 64 = 65] — 64 = 2°
nl x x* = 65nl — 64nl = nl
So {nI,65I — 64} = {nI,z*} is a neutrosophic duplet for all n € Z \ {0} Consider

=13 x 12 =65] —64 x5 —4

= 3251 — 3201 — 2601 + 256 = —2551 + 256 = x*

Clearly
nl x z* = nl x (=255 + 25) = —255n1 + 256n1 = nl.

So {nI,z*} is a neutrosophic duplet. In fact one can prove for any nl € (Z U I);n € Z \ {0} then x =
m — (m — 1)I is the neutral of n[ then {nl,z}, {nl,z*}, {nl,z*},... {nl,z"},... {nl,2'};t € ZT\ {0}
are all neutrosophic duplets for n/. Thus for any fixed n/ there is an infinite collection of neutrals. We see
if x is a neutral then the cyclic semigroup generated by z denoted by (z) = {z, 2% 23, ...} happens to be a
collection of neutrals for n/ € S.

Now we proceed onto give examples of other forms of neutrosophic duplets using (Z U I).

Example 34. Let S = {{(ZUI) = {a + bl|a,b € Z,I* = I},+, x} be a neutrosophic ring. We see
x =1—1 € S such that

(1-1P=1—-Ix1—IT=1=-2[+1* 1*=1)

=1—-1=u.
Thus x is an idempotent of S. We see y = 5 — 51 such that

yxx=(5—5I)x (5—5)=5—5]—5[+5] =5—5] =y
Thus {5 — 51,1 — I} is a neutrosophic duplets and 1 — [ is the neutral of 5 — 51.

y* =5—5I x5 — 5] =25 — 251 — 251 + 251 = 25 — 251
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We see {y?, 1 — I} is again a neutrosophic duplet.
Yy =y xy?=5—5I x (25 — 25I) = 125 — 1251 — 1251 + 1251

=125 — 1251 =43

Once again {y>, 1 —I} is a neutrosophic duplet. In fact we can say for the idempotent 1—I the cyclic semigroup
B = {y,y* v, ...} is such that for every element in B, 1 — I serves as the neutral.

In view of all these we prove the following theorem.
Theorem 3.5. Let S = {(Z U I), +, x} be the neutrosophic ring.
1. 1 — I is an idempotent of S.

2. All elements of the form a — al and al — a with 1 — I as the neutral forms a neutrosophic duplet,
a€ ZT\ {0}

3. Infact B={a—al/a € Z\ {0}} U{0}, forms a neutrosophic subring of S.

Proof. . Letx = 1 — I € S to show x is an idempotent of .S, we must show x X x = x. We see
1—-Ix1—I=1-2[+1%asI>=1,wegetl —1Ix1—1=1- I;hence the claim.

2. Leta—al € S;ae Z.1—1Tistheneutralofa —alasa—al x1—1=a—al —al +al =a— al.
Thus {a — al,1 — I} is a neutrosophic duplet. On similar lines a/ — a will also yield a neutrosophic
duplet with 1 — 7. Hence the result (ii).

3. Given B = {a — al|a € Z}. To prove B is a group under +. Let x = a —al andy = b — bl € B;
r+y=a—al+b—bl =(a+b) —(a+blasa+be Z;a+b— (a+b) € B.So B is closed
under the operation +. When a = 0 we get 0 — 0/ =€ B and a —al +0 = a — al. 0 acts as the additive
identity of B. For every a — al € B we have

—(a—al)=(—a)—(—a)l =—a+al € B

is such that a — al 4+ (—a) + al = 0 so every a — al has an additive inverse. Now we show { B, x } is a
semigroup under product X.

(a—al) x (b—">bl)=ab— abl —bal + abl = ab — abl € B.

Thus B is a semigroup under product. Clearly 1 — I € B. Now we test the distributive law. let
r=a—al,y=b—bland z =c—cl € B.

(a—al)x[b—=bl+c—cll]=a—al x[(b+c¢)—(b+c)]

=alb+c)—allb+c)—(b+c)al +alb+c)l =alb+c)—al(b+c) € B

Thus { B, +, x } is a neutrosophic subring of S. Finally we prove (Z U I) has neutrosophic duplets of
the form {a —al,1+dl};d € Z\ {0}.
]
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Theorem 3.6. Let S = {(Z UI) = {a+ bl|a,b € Z,I* = I},+, X} be a neutrosophic ring a + bl € S
contributes to a neutrosophic duplet if and only if a = —0.

Proof. Leta + bl € S(a # 0,b # 0) be an element which contributes a neutrosophic duplet with ¢ 4+ dI € S.
If {a + bI,c+ dI} is a neutrosophic duplet then (a + bI) x (¢ + dI) = a + bI, this implies

ac+ (bd+ ad + be)l = a+ bl.

This implies ac = a and bd + ad + bc = b. ac = a implies a(c — 1) = 0 since a # 0 we have ¢ = 1. Now in
bd + ad + bc = b substitute ¢ = 1; it becomes bd + ad + b = b which implies bd 4 ad = 0 that is (b+ a)d = 0;
d # 0 forif d = 0 then ¢ + dI = 1 acts as a neutral, for all « + bI € S which is a trivial neutrosophic duplet.
Thus d # 0, which forces a + b = 0 or a = —b. hence a + bl = a — al. Now we have to find d. We have
(a—al)1+dl)=a—al +adl —adl =a—al.

This is true for any d € Z \ {0}. Proof of the converse is direct. O

Next we proceed on to study neutrosophic duplets of (Q U /) and (R U I)

4 Neutrosophic Duplets of () U ) and (R U I)

In this section we study the neutrosophic duplets of the neutrosophic rings (QUI) = {a+0bI|a,b € Q,I* = I};
where Q the field of rationals and (R U I) = {a + bl|a,b,€ R,I? = I}; where R is the field of reals. We
obtain several interesting results in this direction. It is important to note (Z U I) C (QUI) C (RUI). Hence
all neutrosophic duplets of (Z U I') will continue to be neutrosophic duplets of (@) U I) and (R U I). Our
analysis pertains to the existence of other neutrosophic duplets as Z is only a ring where as () and R are fields.
We enumerate many interesting properties related to them.

Example 4.1. Let S = {(QU I) = {a + bI|a,b € Q,I> = I},+, x} be the neutrosophic ring of rationals.
Consider for any n/ €S we have the neutral

such that

-7 16
I =nl|—+— | =nl.
nl xXx=n ( 9 + 9> n

Thus for the element n/ the neutral is

-7 16
—+ —c S
9 * 9
We make the following observation
-7 n 16 ]
9 9 7

In fact all elements of the form a + b in (Q U I) witha +b = 1;a,b € @ \ {0} can act as neutrals for nl.

Suppose
8I 1
=—+-c(QUI
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then for n/ = y we see
81 1 8In nl

T Xy nx(9+9) 9+9 n

Take x = —971 + 10 we see
rxy=—-914+0xnl=-9In+10nl =nl
and so on.

However we have proved in section 3 of this paper for any n/ € (Z U I) the collection of all elements
a+bl € (ZUI)witha+b=1;a,b € Z\ {0} will act as neutrals of n1.
In view of all these we put forth the following theorem.

Theorem 4.2. Let S = {(Q U I),+, X} be the neutrosophic ring. For every nl withn € Q \ {0} we have
a+bl € (QUI)witha+b=1;a,b€ Q\{0}. such that {nl,a + bl} is neutrosophic duplet.

Proof. Givennl € (QUI);n € Q\ {0}, we have to show a + bI is a neutral where a +b = 1, a,b, € Q\ {0}.
consider
nl x (a+bl) =anl +bnl = (a+b)nl =nl

as a+b = 1. Hence for any fixed n] € (QUI) we have an infinite collection of neutrals. Further the number of
such neutrosophic duplets are infinite in number for varying n and varying a,b € Q\ {0} with a +b = 1. Thus
the number of neutrosophic duplets in case of neutrosophic ring () U I') contains all the neutrosophic duplets
of (Z U I) and the number of neutrosophic duplets in () U I) is a bigger infinite than that of the neutrosophic
duplets in (Z U I). Further all a + bl where a,b € )\ Z with a + b = 1 happens to contribute to neutrosophic
duplets which are notin (Z U I). O

Now we proceed on to give other types of neutrosopohic duplets in (@) U I) using 1 — I the idempotent
which acts as neutral. Consider

5 51
=—-—-—=¢c Ul
lety =1— 1, we find
5 51 5 51 5I 5I 5 51
rxXy=—-——x1l-I=-————4—=-— — =1.
3 3 3 3 3 3 3 3

In view of this we propose the following theorem.

Theorem 4.3. Let S = {{QU I) = {a + bl|a,b € Q, > = I}, +, x} be the neutrosophic ring of rationals.
1. The idempotent x = 1 — I acts as the neutral for infinite collection of elements a — al where a € Q).
2. Foreverya — al € Swherea € ), 1 — dI acts as neutrals for d € Q).

Proof. Consider any a —al = x € (QU I);a € Q we see for y = 1 — I the idempotent in (Q U I).

rxy=a—alx1l1—I=a—al —al+al =a—al =x.
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Thus 1 — [ acts as the neutral for a — al; in fact {a — al, 17} is a neutrosophic duplet; for all a € Q). Now
consider s = p — pl wherep € Qandr =1—dIl € (QUI);d € Q.

Sxr=p—plx1l—dl=p—pl—pdl +pdl =p—pl=s

Thus {p — pI, 1 — dI} are neutrosophic duplets for all p € @) and d € @. The collection of neutrosophic
duplets which are in (Q U I) \ {(Z U I)} is in fact is of infinite cardinality. O

Next we search of other types of neutrosophic duplets in {(Q U I)}. Suppose a + bl € (Q U I) and let
c + dI be the possible neutral for it, we arrive the conditions on a, b, c and d

(a4+0bl) x (c+dl)=a+0bl

ac+ bc+ adl + bdl = a + bl

ac = a which is possible if and only if ¢ = 1. Hence
b+ad+bd=">

ad+bd =0
dla+0b)=0
as d # 0;
a = —b.
Thus a + bl = a — al are only possible elements in (¢) U I)which can contribute to neutrosophic duplets and
the neutrals associated with them is of the form 1 +dJ and d € @ \ {0}. Thus we can say even in case of R the

field of reals and for the associated neutrosophic ring (R U I). All results are true in case () U I) and (Z U I);
expect (R U I) \ (Q U I) has infinite duplets and (R U I') has infinitely many more neutrosophic duplets than

(QUI).

The following theorem on real neutrsophic rings is both innovative and intersting.

Theorem 4.4. Let S = (RUI) be the real neutrosophic ring. The neutrosophic duplets are contributed only by
elements of the form nl and a —al where n € R and a € R™ with neutrals m—(m—1)I and 1 —dI;m,d € R
respectively.

Proof. Consider {nl, m(m — 1)1} the pair
nl xm—(m—1)1 =nml

—nml +nl =nl

forall n,m € R\ {1,0}. Thus {nl,m — (m —1)I} is an infinite collection of neutrosophic duplets. We define
(nI,m — (m — 1)I) as a neutrosophic duplet pair. Consider the pair {(a — al), (1 —dI)};a € R*,d € R. We
see

a—al x1—dl =a—al —dal +adl =a—al

Thus {(a —al), (1 — dI)} forms an infinite collection of neutrosophic duplets. We call ((a —al), (1 —dI)) as
a neutrosophic duplet pair. Hence the theorem. [
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Theorem 4.5. Let S = (R U I) be the neutrosophic ring

1. The ordered pair of neutrosophic duplets B = {(nl,m — (m — 1)I);n € R,m € RU{0}} forms a
neutrosophic semigroup of S = (R U I) under component wise product.

2. The ordered pair of neutrosophic duplets D = {(a — al,1 — dI);a € R";d € R} form a neutrosophic
semigroup under product taken component wise.

Proof. Given B = {(n{,m — (m — 1)Ijn € R,m € (R\ {1})} U (nl,0) C ({(RUD},{(RUI)}).
To prove B is a neutrosophic semigroup of ((R U I), (R U I)).. For any x = (nl,(m — (m — 1)I) and
y=(sl,t—9t—1)I) € Bweprovezy =yx € B

rxy=zy=nl,m—(m—1)Ix(sl,t—(t—1)I)

= (nsl,[m—(m—1I] x[t—(t—1)I])
(nsI,mt —t(m — 1) —m(t —1)I + (m —1)(t — 1)I)
= (nsI,mt — (mt —1)I) € B
It is easily verified zy = yx for all z,y € B. Thus { B, x } is a neutrosophic semigroup of neutrosophic duplet
pairs. Consider x,y € D;weshow x x y € D.Letz = (a —al,1—dl)andy = (b—0bl,1 —cl) € D
rxy=(a—al,1—dl)x (b—>bl,1—cl)

=(a—al xb—>bl,(—al x1—¢cl)
= (ab—abl — abl + abl,1 —dI — cI + cdl)
= (ab—abl,1 —(d+c—cd)l) € D

as x x y is also in the form of x and y. Hence D the neutrosophic duplet pairs forms a neutrosophic semigroup
under component wise product. [

5 Discussions and Conclusions

In this paper the notion of duplets in case neutrosophic rings, (ZUI), (QUI) and (RUI), have been introduced
and analysed. It is proved that the number of neutrosophic duplets in all these three rings happens to be an
infinite collection. We further prove there are infinitely many elements for which 1 — I happens to be the
neutral. Here we establish the duplet pair {a — al,1 —dl};a € RT and d € R happen to be a neutrosophic
semigroup under component wise product. The collection {a — a/} forms a neutrosophic subring a € Z or )
or R. For future research we want to analyse whether these neutrosophic rings can have neutrosophic triplets
and if that collections enjoy some nice algebraic property. Finally we leave it as an open problem to find some
applications of these neutrosophic duplets which form an infinite collection.
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COMMUTATIVE NEUTROSOPHIC TRIPLET
GROUP AND NEUTRO-HOMOMORPHISM
BASIC THEOREM

Xiaohong Zhang, Florentin Smarandache, Mumtaz Ali, Xingliang Liang

Xiaohong Zhang, Florentin Smarandache, Mumtaz Ali, Xingliang Liang (2018). Commutative
Neutrosophic Triplet Group and Neutro-Homomorphism Basic Theorem. /talian Journal of Pure
and Applied Mathematics 40, 353-375.

Abstract. The neutrosophic triplet is a group of three elements that satisfy certain properties with some binary
operations. The neutrosophic triplet group is completely different from the classical group in the structural
properties. In this paper, we further study neutrosophic triplet group. First, to avoid confusion, some new
symbols are introduced, and several basic properties of neutrosophic triplet group are rigorously proved
(because the original proof is flawed), and a result about neutrosophic triplet subgroup is revised. Second,
some new properties of commutative neutrosophic triplet group are funded, and a new equivalent relation
is established. Third, based on the previous results, the following important proposi-tions are proved:
from any commutative neutrosophic triplet group, an Abel group can be constructed; from any
commutative neutrosophic triplet group, a BCI-algebra can be constructed.

1. Introduction

From a philosophical point of view, Florentin Smarandache introduced the con-cept of a
neutrosophic set (see [12, 13, 14]). The neutrosophic set theory is applied to many scientific fields
and also applied to algebraic structures (see [1, 3, 7, 10, 11, 15, 17, 19]). Recently, Florentin
Smarandache and Mumtaz Ali in [16], for the first time, introduced the notions of neutrosophic
triplet and neu-trosophic triplet group. The neutrosophic triplet is a group of three elements
that satisfy certain properties with some binary operation. The neutrosophic triplet group is
completely different from the classical group in the structural properties. In 2017, Florentin
Smarandache has written the monograph [15] which is present the last developments in
neutrodophic theories (including neu-trosophic triplet and neutrosophic triplet group).

In this paper, we further study neutrosophic triplet group. We discuss some new properties
of commutative neutrosophic triplet group, and investigate the relationships among
commutative neutrosophic triplet group, Abel group (that is, commutative group) and BCI-
algebra. Moreover, we establish the quotient structure and neutro-homomorphism basic
theorem.

As a guide, it is necessary to give a brief overview of the basic aspects of BCl-algebra and
related algebraic systems. In 1966, K. Iseki introduced the concept of BCl-algebra as an
algebraic counterpart of the BCI-logic (see [5, 24]). The algebraic structures closely related to
BCI algebra are BCK-algebra, BCC-algebra, BZ-algebra, BE-algebra, and so on (see [2, 8, 20,
21, 22, 25]). As a generalization of BCI-algebra, W. A. Dudek and Y. B. Jun [4] introduced the
notion of pseudo-BCI algebras. Moreover, pseudo-BCI algebra is also as a generalization of
pseudo-BCK algebra (which is close connection with various non-commutative fuzzy logic
formal systems, see [18, 22, 23, 24]). Recently, some articles related filter theory of pseudo-BCI
algebras are published (see [26, 27, 28, 29]). As non-classical logic algebras, BCI-algebras are
closely related to Abel groups (see [9]); similarly, BZ-algebras (pseudo-BCI algebras) are closely
related general groups (see [20, 26]), and some results in [9, 20] will be applied in this paper.
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2. Some basic concepts

2.1 On neutrosophic triplet group

Definition2.1 ([16]). Let N be a set together with a binary operation *. Then,
N is called a neutrosophic triplet set if for any a € N, there exist a neutral of
“a” called neut(a), different from the classical algebraic unitary element, and an
opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N, such
that:

a x neut(a) = neut(a) * a = a;
a x anti(a) = anti(a) * a = neut(a).

The elements a, neut(a) and anti(a) are collectively called as neutrosophic
triplet, and we denote it by (a,neut(a),anti(a)). By neut(a), we mean neu-
tral of a and apparently, a is just the first coordinate of a neutrosophic triplet
and not a neutrosophic triplet. For the same element “a” in N, there may be
more neutrals to it neut(a) and more opposites of it anti(a).

Definition2.2 ([16]). The element b in (N, %) is the second component, denoted
as neut(-), of a neutrosophic triplet, if there exist other elements a and ¢ in N
such that a*b =bxa = a and a*xc = ¢xa = b. The formed neutrosophic triplet
is (a, b, c).

Definition 2.3 ([16]). The element ¢ in (N, *) is the third component, denoted
as anti(-), of a neutrosophic triplet, if there exist other elements a and b in N
such that a*xb =bxa = a and axc = ¢xa = b. The formed neutrosophic triplet
is (a,b,c).

Definition2.4 ([16]). Let (N, *) be a neutrosophic triplet set. Then, N is called
a neutrosophic triplet group, if the following conditions are satisfied:

(1) If (N, *) is well-defined, i.e. for any a,b € N, one has axb € N.
(2) If (N,x) is associative, i.e. (a*b)*c=ax* (bx*c) for all a,b,c € N.

Definition 2.5 ([16]). Let (N, x) be a neutrosophic triplet group. Then, N
is called a commutative neutrosophic triplet group if for all a,b € N, we have
axb=">bxa.

Definition 2.6 ([16]). Let (N, *) be a neutrosophic triplet group under *, and
let H be a subset of N. Then, H is called a neutrosophic triplet subgroup of N
if H itself is a neutrosophic triplet group with respect to *.

Remark 2.7. In order to include richer structure, the original concept of neu-
trosophic triplet is generalized to neutrosophic extended triplet by Florentin
Smarandache. A neutrosophic extended triplet is a neutrosophic triplet, de-
fined as above, but where the neutral of = (called “extended neutral”) is allowed
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to also be equal to the classical algebraic unitary element (if any). There-
fore, the restriction “different from the classical algebraic unitary element if
any” is released. As a consequence, the “extended opposite” of x, is also al-
lowed to be equal to the classical inverse element from a classical group. Thus,
a neutrosophic extended triplet is an object of the form (x, neut(x),anti(z)),
for x € N, where neut(x) € N is the extended neutral of x, which can be
equal or different from the classical algebraic unitary element if any, such that:
x * neut(x) = neut(z) *x x = x, and anti(x) € N is the extended opposite of x
such that: = * anti(x) = anti(x) x © = neut(x). In this paper, “neutrosophic
triplet” means that “neutrosophic extended triplet”.

2.2 On BCI-algebras

Definition 2.8 ([5, 23]). A BCl-algebra is an algebra (X; —, 1) of type (2,0) in
which the following axioms are satisfied:

(i) (z—=y) = ((y—=2) = (r—2)=1,

(i) 2 =z =1,

(iii) 1 —» z ==,

(iv)ife 5 y=y—ax =1, thenz =y.

In any BCl-algebra (X;—, 1) one can define a relation < by putting x < y
if and only if x — y = 1, then < is a partial order on X.

Definition 2.9 (]9, 26]). Let (X;—,1) be a BCI-algebra. The set {z|z < 1} is
called the p-radical (or BCK-part) of X. A BCl-algebra X is called p-semisimple
if its p-radical is equal to {1}.

Proposition2.10 ([9]). Let (X;—,1) be a BCI-algebra. Then the following are
equivalent:

(i) X is p-semisimple,

(i) x =>1=1=x=1,

(iii) (x — 1) = 1=z, Vx € X,

() (x—=1)—y=(wy—1) =z foralz,yecX.

Proposition 2.11 ([26]). Let (X;—,1) be a BCIl-algebra. Then the following
are equivalent:

(S1) X is p-semisimple,

(S2) x my=1=x=y foralx,ycX,

(S3) (z —wy) = (z—y)=z—x foralxyze X,

(S4) (x »y) > 1=y—x foralz,yec X,

(S5) (z = y) > (a—=b)=(r —a) = (y—=0b) forall z,y,a,b € X.

Proposition 2.12 (]9, 26]). Let (X;—,1) be p-semisimple BCI-algebra; define
+ and — as follows: for all z,y € X,

x+yd§f(x—>1)%y, e

Then (X;4,—,1) is an Abel group.
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Proposition 2.13 ([9, 26]). Let (X;+,—,1) be an Abel group. Define (X; <,
—, 1), where

r—=y=—x+y, <y ifand onlyif —x+y=1, Vx,y € X.
Then, (X;<,—,1) is a BCI-algebra.

3. Some properties of neutrosophic triplet group

As mentioned earlier, for a neutrosophic triplet group (N, x*), if a € N, then
neut(a) may not be unique, and anti(a) may not be unique. Thus, the symbolic
neut(a) sometimes means one and sometimes more than one, which is ambigu-
ous. To this end, this paper introduces the following notations to distinguish:

neut(a): denote any certain one of neutral of a;

{neut(a)}: denote the set of all neutral of a.

Similarly,

anti(a): denote any certain one of opposite of a;

{anti(a)}: denote the set of all opposite of a.

Remark 3.1. In order not to cause confusion, we always assume that: (1)
for the same a, when multiple neut(a) (or anti(a)) are present in the same
expression, they are always are consistent. Of course, if they are neutral (or
opposite) of different elements, they refer to different objects (for example, in
general, neut(a) is different from neut(b)). (2) if neut(a) and anti(a) are present
in the same expression, then they are match each other.

Proposition 3.2. Let (N,*) be a neutrosophic triplet group with respect to *
and a € N. Then
neut(a) * neut(a) € {neut(a)}.

Proof. For any a € N, by Definition 2.1 we have
a xneut(a) = a, neut(a) *a = a.
From this, using associative law, we can get
a * (neut(a) * neut(a)) = (neut(a) * neut(a)) * a = a.

By Definition 2.1, it follows that (neut(a) * neut(a)) is a neutral of a. That is,
neut(a) *x neut(a) € {neut(a)}. O

Remark 3.3. This proposition is a revised version of Theorem 3.21(1) in [16].
If neut(a) is unique, then they are same. But, if neut(a) is not unique, they
are different. For example, assume {neut(a)} = {s,t}, then neut(a) denote any
one of s,t. Thus neut(a) * neut(a) represents one of s * s, and ¢ * t. Moreover,
Proposition 3.2 means that s x s, t xt € {neut(a)} = {s,t}, that is,

SkSs=38, orsxs=1=1; txt=s, ort*xt=1¢.

And, in this case, the equation neut(a)*neut(a) = neut(a) means that sxs = s,
txt =t. So, they are different.
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Proposition 3.4. Let (N,x) be a neutrosophic triplet group with respect to
and a € N. If
neut(a) * neut(a) = neut(a).

Then

neut(a) * anti(a) € {anti(a)};
anti(a) * neut(a) € {anti(a)}.

Proof. For any a € N, by Definition 2.1 we have

a x neut(a) = neut(a) * a = a;
a x anti(a) = anti(a) * a = neut(a).

From this, using associative law, we can get

a * (neut(a) * anti(a)) = (a * neut(a)) * anti(a) = a * anti(a) = neut(a).
And,
(neut(a) * anti(a)) * a = neut(a) * (anti(a) * a) = neut(a) * neut(a) = neut(a).

By Definition 2.1, it follows that (neut(a) * anti(a)) is a opposite of a. That is,
neut(a) * anti(a) € {anti(a)}. In the same way, we can get anti(a) * neut(a) €
{anti(a)}. O

Proposition 3.5. Let (N, ) be a neutrosophic triplet group with respect to
and let a,b,c € N. Then

(1) a*xb=ax*cif and only if neut(a) x b = neut(a) * c.
(2) bxa=cx*a if and only if b * neut(a) = ¢ x neut(a).

Proof. Assume a xb = a*c. Then anti(a) * (a * b) = anti(a) * (a * ¢). By
associative law, we have

(anti(a) x a) x b = (anti(a) * a) * c.

Using Definition 2.1 we get neut(a) * b = neut(a) * c.
Conversely, assume neut(a) * b = neut(a) * c. Then a x (neut(a) *x b) =
a * (neut(a) * ¢). By associative law, we have

(a * neut(a)) * b = (a * neut(a)) * c.

Using Definition 2.1 we get a b = a x c. That is, (1) holds.
Similarly, we can prove that (2) holds. O

Proposition 3.6. Let (N, ) be a neutrosophic triplet group with respect to
and let a,b,c € N.

(1) If anti(a) * b = anti(a) * ¢, then neut(a) * b = neut(a) * c.
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(2) If bxanti(a) = ¢ anti(a), then b* neut(a) = c * neut(a).
Proof. Assume anti(a)*b = anti(a)*c. Then ax (anti(a)*b) = ax*(anti(a)*c).
By associative law, we have

(axanti(a)) * b= (a*anti(a)) * c.

Using Definition 2.1 we get neut(a) * b = neut(a) * c. It follows that (1) holds.
Similarly, we can prove that b % anti(a) = ¢ * anti(a) = b * neut(a) =
¢ neut(a). O

Theorem 3.7. Let (N,x*) be a neutrosophic triplet group with respect to * and
a € N. Then

neut(neut(a)) € {neut(a)}.
Proof. For any a € N, by Definition 2.1 we have

neut(a) * neut(neut(a)) = neut(a);
neut(neut(a)) * neut(a) = neut(a).

Then

a * (neut(a) * neut(neut(a))) = a % neut(a);
(neut(neut(a)) * neut(a)) * a = neut(a) * a.

By associative law and Definition 2.1, we have

a x neut(neut(a)) = a;
neut(neut(a)) * a = a.

From this, by Definition 2.1, neut(neut(a)) € {neut(a)}. O

Theorem 3.8. Let (N,x*) be a neutrosophic triplet group with respect to * and
a € N. Then

neut(anti(a)) € {neut(a)}.
Proof. For any a € N, by Definition 2.1 we have

anti(a) x neut(anti(a)) = anti(a);
neut(anti(a)) * anti(a) = anti(a).

Then

a * (anti(a) * neut(anti(a))) = a x anti(a);
(neut(anti(a)) * anti(a)) * a = anti(a) * a.

Using associative law and Definition 2.1,

neut(a) * neut(anti(a)) = neut(a);
neut(anti(a)) * neut(a) = neut(a).

It follows that axneut(anti(a)) = a, neut(anti(a))*a = a. That is, neut(anti(a)) €
{neut(a)}. O
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Theorem 3.9. Let (N,x*) be a neutrosophic triplet group with respect to * and
a € N. Then
neut(a) * anti(anti(a)) = a.

where, neut(a) € {neut(a)}, anti(a) € {anti(a)}, and neut(a) matches anti(a),
that is, a x anti(a) = anti(a) * a = neut(a).

Proof. For any a € N, by Definition 2.1 we have
anti(a) * anti(anti(a)) = neut(anti(a)).

Then

a * (anti(a) * anti(anti(a))) = a * neut(anti(a)).
(a x anti(a)) * anti(anti(a)) = a * neut(anti(a)).
neut(a) * anti(anti(a)) = a * neut(anti(a)).

On the other hand, by Theorem 3.8, neut(anti(a)) € {neut(a)}. By Definition
2.1, it follows that axneut(anti(a))=a. Therefore, neut(a)*xanti(anti(a))=a. 0O

Theorem 3.10. Let (N, ) be a neutrosophic triplet group with respect to x and
a € N. Then

anti(neut(a)) € {neut(a)}.
Proof. For any a € N, by Definition 2.1 we have

neut(a) * anti(neut(a)) = neut(neut(a));
anti(neut(a)) * neut(a) = neut(neut(a)).

Thus

a * (neut(a) * anti(neut(a))) = a * neut(neut(a));
(anti(neut(a)) * neut(a)) * a = neut(neut(a)) * a.

Applying associative law and Definition 2.1,

a x anti(neut(a)) = a * neut(neut(a));
anti(neut(a)) x a = neut(neut(a)) * a.

On the other hand, by Theorem 3.7, neut(neut(a)) € {neut(a)}. It follows that
a * neut(neut(a)) = neut(neut(a)) * a = a.

Therefore,
a * anti(neut(a))) = anti(neut(a)) * a = a.

This means that anti(neut(a)) € {neut(a)}. O

Theorem 3.11. Let (N, ) be a neutrosophic triplet group with respect to x and
a,be N. Then
neut(a x a) € {neut(a)}.

221



Florentin Smarandache (author and editor) Collected Papers, IX

Proof. For any a € N, by Definition 2.1 we have
(a* a) xneut(a*a) = ax*a.

From this and applying the associativity of operation * and Definition 2.1 we
get

(anti(a) * a) * a * neut(a * a) = (anti(a) * a) * a.
neut(a) * a x neut(a * a) = neut(a) * a.
a xneut(a * a) = a.

Similarly, we can prove neut(a * a) * a = a. This means that neut(a * a) €
{neut(a)}. O

Now, we note that Proposition 3.18 in [16] is not true.

Example 3.12. Consider (Zj¢, 1), where § is defined as a £ b = 3ab(mod10).
Then, (Z19, 1) is a neutrosophic triplet group under the binary operation f with
Table 1.

Table 1 Cayley table of neutrosophic triplet group (Zio, )

1011123 [4[5|/6[7|8]9
0{0j0j0j0|0OJ0O]JOJ0O]0O]O
1101361912581 |4]7
2/10(6|2(8|4]0|6|2|8|4
310]9|18|7|16|5(4|13]2]|1
4102141681024 ]6]8
5(015]0|5]0|5]0|5|01]5
60|86 |412|0(8|64]2
710[1]2(3|4]|5|/6|78|9
8104|826 |0[4(8]2]6
910|714 |1(8|5[12[9]6]3

For each a € Zyp, we have neut(a) in Z19. That is,

neut(0) = 0,neut(l) = 7,neut(2) = 2, neut(3) = 7, neut(4) = 2,
neut(5) = 5, neut(6) = 2, neut(7) = 7, neut(8) = 2, neut(9) = 7.

Let H = {0,2,5,7}, then (H,t) is a neutrosophic triplet subgroup of (Zio,f),
but

anti(5) € {1,3,5,7,9} ¢ H,
anti(0) € {0,1,2,3,4,5,6,7,8,9} ¢ H.

Therefore, Proposition 3.18 in [16] should be revised to the following form.

Proposition3.13. Let (N, x) be a neutrosophic triplet group and H be a subset
of N. Then H is a neutrosophic triplet subgroup of N if and only if the following
conditions hold:
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(1) axbe H foralla,be H.
(2) there exists neut(a) € H for all a € H.

(3) there exists anti(a) € H for alla € H.

4. New properties of commutative neutrosophic triplet group

Theorem 4.1. Let (N,) be a commutative neutrosophic triplet group with re-
spect to x and a,b € N. Then

{neut(a)} * {neut(b)} C {neut(axb)}.
Proof. For any a,b € N, by Definition 2.1 and 2.4 we have
a x neut(a) * neut(b) * b = (a * neut(a)) * (neut(b) xb) = a x b.

From this and applying the commutativity and associativity of operation * we
get

(neut(a) * neut(b)) * (a*b) = (a xb) x (neut(a) * neut(b)) = a * b.

This means that neut(a)+neut(b) € {neut(axb)}, that is, {neut(a)}*{neut(b)} C
{neut(a xb)}. O

Proposition 4.2. Let (N, ) be a commutative neutrosophic triplet group with
respect to * and H = {neut(a) | a € N}. Then H is a neutrosophic triplet
subgroup of N such that (Ya € N) neut(a) € H and unit(h) € H for any
heN.

Proof. For any hj,he € N, by the definition of H, there exists a,b € N such
that hy = neut(a), he = neut(b). Then, by Theorem 4.1 we have

hi % ha = neut(a) * neut(b) € {neut(a*b)} C H.

Moreover, applying Theorem 3.7 and 3.10,

neut(hi) = neut(neut(a)) € {neut(a)} C H.
anti(hy) = anti(neut(a)) € {neut(a)} C H.

Using Proposition 3.13 we know that H is a neutrosophic triplet subgroup of
N, and it satisfies

(Va € N) neut(a) € H,and unit(h) € H for any h € N.
O

Theorem 4.3. Let (N,*) be a commutative neutrosophic triplet group with
respect to x and a,b € N. Then

{anti(a)} * {anti(b)} C {anti(a xb)}.
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Proof. For any a,b € N, by Definition 2.1 and 2.4 we have
a x anti(a) x anti(b) x b = (a * anti(a)) * (anti(b) * b) = neut(a) * neut(b).

From this and applying the commutativity and associativity of operation * we
get

(anti(a) * anti(b))(a * b) = (a * b) x (anti(a) x anti(b)) = neut(a) * neut(b).

Applying Theorem 4.1, neut(a) * neut(b) € {neut(a * b)}. Hence, by Definition
2.1, anti(a) * anti(b) € {anti(a x b)}, that is, {anti(a)} * {anti(b)} C {anti(a *
b)}. O

Theorem 4.4. Let (N,*) be a commutative neutrosophic triplet group with
respect to . Define binary relation neqr on N as following:

Va,b € N, a Xpeyu b iff there exists anti(b) € {anti(b)}, and p,q € N, and
neut(p) € {neut(p)} such that

a * anti(b) x neut(p) € {neut(q)}.

Then eyt 18 reflexive and symmetric.

Proof. (1) For any a € N, by Proposition 3.2, neut(a) * neut(a) € {neut(a)}.
Using Definition 2.1 we get

a *x anti(a) x neut(a) = neut(a) * neut(a) € {neut(a)}.

Then, a ~peut a.
(2) Assume a Rpeqt b, then there exists p, g € N such that

(C1) a * anti(b) x neut(p) = neut(q).

where anti(b) € {anti(b)}, neut(p) € neut(p), neut(q) € {neut(q)}. Using
Theorem 3.10, anti(neut(p)) € {neut(p)}. So, we denote anti(neut(p)) = x €
{neut(p)}. Thus,

bx anti(a) * x = b* anti(a) * anti(neut(p))

= anti(a) * b * anti(neut(p)) (by Definition 2.5)
= anti(a) * (neut(b) * anti(anti(b))) * anti(neut(p)) (by Theorem 3.9)
= (anti(a) * anti(anti(b)) * anti(neut(p))) * neut(b) (by Definition 2.4and 2.5)
€ {anti(a * anti(b) * neut(p))} * neut(b) (by Theorem 4.3)
C {anti(neut(q))} * neut(b) (by the above result (C1))
C {neut(q)} * neut(b) (by Theorem 3.10)
C {neut(qxb)} (by Theorem 4.1)

This means that b ~,cu: a. O]
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Definition 4.5. Let (IV, %) be a neutrosophic triplet group. Then, N is called
a neutrosophic triplet group with condition (AN) if for all a,b € N, we have
(AN) {anti(axb)} C {anti(a)} * {anti(b)}.

Proposition 4.6. Let (N, ) be a commutative neutrosophic triplet group with
condition (AN) and a,b € N. Then

neut(a * b) € {neut(a)} * {neut(b)}.

Proof. For any a,b € N, by Definition 4.5, there exists anti(a) € {anti(a)},
anti(b) € {anti(b)} such that

anti(a x b) = anti(a) x anti(b).

Then
neut(a * b) = (a*xb) x anti(a x b) = (a x b) * (anti(a) * anti(b))
= (a*xanti(a)) * (b* anti(b)) = neut(a) * neut(d).
This means that neut(a * b) € {neut(a)} * {neut(b)}. O

Lemma 4.7. Let (N, %) be a commutative neutrosophic triplet group with con-
dition (AN) and a,b € N. If there exists anti(b) € {anti(b)}, p,q € N,
neut(p) € {neut(p)} and neut(q) € {neut(q)} such that

a * anti(b) x neut(p) = neut(q).

Then for any x € {anti(b)}, there exists p1,q1 € N, neut(p1) € {neut(p1)} and
neut(q1) € {neut(q1)} such that

a *x x * neut(pr) = neut(q).

Proof. For any = € {anti(b)}, there exists y € {neut(b)} such that bx z =
x *b=1y. Thus, from a * anti(b) * neut(p) = neut(q) we get

a* x x (neut(b) * neut(p))

= a*x *x (anti(b) x b) x neut(p)

= (a x anti(b) * neut(p)) * (x = b)

= neut(q) *y

€ neut(q) * {neut(b)}

C {neut(qg*b)} (by Theorem 4.1)

Therefore, there exists p1,q1 € N, neut(p1) € {neut(p:1)} and neut(q:) €
{neut(q1)} such that a * x * neut(p1) = neut(qy). O

Theorem 4.8. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation ~pey on N as following:

Va,b € N, a Rpeur b iff there exists anti(b) € {anti(b)}, p,q € N, and
neut(p) € {neut(p)} such that

a * anti(b) x neut(p) € {neut(q)}.

Then ~peut 95 an equivalent relation on N.
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Proof. By Theorem 4.4, we only prove that a2, is transitive. Assume that
0 Rpeut b and b e ¢, then there exists p,q,7, s € N such that

(C1) a * anti(b) x neut(p) = neut(q).
(C2) b * anti(c) *x neut(r) = neut(s).

where anti(b) € {anti(b)}, anti(c) € {anti(c)}, neut(p) € {neut(p)}, neut(q) €
{neut(q)}, neut(r) € {neut(r)}, neut(s) € {neut(s)}. Using Theorem 3.10 and
Theorem 4.1, we have

neut(p)xneut(c)xanti(neut(s))e{neut(p) }x{neut(c) }x{neut(s) } C{neut(pxs*c)}.

Denote y = neut(p) * neut(c) * anti(neut(s)) € {neut(p x s * )}, then
a x anti(c) x y = a * anti(c) * neut(p) * neut(c) * anti(neut(s))
= a x anti(c) * neut(p) * anti(neut(s)) * neut(c) (by Definition 2.5)
= a * anti(c) * neut(p) * anti(b x anti(c) * neut(r)) * neut(c)
(by the above result (C2))
€ a *x anti(c) x neut(p) x {anti(b) x anti(anti(c)) * anti(neut(r))} * neut(c)
(by Definition 4.5)
C a *x anti(c) * neut(p) x {anti(b) * ¢ x anti(neut(r))}
(by Definition 2.4, 2.5 and Theorem 3.9)
C a * neut(p) * {anti(b) x neut(r) * (anti(c) x ¢)}

(by Theorem 3.10, Definition 2.4 and 2.5)

= a x neut(p) * {anti(b) x neut(r) * neut(c)} (by Definition 2.1)

C {(a * anti(b) * neut(p)) * neut(r) * neut(c)} (by Definition 2.1)

C {neut(q1)*neut(r)*neut(c)} (by the above result (C1) and Lemma 4.7)

C {neut(q1 xr=c)} (by Theorem 4.1)
This means that a ~,cyt C. ]

5. Commutative neutrosophic triplet group and Abel group with
BClI-algebra

Theorem 5.1. Let (N, x) be a commutative neutrosophic triplet group condition
(AN). Define binary relation =peyt on N as Theorem 4.8. Then the following
statements are hold:

(1) a,b,c € N, a Rpeyt b = a % ¢ Rpeyr b * c.

(2) a ~peut b = neut(a) ~peur neut(d).

(3) a ~peut b = anti(a) ~peur anti(b).

(4) a,b € N, neut(a) ~peut neut(b).

Proof. (1) Assume a Rpeye b, then there exists p,q € N such that

(C1) a * anti(b) x neut(p) = neut(q),

where anti(b) € {anti(b)}, neut(p) € {neut(p)}, neut(q) € {neut(q)}. Thus,
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(a * c) * anti(b * ¢) * neut(p)

€ (axc)* {anti(b)} x {anti(c)} * neut(p) (by Definition 4.5)
C {a * anti(b) * neut(p)} = {c * anti(c)} (by Definition 2.4 and 2.5)
= {a x anti(b) * neut(p)} * {neut(c)} (by Definition 2.1)
C {neut(q1)} * {neut(c)}(by the above result (C1) and Lemma 4.7)
C {neut(q *c)} (by Theorem 4.1)

It follows that a * ¢ ~peut b * C.
(2) Assume a ~peyr b, then there exists p,q € N such that

a x anti(b) * neut(p) = neut(q).

where anti(b) € {anti(b)}, neut(p) € {neut(p)}, neut(q) € {neut(q)}. Then,
applying Theorem 3.8 and Theorem 4.1 we have

neut(a)*xanti(neut(b))*neut(p)e{neut(a) }x{neut(b) } x{neut(p) } C{neut(axbxp)}.

This means that neut(a) ~peur neut(b).
(3) Assume a Ryt b, then there exists p,q € N such that

a * anti(b) x neut(p) = neut(q).

where anti(b) € {anti(b)}, neut(p) € {neut(p)}, neut(q) € {neut(q)}. Using
Theorem 3.10,

anti(neut(p)) € {neut(p)}, anti(neut(q)) € {neut(q)}.
Applying Theorem 4.3 we have

anti(a) * anti(anti(b)) * anti(neut(p)) € {anti(a * anti(b) * neut(p))}
C {anti(neut(q))} C {neut(q)}.

It follows that anti(a) ~peur anti(b).
(4) Ya,b € N, since

neut(a) * anti(neut(b)) * neut(a)

€ neut(a) *x {neut(b)} *x neut(a) (by Theorem 3.10)
C {neut(axbxa)} (by Theorem 4.1)
This means that neut(a) ~peur neut(b). O

Theorem 5.2. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation eyt on N as Theorem 4.8. Then the
quotient N/ &peyr is an Abel group with respect to the following operation:

v a, be N, [a]neut L4 [b]neut = [CL * b]neut-

where [a|neut s the equivalent class of a, the unit elment of (N/ neut,®) is
Lneut = [neut(a)lneut, Va € N, neut(a) € {neut(a)}.
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Proof. By Theorem 5.1 (1) ~ (3) we know that the operation “e” is well
definition. Obviously, (N/ ~peut, ®) is a commutative neutrosophic triplet group.
Moreover, by Theorem 5.1 (4) we get

Va,b € N, [neut(a)]peut = [neut(b)]neut-
Va,b € N, neut([a]peut) = neut([blneut)-

This means that neut(-) is unique. Denote
Lneut = [neut(a)|neut, ¥V a € N, neut(a) € {neut(a)}.

Then 1pey is the unit element of (N/ Xpeut, ®). Moreover, by Theorem 5.1 (3)
we get that anti([a]neyt) is unique, Va € N. Therefore, (N/ Xpeut, ®) is an Abel
group. [

Theorem 5.3. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation =peyt on N as Theorem 4.8. If define a
new operation “—” on the quotient N/ Rpeu as following:

Va,b € N, [a]neut = [b]neut = [a]neut ® anti([b]neut)-
Then (N/ =neut, = Lneut) is a BCI-algebra, where 1peyi=[neut(a)|peut, Ya€N.
Proof. By Theorem 5.2 and Proposition 2.13 we can get the result. 0
Example 5.4. Let N = {1,2,3,4,6,7,8,9}. The operation * on N is defined

as Tables 2. Then, (IV, ) is a neutrosophic triplet group with condition (AN).
For each a € N, we have neut(a) in N. That is,

neut(l) =7, neut(2) = 2, neut(3) =7, neut(4)

=92,
neut(6) = 2, neut(7) =7, neut(8) =2, neut(9) = 1.
Moreover, for each a € N, anti(a) in N. That is,

anti(1) =9, anti(2) € {2,7}, anti(3) = 3, anti(4) € {1,6},
anti(6) € {4,9}, anti(7) =7, anti(8) € {3,8}, anti(9) = 1.

Itis easy to Verify that N/ neut= {[Q]neut; [1]neut7 [3]neut7 [4]neut} and (N/ neuts
e) is isomorphism to (Z4,+), where

[2]neut = {27 7}’ [Hneut = {17 6}7 [3]neut = {37 8}7 [4]neut = {47 9}
Table 2 Cayley table of neutrosophic triplet group (IV, x)

*x 112346789
113169128 |1]4]|7
216128416284
3198|7164 13|2|1
412141682 [4]6]|8
6|8|6[4]2|8|6]|4)|2
71112(3[4(6]|7]8|9
8148264826
9|7]14]1|8]2|9]6/|3
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Table 3 Cayley table of Abel group ((N/ ~neut,®)
o [2]neut [l]neut [3]neut [4]neut
[2]neut [Q]neut [l]neut [3]neut [4]neut
[Hneut [Hneut [g]neut [4]neut [2]neut
[3]neut [3]neut [4]neut [Q]neut [Hneut
[4]neut [4]neut [2]neut [l]neut [3]neut

Table 4 Cayley table of Abel group (Z4,+)

+10(1]3]|4
0]0]12]3
111121310
21213101
313|10(1]2

Example 5.5. Consider (Z,f), where £ is defined as a § b = 3ab(modl0).
Then, (Z10,1) is a neutrosophic triplet group with condition (AN), the binary
operation f is defined in Table 1. For each € Zj¢, we have neut(a) in Z19. That
is,

neut(0) = 0, neut(l) =7, neut(2) =2, neut(3) =7, neut(4) =2,
neut(5) =5, neut(6) = 2, neut(7) =7, neut(8) = 2, neut(9) = 7.

Moreover, for each a € Z1g, anti(a) in Z19. That is,

anti(0) € {0,1,2,3,4,5,6,7,8,9}, anti(1) = 9, anti(2) € {2,7},
anti(3) = 3, anti(4) € {1,6}, anti(5) € {1,3,5,7,9},
anti(6) € {4,9}, anti(7) =7, anti(8) € {3,8}, anti(9) = 1.

It is easy to verify that N/ ~peut= {lneut = [Olneut} and (N/ ~peut, ®) is iso-
morphism to {1},where

[O]neut neut {0,1,2 3 4 5 6 7 8 9}

6. Quotient structure and neutro-homomorphism basic theorem

Definition 6.1 ([16]). Let (Ny,*;) and (Na,*2) be two neutrosophic triplet
groups. Let f: N1 — Ny be amapping. Then, f is called neutro-homomorphism
if for all a,b € N1, we have:

(1) flax1b) = f(a)*2 f(b);

(2) f(neut(a)) = neut(f(a));
(3) flanti(a)) = anti(f(a)).

Theorem 6.2. Let (N,*) be a commutative neutrosophic triplet group with
respect to x, H be a neutrosophic triplet subgroup of N such that (Ya € N)
neut(a) € H and (Va € H) anti(a) € H. Define binary relation ~g on N as
following:
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Va,b € N, a =g b iff there exists anti(b) € {anti(b)}, p € N, and neut(p) €
{neut(p)} such that
a * anti(b) x neut(p) € H.

Then =~y is reflerive and symmetric.

Proof. (1) For any a € N, by Proposition 3.2 and the hypothesis (neut(a) € H
for any a € N), we have

neut(a) * neut(a) € {neut(a)} C H.
By Definition 2.1 we get
a *x anti(a) x neut(a) = neut(a) * neut(a) € H.

Then, a =~y a.
(2) Assume a ~p b, then there exists p € N such that

(C2) a * anti(b) x neut(p) € H.

where anti(b) € {anti(b)}, neut(p) € {neut(p)}. Moreover, by the hypothesis
(anti(a) € H for any a € H), we have

(C3) anti(a x anti(b) * neut(p)) € H.

Using Theorem 3.10, anti(neut(p)) € {neut(p)}. So, we denote anti(neut(p)) =
x € {neut(p)}. Thus,
bxanti(a) * x
= b x anti(a) * anti(neut(p))
= anti(a) * b * anti(neut

(p)) (by Definition 2.5)

= anti(a) * (neut(b) * anti(anti(b))) * anti(neut(p)) (by Theorem 3.9)

= (anti(a)*anti(anti(b))*anti(neut(p)))*xneut(b)(by Definition 2.4 and 2.5)

€ {anti(a * anti(b) x neut(p))} * neut(b) (by Theorem 4.3)
CH (by (C3), the hypothesis and Proposition 3.13 (1))
This means that b =~y a. L]

Lemma 6.3. Let (N, %) be a commutative neutrosophic triplet group with con-
dition (AN), a,b € N, and H be a neutrosophic triplet subgroup of N such
that (Ya € N) neut(a) € H and (Va € H) anti(a) € H. If there exists
anti(b) € {anti(b)}, p € N, and neut(p) € {neut(p)} such that

a * anti(b) * neut(p) € H.

Then for any x € {anti(b)}, there exists p1 € N, and neut(pi) € {neut(p1)}
such that

ax*xxneut(py) € H.
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Proof. For any x € {anti(b)}, there exists y € {neut(b)} such that bxx = x*b =
y. Since (Va € N) neut(a) € H, theny € H. Thus, from axanti(b)*neut(p) € H
we get

a* x % (neut(b) x neut(p))

= axx * (anti(b) * b) * neut(p)

= (a *x anti(b) *x neut(p)) * (z * b)

= (a x anti(b * neut(p)) * y

cH (by Proposition 3.13)

O]

Theorem 6.4. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (Va € N)
neut(a) € H and (Ya € H) anti(a) € H. Define binary relation =g on N as
following:
Va,b € N, a =g b iff there exists anti(b) € {anti(b)}, p € N, and neut(p) €
{neut(p)} such that
a * anti(b) x neut(p) € H.

Then ~g is an equivalent relation on N.

Proof. By Theorem 6.2, we only prove that ~p is transitive. Assume that
a ~pg band b = c, then there exists p,r € N and ¢,s € N such that

(C3) a * anti(b) x neut(p) = q € H.
(C4) b* anti(c) x neut(r) = s € H.

where anti(b) € {anti(b)}, anti(c) € {anti(c)}, neut(p) € {neut(p)}, neut(r) €
{neut(r)}. Using Theorem 4.1 and the hypothesis (neut(a) € H for any a € N),
we have

neut(p) * neut(s) * neut(c) € neut(p* s=*c) C H.

Denote y = neut(p) * neut(s) * neut(c) € neut(p * s * ¢), then
a* anti(c) x y
= a * anti(c) * neut(p) * neut(s) * neut(c)
= a x anti(c) * neut(p) * (s * anti(s)) * neut(c) (by Definition 2.1)
= a * anti(c) * neut(p) * s * anti(b * anti(c) * neut(r)) x neut(c)
(by the above result (C4))
€ axanti(c)xneut(p)*sx{anti(b)} *{anti(anti(c))} x{anti(neut(r)) }neut(c)
(by Definition 4.5)
= a* anti(c) * neut(p) * s * {anti(b)} * ¢ x {anti(neut(r))} (by Theorem 3.9)
C a * anti(c) x neut(p) x s x {anti(b)} * ¢ x {neut(r)} (by Theorem 3.10)
C {ax* anti(b) x neut(p)} = s * (anti(c) x ¢) x {neut(r)} (by Definition 2.4 and
2.5)
C H * s x neut(c) * {neut(r)}

N s
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(by Definition 2.1, the above result (C3) and Lemma 6.3)
CH (by (C4), the hypothesis and Proposition 3.13 (1))
It follows that a ~g c. ]

Theorem 6.5. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (VYa € N)
neut(a) € H and (Va € H) anti(a) € H. Define binary relation ~g on N as
following:
Va,b e N, a =g b iff there exists anti(b) € {anti(b)}, p € N, and neut(p) €
{neut(p)} such that
a * anti(b) x neut(p) € H.

Then the following statements are hold:
(1) a,b,c € N,ar~g b= a*xc~pgbxc.
(2) a =g b= neut(a) ~g neut(b).

(3) a =g b= anti(a) =g anti(b).

Proof. (1) Assume a ~p b, then there exists p € N such that
(C2) a x anti(b) x neut(p) € H.

where anti(b) € {anti(b)}, neut(p) € {neut(p)}. We have
(a * c) * anti(b * c) * neut(p)

€ (axc)*x {anti(b)} x {anti(c)} * neut(p) (by Definition 4.5)
C {a * anti(b) * neut(p)} * {c * anti(c)} (by Definition 2.4 and 2.5)
= {a *x anti(b) * neut(p)} * neut(c) (by Definition 2.1)
€ H. (by (C2), the hypothesis, Lemma 6.3 and Proposition 3.13 (1))

It follows that axc~pg b*c.

(2) Assume a ~p b, then there exists p € N such that a x anti(b) x neut(p) €
H, where anti(b) € {anti(b)}, neut(p) € {neut(p)}. Applying Theorem 3.8 and
Theorem 4.1 we have

neut(a) * anti(neut(b)) * neut(p) € neut(a) * {neut(b)} * neut(p)

C {neut(axbxp)} C H. (by the hypothesis, neut(a) € H for any a € N)
It follows that neut(a) ~g neut(b).

Assume a =g b, then there exists p € N such that

a x anti(b) x neut(p) € H.

where anti(b) € {anti(b)}, neut(p) € {neut(p)}. Applying the hypothesis ((Va €
N) neut(a) € H and (Va € H) anti(a) € H) and Theorem 3.10,

anti(a * anti(b) * neut(p)) € H.
anti(neut(p)) € {neut(p)} C H.

Moreover, by Theorem 4.3 we have
anti(a) x anti(anti(b)) * anti(neut(p)) € {anti(a * anti(b) * neut(p))} C H.

Hence, anti(a) ~g anti(b). O
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Theorem 6.6. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (Va € N)
neut(a) € H and (Va € H) anti(a) € H. Define binary relation ~g on N as
Theorem 6.5. Then the quotient N/ ~p is a commutative neutrosophic triplet
group with respect to the following operation:

Va,b e N, [a]lg o [b]lg = [ax*bly.

where [ag is the equivalent class of a with respect to ~p. Moreover, (N,x*) is
neutron-homomorphism to (N/ =, ®) with respect to the following mapping:

f: N— N/ =pg; andVa € N, f(a) = [a]u.

[Pl

Proof. By Theorem 6.5 we know that the operation “e” is well definition.
Obviously, (N/ =, ) is a commutative neutrosophic triplet group.

[Pl

By the definitions of operation “e” and mapping f we have
Va,b€ N, f(axb)=[axbly = [a]y ®[blug = f(a)e f(D).
Moreover, by Theorem 6.5 (2) and (3) we get

Va € N, f(neut(a)) = [neut(a)|g = neut([a]g) = neut(f(a)).
Va € N, f(anti(a)) = [anti(a)|g = anti([a]g) = anti(f(a)).

Therefore, (N, ) is neutron-homomorphism to (N/ ~, ) with respect to the
mapping f. O

Theorem 6.7. Let (N,*) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (Ya € N)
neut(a) € H and (Va € H) anti(a) € H. Define binary relation ~g on N
as Theorem 6.5. If define a new operation “—” on the quotient N/ ~pg as
following: Ya,b € N, [alg — [blg = [a]g ® anti([b]g). Then (N/ ~g,—,1g) is
a BClIl-algebra, where 1 = [neut(a)|m, Ya € N.

Proof. By Theorem 6.7 and Proposition 2.13 we can get the result. 0

Example 6.8. Let N = {1,2,3,4,6,7,8,9}. The operation * on N is defined
as Tables 2. Then, (N, x) is a neutrosophic triplet group with condition (AN).
We can get the following equation

neut(1) =7, neut(2) = 2, neut(3) =7, neut(4) =2,

neut(6) = 2, neut(7) =7, neut(8) =2, neut(9) =7;
anti(1) =9, anti(2) € {2,7}, anti(3) = 3, anti(4) € {1,6},
anti(6) € {4,9}, anti(7) =7, anti(8) € {3,8}, anti(9) = 1.

Denote H = {2,3,7,8}, it is easy to verify that H is a neutrosophic triplet
subgroup of N such that (Va € N) neut(a) € H and (Va € H) anti(a) € H.
Moreover, N/ ~g= {H = [2|p, [1]u} and (N/ ~p, e) is isomorphism to (Z2, +),
where

2z =1{2,3,7,8}, [1]g ={1,4,6,9}.
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Table 5 Cayley table of Abel group (N/ =, )

e | [2lu | [Un
2lm | 2]z | A]a
e | Ma | 2]a

Table 6 Cayley table of Abel group (Zs,+)

+ 101
0101
17110

The following example shows that the basic theorem of neutro-homomorphism
(Theorem 6.7) is a natural and substantial generalization of the basic theorem
of group-homomorphism.

Example 6.9. Let (N, *) be a commutative group. Then, (N, x) is a neutro-
sophic triplet group with condition (AN). Obviously, if H is a subgroup of N,
then binary relation =~y on N is the relation induced by subgroup H, that is,

Va,be N, a~pgbif and only if a b~ ' € H.

Thus, (N, *) is group-homomorphism to (N/ ~p,e) = (N/H,e).

7. Conclusion

This paper is focus on neutrosophic triplet group. We proved some new proper-
ties of (commutative) neutrosophic triplet group, and constructed a new equiv-
alent relation on any commutative neutrosophic triplet group with condition
(AN). Based on these results, for the first time, we have described the inner
link between commutative neutrosophic triplet group with condition (AN) and
Abel group with BCl-algebra. Furthermore, we establish the quotient struc-
ture by neutrosophic triplet subgroup, and prove the basic theorem of neutro-
homomorphism, which is a natural and substantial generalization of the basic
theorem of group-homomorphism. Obviously, these results will play an impor-
tant role in the further study of neutrosophic triplet group.
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Abstract: The concept of a commutative generalized neutrosophic ideal in a BCK-algebra is proposed,
and related properties are proved. Characterizations of a commutative generalized neutrosophic
ideal are considered. Also, some equivalence relations on the family of all commutative generalized
neutrosophic ideals in BCK-algebras are introduced, and some properties are investigated.

Keywords: (commutative) ideal; generalized neutrosophic set; generalized neutrosophic ideal;
commutative generalized neutrosophic ideal

1. Introduction

In 1965, Zadeh introduced the concept of fuzzy set in which the degree of membership is expressed
by one function (that is, truth or t). The theory of fuzzy set is applied to many fields, including fuzzy
logic algebra systems (such as pseudo-BCI-algebras by Zhang [1]). In 1986, Atanassov introduced
the concept of intuitionistic fuzzy set in which there are two functions, membership function (t) and
nonmembership function (f). In 1995, Smarandache introduced the new concept of neutrosophic
set in which there are three functions, membership function (t), nonmembership function (f) and
indeterminacy/neutrality membership function (i), that is, there are three components (t, i, f) =
(truth, indeterminacy, falsehood) and they are independent components.

Neutrosophic algebraic structures in BCK/BClI-algebras are discussed in the papers [2-10].
Moreover, Zhang et al. studied totally dependent-neutrosophic sets, neutrosophic duplet semi-group
and cancellable neutrosophic triplet groups (see [11,12]). Song et al. proposed the notion of generalized
neutrosophic set and applied it to BCK/BCI-algebras.

In this paper, we propose the notion of a commutative generalized neutrosophic ideal in a
BCK-algebra, and investigate related properties. We consider characterizations of a commutative
generalized neutrosophic ideal. Using a collection of commutative ideals in BCK-algebras, we obtain
a commutative generalized neutrosophic ideal. We also establish some equivalence relations on the
family of all commutative generalized neutrosophic ideals in BCK-algebras, and discuss related basic
properties of these ideals.

2. Preliminaries

A set X with a constant element 0 and a binary operation * is called a BCI-algebra, if it satisfies
(Vx,y,z € X):
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M ((exy)*(xx2))* (zxy) =0,
(D) (x* (x*y))xy =0,

(III) xxx=0,

(IV) xxy=0,y*xx=0 = x=y.

A BCl-algebra X is called a BCK-algebra, if it satisfies (Vx € X):
(V) 0xx=0,

For any BCK/BCI-algebra X, the following conditions hold (Vx,y,z € X):

x*0=x, 1)
x<y=xxz<yxz,z+xy<zxx, @)
(xxy)xz=(x*z)*y, (3)
(x*z)*x(y*z) <x%y 4)

where the relation < is defined by: x < y <= x xy = 0. If the following assertion is valid for a
BCK-algebra X, Vx,y € X,

xx (X y) =y (y*x). ®)

then X is called a commutative BCK-algebra.
Assume [ is a subset of a BCK/BCl-algebra X. If the following conditions are valid, then we call
Iis an ideal of X:

0€el (6)
VxeX)(Vyel)(xxyel = xel). (7)

A subset I of a BCK-algebra X is called a commutative ideal of X if it satisfies (6) and
(Vx,y,ze€ X)((xxy)xzel,zel = xx(yx(yxx)) €1I). 8)
Recall that any commutative ideal is an ideal, but the inverse is not true in general (see [7]).

Lemma 1 ([7]). Let I be an ideal of a BCK-algebra X. Then I is commutative ideal of X if and only if it satisfies
the following condition for all x,vy in X:

xxy el = xx(y*(yx*xx)) €L )
For further information regarding BCK/BCI-algebras, please see the books [7,13].

Let X be a nonempty set. A fuzzy setin X is a function y : X — [0,1], and the complement of
i, denoted by ¢, is defined by u(x) =1 — u(x), Vx € X. A fuzzy set y in a BCK/BCI-algebra X is
called a fuzzy ideal of X if

(Vx € X)(1(0) = u(x)), (10)
(Vx,y € X)(u(x) = min{p(x*y), p(y))}- (1)

Assume that X is a non-empty set. A neutrosophic set (NS) in X (see [14]) is a structure of
the form:

A= {(x; Ar(x), A1(x), Ap(x)) | x € X}
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where At : X — [0,1], A;: X — [0,1],and A : X — [0,1] . We shall use the symbol A = (Ar, A, Ar)
for the neutrosophic set

A= {(x;Ar(x), Ar(x), Ap(x)) | x € X}.
A generalized neutrosophic set (GNS) in a non-empty set X is a structure of the form (see [15]):
A:={(x; Ar(x), Arr(x), Arp(x), Ap(x)) | x € X, Arr(x) + Ap(x) <1}

where Ap: X — [0,1], Ap: X = [0,1] , A7 : X = [0,1] ,and Ar : X — [0,1] .
We shall use the symbol A = (At, Arr, Arr, Ar) for the generalized neutrosophic set

A:={(x;Ar(x), Arr(x), A1p(x), Ap(x)) | x € X, Ajr(x) + Arp(x) < 1}
Note that, for every GNS A = (Art, Arr, Arr, Ar) in X, we have (for all x in X)
(Vx € X) (0 < Ar(x) + Arr(x) + Arp(x) + Ap(x) < 3).
If A= (Ar, Arr, Arp, Ap) is a GNS in X, then A = (Ar, Arr, Ay, AS) and OA = (A%, A,
Ajr, Ar) are also GNSs in X.

Given a GNS A = (Ar, Arr, Arp, Ar) in a BCK/BClI-algebra X and ar, a1, Br, Bir € [0,1],
we define four sets as follows:

Uy
UA

T,ar):={x € X | Ar(x) > ar},
IT,arr) :=={x € X | Arr(x) > arr},
A(F, Br) == {x € X[ Ap(x) < Br},
A(IE, Bip) == {x € X | Ajp(x) < Brr}.

/\/\/—\,_\

A GNS A = (A1, Arr, Arr, Ar) in a BCK/BClI-algebra X is called a generalized neutrosophic
ideal of X (see [15]) if

(Vx € X) ( Ar(0) > Ar(x), Arr(0) > Arr(x) ) ’ (12)
Arp(0) < Ajp(x), Ap(0) < Ap(x)
A ( ) > min{Ar(x*y), Ar(y)}
ir(x) > m
(Vx,y € X) (13)

)
in{Arr(x*y), Arr(y)}
( ) < max{Ar(x*y), Arr(y)}
Afp(x) < max{Afp(x xy), Ar(y)}

3. Commutative Generalized Neutrosophic Ideals

Unless specified, X will always represent a BCK-algebra in the following discussion.

Definition 1. A GNS A = (Ar, A1, Arr, Ar) in X is called a commutative generalized neutrosophic ideal
of X if it satisfies the condition (12) and

> min{Ar((x *y) xz), Ar(z)}
> min{Ar((x*y) xz), Air(z)}
< max{Ap((x*y) *z), Arp(z)}
< max{Ap((xxy) *z), Ar(z)}

Ar(x* (y* (y * x)

)
(Vx,y,z € X) Arr (e (y * (y » ; (14)
)

Arp(xs (y=* (y *
Ap(xx (y* (y % x)

Example 1. Denote X = {0,a,b,c}. The binary operation * on X is defined in Table 1.
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"

Table 1. The operation “*”.

a S O %
a o O o
a oo
o oo o| S
oT x On

We can verify that (X, *,0) is a BCK-algebra (see [7]). Definea GNS A = (Ar, Arr, Arp, Ar) in X by
Table 2.

Table 2. GNS A = (A1, Arr, Are, Ap).

X Ar(x) Arr(x) Arr(x) Afp(x)

0 07 0.6 0.1 0.3
a 05 0.5 0.2 0.4
b 03 0.2 0.4 0.6

0.3 0.2 0.4 0.6

(9}

Then A = (A, A, A1, Af) is a commutative generalized neutrosophic ideal of X.
Theorem 1. Every commutative generalized neutrosophic ideal is a generalized neutrosophic ideal.

Proof. Assume that A = (A1, Arr, Arr, Ar) is a commutative generalized neutrosophic ideal of X.
Vx,z € X, we have

Ar(x) = Ar(x % (0% (0% x))) > min{Ar((x*0) xz), Ar(z)} = min{Ar(x*z), Ar(z)},

A[T(x) = A[T(x * (0 * (0* x))) 2 min{AlT((x *0) *Z),A[T(Z)} = min{AlT(x * Z),AIT(Z)},

Agp(x) = Arp(e (0% (0 %)) < max{ Ajp((x 0) +2), Ap(2)} = max{Age(x +2), Are(2)},
and
Ap(x) = Ap(x* (0% (0% x))) < max{Ap((x*0) *z), Ap(z)} = max{Ar(x*z), Ap(z)}.
Therefore A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal. [

The following example shows that the inverse of Theorem 1 is not true.
Example 2. Let X = {0,1,2,3,4} be a set with the binary operation * which is defined in Table 3.

"

Table 3. The operation “x”.

*

= W = o

W NN =R oo
B W NOO|
WO =R ON
WO oo OoO|Ww
O OO OO

We can verify that (X, *,0) is a BCK-algebra (see [7]). We definea GNS A = (At, Arr, A1p, Ap) in X
by Table 4.
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Table 4. GNS A = (A1, Arr, Arr, AF).

X Ar(x) Air(x) Arp(x) Ap(x)
0 0.7 0.6 0.1 0.3
1 0.5 0.4 0.2 0.6
2 0.3 0.5 0.4 0.4
3 0.3 0.4 0.4 0.6
4 0.3 0.4 0.4 0.6

It is routine to verify that A = (Ar, Arr, Are, Ar) is a generalized neutrosophic ideal of X, but A is not
a commutative generalized neutrosophic ideal of X since

Ar(2% (3% (3%2))) = Ar(2) = 0.3 # min{Ar((2%3) 0), Ar(0)}
and/or
AH:(Z* (3 * (3 *2))) = AH:(Z) =04 ﬁ maX{AH:((Z *3) * 0),A[F(O)}

Theorem 2. Suppose that A = (A, Ajr, Arp, Af) is a generalized neutrosophic ideal of X. Then A = (Ar,
Arr, A1, Ap) is commutative if and only if it satisfies the following condition.

Ar(xxy) < Ap(xx (y* (y *x)))
Ar(xxy) < App(xx (y* (y x x)))
App(xy) 2 Ap(xox (v (y x x)))
Ap(xxy) = Ap(xx (y = (y * x)))

(Vx,y € X) (15)

Proof. Assume that A = (A1, Air, Arr, Ar) is a commutative generalized neutrosophic ideal of X.
Taking z = 0 in (14) and using (12) and (1) induces (15).

Conversely, let A = (Ar, Arr, Arr, Ar) be a generalized neutrosophic ideal of X satisfying the
condition (15). Then

Ar(xx (y* (y=x))) > Ar(xxy) > min{Ar((x*y) *xz), Ar(2)},
Arr(xx (yx (y*x))) > Ajr(xxy) > min{A;r((xxy) *z), Air(2)},

Arp(x* (y* (y*x))) < Arp(xxy) <max{Ar((x*y) *z), Arr(z)}
and
Ap(x* (y* (y*x))) < Ap(x*xy) < max{Ap((x *y) *z), Ap(z)}

forall x,y,z € X. Therefore A = (Ar, Arr, A1p, Af) is a commutative generalized neutrosophic ideal
of X. O

Lemma 2 ([15]). Any generalized neutrosophic ideal A = (Ar, Arr, Arr, Ar) of X satisfies:
Ar(x) = min{Ar(y), Ar(z)}

T
AIT(X) Z min{AIT(y),A[T(Z)}
Arp(x) <max{Ajr(y), Arr(z)}
)}

Ap(x) < max{Ar(y), Ar(z
We provide a condition for a generalized neutrosophic ideal to be commutative.

(Vxr,y,zeX) [xxy<z = (16)
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Theorem 3. For any commutative BCK-algebra, every generalized neutrosophic ideal is commutative.

Proof. Assume that A = (Ar, Arr, A, Ar) is a generalized neutrosophic ideal of a commutative
BCK-algebra X. Note that

(o (y* (yxx))) * ((xxy) x2)) w2 = ((xx (y* (y +x))) x2) * ((xxy) *2)
< (xx(yx(y*x)))* (xxy)
= (e (xxy)) (¥ * (yxx)) =0,

thus, (x* (y* (y*x))) * ((x*xy) xz) < z,Vx,y,z € X. By Lemma 2 we get

Ar(x = (y* (y*x))) = min{Ar((x *y) xz), Ar(2)},
Arr(x* (y* (y xx))) = min{A;r((x *y) xz), Arr(z)},
App(x = (y = (y*x))) < max{Ap((xxy) *z), Aip(2)},
Ap(xx (Y= (y+x))) < max{Ap((x*y)*z), Ap(z)}.

Therefore A = (Ar, Arr, Arr, Ar) is a commutative generalized neutrosophic ideal of X. [

Lemma 3 ([15]). Ifa GNS A = (A7, Arr, Arr, Ar) in X is a generalized neutrosophic ideal of X, then the
sets Ua(T,ar), Ua(IT,ar7), La(F, Bp) and La(IF, Big) are ideals of X for all at, arr, Br, B1r € [0,1]
whenever they are non-empty.

Theorem 4. Ifa GNS A = (Ar, Arr, Ajr, Ar) in X is a commutative generalized neutrosophic ideal of X,
then the sets U (T, ar), Ua(IT,ay7), Lo(F, Br) and LA (IF, B1p) are commutative ideals of X for all at, ay,
Br, Bir € [0,1] whenever they are non-empty.

The commutative ideals UA(T,at), Uo(IT,arr), La(F, Br) and La(IF,Br) are called level
neutrosophic commutative ideals of A = (At, Arr, Alg, Af).

Proof. Assume that A = (Ar, Arr, Ajp, Ar) is a commutative generalized neutrosophic ideal
of X. Then A = (Ar, A, Arr, Ar) is a generalized neutrosophic ideal of X. Thus Ux (T, o),
Ua(IT,ar7), La(F,Br) and L4 (IF,Bir) are ideals of X whenever they are non-empty applying
Lemma 3. Suppose that x,y € X and xxy € Ua(T,ar) N U4 (IT, a;7). Using (15),

Ar(x* (y*(yxx))) > Ar(x xy) > ar,
Arr(xx (y* (yxx))) > Arr(x xy) > agr,

andsox* (y* (y*x)) € Ua(T,ar) and x * (y * (y xx)) € Ua(IT, ay7). Suppose that a,b € X and
axb € La(IF,Brr) NLa(F,Br). It follows from (15) that Ajp(a* (b (bxa))) < Arp(axb) < Brr and
Ap(ax (b* (bxa))) < Ap(axb) < Bp. Hence ax (b (bxa)) € Ls(IF,Brr) and a*(b*(b*a)) €
L4(F,Bg). Therefore Uy (T, at), Ua(IT,a51), La(F, Br) and LA (IF,Bir) are commutative ideals
of X. O

Lemma 4 ([15]). Assume that A = (Ar, Arr, Arr, Ar) is a GNS in X and U (T, at), Ua(IT, a57),
LA(F, ,BF) and LA(IF, ‘B[p) are ideals OfX, VCKT, xXrr, ,BF/ ,BIF S [0, 1]. Then A = (AT/ AIT/ AIF/ AF) isa
generalized neutrosophic ideal of X.

Theorem 5. Let A = (AT, Arr, Arr, Al:) be a GNS in X such that UA(T, D(T), UA(IT, IXIT), LA(F, ﬁp) and

La(IF, Brr) are commutative ideals of X for all at, arr, Br, B1r € [0,1]. Then A = (Ar, Arr, Arp, Ap) isa
commutative generalized neutrosophic ideal of X.
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Proof. Let at, arr, Br, Bir € [0,1] be such that the non-empty sets U (T, ar), Ua(IT, a;7), La(F, BF)
and L4 (IF, Bir) are commutative ideals of X. Then U4 (T, at), Uo(IT, ar7), La(F, Br) and LA (IF, B1F)
are ideals of X. Hence A = (Ar, A1, Arr, Ar) is a generalized neutrosophic ideal of X applying
Lemma 4. For any x,y € X, let Ar(xxy) = ar. Then x xy € Uu(T,ar), and so x * (y* (y*x)) €
Ux(T,ar) by (9). Hence Ar(x * (y* (y*x))) > ar = Ar(x *y). Similarly, we can show that

(Vx,y € X)(Arr(x* (y * (y ¥ x))) = Arr(x xy)).

Forany x,y,a,b, € X,let Ap(x*y) = Brand Ajp(a*xb) = Brp. Thenxxy € L4(F,Br) andaxb €
La(IF,Bir). Using Lemma 1 we have x % (y * (y* x)) € Lo(F,Br) and ax (bx (bxa)) € Lo(IF, Brr).
Thus Ap(x*xy) = Br > Ap(x* (y* (y*xx))) and Ajp(axb) = Brp > Ap((a*b) xb). Therefore
A = (Ar, Arr, A1, Af) is a commutative generalized neutrosophic ideal of X. [J

Theorem 6. Every commutative generalized neutrosophic ideal can be realized as level neutrosophic
commutative ideals of some commutative generalized neutrosophic ideal of X.

Proof. Given a commutative ideal C of X, define a GNS A = (Ar, A1, Arr, Ar) as follows

[ ar ifxeC, [ oar ifxeC,
Ar(x) _{ 0 otherwise, i(x) = { 0  otherwise,

AIP( ) { ‘BH: ifxeC, AF(X):{ ,31: ifxeC,

1 otherwise, 1  otherwise,

where ar,a;r € (0,1] and Bp,Bir € [0,1). Let x,y,z € X. If (x*xy)*xz € Cand z € C,
then x x (y * (y * x)) € C. Thus

)) = ar = min{Ar((x +y) +2), Az(2)},
))) = ajr = min{A;r((x *y) *z), Ar(2) },
))) = Bir = max{Ap((x *y) *z), Ap(z)},
)) = Br = max{Ap((xxy) xz), Ap(z) }.

Assume that (x*y) *z ¢ Cand z ¢ C. Then Ar((x*y) xz) =0, Ar(z) =0, A;ir((x*y) *z) =0,
Arr(z) =0, Ap((xxy) xz) =1, Ajp(z) =1, and Ap((x xy) xz) = 1, Ap(z) = 1. It follows that

Ar(xs (y* (y * x)
Arr(xx (v (yxx
Arp(x s (y* (yxx
Ap(xx (y* (y *x)

in{Ar((x*y) *2), Ar(2)},
)
)

Ar(xx (y + (y * x)))
Ar(xx (v (y * x)))
Ap(x# (y * (y  x)))
Ap(xx (y* (y *x)))

)
mi n{AlT X *]/) *Z) A[T(Z
max{ Are((x +1) 2), Al (z
max{Ap((x *y) *z), Ap(2)}.
If exactly one of (x *y) * z and z belongs to C, then exactly one of Ar((x *y) *z) and Ar(z) is

equal to 0; exactly one of A;r((x *y) *z) and Ajr(z) is equal to 0; exactly one of Ap((x *y) *z) and
Ap(z) is equal to 1 and exactly one of Ajp((x *y) *z) and Ajp(z) is equal to 1. Hence

7

}
|2

> m
>
<
<

Ar(xx (y* (yxx))) > min{Ar((x xy) *z), Ar(2) },
Arr(x* (y* (y xx))) = min{A;r((x *y) xz), Arr(z)},
Arp(x = (yx (y*x))) < max{Ap((xxy) *z), Aip(z)},
Ap(x* (y = (y*x))) < max{Ap((x*y) xz), Ap(2) }.

It is clear that AT(O) > AT(X), AIT(O) > AIT(X), AIF(O> < AH:(X) and AF<O) < AF(X) for all
x € X. Therefore A = (Ar, A, Arp, Ar) is a commutative generalized neutrosophic ideal of X.
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Obviously, Ua(T,ar) = C, Us(IT,a17) = C, LAo(F,Br) = C and L4 (IF, Bir) = C. This completes
the proof. O

Theorem 7. Let {C; | t € A} be a collection of commutative ideals of X such that

1 X= tUACt,
€
2 (Vs,teN)(s>t <= CsC ()

where A is any index set. Let A = (At, Arr, Arp, Ap) be a GNS in X given by

(17)

(Vx c X) ( AT(x) = sup{t eAN | X € Ct} = AIT(X) )

AH:(x) = il’lf{t eAN | X € Ct} = AF(X)
Then A = (A1, A, A1, Af) is a commutative generalized neutrosophic ideal of X.

Proof. According to Theorem 5, it is sufficient to show that U(T, t), U(IT,t), L(F,s) and L(IF,s) are
commutative ideals of X for every t € [0, A7(0) = A;r(0)] and s € [A;p(0) = Af(0),1]. In order to
prove U(T,t) and U(IT, t) are commutative ideals of X, we consider two cases:

(i) t=sup{ge A|qg<t}
(ii) t #sup{g e A|q <t}

For the first case, we have

xeU(T,t) <= (Vg<t)(xeCy) <= xe[)C,
g<t

x € U(IT,t) < (Vg < t)(x € Cg) <= x € G,
q<t

Hence U(T,t) = NCy; = U(IT,t), and so U(T,t) and U(IT,t) are commutative ideals of X.
<t
For the second case, we claim that U(T,t) = U Cq = U(IT,t). Ifx € U Cq, then x € C; for

some g > t. It follows that A;r(x) = Ar(x) > q > tand so that x € U(T t) and x € U(IT,t).

This shows that U Cq C U(T,t) and U Cq C U(IT,t). Now, suppose x ¢ U C;. Then x & Cp, Vg > t.
9>t

Since t # sup{g 6 A | g < t}, there ex1sts £ > 0suchthat (t —¢t)NA=®. Thusx ¢ C;, Vg >t —¢,

this means that if x € C;, theng < t —e. So Ajr(x) = Ar(x) < t—e <t andsox & U(T,t) =

U(IT,t). Therefore U(T,t) = U(IT,t) C U Cq Consequently, U(T,t) = U(IT,t) = |J C; which
g=t

is a commutative ideal of X. Next we show that L(F,s) and L(IF,s) are commutative ideals of X.
We consider two cases as follows:

(iii) s =inf{r e A|s<r},
(iv) s #inf{r € A|s <r}.

Case (iii) implies that

x€L(IF,s) < (Vs <r)(x € G) <= x€ [C,

s<r

xceU(Fs) < (Vs<r)(xeC) < xc[)C.

s<r

It follows that L(IF,s) = L(F,s) = () C,, which is a commutative ideal of X. Case (iv) induces
s<r

(s,s+e)NA=0@forsomee>0.Ifx € |JC,, thenx € C, for some r < s,and so Ajp(x) = Ap(x) <
s>r

r <s,thatis, x € L(IF,s) and x € L(F,s). Hence U C, C L(IF,s) = L(F,s). Ifx ¢ | C,, then x ¢ C,

s>r s>r
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for all ¥ < s which implies that x ¢ C, forallr < s +¢, thatis, if x € C, thenr > s +¢. Hence Ajp(x) =
Ap(x) > s+¢e>s,andso x ¢ L(Ajr,s) = L(Ag,s). Hence L(Ajr,s) = L(Afr,s) = U Cr which is a
s>r
commutative ideal of X. This completes the proof. [
Assume thta f : X — Y is a homomorphism of BCK/BClI-algebras ([7]). For any GNS A = (Ar,

Arr, Ajr, A) in Y, we define anew GNS Af = (Af, A%, Al,, AL)in X, which is called the induced
GNS, by

A4w>=ATUw»,A%w>=AHU¢”>>. (18)

Afp(x) = Ap(f(x)), Af(x) = Ap(f(x)
Lemma 5 ([15]). Let f : X — Y be a homomorphism of BCK/BCI-algebras. If a GNS A = (A, Ar, Alr,

Ar) in Y is a generalized neutrosophic ideal of Y, then the new GNS Af = (AJ;, AJI[T, AJ;F, Aé) in Xisa
generalized neutrosophic ideal of X.

(Vx € X) (

Theorem 8. Let f : X — Y be a homomorphism of BCK-algebras. If a GNS A = (Ar, Arr, A, Ap) in Y

is a commutative generalized neutrosophic ideal of Y, then the new GNS Af = (AJ;, A{T, A/I[F, A{:) inXisa
commutative generalized neutrosophic ideal of X.

Proof. Suppose that A = (Ar, Arr, Ajr, Af) is a commutative generalized neutrosophic ideal of Y.
Then A = (Ar, Arr, Ar, AF) is a generalized neutrosophic ideal of Y by Theorem 1, and so Af = (AJ;,
A{T, AJI( Fr AJ;) is a generalized neutrosophic ideal of Y by Lemma 5. For any x,y € X, we have

Af (x5 (y* (y xx))) = At

and

Therefore Af = (AJ;, AJI(T, A{F, A];) is a commutative generalized neutrosophic ideal of X. [
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Lemma 6 ([15]). Let f : X — Y be an onto homomorphism of BCK/BCI-algebras and let A = (Ar, Arr,

Arr, Ap) bea GNS in Y. If the induced GNS Af = (A’;, AJI[T, A/I[F, A{:) in X is a generalized neutrosophic
ideal of X, then A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of Y.

Theorem 9. Assume thta f : X — Y is an onto homomorphism of BCK-algebras and A = (Ar, Arr, Alr,

Ag) is a GNS in Y. If the induced GNS Af = (AJ;, A{T, AJI[F, AJI;) in X is a commutative generalized

neutrosophic ideal of X, then A = (Ar, Arr, Arr, Ar) is a commutative generalized neutrosophic ideal of Y.

Proof. Suppose that Af = (A];, AJ;T, A{F, AJFC) is a commutative generalized neutrosophic ideal of

X. Then Af = (AJ;, AJIIT, AJI[P, A{-) is a generalized neutrosophic ideal of X, and thus A = (Ar, Arr,
Ajp, Ar) is a generalized neutrosophic ideal of Y. For any a,b, ¢ € Y, there exist x,y,z € X such that

f(x) =a, f(y) =band f(z) = c. Thus,
Ar(ax (bx (bxa))) = Ar(f(x) * (F(y) * (F) * f(x)))) = Ar(f(x % (y % (y ¥ X))))
= AL(xx (yx (y*x))) = Af(x*y)
= Ar(f(x) * f(y)) = Ar(axD),

Arr(ax (b (bxa))) = Arr(F(x) = (F(y) = (F(y) % F(x)))) = Arr(F(x % (y * (y % x))))
= Al (xx (y* (y*x))) = Alp(xxy)
= Arr(f(x) = f(y)) = Arr(axb),

Arp(ax (bx (bxa))) = Arr(F(x) % (F(y) * (F) * £(x))) = Arr(f(xx (% (y ¥ x))))
= Alp(xx (y* (y %)) < Alp(x xy)
= Aip(f(x) * f(y)) = Arp(axb),

and

Ap(ax (bx (b)) = Ap(f(x) * (F(y) * (Fy) * F(%))) = Ap(f(x # (y % (y # ¥))))
= AL(xx (y* (y*x))) < Ab(xxy)
= Ap(f(x) % f(y)) = Ap(a xD).

It follows from Theorem 2 that A = (Ar, A1, Arr, Af) is a commutative generalized neutrosophic
idealof Y. O

Let CGNI(X) denote the set of all commutative generalized neutrosophic ideals of X and ¢ € [0, 1].
Define binary relations U}, Ul;, LL and L on CGNI(X) as follows:

(A,B) e UL & Ux(T,t) =Up(T,t), (A B) € Uty < Uas(IT, t) = U(IT, t),

(A,B) € Lt & La(Ft) = Ly(F,1), (A,B) € L'y & L(IF,t) = Ly(IF, 1) (19

for A = (AT, AIT/ AH:, Al:) and B = (BT, BIT/ BH:, Bp) in CGNI(X) Then clearly Ut, LI}T, L%
and LY, are equivalence relations on CGNI(X). For any A = (Ar, A1, Air, Ap) € CGNI(X),
let [A]ufT (resp., [A]Ufr’ [A]L% and [A]LQF) denote the equivalence class of A = (Ar, Arr, A1, Af)
modulo U (resp, Uly, Lt and Lt;). Denote by CGNI(X) /UL (resp., CGNI(X) /Uty CGNI(X)/LEL
and CGNI(X)/L!}) the system of all equivalence classes modulo U (resp, Uly, Lk and Lf;); so

CGNI(X)/Uk = {[Alu | A= (Ar, Arr, Arp, Ap) € CGNI(X)}, (20)
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CGNI(X)/Ujr = {[Aly, | A = (Ar, Arr, Air, AF) € CGNI(X)}, (21)
CGNI(X)/Ly = {[Aly | A= (A1, Arr, Arp, Ar) € CGNI(X)}, (22)

and
CGNI(X)/Lip = {[Al;; | A= (A1, Air, A1, A) € CGNI(X)}, (23)

respectively. Let CI(X) denote the family of all commutative ideals of X and let t € [0, 1]. Define maps

ft :CGNI(X) = CI(X) U{Q@}, A Ux(T,t), (24)

gt : CGNI(X) — CI(X) U{D}, A Ux(IT,t), (25)

a;: CGNI(X) = CI(X)U{®@}, A— La(F, 1), (26)
and

Bt : CGNI(X) — CI(X)U{®@}, A La(IF,t). (27)

Then the definitions of ft, gt, #; and B are well.

Theorem 10. Suppose t € (0,1), the definitions of f;, g, ay and By are as above. Then the maps f, gt, ay and
Bt are surjective from CGNI(X) to CI(X) U {D}.

Proof. Assumet € (0,1).We know that 0. = (07, 0;7, 11, 1f) isin CGNI(X) where 07, 0;7, 1;r and 1f
are constant functions on X defined by 07(x) =0, 0;7(x) =0, 1;p(x) = 1and 1p(x) = 1 forall x € X.
ObViOUSly ft(ON) = U()N(T, t), gt(ON) = U()N(IT, t), ﬂct(ON) = Lo_ (P, t) and ,Bt(ON) = LON(IF,t) are
empty. Let G(# @) € CGNI(X), and consider functions:

1 ifxeG,
Gr:X—=[01], G { 0 otherwise,

1 ifxeG,

GIT X = [0/ 1]/ G { 0 OtheI'WiSe,

GF:X—>[0,1],GH{(1) ifxeG,

otherwise,
and

0 ifxegG,

- X 1
Grr - [0,1], G~ { 1 otherwise.

Then G~ = (Gr,Grr,Gir, Gr) is a commutative generalized neutrosophic ideal of X, and
ft(GN) = UGN(T,t) = G, gt(GN) = UGN(IT,f) = G, (Xt(GN) = LGN(F,t) = G and ,Bt(GN) =
Li._(IF,t) = G. Therefore f;, gt, a; and p; are surjective. [

Theorem 11. The quotient sets

CGNI(X)/Uh, CGNI(X)/Uty, CGNI(X) /Lt and CGNI(X) /Lty
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are equipotent to CI(X) U {D}.
Proof. For t € (0,1), let f; (resp, g/, &f and B;j) be a map from CGNI(X)/U%
(resp., CGNI(X) /Uy, CGNI(X)/Lt and CGNI(X)/Lt,) to CI(X) U {@} defined by f; ([A] ufT) -

fi(A) (resp., g7 ([A]ugT) = gi(A) , af ([A]L;) = a;(A) and B; ([A]Lfn:) = Pi(A)) forall A = (Ar,
Arr, Arr, AF) € CGNI(X) If UA(T,i’) = UB(T,t), UA(IT,t) = UB(IT,t), LA(F,i’) = LB(F,t)
and LA(IF,t) = LB(IF,t) for A = (AT, AIT/ AIF/ AP) and B = (BT,B[T,BF,BH:) in CGNI(X),
then (A, B) € U4, (A,B) € Ui, (A,B) € LL and (A, B) € L!.. Hence (Al = [Blug, [Alue, = [Blut
[A}Ltp = [B]Up and [A}Ltlp = [B]Lt”:. Therefore f; (resp, g, af and B}) is injective. Now let
G(7'é @) S CGNI(X) For G. = (GT, Grt, Grr, GF) S CGNI(X), we have

fi (620 ) = £i(G~) = Us(T,H) = G,
8 (1G], ) = &1(G~) = Us_(IT,H) = G,

a7 (G~]y) = w(G~) = Lo (F,1) =G

F

and
pi ([G~}L5F) = Bi(G~) = Lg_(IF,t) = G.

Finally, for 0~ = (07, 0;7,1;¢,1f) € CGNI(X), we have

fr ([ON]utT) = fi(0~) = Uo (T, 1) = O,
g ([0-)y,) = 81(0.) = Uo_(IT, 1) = @,

o ([oN]U) = a;(0.) = Lo_(F,t) =@

F

and

Therefore, f (resp, g}, af and B}) is surjective. [

Vt € [0,1], define another relations Rf and Qf on CGNI(X) as follows:
(A,B) € R' & U(T,t)NLa(F,t) = Up(T,t) N Ly(F,t)
and
(A,B) € Q' & Ua(IT,t) N La(IF,t) = Ug(IT,t) N Ly(IF, 1)

for any A = (Ar, Arr, Arr, Ar) and B = (Br, Bir, Bjr, Br) in CGNI(X). Then R! and Q' are
equivalence relations on CGNI(X).
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Theorem 12. Suppose t € (0,1), consider the following maps
¢t : CGNI(X) = CI(X) U{D}, A fi(A) Nas(A), (28)
and
¥ : CGNI(X) — CI(X)U{D}, A= i(A) N Bi(A) (29)
foreach A = (At, Arr, Arp, Ap) € CGNI(X). Then ¢ and gy are surjective.
Proof. Assumet € (0,1). For 0. = (07, 0;7,1;r, 1) € CGNI(X),
91(0-) = £i(0~) Ns(0~) = Up_ (T,t) N Lo_(F, 1) = @
and
P1(0~) = g1(0~) N Br(0~) = U (IT,t) N Lo (IF,t) = D.
For any G € CI(X), there exists G~ = (G, Gi1, Gir, Gr) € CGNI(X) such that
9t(G~) = fi(Go) Nar(GL) = Ug (T, t) N Lg (F, t) =G
and
91(G~) = 81(G~) NBr(G~) = Us_(IT,£) N Le_(IF, 1) = G
Therefore ¢; and ¢; are surjective. [

Theorem 13. For any t € (0,1), the quotient sets CGNI(X)/R" and CGNI(X)/Q" are equipotent to
CI(X) U{D}.

Proof. Lett € (0,1) and define maps

@ : CGNI(X)/R" — CI(X) U{®@}, [Algt = @:(A)
and

¥ 1 CGNI(X)/Q" — CI(X) U{D}, [Algt = 1(A).

1f gf ([Alre) = 97 ([Blg) and 97 ([Alg ) = ¢7 ([Blg) for all [Alx, [Blx: € CGNI(X)/R' and
[A}Qt, [B]Qt c CGNI(X)/Qt, then ft(A) N [Xt(A) = ft(B) N [Xt(B) and gt(A) N ﬁt(A) = gt(B) N ‘Bt(B),
that is, U,(T,t) N La(F,t) = Ug(T,t) N Lg(F,t) and U4 (IT,t) N Ls(IF,t) = Ug(IT,t) N Lg(IF, t).
Hence (A, B) € R!, (A,B) € Q. So [A]gs = [Blg, [Algt = [B]qt, which shows that ¢} and ¢ are
injective. For 0. = (OT, 01, 11F, 11:) S CGNI(X),

¢r ([0~]re) = @+(0~) = f+(0~) N s (0~) = Up_(07,£) N Lo (1F, t) =D
and
9i ([0~)gr ) = $1(0+) = gi(0~) N Br(0~) = Uo_ (017, 1) N Lo (L1, 1) = @,
IfG e CI(X), then G = (GT, Grt, Gir, G]:) S CGNI(X), and so

¢; ([G~Jre) = @1(G~) = fi(G~) N (G) = Ug (Gr, 1) NLe (Gr, t) = G
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and
9i (IG-lgr) = 91(G~) = 8i(G~) N Bi(G~) = Us_(Gir, ) N Lg. (Gir, ) = G.
Hence ¢} and 9} are surjective, and the proof is complete. [

4. Conclusions

Based on the theory of generalized neutrosophic sets, we proposed the new concept of
commutative generalized neutrosophic ideal in a BCK-algebra, and obtained some characterizations.
Moreover, we investigated some homomorphism properties related to commutative generalized
neutrosophic ideals.

The research ideas of this paper can be extended to a wide range of logical algebraic systems such
as pseudo-BClI algebras (see [1,16]). At the same time, the concept of generalized neutrosophic set
involved in this paper can be further studied according to the thought in [11,17], which will be the
direction of our next research work.
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Neutrosophic Quadruple BCK/BCI-Algebras

Young Bae Jun, Seok-Zun Song, Florentin Smarandache, Hashem Bordbar

Young Bae Jun, Seok-Zun Song, Florentin Smarandache, Hashem Bordbar (2018). Neutrosophic
Quadruple BCK/BCI-Algebras. Axioms 7, 41. DOI: 10.3390/axioms7020041

Abstract: The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic
quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers,
is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic
quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied.
Given subsets A and B of a BCK/BClI-algebra, the set NQ(A, B), which consists of neutrosophic
quadruple BCK/BCI-numbers with a condition, is established. Conditions for the set N Q(A,B) tobe
a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for
the set NQ(A, B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given. An example
to show that the set {0} is not a positive implicative ideal in a neutrosophic quadruple BCK-algebra is
provided, and conditions for the set {0} to be a positive implicative ideal in a neutrosophic quadruple
BCK-algebra are then discussed.

Keywords: neutrosophic quadruple BCK/BCI-number; neutrosophic quadruple BCK/BCI-algebra;
neutrosophic quadruple subalgebra; (positive implicative) neutrosophic quadruple ideal

1. Introduction

The notion of a neutrosophic set was developed by Smarandache [1-3] and is a more general platform
that extends the notions of classic sets, (intuitionistic) fuzzy sets, and interval valued (intuitionistic)
fuzzy sets. Neutrosophic set theory is applied to a different field (see [4-8]). Neutrosophic algebraic
structures in BCK/BCl-algebras are discussed in [9-16]. Neutrosophic quadruple algebraic structures
and hyperstructures are discussed in [17,18].

In this paper, we will use neutrosophic quadruple numbers based on a set and construct
neutrosophic quadruple BCK/BCl-algebras. We investigate several properties and consider ideals and
positive implicative ideals in neutrosophic quadruple BCK-algebra, and closed ideals in neutrosophic
quadruple BCl-algebra. Given subsets A and B of a neutrosophic quadruple BCK/BCI-algebra,
we consider sets NQ(A, B), which consist of neutrosophic quadruple BCK/BCI-numbers with a
condition. We provide conditions for the set NQ(A, B) to be a (positive implicative) ideal of a
neutrosophic quadruple BCK-algebra and for the set NQ(A, B) to be a (closed) ideal of a neutrosophic
quadruple BCI-algebra. We give an example to show that the set {0} is not a positive implicative ideal
in a neutrosophic quadruple BCK-algebra, and we then consider conditions for the set {0} to be a
positive implicative ideal in a neutrosophic quadruple BCK-algebra.
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2. Preliminaries

A BCK/BCl-algebra is an important class of logical algebras introduced by Iséki (see [19,20]).
By a BCI-algebra, we mean a set X with a special element 0 and a binary operation * that satisfies
the following conditions:

0 (Vxy,z e X) ((xxy)* (xx2)) * (zxy) =0);

() (Vx,y € X) ((x+ (xxy)) xy = 0);

) (Vx € X) (x*x =0);

(V) (Vx,yeX)(xxy=0,yxx=0 = x=1y).
If

a BCl-algebra X satisfies the identity
(V) (VxeX)(0xx=0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(Vx e X) (x*%0=1x) 1)
(Vr,y,zeX)(x<y = xxz<yxz,zxy<zxXx) ()
(Vx,y,z€ X) ((x*xy)xz = (x*2z) xy) 3)
(Vx,y,z € X) ((xxz) % (y*xz) < x%xy) 4)

where x <y if and only if x * y = 0. Any BCl-algebra X satisfies the following conditions (see [21]):

(Vx,y € X)(xx (x % (xxy)) = x*y), ®)
(Vx,y € X)(0x (xxy) = (0xx) * (0xvy)). (6)

A BCK-algebra X is said to be positive implicative if the following assertion is valid.
(Vx,y,z € X) ((x*x2) % (y*z) = (xxy) xz). (7)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x xy € S for all
x,y € S. Asubset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies

0€el (®)
(VxeX)(Vyel)(xxyel = xel). )

A subset I of a BCI-algebra X is called a closed ideal (see [21]) of X if it is an ideal of X which satisfies
(VxeX)(xel = 0xxel). (10)

A subset I of a BCK-algebra X is called a positive implicative ideal (see [22]) of X if it satisfies (8) and
(Vx,y,ze X)(((xxy)*xz€l,yxzel = xxze€l). (11)

Observe that every positive implicative ideal is an ideal, but the converse is not true (see [22]).
Note also that a BCK-algebra X is positive implicative if and only if every ideal of X is positive
implicative (see [22]).

We refer the reader to the books [21,22] for further information regarding BCK/BCI-algebras,
and to the site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding
neutrosophic set theory.

3. Neutrosophic Quadruple BCK/BCI-Algebras

We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.
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Definition 1. Let X be a set. A neutrosophic quadruple X-number is an ordered quadruple (a,xT,ylI,zF)
where a, x,y,z € X and T, 1, F have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple X-numbers is denoted by NQ(X), that is,
NQ(X) = {(a,xT,yl,zF) | a,x,y,2 € X},

and it is called the neutrosophic quadruple set based on X. If X is a BCK/BC]I-algebra, a neutrosophic
quadruple X-number is called a neutrosophic quadruple BCK/BCI-number and we say that NQ(X) is
the neutrosophic quadruple BCK/BClI-set.

Let X be a BCK/BClI-algebra. We define a binary operation ® on NQ(X) by

(a,xT,yl,zF) ® (b,uT,vl,wF) = (a*b, (x*u)T,(y*v)I, (z*w)F)

for all (a,xT,yI,zF), (b,uT,vl,wF) € NQ(X). Given ay,a;,a3,a4 € X, the neutrosophic quadruple
BCK/BCI-number (ay,a,T,a3l, asF) is denoted by 4, that is,

d=(ay,a,T,a3l,a4F),
and the zero neutrosophic quadruple BCK/BCI-number (0,0T, 01, 0F) is denoted by 0, that is,
0 = (0,0T,0I,0F).
We define an order relation “<” and the equality “=" on NQ(X) as follows:

I<ijex <y fori=1,2734
Y= x=yfori=1273,4

forall ¥, 7 € NQ(X). Itis easy to verify that “<” is an equivalence relation on NQ(X).
Theorem 1. If X is a BCK/BCl-algebra, then (NQ(X); ®,0) is a BCK/BCl-algebra.
Proof. Let X be a BCI-algebra. For any %,7,Z € NQ(X), we have

(FO7) 0 (x0zZ)= (x1*xy1, (x2xy2)T, (x3*y3)L, (xa * ya)F)
© (%1 %21, (x2 % 22)T, (x3 % 23) I, (x4 % 24)F)
= ((x1xy1) * (x1 % 21), ((x2 % y2) * (x2 % 22)) T,
((x3%y3) * (x3%23)) ], ((xa % ya) * (x4 % 24))T)
< (21 % y1, (22 % y2) T, (23 % y3) L, (24 % ya) F)
—:07

2O (xX0F) = (x1,x2T,x31,x4F) © (x1 xy1, (x2 % y2) T, (x3 * y3) 1, (x4 * y4)F)
= (x1* (x1xy1), (x2 % (x2*xy2)) T, (x3 % (x3 % y3)) L, (x4 * (x4 % y4))F)
< (yl,sz/]/ﬂ/]/ALF)
=7

TOX = (x1,x%T,x31,x4F) ® (x1,x2T, x31, x4F)
= (x1 xx1, (x2 % x2) T, (x3 % x3) I, (x4 % x4)F)
= (0,0T,01,0F) = 0.
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Assume that ¥ ® 7 = 0 and 7 © £ = 0. Then

=

(x1 % y1, (x2 % y2) T, (x3 % y3) I, (x4 * ya) F) = (0,0T,01,0F)

and

(1 x1, (y2 % x2) T, (y3 % x3) L, (ya * x4)F) = (0,0T, 0L, OF).

It follows that xy *y1 = 0 = yp*x1, xp*xyp = 0 = yYr*xp, x3%xy3 = 0 = y3 % x3 and
x4 *Yg = 0 = yq * x4. Hence, x1 = y1, X2 = Y2, X3 = y3, and x4 = y4, which implies that

= (xl/ XQT, X3I, X4F) = (ylzsz/]/SLVALF) = ?

Therefore, we know that (NQ(X); ®,0) is a BCI-algebra. We call it the neutrosophic quadruple
BClI-algebra. Moreover, if X is a BCK-algebra, then we have

00 %= (0xx1,(0%x2)T, (0% x3)I, (0% x4)F) = (0,0T,0I,0F) = 0.
Hence, (NQ(X); ®,0) is a BCK-algebra. We call it the neutrosophic quadruple BCK-algebra. [

Example 1. If X = {0,a}, then the neutrosophic quadruple set NQ(X) is given as follows:

0 = (0,0T,01,0F), 1 = (0,0T,01I,aF), 3 = (0,0T, al,0F), 3 = (0,0T, al, aF),
4 = (0,aT,01,0F),5 = (0,aT,01,aF),6 = (0,aT,al,0F),7 = (0,aT,al,aF),
8 = (a,0T,01,0F),9 = (a,0T,01,aF), 10 = (a,0T,al,0F), 11 = (a,0T, al,aF),

12 = (a,aT,01,0F), 13 = (a,aT,0I,aF), 14 = (a,aT,al,0F), and 15 = (a,aT,al,aF).
Consider a BCK-algebra X = {0,a} with the binary operation *, which is given in Table 1.

“

Table 1. Cayley table for the binary operation “*”.

*x 0 a
0 0
a a O

Then (NQ(X), ®,0) is a BCK-algebra in which the operation © is given by Table 2.

Table 2. Cayley table for the binary operation “©”.

® 0 1 2 3 4 5 6 7 8 o6 10 11 12 13 14 15
o6 0 0 0 0 o0 0 O 0O O O O o0 0 0 0 O
i 1 o 10 1 o 1 0 1 0 1 o0 1 o0 1 0
5 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
3 3 2 10 3 2 10 3 32 1 0 3 2 1 0
4 4 4 4 4 0 0O O 0 4 4 4 4 0 0 0 0
5 5 4 5 4 1 0 1 0 5 4 5 4 1 0 1 0
6 6 6 4 4 2 5 0 0 6 6 4 4 3 3 0 0
7 79 6 5 4 3 32 1 0 7 6 5 4 3 3 1 0
§ 8§ 8 8 8 8 8 &8 8 0 0 0 0 0 0 0 O
g 6 8§ 8 8 9 8 6 8 9 0 1 o0 1 0 1 0
10 10 10 8 8 10 10 8 8 2 2 0 2 2 2 0 0

254



Florentin Smarandache (author and editor) Collected Papers, IX

Table 2. Cont.

® 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 11 10 9 8§ 11 10 9 8 3 2 1 o0 3 2 1 0
2 12 12 12 12 8 8 8§ 8 4 4 4 4 0 0 0 0
3 13 12 13 12 § 8 6 8 5 4 5 4 1 0 1 0
14 14 14 12 12 10 10 8 8 6 6 4 4 2 2 0 0
5 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Theorem 2. The neutrosophic quadruple set NQ(X) based on a positive implicative BCK-algebra X is a
positive implicative BCK-algebra.

Proof. Let X be a positive implicative BCK-algebra. Then X is a BCK-algebra, so (NQ(X); ®,0) is a
BCK-algebra by Theorem 1. Let %, 7, Z € NQ(X). Then

(xi#zi) * (yi*zi) = (x; % y;) * 2
foralli = 1,2,3,4 since x;,y;,z; € X and X is a positive implicative BCK-algebra. Hence, (X ® Z) ®
(7*2Z) = (X ©7) ©z; therefore, NQ(X) based on a positive implicative BCK-algebra X is a positive
implicative BCK-algebra. [

Proposition 1. The neutrosophic quadruple set NQ(X) based on a positive implicative BCK-algebra X satisfies
the following assertions.

Ze FTOIKI=TOIKLTOE) (12)
(V%7€ NQ(X)) Roj< =% < 7). (13)

Proof. Let %,7,Z € NQ(X). f ¥ ® 7 < Z, then
0=(F0Nez=(302)06 (JO2),

S0 ¥ ®Z K § ©Z. Assume that ¥ ©® 7 < §j. Using Equation (12) implies that

sox@f=01ie, <y O
Let X be a BCK/BCl-algebra. Given a,b € X and subsets A and B of X, consider the sets
NQ(a,B) := {(a,aT,yl,zF) € NQ(X) | y,z € B}
NQ(A,b) :=={(a,xT,bl,bF) € NQ(X) | a,x € A}

NQ(A,B) :={(a,xT,yl,zF) € NQ(X) | a,x € A;y,z € B}

NQ(A*,B) := | JNQ(a,B)

acA

NQ(A,B*) := | JNQ(A,b)

beB
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and
NQ(AUB) := NQ(A,0) UNQ(0, B).
The set NQ(A, A) is denoted by NQ(A).

Proposition 2. Let X be a BCK/BCl-algebra. Given a,b € X and subsets A and B of X, we have

(1) NQ(A*,B)and NQ(A, B*) are subsets of NQ(A, B).
(1) If0 € AN B then NQ(AUB) is a subset of NQ(A, B).

Proof. Straightforward. [

Let X be a BCK/BCl-algebra. Given a,b € X and subalgebras A and B of X, NQ(a, B) and
NQ(A, b) may not be subalgebras of NQ(X) since

(a,aT,x31,x4F) ® (a,aT,uzl,v4F) = (0,0T, (x3 * uz)I, (x4 xvq4)F) & NQ(a, B)
and
(xl,sz,bI, bF) O] (Ml,uzT,bI, bF) = (x1 * U1, (Xz * uz)T,OI,OF) ¢ NQ(A,b)

for (a, aT, x3I, x4,F) € NQ(a,B), (a, aT, usl, v4F) € NQ(a,B), (x1, xoT, bl, bF) € NQ(A,b),
and (u1, upT, VI, bF) € NQ(A,D).

Theorem 3. If A and B are subalgebras of a BCK/BCI-algebra X, then the set NQ(A, B) is a subalgebra of
NQ(X), which is called a neutrosophic quadruple subalgebra.

Proof. Assume that A and B are subalgebras of a BCK/BClI-algebra X. Let ¥ = (x1, xoT, x31, x4F)
and 7 = (y1, y2T, y3l, y4F) be elements of NQ(A, B). Then x1, X2, y1, y2 € A and x3, x4, Y3, Y4 € B,
which implies that x; xy; € A, xo xy2 € A, x3xy3 € B, and x4 * y4 € B. Hence,

TOF= (x1xy1, (x2*xy2)T, (x3xy3)I, (x4 xys)F) € NQ(A,B),
so NQ(A, B) is a subalgebra of NQ(X). O

Theorem 4. If A and B are ideals of a BCK/BCI-algebra X, then the set NQ(A, B) is an ideal of NQ(X),
which is called a neutrosophic quadruple ideal.

Proof. Assume that A and B are ideals of a BCK/BCI-algebra X. Obviously, 0 € NQ(A,B).
Let ¥ = (x1, 2T, x31, x4F) and § = (y1, 2T, y3l, yaF) be elements of NQ(X) such that
YOy € NQ(A,B)and j € NQ(A, B). Then

f@g = (x1 * Y1, (XZ *yz)T, (X3 *]/3)1, (X4 *y4)F) c NQ(A,B),
soxyxy; € A xa%xyp € A x3*ys € Band x4*xy; € B. Since § € NQ(A,B), we have

y1,y2 € Aand y3,ys € B. Since A and B are ideals of X, it follows that xq,x, € A and x3,x4 € B.
Hence, ¥ = (x1, x2T, x31, x4F) € NQ(A, B), so NQ(A, B) is an ideal of NQ(X). O

Since every ideal is a subalgebra in a BCK-algebra, we have the following corollary.
Corollary 1. If A and B are ideals of a BCK-algebra X, then the set NQ(A, B) is a subalgebra of NQ(X).

The following example shows that Corollary 1 is not true in a BCI-algebra.
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Example 2. Consider a BCI-algebra (Z,—,0). If we take A = N and B = 7Z, then NQ(A, B) is an ideal of
NQ(Z). However, it is not a subalgebra of NQ(Z) since

(2,3T, —51,6F) ® (3,5T, 61, —7F) = (—1,—2T, —111,13F) ¢ NQ(A, B)
for (2,3T, —51,6F), (3,5T, 61, —7F) € NQ(A, B).
Theorem 5. If A and B are closed ideals of a BCI-algebra X, then the set NQ(A, B) is a closed ideal of NQ(X).

Proof. If A and B are closed ideals of a BCI-algebra X, then the set NQ(A, B) is an ideal of NQ(X) by
Theorem 4. Let & = (xq, x2T, x31, x4F) € NQ(A, B). Then

00 %= (0%x1,(0%x2)T,(0%x3)I,(0%x4)F) € NQ(A, B)

since 0% x1,0% xp € A and 0 % x3,0 * x4 € B. Therefore, NQ(A, B) is a closed ideal of NQ(X). O

Since every closed ideal of a BCI-algebra X is a subalgebra of X, we have the following corollary.
Corollary 2. If A and B are closed ideals of a BCI-algebra X, then the set NQ(A, B) is a subalgebra of NQ(X).

In the following example, we know that there exist ideals A and B in a BCI-algebra X such that
NQ(A, B) is not a closed ideal of NQ(X).

Example 3. Consider BCI-algebras (Y,*,0) and (Z,—,0). Then X = Y X Z is a BCI-algebra (see [21]).
Let A=Y xNand B = {0} x N. Then A and B are ideals of X, so NQ(A, B) is an ideal of NQ(X) by
Theorem 4. Let ((0,0),(0,1)T,(0,2)I,(0,3)F) € NQ(A, B). Then

((0,0),(0,0)T, (0,0)L, (0,0)F) © ((0,0), (0,1)T, (0,2)1, (0,3)F)
= ((0,0), (0, =1)T, (0, =2)L, (0, =3)F) & NQ(A, B).

Hence, NQ(A, B) is not a closed ideal of NQ(X).
We provide conditions wherethe set NQ(A, B) is a closed ideal of NQ(X).
Theorem 6. Let A and B be ideals of a BCI-algebra X and let
I''={aeNQX) | (V¥ e NQX))(f<id = ¥ =4a)}.
Assume that, if T C NQ(A, B), then |T'| < co. Then NQ(A, B) is a closed ideal of NQ(X).

Proof. If A and B are ideals of X, then NQ(A,B) is an ideal of NQ(X) by Theorem 4.
Letd = (ay,a,T,a3l,a4F) € NQ(A,B). Forany n € N, denote n() := 0® (0 ®)". Then n(@) € I and

0 (0xar)?, (0% (0xax)™)T, (0% (0xag)")I, (0% (0xay)")F)
0% (0xa7), (0% (0xay))T, (0% (0xa5))Il, (0 (0xay))F)

Hence,
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son(d) € NQ(A,B), since @ € NQ(A, B), and NQ(A,B) is an ideal of NQ(X). Since |T| < oo,
it follows that k € N such that n(i) = (n 4 k)(a), thatis, n(d) = n(d) ® (0 ® &)k, and thus

k(@) =00 (0@a)k
= (n(a) ® (00 a)%) © n(a)
=n(a) on(@) =0,

ie, (k—1)(a)®(0®d) = 0. Sincced®a € T, it follows that 0 ©a@ = (k —1)(d) € NQ(A,B).
Therefore, NQ(A, B) is a closed ideal of NQ(X). O

Theorem 7. Given two elements a and b in a BCI-algebra X, let
Ag:={xeX|axx=a}and B, :={x € X |bxx =b}. (14)
Then NQ(Aq, By) is a closed ideal of NQ(X).

Proof. Since a+0 = aand b* 0 = b, we have 0 € A, N By,. Thus, 0 € NQ(A,, By). If x € A, and
y € By, then

Oxx=(axx)*xa=axa=0and0xy = (bxy)xb=>bxb=0. (15)

Letx,y,c,d € Xbesuchthatx,y*x € A, and ¢,d * ¢ € By. Then

(axy)xa=0%y=(0xy)*x0=(0*y)*(0xx)=0x(y*xx)=0
and
(bxd)*b=0%d=(0xd)«0= (0xd)*(0%xc) =0x(dxc) =0,
thatis,a xy < aand b xd < b. On the other hand,
a=ax(yxx)=(axx)*x(y*xx) <axy
and
b=bx(dxc)=(b*xc)x(d*c) <b=xd.

Thus,axy =aand bxd =b,ie,y € A;and d € B,. Hence, A; and B, are ideals of X, and
NQ(A,, Byp) is therefore an ideal of NQ(X) by Theorem 4. Let ¥ = (x1,x2T, x31, x4F) € NQ(Aq4, By).
Then x1, x, € A,, and x3, x4 € By,. It follows from Equation (15) that 0« x; =0 € A,;, 0xx, =0 € A,,
0xx3 =0 € By, and 0 * x4 = 0 € By,. Hence,

0@ %= (0%x1,(0%x2)T, (0% x3),(0%x4)F) € NQ(Aq, By).

Therefore, NQ(A,, Bp) is a closed ideal of NQ(X). O

Proposition 3. Let A and B be ideals of a BCK-algebra X. Then
NQ(A)NNQ(B) = {0} < (V& € NQ(A))(V§ € NQ(B))(X® § = %). (16)

Proof. Note that NQ(A) and NQ(B) are ideals of NQ(X). Assume that NQ(A) " NQ(B) = {0}. Let
% = (x1, x2T, x31, x4F) € NQ(A) and 7 = (y1, y2T, y3I, y4F) € NQ(B).
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Since ¥® (¥ O ) < ¥and ¥© (¥ ©F) < 7, it follows that ¥ © (¥ ® 7) € NQ(A) N NQ(B) = {0}.
Obviously, (¥ ®§) ® ¥ € {0}. Hence, ¥ ® 7 = .

Conversely, suppose that ¥ © 7 = X forall ¥ € NQ(A) and 7 € NQ(B). If Z € NQ(A) N NQ(B),
then z € NQ(A) and 2 € NQ(B), which is implied from the hypothesis that Z = z® 2 = 0.
Hence NQ(A)NNQ(B) = {0}. O
Theorem 8. Let A and B be subsets of a BCK-algebra X such that

(Va,b € ANB)(K(a,b) C ANB) (17)

where K(a,b) := {x € X | x*xa < b}. Then the set NQ(A, B) is an ideal of NQ(X).
Proof. If x € AN B, then 0 € K(x,x) since 0 * x < x. Hence, 0 € A N B by Equation (17), so it is clear

that 0 € NQ(A, B). Let ¥ = (xq, xoT, x31, x4F) and §# = (y1, y2T, y3I, y4F) be elements of NQ(X) such
that ® 7 € NQ(A, B) and 7 € NQ(A, B). Then

TOF= (x1xy1, (x2xy2)T, (x3xy3)I, (x4 xys)F) € NQ(A,B),
soxy*yy € A, xpxyp € A, x3xy3 € B, and x4 * y4 € B. Using (I), we have x; € K(x1 xy1,11) C 4,
xp € K(xaxy2,y2) € A, x3 € K(xz*ys,y3) C B, and x4 € K(x4 *y4,y4) C B. This implies that
% = (x1, x0T, x31, x4F) € NQ(A, B). Therefore, NQ(A, B) is an ideal of NQ(X). O
Corollary 3. Let A and B be subsets of a BCK-algebra X such that
(Va,x,y € X)(x,y€ ANB, (a*xx)xy=0 = a€ ANB). (18)
Then the set NQ(A, B) is an ideal of NQ(X).
Theorem 9. Let A and B be nonempty subsets of a BCK-algebra X such that
(Va,x,y € X)(x,y € A(orB),axx <y = a € A(orB)). (19)
Then the set NQ(A, B) is an ideal of NQ(X).

Proof. Assume that the condition expressed by Equation (19) is valid for nonempty subsets A and B
of X. Since 0% x < x for any x € A (or B), we have 0 € A (or B) by Equation (19). Hence, it is clear
that0 € NQ(A, B). Let ¥ = (x1, 2T, x31, x4F) and § = (y1, o T, y31, y4F) be elements of NQ(X) such
that ¥ © 7 € NQ(A,B) and i/ € NQ(A, B). Then

TOF= (x1xy1, (x2xy2)T, (x3xy3)I, (x4 xys)F) € NQ(A,B),

soxyxy1 € A, xpxyp € A, x3%y3 € B, and x4 * y4 € B. Note that x; * (x; xy;) < y; fori =1,2,3,4.
It follows from Equation (19) that x1, x, € A and x3, x4 € B. Hence,

X = (x1, 22T, x31, x4F) € NQ(A, B);
therefore, NQ(A, B) is an ideal of NQ(X). O

Theorem 10. If A and B are positive implicative ideals of a BCK-algebra X, then the set NQ(A, B) is a positive
implicative ideal of NQ(X), which is called a positive implicative neutrosophic quadruple ideal.
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Proof. Assume that A and B are positive implicative ideals of a BCK-algebra X. Obviously,0 € NQ(A, B).
Let ¥ = (x1, x2T, x31, x4F), ¥ = (y1, 2T, y3I, y4F), and Z = (21, 22T, z31, z4F) be elements of NQ(X)
such that (f©7) ©Z € NQ(A,B)and 7 ©®Z € NQ(A, B). Then

(07) @2 = ((x1*y1) *z1, (x2 % y2) x22) T,
((x3*y3) *z3)1, ((xa *ya) xz4)F) € NQ(A, B),

and
TOZ=(y1 %21, (y2*22)T, (y3 x23)I, (y4 * 24)F) € NQ(A, B),
so (x1#y1) %21 € A, (x2%y2) %22 € A, (x3%y3) %23 € B, (x4 *ys) %24 € B,y1 %21 € A,y %25 € 4,
y3*z3 € B, and y4 xz4 € B. Since A and B are positive implicative ideals of X, it follows that
X1%21,Xp %20 € Aand x3 * 23, x4 * 24 € B. Hence,
¥OZ=(x1xz1, (x2%22)T, (x3%23)], (xa x24)F) € NQ(A, B),
so NQ(A, B) is a positive implicative ideal of NQ(X). [
Theorem 11. Let A and B be ideals of a BCK-algebra X such that
(Vx,y,z€ X)((x*y)*z€ A(orB) = (x*z)*(y*z) € A(or B)). (20)
Then NQ(A, B) is a positive implicative ideal of NQ(X).
Proof. Since A and B are ideals of X, it follows from Theorem 4 that NQ(A, B) is an ideal of NQ(X).
Let ¥ = (x1, xoT, x31, x4F), § = (y1, ¥2T, y3l, y4F), and Z = (z1, 25T, z31, z4F) be elements of NQ(X)

such that (¥ ©7) ®Z € NQ(A,B) and 7 ©® 2 € NQ(A, B). Then

(X7 ©z=((x1*y1)*21, ((x2*xy2) *22)T,
((x3 % y3) *23)1, ((x4 *y4) * z4)F) € NQ(A, B),

and

TOZ=(y1 %21, (y2*22)T, (y3 x23)I, (ya * z4)F) € NQ(A, B),
so (x1*y1)*z1 € A, (xaxy2) x22 € A, (x3%Y3) %23 € B, (x4 xys) x24 € B,y1 %21 € A, yp %23 € A,
y3*z3 € B,and y4 % z4 € B. It follows from Equation (20) that (x1 % zq) * (y1 x21) € A, (x2 % z2) * (y2 *

zp) € A, (x3%23) * (y3*23) € B, and (x4 * z4) * (ya * 24) € B. Since A and B are ideals of X, we get
X1%21 € A, xpxzp € A, x3%2z3 € B,and x4 * z4 € B. Hence,

FOZ=(x1%z1, (xax22)T, (x3x23)I, (x4 x24)F) € NQ(A, B).
Therefore, NQ(A, B) is a positive implicative ideal of NQ(X). O
Corollary 4. Let A and B be ideals of a BCK-algebra X such that
(Vx,y € X)((x*xy)*xy € A(orB) = x*y € A (orB)). (21)
Then NQ(A, B) is a positive implicative ideal of NQ(X).

Proof. If the condition expressed in Equation (21) is valid, then the condition expressed in Equation (20)
is true. Hence, NQ(A, B) is a positive implicative ideal of NQ(X) by Theorem 11. [
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Theorem 12. Let A and B be subsets of a BCK-algebra X such that 0 € AN B and

((xxy)*xy)xze€ A(orB), z€ A(or B) = xx*y € A (or B) (22)
forall x,y,z € X. Then NQ(A, B) is a positive implicative ideal of NQ(X).
Proof. Since 0 € AN B, itis clear that0 € NQ(A, B). We first show that

(Vx,y € X)(x*xy € A(orB), y € A(or B) = x € A (or B)). (23)
Let x,y € X besuch that x xy € A (or B)and y € A (or B). Then
((xx0)*0)*xy =xxy € A (or B)

by Equation (1), which, based on Equations (1) and (22), implies that x = x*0 € A (or B).
Let & = (x1, x2T, x31, x4F), 7 = (y1, y2T, y31, yaF), and Z = (z1, 22T, z31, z4F) be elements of NQ(X)

such that (¥ ® ) ©Z € NQ(A,B)and § ©®Z € NQ(A, B). Then

(FOF) ©Z= ((x1xy1) *z1, ((x2 % y2) ¥ 22) T,
((x3*y3) *z3)I, ((x4 * ya) xz4)F) € NQ(A, B),

and
TOZ=(y1x21,(yax22)T, (y3*x23)I, (y4 *24)F) € NQ(A, B),

so (xy*xy1)xz1 €A, (xp*yn)*zp € A, (x3%y3) %23 € B, (Xg*ys) xz4 € B,y1 %21 € A, yp %25 € A,
Y3 *z3 € B, and y4 * z4 € B. Note that

(((xi *zi) % z;) * (yi * i) * ((xi x y;) *z;) = 0 € A (or B)

fori =1,2,3,4. Since (x; *y;) xz; € Afori =1,2and (x;xy;) *z; € B for j = 3,4, it follows from
Equation (23) that ((x; * z;) * z;) * (y; * z;) € Afori=1,2,and ((x;*zj) *z;) * (y;*2zj) € Bforj=3,4.
Moreover, since y; ¥ z; € Afori = 1,2, and yj*zj €B forj=3,4, wehavex; xzy € A, xp %29 € A,
x3 *z3 € B, and x4 * z4 € B by Equation (22). Hence,
FTOZ=(xy*z1,(x2%22)T, (x3%23)1, (x4 x2z4)F) € NQ(A, B).
Therefore, NQ(A, B) is a positive implicative ideal of NQ(X). O

Theorem 13. Let A and B be subsets of a BCK-algebra X such that NQ(A, B) is a positive implicative ideal of
NQ(X). Then the set

Oz = {T € NQ(X) | #®d € NQ(A,B)} (24)
is an ideal of NQ(X) for any a € NQ(X).
Proof. Obviously, 0 € Q;. Let %, 7 € NQ(X) be such that F ®§ € Qz and 7 € Q. Then
(fO§)®ad € NQ(A,B)and j®d € NQ(A,B). Since NQ(A, B) is a positive implicative ideal of

NQ(X), it follows from Equation (11) that ¥ © @ € NQ(A, B) and therefore that ¥ € ();. Hence, Q); is
anideal of NQ(X). O

Combining Theorems 12 and 13, we have the following corollary.
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Corollary 5. If A and B are subsets of a BCK-algebra X satisfying 0 € A N B and the condition expressed in
Equation (22), then the set Q) in Equation (24) is an ideal of NQ(X) forall i € NQ(X).

Theorem 14. For any subsets A and B of a BCK-algebra X, if the set Oz in Equation (24) is an ideal of NQ(X)
forall i € NQ(X), then NQ(A, B) is a positive implicative ideal of NQ(X).

Proof. Since 0 € Q; we have 0 = 004 € NQ(A,B). Let & 7, 2 € NQ(X) be such that
(fO7) ®z2 € NQ(A,B)and §©®Z% € NQ(A,B). Then¥®§ € Qs and § € Qs. Since Qs is an
ideal of NQ(X), it follows that X € Q);. Hence, ¥ ©® Z € NQ(A, B). Therefore, NQ(A, B) is a positive
implicative ideal of NQ(X). O

Theorem 15. For any ideals A and B of a BCK-algebra X and for any @ € NQ(X), if the set Qz in
Equation (24) is an ideal of NQ(X), then NQ(X) is a positive implicative BCK-algebra.

Proof. Let Q) be any ideal of NQ(X). For any %, 7, Z € NQ(X), assume that (f®7) ®Z € Q and
7Oz e O Then¥®F € Qs and 7 € Qs. Since Q; is an ideal of NQ(X), it follows that ¥ € Q.
Hence, ¥ © Z € ), which shows that () is a positive implicative ideal of NQ(X). Therefore, NQ(X) is
a positive implicative BCK-algebra. [

In general, the set {0} is an ideal of any neutrosophic quadruple BCK-algebra NQ(X), but it is
not a positive implicative ideal of NQ(X) as seen in the following example.

Example 4. Consider a BCK-algebra X = {0,1,2} with the binary operation *, which is given in Table 3.

“

Table 3. Cayley table for the binary operation “*”.

N — O %
N — O o
_ O O | =
OO O N

Then the neutrosophic quadruple BCK-algebra NQ(X) has 81 elements. If we take i = (2,2T,2I,2F)
and b = (1,1T,11,1F) in NQ(X), then

(@OD)Ob=(2+1)*1,(2%1)« 1T, ((2%1)« 1)L, ((2%1) x1)F)
=(1%1,(1%x1)T,(1%1)I,(1%1)F) = (0,0T,0I,0F) =0,

and b ® b = 0. However,
i0b=(2%1,2%1)T, (2+1)L,(2%1)F) = (1,1T, 1L, 1F) # 0.
Hence, {0} is not a positive implicative ideal of NQ(X).

We now provide conditions for the set {0} to be a positive implicative ideal in the neutrosophic
quadruple BCK-algebra.

Theorem 16. Let NQ(X) be a neutrosophic quadruple BCK-algebra. If the set
Q) :={f e NQ(X) | ¥ < a} (25)

is an ideal of NQ(X) for all € NQ(X), then {0} is a positive implicative ideal of NQ(X).
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Proof. We first show that
(V&7 e NQ(X))((z09) 07=0 = xo7=0). (26)

Assume that (£ ©7) ©J = 0 forall ¥, 7 € NQ(X). Then 0§ < 7,50 £ © 7 € Q(J). Since

7 € Q(F) and Q(7) is an ideal of NQ(X), we have ¥ € Q(7). Thus, ¥ < 7, thatis, ¥© 7 = 0.
Letii := (¥ ® #) © §. Then

thatis, T O 7 < (¥ ©F) ©F. Since (¥ ©§) ©F < ¥ ® 7, it follows that
(FOJoF=207. (27)

Ifweputj=%0® (§© (§ © X)) in Equation (27), then

FOEoFoFox))=F0(Fo@o([@ex))) o (oo ([@ox)))
LKoo (oo (o))
<(Jo@@ox)o (o)
={Fo(Eon))o[lox)
=(FoEoy)o@o))o([lox)
L (FO(F0H) 6 WFOX)
On the other hand,

(Fo(Fop)o@ox)o (o (oo (fox))))

=((fo(Fo(Eoo (o)) o (x0y) o [Fox))

=((foFo([@ox)) o (xoy) o [ox))

< (FOFo (o)) e [Fox)=0,

Hence,
To(Eo@o@ox)) =((xo(x0y) o [Jox)). (28)

If we use §j ©® % instead of & in Equation (28), then

jOx=(Fox) o0
=Fono(@ox)o@o o {ox)))
=(foro(Fox)oy)eFe(ox)
=[O [Jo[{o)
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which, by taking ¥ = 7 © £, implies that

JOFoX)=FoFox)oFoFo ([ox))
=o@ox)o([{lo).
It follows that
Fo@ox)o (o) =(Fe[Fox)o[Fox)o(EoF)
L (FOWOI))0(FOY)
=(Fo(Foy)o[@o),
S0,

JOX=({0o e ([fex)) 0
=Fo@o@or)) o(fox) o)
<(Fo)o(Fox)oy) o Fo ([Tox))
={fox)oFo o)
<o)X

Since (7 ® %) ©® ¥ < § © ¥, it follows that
(FOX)OI=J0OFX (29)
Based on Equation (29), it follows that
(x02)x(Fo2)o(*07) 02)
=(xoozo@oz)o(Foy) o2)
L ((Fe2)opo(foy) ©z)
=0,
thatis, (¥ ©2) % (§ ©2) < (¥ ®F) © 2. Note that
(Fo7)o02)o(x02)o(Jo2))
=((Fopozo((xo(ioi)o2)
< (FOPHO(EFC([TOIL)
<([Fozei=0,

which shows that (fO7) ©Z < (f©2)© (J©Z). Hence, (fOF) ©Z = (F02)06 (JO2).
Therefore, NQ(X) is a positive implicative, so {0} is a positive implicative ideal of NQ(X). O

4. Conclusions

We have considered a neutrosophic quadruple BCK/BCI-number on a set and established
neutrosophic quadruple BCK/BCI-algebras, which consist of neutrosophic quadruple BCK/BCI-numbers.
We have investigated several properties and considered ideal theory in a neutrosophic quadruple
BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra. Using subsets A and B
of a neutrosophic quadruple BCK/BCI-algebra, we have considered sets NQ(A, B), which consist of
neutrosophic quadruple BCK/BCI-numbers with a condition. We have provided conditions for the
set NQ(A, B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra, and the set
NQ(A, B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra. We have provided an example
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to show that the set {0} is not a positive implicative ideal in a neutrosophic quadruple BCK-algebra,
and we have considered conditions for the set {0} to be a positive implicative ideal in a neutrosophic
quadruple BCK-algebra.

References

1. Smarandache, F. Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning,
Ann Arbor, Michigan, USA, p. 105, 1998. Available online: http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf
(accessed on 1 September 2007).

2. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic
Probability; American Reserch Press: Rehoboth, NM, USA, 1999.

3.  Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy set. Int. |. Pure Appl. Math.
2005, 24, 287-297.

4. Garg, H. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to
multiple-attribute group decision-making. J. Ambient Intell. Humaniz. Comput. 2018, in press. [CrossRef]

5. Garg, H. Non-linear programming method for multi-criteria decision making problems under interval
neutrosophic set environment. Appl. Intell. 2017, in press. [CrossRef]

6. Garg, H. Some New Biparametric Distance Measures on Single-Valued Neutrosophic Sets with Applications
to Pattern Recognition and Medical Diagnosis. Information 2017, 8, 162. [CrossRef]

7. Garg, H. Novel single-valued neutrosophic aggregated operators under Frank norm operation and its
application to decision-making process. Int. |. Uncertain. Quantif. 2016, 6, 361-375.

8.  Garg, H,; Garg, N. On single-valued neutrosophic entropy of order a. Neutrosophic Sets Syst. 2016, 14, 21-28.

9. Saeid, A.B.; Jun, Y.B. Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points.
Ann. Fuzzy Math. Inform. 2017, 14, 87-97.

10.  Jun, Y.B. Neutrosophic subalgebras of several types in BCK/BCI-algebras. Ann. Fuzzy Math. Inform. 2017, 14,
75-86.

11.  Jun, Y.B.; Kim, S.J.; Smarandache, F. Interval neutrosophic sets with applications in BCK/BCI-algebra.
Axioms 2018, 7, 23. [CrossRef]

12, Jun, Y.B.; Smarandache, F; Bordbar, H. Neutrosophic N -structures applied to BCK/BC]I-algebras. Information
2017, 8, 128. [CrossRef]

13.  Jun, Y.B.; Smarandache, F; Song, S.Z.; Khan, M. Neutrosophic positive implicative \-ideals in BCK / BCI-algebras.
Axioms 2018, 7, 3. [CrossRef]

14. Khan, M,; Anis, S.; Smarandache, F; Jun, Y.B. Neutrosophic N -structures and their applications in
semigroups. Ann. Fuzzy Math. Inform. 2017, 14, 583-598.

15.  Oztiirk, M.A_; Jun, Y.B. Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points. J. Inter.
Math. Virtual Inst. 2018, 8, 1-17.

16. Song, S.Z.; Smarandache, F; Jun, Y.B. Neutrosophic commutative N -ideals in BCK-algebras. Information
2017, 8, 130. [CrossRef]

17. Agboola, A.A.A,; Davvaz, B.,; Smarandache, F. Neutrosophic quadruple algebraic hyperstructures.
Ann. Fuzzy Math. Inform. 2017, 14, 29-42.

18. Akinleye, S.A.; Smarandache, F; Agboola, A.A.A. On neutrosophic quadruple algebraic structures.
Neutrosophic Sets Syst. 2016, 12, 122-126.

19. Iséki, K. On BCI-algebras. Math. Semin. Notes 1980, 8, 125-130.

20. Iséki, K.; Tanaka, S. An introduction to the theory of BCK-algebras. Math. Jpn. 1978, 23, 1-26.
21. Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006.
22. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoonsa Co.: Seoul, Korea, 1994.

265


http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf
http://dx.doi.org/10.1007/s12652-018-0723-5
http://dx.doi.org/10.1007/s10489-017-1070-5
http://dx.doi.org/10.3390/info8040162
http://dx.doi.org/10.3390/axioms7020023
http://dx.doi.org/10.3390/info8040128
http://dx.doi.org/10.3390/axioms7010003
http://dx.doi.org/10.3390/info8040130

Florentin Smarandache (author and editor) Collected Papers, IX

Interval Neutrosophic Sets with Applications
in BCK/BCI-Algebra

Young Bae Jun, Seon Jeong Kim, Florentin Smarandache

Young Bae Jun, Seon Jeong Kim, Florentin Smarandache (2018). Interval Neutrosophic Sets with
Applications in BCK/BCI-Algebra. Axioms 7, 23. DOI: 10.3390/axioms7020023

Abstract: Fori,jk,I,m,n € {1,2,3,4}, the notion of (T(i,j), I(k,1), F(m,n))-interval neutrosophic
subalgebra in BCK/BCI-algebra is introduced, and their properties and relations are investigated.
The notion of interval neutrosophic length of an interval neutrosophic set is also introduced, and
related properties are investigated.

Keywords: interval neutrosophic set; interval neutrosophic subalgebra; interval neutrosophic length

1. Introduction

Intuitionistic fuzzy set, which is introduced by Atanassov [1], is a generalization of Zadeh's
fuzzy sets [2], and consider both truth-membership and falsity-membership. Since the sum of degree
true, indeterminacy and false is one in intuitionistic fuzzy sets, incomplete information is handled
in intuitionistic fuzzy sets. On the other hand, neutrosophic sets can handle the indeterminate
information and inconsistent information that exist commonly in belief systems in a neutrosophic
set since indeterminacy is quantified explicitly and truth-membership, indeterminacy-membership
and falsity-membership are independent, which is mentioned in [3]. As a formal framework that
generalizes the concept of the classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set,
interval valued intuitionistic fuzzy set and paraconsistent set, etc., the neutrosophic set is developed by
Smarandache [4,5], which is applied to various parts, including algebra, topology, control theory,
decision-making problems, medicines and in many real-life problems. The concept of interval
neutrosophic sets is presented by Wang et al. [6], and it is more precise and more flexible than
the single-valued neutrosophic set. The interval neutrosophic set can represent uncertain, imprecise,
incomplete and inconsistent information, which exists in the real world. BCK-algebra is introduced by
Imai and Iséki [7], and it has been applied to several branches of mathematics, such as group theory,
functional analysis, probability theory and topology, etc. As a generalization of BCK-algebra, Iséki
introduced the notion of BCI-algebra (see [8]).

In this article, we discuss interval neutrosophic sets in BCK/BCI-algebra. We introduce the notion
of (T(i,j),I(k,1), F(m,n))-interval neutrosophic subalgebra in BCK/BCI-algebra for i,j,k,I,m,n €
{1,2,3,4}, and investigate their properties and relations. We also introduce the notion of interval
neutrosophic length of an interval neutrosophic set, and investigate related properties.
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2. Preliminaries

By a BCI-algebra, we mean a system X := (X, x,0) € K(7) in which the following axioms hold:

@D ((xxy)*x(xx2)) x(zxy) =0,
M  (xx(x*y))*y =0,

(M) x*xx=0,

(IV) xxy=y*xx=0 = x=y

forall x,y,z € X.If a BCl-algebra X satisfies 0 * x = 0 for all x € X, then we say that X is BCK-algebra.

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x xy € S for all
X,y €S.

The collection of all BCK-algebra and all BCI-algebra are denoted by By (X) and Bj(X),
respectively. In addition, B(X) := Bx(X) U B (X).

We refer the reader to the books [9,10] for further information regarding BCK/BCI-algebra.

By a fuzzy structure over a nonempty set X, we mean an ordered pair (X, p) of X and a fuzzy set p
on X.

Definition 1 ([11]). Forany (X, *,0) € B(X), a fuzzy structure (X, u) over (X, *,0) is called a
o fuzzy subalgebra of (X, x,0) with type 1 (briefly, 1-fuzzy subalgebra of (X, *,0)) if

(Vx,y € X) (p(x xy) = min{p(x), u(y)}), )
o fuzzy subalgebra of (X, *,0) with type 2 (briefly, 2-fuzzy subalgebra of (X, *,0)) if

(Vx,y € X) (u(x +y) < min{u(x), p(y)}), ©)
o fuzzy subalgebra of (X, x,0) with type 3 (briefly, 3-fuzzy subalgebra of (X, *,0)) if

(Vx,y € X) (u(x+y) = max{p(x), u(y)}), ®)
o fuzzy subalgebra of (X, *,0) with type 4 (briefly, 4-fuzzy subalgebra of (X, *,0)) if

(Vx,y € X) (u(x+y) < max{p(x), p(y)})- )

Let X be a non-empty set. A neutrosophic set (NS) in X (see [4]) is a structure of the form:
A= {(x;Ar(x), A1(x), Ap(x)) | x € X},

where A1 : X — [0,1] is a truth-membership function, A; : X — [0, 1] is an indeterminate membership
function, and A : X — [0, 1] is a false membership function.

An interval neutrosophic set (INS) A in X is characterized by truth-membership function T4,
indeterminacy membership function I4 and falsity-membership function F4. For each point x in X,
Ty (x), I (x), Fu (JC) S [O, 1] (see [3,6]).

3. Interval Neutrosophic Subalgebra

In what follows, let (X, x,0) € B(X) and P*([0,1]) be the family of all subintervals of [0,1] unless
otherwise specified.

Definition 2 ([3,6]). An interval neutrosophic set in a nonempty set X is a structure of the form:

T := {{xZ[T)(x), Z[I](x), Z[F](x)) | x € X},

267



Florentin Smarandache (author and editor) Collected Papers, IX

where
Z[T]: X — P*([0,1]),

which is called interval truth-membership function,
M1} : X = P([0,1]),
which is called interval indeterminacy-membership function, and
Z[F]: X — P*([0,1]),
which is called interval falsity-membership function.

For the sake of simplicity, we will use the notation Z := (Z[T],Z[I]|,Z[F]) for the interval
neutrosophic set
T = {{x Z[T](x), Z[I]}(x), Z[F](x)) | x € X}.

Given an interval neutrosophic set Z := (Z[T], Z[I], Z[F]) in X, we consider the following functions:
I[T)ins : X = [0,1], x — inf{Z[T](x)},

I[Iing : X — [0,1], x — inf{Z[I](x)},
Z[Flint : X = [0,1], x — inf{Z[F](x)},

and

I[Tlsup : X — [0,1], x = sup{Z[T](x)},

Tsup : X — [0,1], x = sup{Z[I](x)},

T[Flsup : X = [0,1], x — sup{Z[F](x)}.
Definition 3. Forany i, j,k,1,m,n € {1,2,3,4}, an interval neutrosophic set T := (Z[T|, Z[I], Z[F]) in X
is called a (T(i,j), I(k,1), F(m,n))-interval neutrosophic subalgebra of X if the following assertions are valid.

(1) (X, Z[Tlin¢) is an i-fuzzy subalgebra of (X, *,0) and (X, Z[T]sup) is a j-fuzzy subalgebra of (X, *,0),
(2) (X, I[Ilinf) is a k-fuzzy subalgebra of (X, *,0) and (X, I[I|sup) is an I-fuzzy subalgebra of (X, *,0),
() (X, Z[Fins) is an m-fuzzy subalgebra of (X, *,0) and (X, Z[Fsup) is an n-fuzzy subalgebra of (X, *,0).

Example 1. Consider a BCK-algebra X = {0,1,2,3} with the binary operation x, which is given in Table 1
(see [10]).

Table 1. Cayley table for the binary operation “x”.

* 0 1 2 3
0 0 0 0 O
1 1 0 0 1
2 2 1 0 2
33 3 3 0

(1) Let Z := (Z[T], Z[I], Z[F]) be an interval neutrosophic set in (X, *,0) for which Z|T], Z[I| and Z[F]
are given as follows:
(04,05) ifx=0,
(0.3,05] ifx=1,
02,06) ifx=2,
]

Zr): X = P (0,1]) x g
0.1,07] ifx=3,
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(0.5,0.8) ifx =0,
(02,07) ifx=1,
05,06 ifx=2,

Z[I): X —- P*([0,1]) x — :
(0.4,08) ifx =3,

and
[04,05) ifx=0,
(02,09) ifx=1,
0.1,06] ifx=2,
(0.4,0.7] ifx=3.

It is routine to verify that T := (Z[T|, Z[1], Z|F]) isa (T(1,4),1(1,4), F(1,4))-interval neutrosophic
subalgebra of (X, *,0).

(2) Let T := (Z|[T], Z[1], Z[F]) be an interval neutrosophic set in (X, *,0) for which Z[T|, Z[I] and Z[F]
are given as follows:

Z[F]: X = P*([0,1]) x—

(0.1,04) ifx=0,
(0.3,05) ifx=1,
02,07] ifx=2,

7T X = PH0 ) v g
(0.4,06) ifx=3,

(0.2,05) ifx=0,
05,08 ifx=1,
(04,05] ifx=2,
0.2,0.6] ifx=3,

T[] : X = P*([0,1]) x>

and
(0.3,04) ifx=0,
04,07) ifx=1,
0.6,08) ifx=2,
04,0.6] ifx=3.

1], Z[F)) is a (T(4,4), 1(4,4), F(4,4))-interval

Z[F]: X = P*([0,1]) x— E

[
By routine calculations, we know that Z := (Z[T|, Z|
neutrosophic subalgebra of (X, *,0).

Example 2. Consider a BCI-algebra X = {0,a,b, c} with the binary operation x, which is given in Table 2
(see [10]).

“

Table 2. Cayley table for the binary operation “*”.

* 0 a b c
0 0 a b ¢
a a 0 ¢ b
b b ¢ 0 a
c ¢ b a O

Let T := (Z[T], Z[I], Z[F]) be an interval neutrosophic set in (X, *,0) for which Z[T|, Z[I| and Z[F] are
given as follows:
03,09) ifx=0,
(0.7,09) ifx=a,
07,08) ifx=b,
(0.5,08] ifx=c¢,

I[T] : X = P*([0,1]) x

269



Florentin Smarandache (author and editor) Collected Papers, IX

0.2,0.65) ifx=0,
[0.5,0.55] ifx=a,
(0.6,0.65) ifx=b,
05,055) ifx=c,

Z[I]: X = P*([0,1]) x —

and
(0.3,0.6) ifx=0,

[04,0.6] ifx=a,
(04,05] ifx=b,
[0.3,0.5) ifx=c.

Routine calculations show that T := (Z[T|, Z[I|, Z[F]) is a (T(4,1), I(4,1), F(4,1))-interval
neutrosophic subalgebra of (X, *,0). However, it is not a (T(2,1), I(2,1), F(2,1))-interval neutrosophic
subalgebra of (X, x,0) since

Z[F]: X = P*([0,1]) x—

I[Tline(c * a) = Z[T]ing(b) = 0.7 > 0.5 = min{Z[T]in¢(c), Z[Tlin(a) }

and/or
Z()ing(a x c) = Z[I]ing(b) = 0.6 > 0.5 = min{Z[I]in¢(a), Z[]ine(c) }-

In addition, it is not a (T(4,3), 1(4,3), F(4,3))-interval neutrosophic subalgebra of (X, *,0) since
I[T}sup@l * b) = I[T]sup(c) =08<09= maX{I[T]inf(a)rI[T]inf(c)}

and/or
I[Flsup(a*b) = Z[Flsup(c) = 0.5 < 0.6 = max{Z[Flins(a), Z[Flin¢(c) }.

Let Z := (Z[T], Z[I], Z|F]) be an interval neutrosophic set in X. We consider the following sets:

U(Z[Tling 1) == {x € X | Z[Ting(x) > a1},

L(I[T]sup}"‘s) = {x €X | I[T]sup(x) S}/
U(Z[Iing B1) = {x € X | Z[I]ine(x) = B1},
L(I[I]sup}ﬁs) = {x eX | I[I]sup(x) < 55},

and

U(Z[Fling; v1) = {x € X | Z[Fling(x) > 71},
L(I[F]sup)')/s) ={xeX| I[F]sup(x) <7sh

where a;, as, B1, Bs, v1 and s are numbers in [0, 1].

Theorem 1. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F])in Xisa (T(i,4), 1(i,4), F(i,4))-interval
neutrosophic subalgebra of (X, *,0) for i € {1,3}, then U(Z[Ting; 1), L(Z[T]sup;&s), U(Z[I]ing; Br),
L(Z[I]sup; Bs), U(Z[Fling; v1) and L(Z[Flsup; vs) are either empty or subalgebra of (X, *,0) for all ay, as, By,
Bs, 11, 7s € 0,1].

Proof. Assume that Z := (Z[T], Z[I], Z[F]) is a (T(1,4), I(1,4), F(1,4))-interval neutrosophic
subalgebra of (X, *,0). Then, (X, Z[T]ins), (X, Z[1]inf) and (X, Z[FJin¢) are 1-fuzzy subalgebra of X;
and (X, Z[T]sup), (X, Z[I]sup) and (X, Z[Flsyp) are 4-fuzzy subalgebra of X. Let af, as € [0, 1] be such
that U(Z[T]ing; 1) and L(Z[T]sup; s) are nonempty. For any x,y € X, if x,y € U(Z[T]ins; a1), then
Z[T)int(x) > ay and Z[T]ins(y) > a5, and so

I[Tine(x *y) > min{Z[T}in(x), Z[Tline(y) } > ay,
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thatis, xxy € U(Z[T]in;o01). If x,y € L(Z[T]sup; as), then Z[T]sup(x) < ag and Z[T]sup(y) < as,
which imply that
Z[T]sup(x *y) < max{Z[T]sup(x), Z[T]sup(¥)} < as,

that is, x xy € L(Z[T]sup;as). Hence, U(Z[Tling; «1) and L(Z[T]sup; &s) are subalgebra of (X, *,0)
for all ay, a5 € [0,1]. Similarly, we can prove that U(Z[I}in; Br), L(Z[I]sup; Bs), U(Z[Fling;v1) and
L(Z[Flsup;ys) are either empty or subalgebra of (X, *,0) for all 81, Bs, 71, vs € [0,1]. Suppose
that Z := (Z[T|, Z[I], Z[F]) is a (T(3,4), I(3,4), F(3,4))-interval neutrosophic subalgebra of
(X, %,0). Then, (X, Z[Tins), (X, Z[I]ins) and (X, Z[F];n¢) are 3-fuzzy subalgebra of X; and (X, Z[T]sup),
(X, Z[I)sup) and (X, Z[F]sup) are 4-fuzzy subalgebra of X. Let f; and Bs € [0,1] be such that
U(Z[Iing; B1) and L(Z[I]sup; Bs) are nonempty. Let x,y € U(Z[I]in; B1). Then, Z[I]ine(x) > Br and
Z[1)ine(y) > By It follows that

IMing(x x y) > max{Z[I]ine(x), Z[1]ins(y) } > Br

and so x x y € U(Z[I]ing; B1)- Thus, U(Z[1]ing; Br) is a subalgebra of (X, *,0). If x,y € L(Z[I}ins Bs),
then Z[I]inf(x) < Bs and Z[I]in(y) < Bs. Hence,

I[I]inf(x *]/) < maX{I[I]inf(x)/I[I}inf(]ﬁ} < Bs,

and so x xy € L(Z[I]ing; Bs). Thus, L(Z[I]ing Bs) is a subalgebra of (X, *,0). Similarly, we can show
that U(Z[T]ing; 1), L(Z[T]sup; &s), U(Z[Fling; v1) and L(Z[Flsup; 7s) are either empty or subalgebra of
(X, *, 0) for all Xy, &s, Y1, Ys € [0, 1}. O]

Since every 2-fuzzy subalgebra is a 4-fuzzy subalgebra, we have the following corollary.

Corollary 1. Ifan interval neutrosophic set T := (Z[T|, Z[1], Z[F]) in X isa (T(i,2),1(i,2), F(i,2))-interval
neutrosophic subalgebra of (X, *,0) for i € {1,3}, then U(Z[T|ing; 1), L(Z[T]sup;&s), U(Z[I]ing; Br1),
L(Z[I]sup; Bs), U(Z[Fling; 1) and L(Z[Flsup;vs) are either empty or subalgebra of (X, *,0) for all a, as, By,
Bs, 11, 7s € [0,1].

By a similar way to the proof of Theorem 1, we have the following theorems.

Theorem 2. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F])in Xisa (T(i,4), 1(i,4), F(i,4))-interval
neutrosophic subalgebra of (X, x,0) for i € {2,4}, then L(Z[Tling; 1), L(Z[T]sup;@s), L(Z[I]ing; B1),
L(Z[I]sup; Bs), L(Z[Fling; v1) and L(Z[F|sup; vs) are either empty or subalgebra of (X, *,0) for all ay, as, By,
Bs, v1, s € [0,1].

Corollary 2. Ifan interval neutrosophic set 7 := (Z[T|, Z[I], Z[F]) in X isa (T(i,2), I(i,2), F(i,2))-interval
neutrosophic subalgebra of (X, ,0) for i € {2,4}, then L(Z[Tling; 1), L(Z[T]sup;@s), L(Z[I]ing; B1),
L(Z[I]sup; Bs), L(Z[Fling; v1) and L(Z[F|sup; vs) are either empty or subalgebra of (X, *,0) for all ay, as, By,
Bs, v, vs € [0,1].

Theorem 3. Ifan interval neutrosophic set T := (Z[T|,Z[I|,Z[F])in Xisa (T(k,1),1(k,1), F(k,1))-interval
neutrosophic subalgebra of (X, *,0) for k € {1,3}, then U(Z[T}ing; 1), U(Z[T]sup; as), U(Z[I]ing; Br1),
U(Z[I]sup; Bs), U(Z[Fling; v1) and U(Z[Fsup;vs) are either empty or subalgebra of (X, *,0) for all ay, as,
B, Bs, 11, vs € [0,1].

Corollary 3. If an interval neutrosophic set T := (Z[T|, Z[I|, Z[F]) in X is a (T(k,3), I(k,3),
E(k,3))-interval neutrosophic subalgebra of (X, ,0) for k € {1,3}, then U(Z[T)ing; 1), U(Z[T]sup; &s),
U(Z[Ting; B1), U(Z[I]sup; Bs), U(Z[Fling; 1) and U(Z[Flsup;vs) are either empty or subalgebra of (X, *,0)
forall ay, as, By, Bs, v1, s € [0,1].
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Theorem 4. Ifan interval neutrosophic set T := (Z[T|,Z[I], Z[F)) in Xisa (T(k,1),I(k,1), F(k,1))-interval
neutrosophic subalgebra of (X, *,0) for k € {2,4}, then L(Z[Tling; 1), U(Z[T]sup;&s), L(Z[I]ing; Br),
U(Z[I]sup; Bs), L(Z[Fling; v1) and U(Z[Fsup; vs) are either empty or subalgebra of (X, *,0) for all ay, ag,
B Bs, 11, 15 € [0,1].

Corollary 4. If an interval neutrosophic set 7 := (Z[T|, Z[I|, Z[F]) in X is a (T(k,3), I(k,3),
F(k,3))-interval neutrosophic subalgebra of (X, *,0) for k € {2,4}, then L(Z[Ting; 1), U(Z[T]sup; &s),
L(Z[Iing; B1), U(Z[I]sup; Bs), L(Z[Fling; v1) and U(Z[Flsup; 7vs) are either empty or subalgebra of (X, ,0)
forall ay, as, Br, Bs, v1, vs € [0,1].

Theorem 5. Let Z := (Z[T], Z[I], Z[F]) be an interval neutrosophic set in X in which U(Z[T]insa1),
L(Z[T]sup; as), U(ZI]ing; B1), L(Z[I]sup; Bs), U(Z[Fling; v1) and L(Z[Fsup; vs) are nonempty subalgebra
of (X,%,0) for all ay, as, Br, Bs, Y1, vs € [0,1]. Then, T := (Z[T], Z|[I], Z[F]) is a (T(1,4), I(1,4),
F(1,4))-interval neutrosophic subalgebra of (X, *,0).

Proof. Suppose that (X, Z[T]ix¢) is not a 1-fuzzy subalgebra of (X, *,0). Then, there exists x,y € X
such that

Z(Tine(x *y) < min{Z[T]ine(x), Z[T]ine(y) }-

If we take oy = min{Z[T]in¢(x), Z[T)ine(y) }, then x,y € U(Z[T)ing; 1), but x * y & U(Z[T)ing; 1)-
This is a contradiction, and so (X, Z[T]ixs) is a 1-fuzzy subalgebra of (X, *,0). If (X, Z[T]sup) is not a
4-fuzzy subalgebra of (X, ,0), then

Z[T)sup (a * b) > max{Z[T]sup(a), Z[T]sup(b)}
for some a,b € X,and so a,b € L(Z[T]sup;&s) and a * b & L(Z[T]sup;as) by taking
as = max{Z[T]sup(a), Z[T]sup (D) }.

This is a contradiction, and therefore (X, Z[T|sup) is a 4-fuzzy subalgebra of (X, *,0). Similarly, we
can verify that (X, Z[I]in¢) is a 1-fuzzy subalgebra of (X, *,0) and (X, Z[I]sup) is a 4-fuzzy subalgebra
of (X, *,0); and (X, Z[Flin¢) is a 1-fuzzy subalgebra of (X, *,0) and (X, Z[Flsyp) is a 4-fuzzy subalgebra
of (X, ,0). Consequently, Z := (Z[T], Z[I], Z[F]) isa (T(1,4), I(1,4), F(1,4))-interval neutrosophic
subalgebra of (X, *,0). O

Using the similar method to the proof of Theorem 5, we get the following theorems.

Theorem 6. Let Z := (Z[T|, Z[I|, Z[F]) be an interval neutrosophic set in X in which L(Z[T|ing 1),
U(Z[T]sup; &s), LIZ[I]ing; Br), U(Z[]sup; Bs), L(Z[Fling; 1) and U(Z[Flsup; vs) are nonempty subalgebra
of (X,%,0) for all wy, as, Br, Bs, v1, vs € [0,1]. Then, T := (Z[T], Z|[I], Z[F]) isa (T(4,1), 1(4,1),
F(4,1))-interval neutrosophic subalgebra of (X, *,0).

Theorem 7. Let 7 := (Z[T], Z[I|, Z[F]) be an interval neutrosophic set in X in which L(Z[T]ins 1),
L(Z[T]sup; «s), L(Z[]ing; B1), L(Z[I]sup; Bs), L(Z[Fling; 1) and L(Z[Flsup; vs) are nonempty subalgebra
of (X,%,0) for all ay, as, Br, Bs, Y1, vs € [0,1]. Then, T := (Z[T], Z|[I], Z[F]) is a (T(4,4), 1(4,4),
F(4,4))-interval neutrosophic subalgebra of (X, *,0).

Theorem 8. Let 7 := (Z[T|, Z[I], Z[F]) be an interval neutrosophic set in X in which U(Z[Ting a1),
U(Z[T)sup; xs), U(Z[I]ing; B1), U(Z]sups Bs), U(Z[Fling v1) and U(Z[Flsup; vs) are nonempty subalgebra
of (X,%,0) for all ay, as, Br, Bs, v1, vs € [0,1]. Then, T := (Z[T], Z|[I], Z[F]) isa (T(1,1), I(1,1),
F(1,1))-interval neutrosophic subalgebra of (X, *,0).
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4. Interval Neutrosophic Lengths

Definition 4. Given an interval neutrosophic set T := (I[T|,Z[I|,Z[F]) in X, we define the interval
neutrosophic length of T as an ordered triple Z, := (Z[T)y, Z[I];, Z[F],) where

I[T}é X = [Orl]r X I[T]sup(x) 7I[T}inf(x)r
I X = [0,1], x = T[I]sup(x) = Z[Ting(x),

and
Z[Flp: X = [0,1], x = Z[Flsup(x) — Z[Flins(x),

which are called interval neutrosophic T-length, interval neutrosophic I-length and interval neutrosophic
F-length of I, respectively.

Example 3. Consider the interval neutrosophic set T := (Z[T], Z[1], Z[F]) in X, which is given in Example 2.
Then, the interval neutrosophic length of L is given by Table 3.

Table 3. Interval neutrosophic length of Z.

X ZI[T]le Z[Il¢ ZI[F],
0 0.6 0.45 0.3
a
b
C

0.2 0.05 0.2
0.1 0.05 0.1
0.3 0.05 0.2

Theorem 9. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F])in Xisa (T(i,3), I(i,3), F(i,3))-interval
neutrosophic subalgebra of (X, *,0) for i € {2,4}, then (X,Z[T];), (X,Z[I];) and (X,Z[F],) are 3-fuzzy
subalgebra of (X, *,0).

Proof. Assume that Z := (Z|[T], Z[I], Z[F]) is a (T(2,3), I(2,3), F(2,3))-interval neutrosophic
subalgebra of (X, *,0). Then, (X, Z[T]ins), (X, Z[I]in¢) and (X, Z[F]in¢) are 2-fuzzy subalgebra of X, and
(X, Z[Tsup), (X, Z[I}sup) and (X, Z[Flsyp) are 3-fuzzy subalgebra of X. Thus,

Z[Tling(x * y) < min{Z[T}in¢(x), Z[Tine(y) },
I[I]inf(x *]/) < min{I[I]inf<x)'I[I]inf(y)}'
Z[Fling(x * y) < min{Z[FJing(x), Z[Fline(y) },

and

I[T]sup(x *y) > maX{I[T]sup (x)/I[T]sup ()},
I[I]suP(x *y) > maX{Imsup(x)rI[I]suP(y)}r
I[F]sup(x *y) > maX{I[F]sup(X)II[F]sup(y)}r

forall x,y € X. It follows that

Z[T]o(x xy) = Z{Tlsup(x ¥ y) = Z[Tins(x % y) = Z[T]sup(x) = Z[T]ine(x) = Z[T]¢(x),
Z[T](x xy) = Z[Tlsup(x * y) — Z[Tling(x * y) = Z[T]sup(y) — Z[Thins(y) = Z[T]e(y),
ZHe(x xy) = I[sup(x *y) = Z[Iine(x * y) = I[Isup(x) — Z[I}in¢(x) = Z[I]¢(x),
Z1e(x xy) = Z[Isup(x * y) — Z[Iins(x * y) > Z[Isup(v) — Z]int(v) = Z[1]e(y),
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and
Z[Flo(x*y) = Z[Flsup(x * y) — Z[Fling(x * y) = Z[Flsup(x) — Z[Flin¢(x) = Z[F¢(x)
Z[Fle(x*y) = Z[Flsup(x * y) — Z[Fling(x * y) = Z[Flsup(y) — Z[Fline(y) = Z[Fle(y)
Hence
Z[T]e(x +y) = max{Z[T],(x), Z[T]e(y)},
Zy(x+y) = max{Z[I],(x), Z{I]¢(y)},
and

Z[Fle(x*y) = max{Z[Fl(x), Z[F]¢(y)},

for all x,y € X. Therefore, (X,Z[T];), (X,Z[I];) and (X, Z[F];) are 3-fuzzy subalgebra of (X, %,0).

Suppose that 7 := (Z[T], Z[I], Z|F])isa (T(4,3), I(4,3), F(4, 3) )-interval neutrosophic subalgebra
of (X,%,0). Then, (X,Z[Tlint), (X,Z[I]inf) and (X, Z[F|in¢) are 4-fuzzy subalgebra of X, and
(X, Z[Tlsup), (X, Z[I}sup) and (X, Z[Flsup) are 3-fuzzy subalgebra of X. Hence,

Z[Ting(x * y) < max{Z[T]ine(x), Z[T]ins(v)},
I[I]inf(x*]/) < maX{I[ ]mf( ) I[I]mf(y)}r (5)
Z[Flin(x *y) < max{Z[Fline(x), Z[Fline(y) },

and

I[T]sup(x*y) > max{Z[T ]sup( x), Z[T ]sup(y)}r
I[I]sup(x*y) > max{Z[I ]sup( x),Z[I ]sup(y)}r
I[F]sup(x *y) > maX{I[F]sup( x),Z[F ]Sup(y)}r

for all x,y € X. Label (5) implies that

I[Tline(x*y) <
IHing(x +y) <
Z[Fling(x xy) <

Z[Tling(x) or Z[Tin(x * y) < Z[Tins(y),
I[I]mf( ) or I[I]inf(x *]/) I[ ]m ( )
Z[Flin(x) or Z[Fline(x * y) < Z[Fling(y)-

If Z[T]ins (x * y) < Z[Tlin(x), then

Z[T]o(x * y) = Z[Tlsup(x *y) — Z[Tling(x * y) = Z[Tsup(x) = Z[Tline(x) = Z[T]¢ ().
If Z[T]in¢(x * y) < Z[T)in(y), then

Z[T]e(x xy) = Z{Tlsup(x * y) = Z{T]int(x ¥ y) = Z[Tlsup(y) = Z[Tine(y) = Z[Te(w)-

It follows that Z[T],(x *y) > max{Z[T|,(x),Z[T],(y)}. Therefore, (X,Z[T];) is a 3-fuzzy
subalgebra of (X, *,0). Similarly, we can show that (X, Z[I|;) and (X, Z[F],) are 3-fuzzy subalgebra of
(X,+,0). O

Corollary 5. Ifan interval neutrosophic set T := (Z[T|, Z[1], Z[F]) in X isa (T(i,3), 1(i,3), F(i,3))-interval
T1F],

1,3),1
neutrosophic subalgebra of (X, *,0) for i € {2,4}, then (X,Z[T];), (X,Z[I];) and (X,Z[F],) are 1-fuzzy
subalgebra of (X, *,0).
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Theorem 10. If an interval neutrosophic set T := (Z[T], Z[I], Z[F]) in X is a (T(3,4), 1(3,4),
F(3,4))-interval neutrosophic subalgebra of (X, %,0), then (X, Z[T],), (X,Z[I]y) and (X, Z[F],) are 4-fuzzy
subalgebra of (X, *,0).

Proof. LetZ := (Z[T], Z[I], Z[F]) be a (T(3,4), I(3,4), F(3,4))-interval neutrosophic subalgebra of
(X, *,0). Then, (X, Z[T]in¢), (X, Z[I]ins) and (X, Z[F};n¢) are 3-fuzzy subalgebra of X, and (X, Z[T]sup),
(X, Z[I]sup) and (X, Z[F]sup) are 4-fuzzy subalgebra of X. Thus,

Z[Tlin¢(x * y) = max{Z[T]in¢(x), Z[T]in(y) },
I[I]inf(x*]/) 2 maX{I[ ]mf( ) [ ]mf( )}r
I[F]inf(x *y) > maX{I[ ]lnf( ) [ ]mf(y)}/

and

I[T]sup(x *y) < maX{I[T]sup (x)/I[T]sup ()},
I[I]sup(x *y) < maX{IU]sup(x),I[I]sup(y)}, (6)
I[F]sup(x *y) < maX{I[F]sup(X)II[F]sup(y)}r

for all x,y € X. It follows from Label (6) that

7

Z[T]sup(x *y) < Z[T]sup(x) or Z[T]sup (x * y) < Z[T]sup(v),
I[I]sup(x*}/) < Imsup(x) or Z[I ]sup xxy) < Z[]su (]/)
I[F]sup(x *y) < I[F]sup(x) or Z[F }sup(x xy) < I[F ]sup(]/)~

Assume that Z[T]sup (x * y) < Z[T]sup(x). Then,
Z[T)e(x * y) = Z[Tlsup(x * y) — Z{Tling(x * y) < I[T]sup(x) = Z[T]ine(x) = Z[T]¢(x).

If Z[T]sup (x * y) < Z[T]sup(y), then

Z[T]y(x *y) = Z[T]sup(x * y) — Z[T]ing(x ¥ y) < I[Tlsup(y) — Z[Tlins(y) = Z[T]e(y)-

Hence, Z[T];(x xy) < max{Z[T],(x),Z[T],(y)} for all x,y € X. By a similar way, we can
prove that

Z[I]o(xx y) < max{Z{I];(x), Z{T]e(y) }
and
Z[Fle(x +y) < max{Z[F]¢(x), Z[F]e(y)}
for all x,y € X. Therefore, (X,Z[T];), (X,Z[I];) and (X, Z[F];) are 4-fuzzy subalgebra of (X, x,0). O

Theorem 11. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F]) in X is a (T(3,2), I(3,2),
F(3,2))-interval neutrosophic subalgebra of (X, *,0), then (X,Z[T|;), (X, Z[I];) and (X, Z[F];) are 2-fuzzy
subalgebra of (X, *,0).

Proof. Assume that Z := (Z[T], Z[I], Z[F]) is a (T(3,2), I(3,2), F(3,2))-interval neutrosophic
subalgebra of (X, *,0). Then, (X, Z[T|int), (X, Z[I]inf) and (X, Z[Fin¢) are 3-fuzzy subalgebra of X, and
(X, Z[Tsup), (X, Z[I}sup) and (X, Z[Flsup) are 2-fuzzy subalgebra of X. Hence,

Z[Tling(x *y) > max{Z[Tlin¢(x), Z[T]ine(v) },
ZTine(x *y) > max{Z[I]in¢(x), Z[T]ine(y) },
Z[Fling(x x y) > max{Z[Flins(x), Z[Fline(v) },
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and

I[T]sup(x*y) < min{I[T]sup( x), Z[T ]sup(y)}r
I[I]sup(x*y) < min{IU]sup( x),Z[1 ]sup(y)}r
I[F]sup(x*y) < min{I[F]sup( x),Z[F ]sup(y)}r

for all x,y € X, which imply that

Z(T]e(x xy) = Z[Tlsup(x * y) — Z[Tling(x * y) < Z[T]sup(x) — Z[Tlins(x) = Z[T]¢(x)
Z[T]y(xxy) = I[T]sup(x *Y) = Z[Tline(x ¥ y) < I[T]sup(y — I[Tline(y) = Z[T]¢(y)
ZI]e(x *y) = Z[sup(x * y) — Z[Ling(x * y) < Z[Ilsup(x) — Z[I]ing(x) = Z[I]¢(x),
T e(x*xy) = T[I]sup(x x y) — Z[ine(x * y) < Zsup(y) — Z[]ine(y) = Z[1]¢(y),
and
Z[Fle(x xy) = Z[Flsup(x xy) — Z[Flins(x *y) < Z[Flsup(x) — Z[Fling(x) = Z[F]¢(x)
Z[Fle(x xy) = Z[Flsup(x *y) — Z[Flins(x *y) < Z[Flsup(v) — Z[Fline(y) = Z[Fo(y)
It follows that
Z[T]o(x xy) < min{Z[T],(x), Z[T],(y) }
Z{1],(x + ) < min{Z[1],(x), Z[1],(y)}
and

Z[Flo(x +y) < min{Z[F],(x), Z[Fl¢(y)},
forall x,y € X. Hence, (X,Z[T]y), (X,Z[I];) and (X, Z[F]y) are 2-fuzzy subalgebra of (X, *,0). [
Corollary 6. If an interval neutrosophic set T := (Z[T], Z[I], Z[F]) in X is a (T(3,2), 1(3,2),

F(3,2))-interval neutrosophic subalgebra of (X, *,0), then (X, Z[T],), (X, Z[I];) and (X, Z[F];) are 4-fuzzy
subalgebra of (X, *,0).

Theorem 12. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F]) in X is a (T(i,3), 1(3,4),
F(3,2))-interval neutrosophic subalgebra of (X, *,0) fori € {2,4}, then
(1) (X, Z[T]y) is a 3-fuzzy subalgebra of (X, ,0).

(
(2)  (X,Z[I]y) is a 4-fuzzy subalgebra of (X, *,0).
(3) (X, Z[F)y) is a 2-fuzzy subalgebra of (X, *,0).

Proof. Assume that Z := (Z[T|, Z[I], Z[F]) is a (T(4,3), I(3,4), F(3,2))-interval neutrosophic
subalgebra of (X, *,0). Then, (X,Z[Tliy) is a 4-fuzzy subalgebra of X, (X, Z[T]sup) is a 3-fuzzy
subalgebra of X, (X, Z[Ilix¢) is a 3-fuzzy subalgebra of X, (X, Z[I]syp) is a 4-fuzzy subalgebra of X,
(X, Z[Flins) is a 3-fuzzy subalgebra of X, and (X, Z[F|sup) is a 2-fuzzy subalgebra of X. Hence,

Z[Tins(x *y) < max{Z[T]int(x), Z[Tine(y) }, @)
Z[Tlsup (x * y) = max{Z[T]sup(x), Z[T]sup(y)}, ®8)
Zing(x * y) = max{Z[I}in¢(x), Z[I]ine(y) }, )
Z[sup(x * y) < max{Z[I]sup(x), Z[L]sup(y)}, (10)
Z[Flin¢(x *y) > max{Z[Flin¢(x), Z[Flin¢(y) }, (11)
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and
I[Hsup(x xy) < min{I[F]sup(x)rI[F]sup(y)}/ (12)

for all x,y € X. Then,
I[Tling(x *y) < Z[T]ing(x) or Z[Ting(x xy) < Z[T]int(y)
by Label (7). Tt follows from Label (8) that
Z[T]o(x * y) = Z[Tlsup(x *y) = Z[Tling(x % y) = Z[Tlsup(x) = Z[Tine(x) = Z[T]¢(x)
or

Z[T)e(x *y) = Z[Tlsup (x xy) = Z[Tline(x * y) = Z[Tsup(y) — Z{Tline(y) = Z[T]e(y),
and so that Z[T],(x * y) > max{Z[T],(x),Z[T],(y)} for all x,y € X. Thus, (X,Z[T],) is a 3-fuzzy
subalgebra of (X, *,0). The condition (10) implies that
I[I]sup(x *y) < I[I]sup(x) OTI[I]sup(x *y) < I[I]sup(y)‘ (13)
Combining Labels (9) and (13), we have
ZI]p(x *y) = I[I]sup(x *Y) — I[I]ing(x x y) < I[I]sup(x) — Z[Iing(x) = Z[I]¢(x)
I (x *y) = Z[Isup(x * y) — T[Iins(x *y) < Z[I]sup(y) — Z[Line(y) = Z[1]e(y)-

It follows that Z[I],(x * y) < max{Z[I],(x),Z[I]¢(y)} forall x,y € X. Thus, (X, Z[I],) is a 4-fuzzy
subalgebra of (X, *,0). Using Labels (11) and (12), we have

ZFle(x*y) = Z[Flsup(x * y) = Z[Fling(x * y) < Z[Flsup(x) — Z[Fline(x) = Z[F¢(x)
and

I[Fle(x xy) = I{F]sup(x*y) — I[Fline(x xy) < I[F]sup(]/) — I[Fline(y) = Z[F]s(y),

and so Z[F|;(x xy) < min{Z[F|,(x),Z[F];(y)} for all x,y € X. Therefore, (X,Z[F|,) is a 2-fuzzy
subalgebra of (X, *,0). Similarly, we can prove the desired results fori =2. [

Corollary 7. Ifan interval neutrosophic set T := (Z[T], Z[I], Z[F])in Xisa (T(i,3),1(3,4), F(3,2))-interval
neutrosophic subalgebra of (X, *,0) fori € {2,4}, then

(1)  (X,Z[T)y) is a 1-fuzzy subalgebra of (X, *,0).

(2 (X,Z[I)y) and (X, Z[F];) are 4-fuzzy subalgebra of (X, *,0).

By a similar way to the proof of Theorem 12, we have the following theorems.

Theorem 13. If an interval neutrosophic set T := (Z[T|, Z[I], Z[F]) in X is a (T(i,3), I(3,2),
F(3,2))-interval neutrosophic subalgebra of (X, *,0) fori € {2,4}, then

(1) (X,Z[T),) is a 3-fuzzy subalgebra of (X, *,0).

(2) (X,Z[I]y) and (X, Z[F];) are 2-fuzzy subalgebra of (X, *,0).

Corollary 8. Ifan interval neutrosophic set T := (Z[T], Z[I], Z[F)) in Xisa (T(i,3),1(3,2), F(3,2))-interval
neutrosophic subalgebra of (X, *,0) for i € {2,4}, then

(1) (X,Z[T)y) is a 1-fuzzy subalgebra of (X, *,0).
(2) (X,Z[I]y) and (X, Z[F];) are 4-fuzzy subalgebra of (X, *,0).
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Theorem 14. If an interval neutrosophic set T := (Z[T], Z[I], Z[F]) in X is a (T(i,3), 1(3,2),
F(2,3))-interval neutrosophic subalgebra of (X, *,0) fori € {2,4}, then

(1) (X,Z[T];) and (X, Z[F];) are 3-fuzzy subalgebra of (X, ,0).
(2)  (X,Z[I)y) is a 2-fuzzy subalgebra of (X, *,0).

Corollary 9. Ifan interval neutrosophic set T := (Z[T], Z[I],Z[F])in Xisa (T(i,3),1(3,2), F(2,3))-interval
neutrosophic subalgebra of (X, *,0) for i € {2,4}, then

(1) (X,Z[T);) and (X,Z[F];) are 1-fuzzy subalgebra of (X, x,0).
(2)  (X,Z[I]y) is a 4-fuzzy subalgebra of (X, *,0).
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Abstract: The concept of a (€, €)-neutrosophic ideal is introduced, and its characterizations are
established. The notions of neutrosophic permeable values are introduced, and related properties
are investigated. Conditions for the neutrosophic level sets to be energetic, right stable, and right
vanished are discussed. Relations between neutrosophic permeable S- and I-values are considered.

Keywords: (&, €)-neutrosophic subalgebra; (&, €)-neutrosophic ideal; neutrosophic (anti-)permeable
S-value; neutrosophic (anti-)permeable I-value; S-energetic set; [-energetic set

1. Introduction

The notion of neutrosophic set (NS) theory developed by Smarandache (see [1,2]) is a more general
platform that extends the concepts of classic and fuzzy sets, intuitionistic fuzzy sets, and interval-valued
(intuitionistic) fuzzy sets and that is applied to various parts: pattern recognition, medical diagnosis,
decision-making problems, and so on (see [3-6]). Smarandache [2] mentioned that a cloud is a NS
because its borders are ambiguous and because each element (water drop) belongs with a neutrosophic
probability to the set (e.g., there are types of separated water drops around a compact mass of water
drops, such that we do not know how to consider them: in or out of the cloud). Additionally, we are
not sure where the cloud ends nor where it begins, and neither whether some elements are or are not
in the set. This is why the percentage of indeterminacy is required and the neutrosophic probability
(using subsets—not numbers—as components) should be used for better modeling: it is a more organic,
smooth, and particularly accurate estimation. Indeterminacy is the zone of ignorance of a proposition’s
value, between truth and falsehood.

Algebraic structures play an important role in mathematics with wide-ranging applications in
several disciplines such as coding theory, information sciences, computer sciences, control engineering,
theoretical physics, and so on. NS theory is also applied to several algebraic structures. In particular,
Jun et al. applied it to BCK/BCI-algebras (see [7-12]). Jun et al. [8] introduced the notions of energetic
subsets, right vanished subsets, right stable subsets, and (anti-)permeable values in BCK/BCI-algebras
and investigated relations between these sets.

In this paper, we introduce the notions of neutrosophic permeable S-values, neutrosophic
permeable I-values, (€, €)-neutrosophic ideals, neutrosophic anti-permeable S-values,
and neutrosophic anti-permeable I-values, which are motivated by the idea of subalgebras
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(i.e., S-values) and ideals (i.e., I-values), and investigate their properties. We consider characterizations
of (&, €)-neutrosophic ideals. We discuss conditions for the lower (upper) neutrosophic €g-subsets to
be S- and I-energetic. We provide conditions for a triple («, B,y) of numbers to be a neutrosophic
(anti-)permeable S- or I-value. We consider conditions for the upper (lower) neutrosophic €g-subsets to
be right stable (right vanished) subsets. We establish relations between neutrosophic (anti-)permeable
S-and [-values.

2. Preliminaries

An algebra (X; ,0) of type (2,0) is called a BCI-algebra if it satisfies the following conditions:

)i
M (Voyze X) (((xxy) * (xx2)) * (zxy) = 0);
() (Vx,y € X) ((x* (xxy)) xy = 0);
() (Vx e X) (xxx=0);
Iv) (Vx,yeX) (xxy=0yxx=0= x=1y).

If a BCl-algebra X satisfies the following identity:
(V) (VxeX)(0xx=0),
then X is called a BCK-algebra. Any BCK/BClI-algebra X satisfies the following conditions:

(Vx e X) (x+0=1x), 1)
(Vx,y,ze€X)(x<y = xxz<yx*xz,zxy <zxXx), (2)
(Vx,y,z € X) ((x*xy)xz = (x*x2) xy), ©)
(Vx,y,z € X) ((xxz)* (y*xz) < x%xy), 4)

where x < vy if and only if x *xy = 0. A nonempty subset S of a BCK/BCI-algebra X is called a
subalgebra of X if x xy € Sforall x,y € S. A subset I of a BCK/BCI-algebra X is called an ideal of X if
it satisfies the following:

0el, (5)
(Vr,yeX)(xxyel,yel — xel). (6)

We refer the reader to the books [13] and [14] for further information regarding
BCK/BCl-algebras.
For any family {a; | i € A} of real numbers, we define

\/{ai |ie A} =sup{a; | i€ A}
and
/\{ﬂi | i€ A} = inf{ai | i€ A}

If A ={1,2}, we also use a1 V ay and a; A a, instead of \/{a; | i € {1,2}} and A{a; | i € {1,2}},
respectively.
We let X be a nonempty set. A NSin X (see [1]) is a structure of the form

A= {(x; Ar(x), A1(x), Ap(x)) | x € X},

where A7 : X — [0,1] is a truth membership function, A; : X — [0,1] is an indeterminate membership
function, and Ar : X — [0, 1] is a false membership function. For the sake of simplicity, we use the
symbol A = (Ar, Aj, Ap) for the NS

A= {(x; Ar(x), Ar(x), Ap(x)) | x € X}.
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A subset A of a BCK/BCl-algebra X is said to be S-energetic (see [8]) if it satisfies
(Vx,ye X)(xxy €A = {x,y} NA#Q). )
A subset A of a BCK/BCl-algebra X is said to be I-energetic (see [8]) if it satisfies
VryeX)(ye A = {x,yxx}NA#Q). 8)
A subset A of a BCK/BCl-algebra X is said to be right vanished (see [8]) if it satisfies
(Vx,ye X)) (xxye A = x € A). )

A subset A of a BCK/BCI-algebra X is said to be right stable (see [8]) if Ax X := {axx | a €
A xe X} CA
3. Neutrosophic Permeable Values

GivenaNS A = (Ar, A, Ar)inaset X, a, f € (0,1] and y € [0,1), we consider the following sets:

Aa)={xe X | Ar(x) > a}, UF(A;a)" ={x € X | Ar(x) > a},

(A;a) (x) (A;a)
Ur (A;B) = {x € X | Ar(x) > B}, Uf (A;B)" = {x € X | Ar(x) > B},
Ug (A7) = {x € X| Ap(x) < 7}, Up(A7)" = {x € X | Ap(x) <7},
Aja) ={x € X| Ar(x) <a}, LF(A;a)" = {x € X[ Ar(x) <a},
(x)
(x)

7

LE( A;u)
L7 (A;B) = {x e X | Af(x) < B}, L7 (A;B)" = {x € X | A1(x) < B},
LE(A;y) ={x e X | Ap(x) > 7}, LE(A;7)" = {x € X | Ap(x) > 7}.

We say U5 (A;a), Uf (A; B), and Uf (A;y) are upper neutrosophic €g-subsets of X, and LS (A;a),
L5 (A; B), and L (A;y) are lower neutrosophic €g-subsets of X, where ® € {T,I,F}. We say U5 (A; )",
UF(A;B)*, and Ug (A;y)* are strong upper neutrosophic €g-subsets of X, and LS (A;a)*, LT (A; B),
and L§(A;v)* are strong lower neutrosophic €g-subsets of X, where ® € {T, I, F}.

Definition 1 ([7]). A NS A = (A1, Ay, Ar) in a BCK/BCI-algebra X is called an (€, €)-
neutrosophic subalgebra of X if the following assertions are valid:

x e U5 (Asax), y € Up(A;ay) = xxy e UF(A ax Aay),
x € Uf(A;Bx), y € Uf (A; By) = xxy e Uf(A;Bx A By), (10)
x € Up (A;7x), y € Up (A yy) = xxy € Up (A; 72V ),

forall x,y € X, ax, a0y, Bx, By € (0,1] and v, vy € [0,1).

Lemma1 ([7]). ANS A = (Ar, A, Ar) ina BCK/BClI-algebra X is an (€, €)-neutrosophic subalgebra of
X ifand only if A = (A, A1, Ar) satisfies

Ar(xxy) > Ar(x) A Ar(y)
(Vx,ye X) | Ap(x=*y) > Ar(x) AN Aq(y) . (11)
Ap(xxy) < Ap(x) V Ap(y)

Proposition 1. Every (€, €)-neutrosophic subalgebra A = (Ar, A1, Ar) of a BCK/BClI-algebra X satisfies

(Vx € X) (AT(O) > AT(X), AI(O) > A[(x), AF(O) < Ap(x)) . (12)
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Proof. Straightforward. [

Theorem 1. If A = (Ar, Ay, Ar) is an (€, €)-neutrosophic subalgebra of a BCK/BCI-algebra X, then the
lower neutrosophic €gp-subsets of X are S-energetic subsets of X, where & € {T, I, F}.

Proof. Letx,y € X and & € (0,1] be such that x x y € L5(A;a). Then
o> Ar(x *y) > Ar(x) A AT(y),

and thus Ar(x) < aor Ar(y) < a; thatis, x € L5(A;a) ory € L5(A;a). Thus {x,y} NL5(A; ) # .
Therefore L5 (A; «) is an S-energetic subset of X. Similarly, we can verify that LF (A; B) is an S-energetic
subset of X. Weletx,y € X and y € [0,1) be such that x x y € L5(A; ). Then

7 < Ap(xxy) < Ap(x) V Ap(y).

It follows that Ap(x) > v or Ap(y) > v; thatis, x € L5 (A;y) ory € L5(A; ). Hence {x,y} N
LE(A; ) # @, and therefore L5 (A; ) is an S-energetic subset of X. 0

Corollary 1. If A = (A, Aj, Af) is an (€, €)-neutrosophic subalgebra of a BCK/BCI-algebra X, then the
strong lower neutrosophic €g-subsets of X are S-energetic subsets of X, where ® € {T, I, F}.

Proof. Straightforward. O

The converse of Theorem 1 is not true, as seen in the following example.

Example 1. Consider a BCK-algebra X = {0,1,2,3,4} with the binary operation * that is given in Table 1
(see [14]).

“

Table 1. Cayley table for the binary operation “*”.

= W N - O x
B W N R-R oo
=N RO O
— =0 O ON
_ O OO oW
O NP O O

Let A = (A1, Ay, Ap) bea NS in X that is given in Table 2.

Table 2. Tabulation representation of A = (Ar, A, Ap).

X AT(x) Al(x) Ap(x)
0 0.6 0.8 0.2
1 0.4 0.5 0.7
2 0.4 0.5 0.6
3 0.4 0.5 0.5
4 0.7 0.8 0.2

Ifa € [04,0.6), B € [0.5,0.8), and v € (0.2,0.5], then LS (A;a) = {1,2,3}, LE(A; B) = {1,2,3},
and L5 (A;v) = {1,2,3} are S-energetic subsets of X. Because
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and/or
Ap(3%2) = Ap(1) = 0.7 £ 0.6 = Ap(3) V Ap(2),
it follows from Lemma 1 that A = (Ar, A1, Af) is not an (€, €)-neutrosophic subalgebra of X.

Definition 2. Let A = (Ar, Aj, Af) be a NS in a BCK/BCl-algebra X and («,B,v) € At x A1 X AF,
where At, A1, and Ap are subsets of [0,1]. Then (a,B,y) is called a neutrosophic permeable S-value for
A = (Ar, Aj, Ar) if the following assertion is valid:

xxy e US(Aa) = Ar(x)VAr(y) >«
(Vx,ye X) | xxyeUsf(A;B) = Ai(x)VA(y) > B, (13)
xxy € Us(A;y) = Ar(x) NAp(y) <o

Example 2. Let X = {0,1,2,3,4} be a set with the binary operation « that is given in Table 3.

“

Table 3. Cayley table for the binary operation “x”.

B W N - O x
= W N -k OoOlo
= WDN OO
= W o~ ON
= O NP OW
O WO OO

Then (X, *,0) is a BCK-algebra (see [14]). Let A = (A, Aj, Ap) bea NS in X that is given in Table 4.

Table 4. Tabulation representation of A = (Ar, A, Ap).

X Ar(x) Ajp(x) Afp(x)
0 0.2 0.3 0.7
1 0.6 0.4 0.6
2 0.5 0.3 0.4
3 0.4 0.8 0.5
4 0.7 0.6 0.2

It is routine to verify that (x, B,) € (0,2,1] x (0.3,1] x [0,0.7) is a neutrosophic permeable S-value for
A= (Ar, Ay, Ap).

Theorem 2. Let A = (Ar, Ay, Ar) be a NS in a BCK/BClI-algebra X and («, B,77) € At X A X Ap,
where A1, A1, and A are subsets of [0,1]. If A = (A, Aj, Ar) satisfies the following condition:

Ar(xxy) < Ar(x) V Ar(y)
(VX,yG X) AI(x*y) SAI(X)\/A](y) , (14)

Ap(xxy) > Ap(x) N Ap(y)

then («, B, 7y) is a neutrosophic permeable S-value for A = (Ar, A1, Ap).
Proof. Let x,y € X be such that x x y € US(A;«). Then

a < Ar(xxy) < Ar(x) vV Ar(y).
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Similarly, if x xy € U (A; p) for x,y € X, then A;(x) V Ar(y) > B. Now, let a,b € X be such that
axb e Ug(A;7v). Then

v > Ap(axb) > Ap(a) A Ap(b).
Therefore («, B, y) is a neutrosophic permeable S-value for A = (A, Aj, Ap). O

Theorem 3. Let A = (Ar, Ay, Ap) bea NS in a BCK-algebra X and («, B,y) € Ar x Aj X Ap, where A,
Ap, and A are subsets of [0,1]. If A = (A, Ay, Ar) satisfies the following conditions:

(Vx € X) (Ar(0) < Ar(x), A1(0) < A(x), Ap(0) > Ap(x)) (15)

and
Ar(x) < Ar(xxy) vV Ar(y)
(Vx,ye X) | Ap(x) <Ai(xxy)V Ar(y) , (16)
Ap(x) = Ap(x*y) N Arp(y)

then («, B, 7y) is a neutrosophic permeable S-value for A = (At, A, Ap).
Proof. Letx,y,a,b,u,v € Xbesuchthatx*y € UF(A;a),axb € Us(A;B),and uxv € Ug (A;y). Then

a < Ar(xxy) < Ar((xxy) *x)V Ar(x)
= Ar((x*x)xy) v Ar(x) = Ar(0+y) V Ar(x)
= Ar(0) V Ar(x) = Ar(x),
B<Ai(axb) <Aj((axb)xa)V Aj(a)
=A;((axa)x* b) V Ar(a) = Ar(0%b) vV Aq(a)
= A1(0) vV Aj(a) = Aj(a),

and
v > Ap(uxv) > Ap((u*v) xu) AN Ap(u)

= Ap((u*xu)*xv) NAp(u) = Ap(0*0) A Ap(v)
= Ap(0) A Ap(v) = Ap(v)

by Equations (3), (V), (15), and (16). It follows that

Ar(x)V Ar(y) > Ar(x) >
Ap(a) Vv A(b) > Af(a) > B,
Ap(u) NAp(v) < Ap(u) < 7.

Therefore («, B, y) is a neutrosophic permeable S-value for A = (Ar, Aj, Ap). O

Theorem 4. Let A = (Ar, Aj, Ar) be a NS in a BCK/BCl-algebra X and («,B,v) € At X A; X Ap,
where A, Ap, and Ar are subsets of [0,1]. If («, B,y) is a neutrosophic permeable S-value for A = (Ar, Aj,
Ar), then upper neutrosophic €g-subsets of X are S-energetic where ® € {T, I, F}.

284



Florentin Smarandache (author and editor) Collected Papers, IX

Proof. Let x,y,a,b,u,v € X be such that x xy € U5 (A;a), axb € Uf(A;B), and uxv € Ug(A;7).
Using Equation (13), we have Ar(x) V Ar(y) > a, Ar(a) vV Ar(b) > B, and Ap(u) AN Ap(v) < 7y
It follows that

Ar(x) > aor Ar(y) > a, thatis, x € UG (A;a) ory € US(4;a);

Ar(a) > Bor A(b) > B, thatis, a € U5 (A; B) orb € Uf (4; B);

and
Ap(u) < yor Ap(v) < 7, thatis, u € U (A;7) orv € Us (A; 7).

Hence {x,y} NUS(A;a) # @, {a,b} NUF(A;B) # @, and {u,v} NUF(A;y) # .
Therefore U5 (A;a), Uf(A;B), and UF (A; ) are S-energetic subsets of X. [0

Definition 3. Let A = (Ar, Ay, Ap) be a NS in a BCK/BClI-algebra X and (a,8,77) € At X Aj X Ap,
where At, A1, and Ap are subsets of [0,1]. Then («, B, y) is called a neutrosophic anti-permeable S-value for
A = (A, Ay, Ar) if the following assertion is valid:

xxy € LS(A;a) = Ar(x) NAr(y) <«
(Vx,yeX)| xxyelS(AB) = Ai(x)NA(y) <B, |- (17)
xxy € L5(A;y) = Ar(x) VAR(y) > v

Example 3. Let X = {0,1,2,3,4} be a set with the binary operation * that is given in Table 5.

“

Table 5. Cayley table for the binary operation “x”.

W R O %
= N =R oo
W= O O
W oo oOoN
O NPk O W
O WO OO

Then (X, ,0) is a BCK-algebra (see [14]). Let A = (A, Ay, Ar) bea NS in X that is given in Table 6.

Table 6. Tabulation representation of A = (A1, Ay, Af).

X AT(x) AI(x) Ap(x)
0 0.7 0.6 0.4
1 0.4 0.5 0.6
2 0.4 0.5 0.6
3 0.5 0.2 0.7
4 0.3 0.3 0.9

It is routine to verify that («, B,v) € (0.3,1] x (0.2,1] x [0,0.9) is a neutrosophic anti-permeable S-value
fOV A= (AT, A[, Al:).

Theorem 5. Let A = (Ar, Aj, Ar) be a NS in a BCK/BCl-algebra X and («,B,v) € At X Ap X Ap,

where At, Aj, and Ar are subsets of [0,1]. If A = (Ar, Ay, Af) is an (€, €)-neutrosophic subalgebra of X,
then («, B, y) is a neutrosophic anti-permeable S-value for A = (A, A1, Af).
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Proof. Let x,y,a,b,u,v € X be such that x xy € L5(A;a), axb € LF(A;B), and uxv € LE(A;7).
Using Lemma 1, we have

Ar(x) NAr(y) < Ar(x*y) <a,
Ap(a) NA;(b) <
Ap(u) V Ap(v) > Ap(uxv) > 7,

and thus (&, B, ) is a neutrosophic anti-permeable S-value for A = (Ar, Aj, Ap). O

Theorem 6. Let A = (Ar, Aj, Ar) be a NS in a BCK/BClI-algebra X and («,B,v) € At x A; X Ap,
where A1, A1, and A are subsets of [0,1]. If («, B, y) is a neutrosophic anti-permeable S-value for A = (Ar,
Ay, Ap), then lower neutrosophic €g-subsets of X are S-energetic where ® € {T,I, F}.

Proof. Let x,y,a,b,u,v € X be such that xxy € L$(A;a), axb € Lf(A;B), and uxv € L5 (A;7).
Using Equation (17), we have Ar(x) AN Ar(y) < a, Ar(a) NAp(b) < B, and Ap(u) V Ap(v) > v,
which imply that

Ar(x) <wor Ar(y) < a, thatis, x € L5(A4;a) ory € L$(A;a);
Ar(a) < Bor Aj(b) < B, thatis,a € LF(A; B) orb € LT (A; B);

and
Ap(u) > vy or Ap(v) > 7, thatis, u € Lf(A;y) orv € L§(A; 7).

Hence {x,y} NLS(A;a) # @, {a,b} NLF(A;B) # @, and {u,v} NLE(A;y) # .
Therefore L5(A;x), L5 (A;B), and L§(A;y) are S-energetic subsets of X. [

Definition 4. ANS A = (A, A, Ar) ina BCK/BCI-algebra X is called an (€, €)- neutrosophic ideal of
X if the following assertions are valid:

x € Uf(Aa) = 0€ US

(A;a)
(Vx € X) | x € UF(A;B) = 0€ U(
(

B)
x e Us(A;y) = 0€ Ug(A;7)

A
) A
)
xxy e US(Aay), y € Uf(A;ay) = x € UF (A ax Aay)
(
(

/ (18)

(Vx,ye X) | xxyeUf(A;Bx),y € Ur(A;By) = x € UF (A BxABy) |, (19)
x*xy € Us(A;7x), y € Us(Asyy) = x € UF(A; v Vyy)

forall a, B, ax, ay, Bx, By € (0,1] and , vz, vy € [0,1).

Theorem 7. ANS A = (Ar, A1, Ap) ina BCK/BCl-algebra X is an (€, €)-neutrosophic ideal of X if and
only if A = (At, A, Af) satisfies

Ar(0) > Ar(x) >
(Vxye X) | A1(0) > Aj(x) >
Ap(0) < Ap(x) <

Ar(x*y) N Ar(y)
Af(xxy) NA(y) |- (20)
Ap(xxy) V Ap(y)

Proof. Assume that Equation (20) is valid, and let x € U5 (A;a), a € U5 (A;B), and u € Ug(A;7)
for any x,a,u € X, o, € (0,1] and v € [0,1). Then A7(0) > Ar(x) > a, A;(0) > Ar(a) > B,
and Ap(0) < Ap(u) < 7. Hence 0 € Ug(A;a), 0 € UF(A;B), and 0 € UF(A;7), and thus
Equation (18) is valid. Let x,y,a4,b,u,v € X be such that x xy € Uf(A;ay), vy € Uf(A5ny),
axb € UF(A;Ba), b € UF(A;By), uxv € Ug(A;7u), and v € Ug (A; ) for all ay, ay, Ba, By € (0,1]
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and vy, 7o € [0,1). Then Ar(x xy) > ay, AT(y) > ay, Af(axb) > Ba, Ar(b) > By, Ap(u*0v) < 7y,
and Ar(v) < 7. It follows from Equation (20) that

Ar(x) > Ar(x+y) A Ar(y) >
Ap(a) = Ar(axb) NA[(b) = Ba APy,
Ap(u) < Ap(uxv) V Ap(v) < vy V 70.

Qx N\ oy,

Hence x € U (A;ax Awy), a € U (A; Ba A Bp), and u € UE (A; vy V 70). Therefore A = (Ar, Ay,
Ar) is an (€, €)-neutrosophic ideal of X.

Conversely, let A = (Ar, Aj, Ap) be an (€, €)-neutrosophic ideal of X. If there exists xg € X
such that A7(0) < Ar(xp), then xy € US(A;a) and 0 ¢ UF(A;a), where &« = Ar(xp). This is a
contradiction, and thus A1 (0) > Ar(x) for all x € X. Assume that A7(xg) < Ar(xg*yo) A Ar(y0) for
some xo, Yo € X. Taking a := Ar(xo *yo) A Ar(yo) implies that xg * yo € U5 (A;a) and yo € U5 (A; a);
but xg ¢ UF(A;a). This is a contradiction, and thus Ar(x) > Ar(x xy) A Ar(y) for all x,y € X.
Similarly, we can verify that A;(0) > Aj(x) > Aj(x*y) A Ar(y) for all x,y € X. Now, suppose
that Ap(0) > Ap(a) for some a € X. Thena € Uf(A;) and 0 ¢ UF(A;y) by taking v = Ap(a).
This is impossible, and thus Ap(0) < Ap(x) for all x € X. Suppose there exist a9, by € X such
that Ap(ag) > Ar(ag*by) V Ap(by), and take 7y := Ap(ag * by) V Ap(bg). Then ag x by € Ug(A;7),
by € U (A; ), and ag ¢ Uf (A; ), which is a contradiction. Thus Ap(x) < Ap(x xy) V Ap(y) for all
x,y € X. Therefore A = (Ar, A1, Ar) satisfies Equation (20). O

Lemma 2. Every (€, €)-neutrosophic ideal A = (Ar, A, Ap) of a BCK/BCI-algebra X satisfies
(Vx,y € X) (x <y = Ar(x) = Ar(y), Ar(x) = A1), Ar(x) < Ar(y)) - (21)

Proof. Let x,y € X be such that x <y. Then x * y = 0, and thus

Ar(x) = Ar(xxy) AAr(y) = Ar(0) A Ar(y) = Ar(y),
Ar(x) = Ar(xxy) A AL(y) = A1(0) A Ar(y) = Ar(y),
Ap(x) < Ap(xxy) V Ap(y) = Ar(0) V Ar(y) = Ar(y),

by Equation (20). This completes the proof. O

Theorem 8. ANS A = (Ar, A, Af) ina BCK-algebra X is an (€, €)-neutrosophic ideal of X if and only if
A = (A, Ay, Ar) satisfies

Ar(x) > Ar(y) N Ar(2)
(Vx,y,ze X) | xxy<z = ¢ Ar(x) > A1(y) N A1(z) (22)
Ar(x) < Ap(y) V Af(z)

Proof. Let A = (Ar, Aj, Ar) be an (€, €)-neutrosophic ideal of X, and let x,y,z € X be such that
x *y < z. Using Theorem 7 and Lemma 2, we have

Ar(x) = Ar(x*xy) NAT(y) = Ar(y) AN Ar(2),
1(x) > Ap(x*y) NA(y) > Ar(y) A Ag(z),

A
Ap(x) < Ap(x*y) vV Ar(y) < Ar(y) V Ap(2).
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Conversely, assume that A = (Ap, Aj, Ar) satisfies Equation (22). Because 0 x x < x forall x € X,
it follows from Equation (22) that

Ar(0) = Ar(x) A Ar(x) = Ar(x),
A1(0) = Af(x) NA[(x) = Aj(x),
Ap(0) < Ap(x) v Ap(x) = Afp(x),

for all x € X. Because x * (x xy) < y for all x,y € X, we have

Ar(x) > Ar(xxy) NAT(Y),
Ar(x) > A(xxy) N Ar(y),
Ap(x) < Ap(x*y) V Ar(y),

for all x,y € X by Equation (22). It follows from Theorem 7 that A = (A7, A], Af) is an
(€, €)-neutrosophic ideal of X. [

Theorem 9. If A = (Ar, A, Ar) is an (€, €)-neutrosophic ideal of a BCK/BCI-algebra X, then the lower
neutrosophic € g-subsets of X are I-energetic subsets of X where ® € {T,1,F}.

Proof. Let x,a,u € X, a,f € (0,1], and v € [0,1) be such that x € L5(A;a), a € LF(A;B),
and u € L5 (A; ). Using Theorem 7, we have

a> Ar(x) >

Ar(xxy) AN Ar(y),
B> Ar(a) > Ar(axb) N A[(b),
A

7 < Ap(u) < Ap(u*0) V A (o),

forally,b,v € X. It follows that

Ar(xxy) <wor Ar(y) < a, thatis, xxy € L5(A;a) ory € L5(4;);
Ar(axb) < Bor Aj(b) < B, thatis,axb € L5(A; B) orb € LT(A; B);

and
Ap(uxv) > yor Ap(v) > vy, thatis, uxv € L5(A;y) orv € LS(4; 7).

Hence {y,x *xy} N L5(A;a), {b,a*b} NLF(A;B), and {v,u x v} N LE(A;7) are nonempty,
and therefore LS (A; ), L7 (A; B) and L§ (A;y) are I-energetic subsets of X. [

Corollary 2. If A = (A, A1, Ar) is an (€, € )-neutrosophic ideal of a BCK/BCI-algebra X, then the strong
lower neutrosophic € g-subsets of X are I-energetic subsets of X where ® € {T,I,F}.

Proof. Straightforward. [

Theorem 10. Let («,B,7y) € At X Ap X Ap, where At, Aj, and Ap are subsets of [0,1]. If A = (A1, A,
Ar) isan (€, €)-neutrosophic ideal of a BCK-algebra X, then

(1) the (strong) upper neutrosophic €g-subsets of X are right stable where ® € {T,I,F};
(2)  the (strong) lower neutrosophic €g-subsets of X are right vanished where ® € {T,I, F}.

Proof. (1) Letx € X, a € U5(A;x), b € Uf(A;B), and ¢ € U5 (A;7v). Then Ar(a) > «, Ar(b) > B,
and Ap(c) < . Becauseaxx < a,bxx < b, and cxx < ¢, it follows from Lemma 2 that Ar(a *
x) > Ar(a) > a, Aj(bxx) > Ar(b) > B, and Ap(c*x) < Ap(c) < 9; thatis, axx € UF(A;n),
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bxx € Uy (A;B),and ¢ x x € UF (A;y). Hence the upper neutrosophic €g-subsets of X are right stable
where @ € {T, I, F}. Similarly, the strong upper neutrosophic €g-subsets of X are right stable where
® e {T, IF}.

(2) Assume that x x y € L$(A;a), a*xb € LS (A; B),and cxd € L5 (A; ) for any x,y,a,b,c,d € X.
Then Ap(x xy) < a, Ajf(axb) < B, and Ap(c*d) > 7. Because x*xy < x, axb < a,
and cxd < ¢, it follows from Lemma 2 that « > Ar(x*xy) > Ar(x), B > Ar(axb) > Aj(a),
and y < Ap(c*d) < Ap(c); thatis, x € L5(A;a),a € LF(A; B),and ¢ € LE(A; ). Therefore the lower
neutrosophic €g-subsets of X are right vanished where ® € {T,I, F}. In a similar way, we know that
the strong lower neutrosophic €g-subsets of X are right vanished where ® € {T,[,F}. O

Definition 5. Let A = (Ar, A, Ap) be a NS in a BCK/BCl-algebra X and («,B,v) € At X A1 X Ap,
where At, Aj, and A are subsets of [0,1]. Then («, B,) is called a neutrosophic permeable I-value for
A = (Ar, Aj, Ar) if the following assertion is valid:

x € US(A;a) = Ar(xxy)VAT(y) > a,
(Vx,yeX) | xeUf(A;B) = Arllxxy)VAI(y) 2B, |- (23)
x € U (A;y) = Ap(xxy) AAp(y) <7

Example 4. (1) In Example 2, («, B, y) is a neutrosophic permeable I-value for A = (A, Aj, Af).
(2) Consider a BCI-algebra X = {0,1,a, b, ¢} with the binary operation x that is given in Table 7 (see [14]).

“

Table 7. Cayley table for the binary operation “x”.

A SN = O %
a8 R oo
O TR OO
SO O2 2|
N o0 ST
o S o ala

Let A = (At, Aj, Ar) be a NS in X that is given in Table 8.

Table 8. Tabulation representation of A = (A1, Ay, Af).

X AT(x) AI(x) Ap(x)
0 0.33 0.38 0.77
1 0.44 0.48 0.66
a 0.55 0.68 0.44
b 0.66 0.58 0.44
c 0.66 0.68 0.55

It is routine to check that (a, B,y) € (0.33,1] x (0.38,1] x [0,0.77) is a neutrosophic permeable I-value
fOT’ A= (AT/ A[, AF)

Lemma 3. Ifa NS A = (Ar, A1, Ar) ina BCK/BClI-algebra X satisfies the condition of Equation (14), then
(Vx € X) (A7(0) < Ar(x), A1(0) < Ar(x), Ap(0) > Ap(x)). (24)
Proof. Straightforward. O

Theorem 11. If a NS A = (Ar, Aj, Ar) in a BCK-algebra X satisfies the condition of Equation (14),
then every neutrosophic permeable I-value for A = (At, Aj, Af) is a neutrosophic permeable S-value for
A= (A1, Aj, Ar).
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Proof. Let («, B, ) be a neutrosophic permeable I-value for A = (Ar, Aj, Ap). Letx,y,a,b,u,v € X
be such that x xy € UF(A;a), axb € UF(A;B), and uxv € Ug (A; ). It follows from Equations (23),
(3), (IIT), and (V) and Lemma 3 that

a < Ar((xxy) xx) V Ar(x) = Ar((x + x) xy) V Ar(x)
=Ar(0xy)VAr(x) =Ar(0) VAr(x) = Ar(x),
B<Ar((axb)xa)V Ar(a) =Ar((axa)xb)V Ar(a)
= A1(0xb) vV Af(a) = A;(0) V A(a) = Ar(a),

and
¥ > Ar((u*xv)xu) NAp(u) = Ap((u*u) xv) N Ap(u)
= AP(O * ?J) A Ap(u) = AF(O) A Ap(u) = Ap(u).

Hence Ar(x) V Ar(y) >  Ar(x) > «a, Af(a) vV Ai(b) > Ai(a) > B
and Ap(u) AN Ap(v) < Ap(u) <. Therefore (a,B,7) is a neutrosophic permeable S-value for
A= (Ar, AL, Ap). O

Givena NS A = (A, Aj, Ar) ina BCK/BClI-algebra X, any upper neutrosophic €g¢-subsets of

X may not be I-energetic where ® € {T, I, F}, as seen in the following example.

Example 5. Consider a BCK-algebra X = {0, 1,2,3,4} with the binary operation x that is given in Table 9
(see [14]).

“

Table 9. Cayley table for the binary operation “*”.

B W N ~R O ¥
= W N = Oo
N R _) O O
=0 O ON
NO kOO W
OO O OO

Let A = (Ar, Aj, Ar) be a NS in X that is given in Table 10.

Table 10. Tabulation representation of A = (Ar, Ay, Ar).

X AT(.‘XI) AI(x) AF(.‘X’)
0 0.75 0.73 0.34
1 0.53 0.45 0.58
2 0.67 0.86 0.34
3 0.53 0.56 0.58
4 0.46 0.56 0.66

Then U5 (A;0.6) = {0,2}, U5 (A;0.7) = {0,2}, and UF (A;0.4) = {0,2}. Because 2 € {0,2} and
{1,2%1} N {0,2} = @, we know that {0,2} is not an I-energetic subset of X.

We now provide conditions for the upper neutrosophic €g-subsets to be I-energetic where
® e {T, I F}.

Theorem 12. Let A = (A, Aj, Af) be a NS in a BCK/BClI-algebra X and («, B,7v) € A1 X Ap X Ap,

where A, Aj, and A are subsets of [0,1]. If («, B, y) is a neutrosophic permeable I-value for A = (At, Aj,
Ar), then the upper neutrosophic € g-subsets of X are I-energetic subsets of X where ® € {T,I,F}.
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Proof. Letx,a,u € X and (&, B,7) € Ar X A; X Ap, where Ar, A}, and Af are subsets of [0,1] such
that x € UF(A;a), a € U5 (A;B), and u € Ug(A; ). Because (a, B, ) is a neutrosophic permeable
I-value for A = (Ar, A1, Ap), it follows from Equation (23) that

Ar(xxy)V Ar(y) > a, Af(axb) VvV Ap(b) > B,and Ap(uxv) N Ap(v) <7
forally,b,v € X. Hence

Ar(x*y) > wor Ar(y) > a, thatis, x xy € UG (A;a) ory € Us (A;a);
Aj(axb) > Bor Aj(b) > B, thatis, axb € U5 (A; B) or b € U5 (4A; B);

and
Ap(uxv) <yor Ap(v) <, thatis, uxv € Ug(A;7y) orv € Ug (A; 7).

Hence {y,x xy} NUS(A;a), {b,axb} NUF(A;B), and {v,u * v} N UF(A;7) are nonempty,
and therefore the upper neutrosophic €g-subsets of X are I-energetic subsets of X where
®e{T,IF}. O

Theorem 13. Let A = (Ar, Aj, Ap) be a NS in a BCK/BClI-algebra X and («,B,7y) € A1 X Ap X Ap,
where A1, Ay, and Ap are subsets of [0,1]. If A = (A, A, Ar) satisfies the following condition:

Ar(x) < Ar(xxy) V Ar(y)
(Vx,y e X) | Ar(x) <Ap(xxy)V Ar(y) , (25)
Ap(x) > Ap(xxy) AN Ap(y)

then («, B, y) is a neutrosophic permeable I-value for A = (A, Ay, Af).

Proof. Letx,a,u € X and («,B,7) € Ar X A; X Ap, where Ar, A}, and Af are subsets of [0, 1] such
that x € U5 (A;a),a € Uf (A; B), and u € Uf (A;y). Using Equation (25), we obtain

a < Ar(x) < Ar(xxy) vV Ar(y),
B < Ap(a) < Ai(axb)V A(),

<
72 Ap(u) = Ap(ux0) A Ap(0),

forall y,b,v € X. Therefore (&, B,7) is a neutrosophic permeable [-value for A = (A1, Aj, Ap). O

Combining Theorems 12 and 13, we have the following corollary.

Corollary 3. Let A = (Ar, A1, Ar) be a NS in a BCK/BClI-algebra X and («,B,y) € A1 X A; X Ap,
where At, A1, and Ap are subsets of [0,1]. If A = (Ar, A1, Ar) satisfies the condition of Equation (25),
then the upper neutrosophic € g-subsets of X are I-energetic subsets of X where ® € {T,I, F}.

Definition 6. Let A = (Ar, A, Ap) be a NS in a BCK/BClI-algebra X and («,B,v) € At x A1 X Ap,
where At, A1, and Ar are subsets of [0,1]. Then («, B, 7y) is called a neutrosophic anti-permeable I-value for
A = (A, A}, Ar) if the following assertion is valid:

x € LS(A;a) = Ar(xxy) NAr(y) <«
(Vx,yeX)| xeLS(AB) = Ar(xxy) NA(y) <B, |- (26)
x € LE(A;y) = Ap(xxy)V Ar(y) >
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Theorem 14. Let A = (A1, Aj, Af) be a NS in a BCK/BClI-algebra X and («, B,77) € A1 X Ap X Ap,
where At, Aj, and Ap are subsets of [0,1]. If A = (Ar, A, Ap) satisfies the condition of Equation (19),
then («, B, 7y) is a neutrosophic anti-permeable I-value for A = (Ar, A1, Af).

Proof. Let x,a,u € X be such that x € L$(A;a),a € LF(A;B),and u € LE(A; ). Then

Ar(x*xy) NAr(y) < Ar(x) <ua,
Ar(axb) NAp(b) < Ar(a) <B,

Ap(uxv)V Ap(v) > Ap(u) > v,

for all y,b,v € X by Equation (20). Hence («,B,7) is a neutrosophic anti-permeable I-value for
A= (Ar, AL Ap). O

Theorem 15. Let A = (A, Aj, Af) be a NS in a BCK/BClI-algebra X and («, B,77) € A1 X Ap X Ap,
where A, Ap, and Ap are subsets of [0,1]. If («, B, 7y) is a neutrosophic anti-permeable I-value for A = (Ar,
Ay, Ar), then the lower neutrosophic €g-subsets of X are I-energetic where ® € {T, I, F}.

Proof. Let x € L5(A;a),a € L7 (A;B),and u € L5(A;7). Then Ar(x*y) AN Ar(y) < «, Ar(axb) A
Ap(b) < B,and Ap(u*v)V Ap(v) > v forall y,b,v € X by Equation (26). It follows that

Ar(xxy) <wor Ar(y) < a, thatis, xxy € L5(A;a) ory € L5(4;);
Ar(axb) < Bor Aj(b) < B, thatis,axb € L5 (A;B) orb € LF(A; B);

and
Ap(u*v) > yor Ap(v) > v, thatis, uxv € L5 (A;7y) orv € L5 (A; 7).

Hence {y,x xy} N L5(A;a), {b,axb} NLF(A;B) and {v,u x v} N LE(A;7) are nonempty,
and therefore the lower neutrosophic €g-subsets of X are I-energetic where ® € {T,[,F}. O

Combining Theorems 14 and 15, we obtain the following corollary.

Corollary 4. Let A = (Ar, Aj, Ap) be a NS in a BCK/BCl-algebra X and (&, B,7v) € At X Ar X Ap,
where A1, A1, and Ap are subsets of [0,1]. If A = (Ar, Aj, Af) satisfies the condition of Equation (19),
then the lower neutrosophic € g-subsets of X are I-energetic where ® € {T,1,F}.

Theorem 16. If A = (A, Ay, Ar) is an (€, €)-neutrosophic subalgebra of a BCK-algebra X, then every
neutrosophic anti-permeable I-value for A = (Ar, A1, Af) is a neutrosophic anti-permeable S-value for
A= (A1, Aj, Ar).

Proof. Let («,B,7) be a neutrosophic anti-permeable I-value for A = (Ar, A, Ar).
Letx,y,a,b,u,v € Xbesuchthatxxy € L5(A;a),axb € LS (A;B), and u v € L5 (A; 7). It follows
from Equations (26), (3), (III), and (V) and Proposition 1 that

a>Ar((xxy)*x) NAr(x) = Ar((x *x) *y) A Ar(x)
= AT(O *y) AN Ar(x) = AT(O) NAr(x) = Ar(x),
B> Ar((axb)xa)N\Ar(a) = Ar((axa)xb) AN Aj(a)
= AI(O * b) /\A[(ﬂ) = A[(O) VAN A](ﬂ) = AI(Q),

and v < Ap((ux0) % u) V Ap(u) = Ap((u 1) +0) V Ap(u)

= AF(O * ZJ) V Ap(u) = AF(O) \% AP(M) = Ap(u).
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Hence Ar(x) NAr(y) < Ar(x) <wa, Ap(a) NAr(b) < Ar(a) < B,and Ap(u) V Ap(v) > Ap(u) > 1.
Therefore («, B,y) is a neutrosophic anti-permeable S-value for A = (Ar, Aj, Ap). O

4. Conclusions

Using the notions of subalgebras and ideals in BCK/BC]I-algebras, Jun et al. [8] introduced the
notions of energetic subsets, right vanished subsets, right stable subsets, and (anti-)permeable values
in BCK/BCl-algebras, as well as investigated relations between these sets. As a more general platform
that extends the concepts of classic and fuzzy sets, intuitionistic fuzzy sets, and interval-valued
(intuitionistic) fuzzy sets, the notion of NS theory has been developed by Smarandache (see [1,2]) and
has been applied to various parts: pattern recognition, medical diagnosis, decision-making problems,
and so on (see [3-6]). In this article, we have introduced the notions of neutrosophic permeable S-values,
neutrosophic permeable I-values, (€, €)-neutrosophic ideals, neutrosophic anti-permeable S-values,
and neutrosophic anti-permeable [-values, which are motivated by the idea of subalgebras (s-values)
and ideals (I-values), and have investigated their properties. We have considered characterizations
of (€, €)-neutrosophic ideals and have discussed conditions for the lower (upper) neutrosophic
Eg-subsets to be S- and I-energetic. We have provided conditions for a triple («, 8, v) of numbers to
be a neutrosophic (anti-)permeable S- or I-value, and have considered conditions for the upper (lower)
neutrosophic €g-subsets to be right stable (right vanished) subsets. We have established relations
between neutrosophic (anti-)permeable S- and I-values.
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Left (Right)-Quasi Neutrosophic Triplet Loops
(Groups) and Generalized BE-Algebras

Xiaohong Zhang, Xiaoying Wu, Florentin Smarandache, Minghao Hu

Xiaohong Zhang, Xiaoying Wu, Florentin Smarandache, Minghao Hu (2018). Left (Right)-Quasi
Neutrosophic Triplet Loops (Groups) and Generalized BE-Algebras. Symmetry 10, 241; DOI:
10.3390/sym10070241

Abstract: The new notion of a neutrosophic triplet group (NTG) is proposed by Florentin
Smarandache; it is a new algebraic structure different from the classical group. The aim of this
paper is to further expand this new concept and to study its application in related logic algebra
systems. Some new notions of left (right)-quasi neutrosophic triplet loops and left (right)-quasi
neutrosophic triplet groups are introduced, and some properties are presented. As a corollary of
these properties, the following important result are proved: for any commutative neutrosophic
triplet group, its every element has a unique neutral element. Moreover, some left (right)-quasi
neutrosophic triplet structures in BE-algebras and generalized BE-algebras (including Cl-algebras and
pseudo Cl-algebras) are established, and the adjoint semigroups of the BE-algebras and generalized
BE-algebras are investigated for the first time.

Keywords: neutrosophic triplet; quasi neutrosophic triplet loop; quasi neutrosophic triplet group;
BE-algebra; Cl-algebra

1. Introduction

The symmetry exists in the real world, and group theory is a mathematical tool for describing
symmetry. At the same time, in order to describe the generalized symmetry, the concept of group is
popularized in different ways, for example, the notion of a generalized group is introduced (see [1-4]).
Recently, E. Smarandache [5,6] introduced another new algebraic structure, namely: neutrosophic
triplet group, which comes from the theory of the neutrosophic set (see [7-11]). As a new extension
of the concept of group, the neutrosophic triplet group has attracted the attention of many scholars,
and a series of related papers have been published [12-15].

On the other hand, in the last twenty years, the non-classical logics, such as various fuzzy logics,
have made great progress. At the same time, the research on non-classical logic algebras that are
related to it have also made great achievements [16-26]. As a generalization of BCK-algebra, H.S. Kim
and Y.H. Kim [27] introduced the notion of BE-algebra. Since then, some scholars have studied ideals
(filters), congruence relations of BE-algebras, and various special BE-algebras have been proposed,
these research results are included in the literature [28-31] and monograph [32]. In 2013 and 2016,
the new notions of pseudo BE-algebra and commutative pseudo BE-algebra were introduced, and some
new properties were obtained [33,34]. Similar to BCl-algebra as a generalization of BCK-algebra,
B.L. Meng introduced the concept of Cl-algebra, which is as a generalization of BE-algebra, and studied
the structures and closed filters of Cl-algebras [35-37]. After that, the CI-algebras and their related
algebraic structures (such as Q-algebras, pseudo Q-algebras, pseudo Cl-algebras, and pseudo BCH-
algebras) have been extensively studied [38—46].
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This paper will combine the above two directions to study general neutrosophic triplet structures
and the relationships between these structures and generalized BE-algebras. On the one hand,
we introduce various general neutrosophic triplet structures, such as (I-)-type, (I-r)-type, (r-I)-type,
(r-r)-type, (I-Ir)-type, (r-Ir)-type, (Ir-I)-type, and (Ir-r)-type quasi neutrosophic triplet loops (groups),
and investigate their basic properties. Moreover, we get an important corollary, namely: that for any
commutative neutrosophic triplet group, its every element has a unique neutral element. On the other
hand, we further study the properties of (pseudo) BE-algebras and (pseudo) Cl-algebras, and the
general neutrosophic triplet structures that are contained in a BE-algebra (Cl-algebra) and pseudo
BE-algebra (pseudo Cl-algebra). Moreover, for the first time, we introduce the concepts of adjoint
semigroups of BE-algebras and generalized BE-algebras (including Cl-algebras, pseudo BE-algebras,
and pseudo Cl-algebras) and discuss some interesting topics.

2. Basic Concepts

Definition 1. ([5,6]) Let N be a set together with a binary operation *. Then, N is called a neutrosophic triplet
set if, for any a€N, there exists a neutral of ‘a’, called neut(a), and an opposite of ‘a’, called anti(a), with neut(a)
and anti(a), belonging to N, such that:

a * neut(a) = neut(a) *a=a;

a* anti(a) = anti(a) * a = neut(a).

It should be noted that neut(a) and anti(a) may not be unique here for some acN. We call (a, neut(a),
and anti(a)) a neutrosophic triplet for the determined neut(a) and anti(a).

Remark 1. In the original definition, the neutral element is different from the unit element in the traditional
group theory. The above definition of this paper takes away such restriction, please see the Remark 3 in Ref. [12].

Definition 2. ([5,6,13]) Let (N, *) be a neutrosophic triplet set.

(1)  If *is well-defined, that is, for any a, b € N, one has a *b € N. Then, N is called a neutrosophic triplet loop.

(2)  If Nis a neutrosophic triplet loop, and * is associative, that is, (a *b) *c=a* (b *c) foralla, b, c € N. Then,
N is called a neutrosophic triplet group.

(3)  If N is a neutrosophic triplet group, and * is commutative, that is,a *b="b *a for alla, b € N. Then, N is
called a commutative neutrosophic triplet group.

Definition 3. ([27,35,41,42]) A Cl-algebra (dual Q-algebra) is an algebra (X; —, 1) of type (2, 0), satisfying
the following conditions:

i)x —=>x=1,
(i)l - x=x,
(i) x =y —z)=y — (x> 2z) forallx,y,z € X.

A Cl-algebra (X; —, 1)is called a BE-algebra, if it satisfies the following axiom:
(iv)x = 1=1,forallx € X.
A Cl-algebra (X; —, 1)is called a dual BCH-algebra, if it satisfies the following axiom:

Wx—y=y—x=1=x=y.

A binary relation < on Cl-algebra (BE-algebra) X, is defined by x <y if, and only if, x =y =1.
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Definition 4. ([33,43,45]) An algebra (X; —, ~~, 1) of type (2, 2, 0) is called a dual pseudo Q-algebra if, for all
X, Y, z € X, it satisfies the following axioms:

(dpsQl) x > x=x~x=1,
(dpsQ2)1 - x=1~>x=x,
(dpsQ3) x = (y ~z) =y ~ (x = z2).

A dual pseudo Q-algebra X is called a pseudo CI-algebra, if it satisfies the following condition:
(psChx »y=1<x~y=1

A pseudo Cl-algebra X is called a pseudo BE-algebra, if it satisfies the following condition:
(psBE)x = 1=x~>1=1,forallx € X.

A pseudo Cl-algebra X is called a pseudo BCH-algebra, if it satisfies the following condition:
(psBCH)x wy=y~x=1=>x=y.

In a dual pseudo-Q algebra, one can define the following binary relations:
x<oyesx—y=lLx< ysSx~y=1L
Obviously, a dual pseudo-Q algebra X is a pseudo Cl-algebra if, and only if, <_, = <_..

3. Various Quasi Neutrosophic Triplet Loops (Groups)

Definition 5. Let N be a set together with a binary operation * (that is, (N, *) be a loop) and a € N.

(1) Ifexistb,c € N,suchthata*b=aanda*c=Db, then ais called an NT-element with (r-r)- property;
(2) Ifexistb,c € N, such thata*b=aand c *a =", then a is called an NT-element with (r-1)- property;
(3) Ifexistb,c € N,suchthatb*a=aandc*a=b, then ais called an NT-element with (I-1)- property;
(4) Ifexistb,c € N,suchthatb*a=aanda*c=Db, then ais called an NT-element with (I-r)- property;
(56) Ifexistb,c € N,suchthata*b=b*a=aandc*a=0, then ais called an NT-element with (Ir-1)-property;
(6) Ifexistb,c € N,suchthata*b=b*a=aanda*c="0, then ais called an NT-element with (Ir-r)-property;
(7)  Ifexistb,c € N,suchthatb*a=aanda*c=c*a="0,thenais called an NT-element with (I-Ir)-property;
(8) Ifexistb,c € N,suchthata*b=aanda*c=c*a=Db,thenais called an NT-element with (r-Ir)-property;
(9) Ifexistb,c € N,suchthata*b=b*a=aanda*c=c*a=D0, then ais called an NT-element with
(Ir-Ir)-property.

It is easy to verify that, (i) if 2 is an NT-element with (I-Ir)-property, then a is an NT-element with
(I-)-property and (I-r)-property; if a is an NT-element with (Ir-I)-property, then a is an NT-element with
(I-)-property and (r-I)-property; and so on; (ii) a neutrosophic triplet loop (N, *) is a neutrosophic triplet
group if, and only if, every element in N is an NT-element with (Ir-Ir)-property; (iii) if * is commutative,
then the above properties coincide. Moreover, the following example shows that (r-I)-property and
(r-r)-property cannot infer to (r-Ir)-property, and (r-r)-property and (I-Ir)-property cannot infer to
(Ir-Ir)-property.

Example 1. Let N = {a, b, ¢, d}. The operation * on N is defined as Table 1. Then, (N, *) is a loop, and a is an
NT-element with (Ir-Ir)-property; b is an NT-element with (Ir-r)-property; c is an NT-element with (v-1)-property
and (r-r)-property, but c is not an NT-element with (r-Ir)-property; and d is an NT-element with (v-r)-property
and (I-Ir)-property, but d is not an NT-element with (Ir-Ir)-property.
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Table 1. Neutrosophic triplet (NT)-elements in a loop.

%

VIS N
Qa0
SRS RSN
[SEESWES 3R
SIS S T ~ T W

Definition 6. Let (N, *) be a loop (semi-group). If for every element a in N, a is an NT-element with
(r-r)-property, then (N, *) is called (r-r)-quasi neutrosophic triplet loop (group). Similarly, if for every element
ain N, a is an NT-element with (r-1)-, (I-)-, (I-r)-, (Ir-1)-, (Ir-r)-, (I-Ir)-, (r-Ir)-property, then (N, *) is called
(r-1)-, (I-1)-, (I-r)-, (Ir-1)-, (Ir-r)-, (I-Ir)-, (r-Ir)-quasi neutrosophic triplet loop (group), respectively. All of these
generalized neutrosophic triplet loops (groups) are collectively known as quasi neutrosophic triplet loops (groups).

Remark 2. For quasi neutrosophic triplet loops (groups), we will use the notations like neutrosophic triplet loops
(groups), for example, to denote a (r-r)-neutral of ‘a’ by neut, . (a), denote a (r-r)-opposite of ‘a’ by anti(,,(a),
where ‘a’ is an NT-element with (r-r)-property. If neut,,)(a) and anti(,.,)(a) are not unique, then denote the set
of all (r-r)-neutral of ‘a’ by {neut,_,)(a)}, denote the set of all (r-r)-opposite of ‘a’ by {anti,,)(a)}.

For the loop (N, *) in Example 1, we can verify that (N, *) is a (r-r)-quasi neutrosophic triplet loop,
and we have the following:

neut(r-r)(a) =4a, anti(r-r)(a) =4 neut(r-r)(b) =¢ {anti(r-r)(b)} ={a, d};
neut . (c) = a, anti.p(c) = d; neut.y(d) = b, anti,,(d) = c.
Theorem 1. If (N, ¥) is a (I-Ir)-quasi neutrosophic triplet group, then (N, *) is a neutrosophic triplet group.

Moreover, if (N, *) is a (r-Ir)-quasi neutrosophic triplet group, then (N, *) is a neutrosophic triplet group.

Proof. Suppose that (N, *) is a (I-Ir)-quasi neutrosophic triplet group. For any a € N, by Definitions 5
and 6, we have the following:

neut(y(a) * a = a, antigy(a) * a = a* anti ) (a) = neut (. (a).

Here, neut(l_l,)(a) € {neut(l_lr)(a)}, anti(l_lr)(a) € {unti(l_lr)(a)}. Applying associative law we get
the following:

a* neut(y(a) = a* (antigpy(a) * a) = (a * anti,y(a)) * a = neut . (a) * a =a.

This means that neut ;) (a) is a right neutral of ‘a’. From the arbitrariness of 4, it is known that
(N, *) is a neutrosophic triplet group.
Another result can be proved similarly. [J

Theorem 2. Let (N, *) be a (r-Ir)-quasi neutrosophic triplet group such that:
(s*p)*a=a*(s*p), Vs € {neut,,)(a)}, ¥ p € lantij.p,)(a)).

Then,

(1) foranya € N, s € {neutqj,)(a)} = s*s=s.
(2) foranya € N, s, t €lneut,p)(a)} = s *t =t
(3)  when *is commutative, for any a € N, neut .1, (a) is unique.
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Proof. (1) Assume se€{neut(,.;;)(a)}, thena * s =a, and exist p € N, such that p *a =a *p = s. Thus,
(s*p)*a=s*(p*a)=s*s,

a*(s*p)=@*s)*p=a*p=s.
According to the hypothesis, (s * p) *a =a* (s * p), it follows that s * s = s.
(2) Assume s, te{neut .y (a)}, thena*s=a,a*t=a,and existp, g € N,such thatp*a=a*p=s,g9*

a=a*qg=t Thus,
(s*q)*a=s*(q*a)=s*t,

a*(s*q)=(@*s)*g=a*q==t
According to the hypothesis, (s *p) *a =a* (s * p), it follows that s * t = ¢.
(3) Suppose a € N, s, te{neut(,;;y(a)}. Applying Theorem (2) to s and t we have s * t = . Moreover,

applying Therorem (2) to t and s we have t * s = s. Hence, when * is commutative, s * t = t * 5. Therefore,
s = t, that is, neut,.;(a) is unique. [

Corollary 1. Let (N, *) be a commutative neutrosophic triplet group. Then neut(a) is unique for any a € N.

Proof. Since all neutrosophic triplet groups are (r-Ir)-quasi neutrosophic triplet groups, and * is
commutative, then the assumption conditions in Theorem 2 are valid for N, so applying Theorem 2 (3),
we get that neut(a) is unique for any a € N. [

The following examples show that the neutral element may be not unique in the neutrosophic
triplet loop.

Example 2. Let N ={1, 2, 3}. Define binary operation * on N as following Table 2. Then, (N, *) is a commutative
neutrosophic triplet loop, and {neut(1)} = {1, 2}. Since (1*3) *3 # 1 *(3 * 3), so (N, *) is not a neutrosophic
triplet group.

Table 2. Commutative neutrosophic triplet loop.

N
N = |
WNR=|N
LW w N W

Example 3. Let N = {1, 2, 3, 4}. Define binary operation * on N as following Table 3. Then, (N, *) is a
neutrosophic triplet loop, and {neut(4)} = {2, 3}. Since (4 *1) *1 # 4 * (1 *1), so (N, *) is not a neutrosophic
triplet group.

Table 3. Non-commutative neutrosophic triplet loop.

*

R WN R

W R B WM
B L= N
W N R W
N R W R

298



Florentin Smarandache (author and editor) Collected Papers, IX

4. Quasi Neutrosophic Triplet Structures in BE-Algebras and CI-Algebras

From the definition of BE-algebra and Cl-algebra (see Definition 3), we can see that ‘1 is a left
neutral element of every element, that is, BE-algebras and Cl-algebras are directly related to quasi
neutrosophic triplet structures. This section will reveal the various internal connections among them.

4.1. BE-Algebras (CI-Algebras) and (I-1)-Quasi Neutrosophic Triplet Loops

Theorem 3. Let (X; —, 1) be a BE-algebra. Then (X, —) is a (I-1)-quasi neutrosophic triplet loop. And, when
| X1>1, (X, —) is not a (Ir-1)-quasi neutrosophic triplet loop with neutral element 1.

Proof. By Definition 3, for all x € X, 1 — x = x and x — x = 1. According Definition 6, we know that
(X, —) is a (I-])-quasi neutrosophic triplet loop, such that:

1e {neut(l_l)(X)}, X € {anti(l_l)(x)}, for any x € X.

If IXI > 1, then exist x € X, such that x # 1. Using Definition 3 (iv), x — 1 =1 # x, this means that
1 is not a right neutral element of x. Hence, (X, —) is not a (Ir-])-quasi neutrosophic triplet loop with
neutral element 1. [

Example 4. Let X = {a, b, ¢, 1}. Define binary operation * on N as following Table 4. Then, (X; —, 1) is a
BE-algebra, and (X, —) is a (I-])-quasi neutrosophic triplet loop, such that:

{neutp(a)} = {1}, {antip(a)} = {a, c}; {neut ;) (b)} = {1}, {antiqy)(b)} = {b, c};

{neutp(c)} = {1}, {antiqy(c)} = {c}; {neut ;) (1)} = {1}, {antiy (1)} = {1}.

Table 4. BE-algebra and (I-I)-quasi neutrosophic triplet loop (1).

— a b c 1
a 1 b b 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Example 5. Let X ={a, b, ¢, 1}. Define binary operation * on N as following Table 5. Then, (X; —, 1) is a
BE-algebra, and (X, —) is a (I-1)-quasi neutrosophic triplet loop such that:

{neuty(a)} = {1}, {antij(a)} = {a}; {neut;;)(b)} = {1}, {anti;;(b)} = {b};

{neut)(c)} = {1}, {antiqy(c)} = {c}; {neut (1)} = {1}, {antiq (1)} = {1}.

Table 5. BE-algebra and (I-I)-quasi neutrosophic triplet loop (2).

— a b c 1
a 1 b c 1
b a 1 c 1
c a b 1 1
1 a b c 1
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Definition 7. ([36]) Let (X; —, 1) be a Cl-algebra and a € X. If for any x €X, a — x = 1 implies a = x, then a is
called an atom in X. Denote A(X) ={a € X| aisan atom in X}, it is called the singular part of X. A Cl-algebra
(X; —, 1) is said to be singular if every element of X is an atom.

Lemma 1. ([35-37]) If (X; —, 1) is a Cl-algebra, then for all x, y € X:

(1) x=>((x—y)—y-=1,
(2) 11— x=1(orequivalently, 1 < x) implies x =1,
B) x—=yY—-1=x—1)—H—1).

Lemma 2. ([36]) Let (X; —, 1) be a Cl-algebra. If a, b € X are atoms in X, then the following are true:

(1) a=@—1) —1,

2) (a—=b)—=1=b—a,

(3 ((a—b)—1)—1=a—b

(4) foranyxe X, (a—x) = (b—x)=b—a,

(5) foranyxe X, (a—x)=>b=0b—x) —a,

(6) foranyxe X, (a—x)—=(y—=b)=0b—=x)—({y—a).

Definition 8. Let (X; —, 1) be a Cl-algebra. If for any x €X, x — 1 = x, then (X; —, 1) is said to be a strong
singular.

Proposition 1. If (X; —, 1) is a strong singular Cl-algebra. Then (X; —, 1) is a singular Cl-algebra.

Proof. For any x € X, assume thata — x =1, where a € X. By Definition 8§, we havex - 1=x,a = 1=
a. Hence, applying Definition 3,

a=a—l=a—->x—-x)=x—>@—x)=x—>1=x.
By Definition 7, x is an atom. Therefore, (X; —, 1) is singular Cl-algebra. [

Proposition 2. Let (X; —, 1) be a Cl-algebra. Then (X; —, 1) is a strong singular Cl-algebra if, and only if,
(X; —, 1) is an associative BCI-algebra.

Proof. Obviously, every associative BCI-algebra is a strong singular Cl-algebra (see [36] and Proposition
1 in Ref. [12]).
Assume that (X; —, 1) is a strong singular Cl-algebra.

(1) Foranyx, y € X,if x =y =y — x =1, then, by Definitions 8 and 3, we have the following:
x=x—=l=x=Y—=x)=y—=x—=>x)=y—=>1=y.
(2) Forany x,y, z € X, by Proposition 1 and Lemma 2 (4), we can get the following:

=22 ((@z=x)=WY—=x)=Uy—2)—=Y—2=1L

Combining Proof (1) and (2), we know that (X; —, 1) is a BCl-algebra. From this, applying
Definition 8 and Proposition 1 in Ref. [12], (X; —, 1) is an associative BCI-algebra. [J

Theorem 4. Let (X; —, 1) be a Cl-algebra. Then, (X, —) is a (I-1)-quasi neutrosophic triplet loop. Moreover,

(X, —) is a neutrosophic triplet group if, and only if, (X; —, 1) is a strong singular Cl-algebra (associative
BCl-algebra).
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Proof. It is similar to the proof of Theorem 3, and we know that (X, —) is a (I-)-quasi neutrosophic
triplet loop.

If (X; —, 1) is a strong singular Cl-algebra, using Proposition 2, (X; —, 1) is an associative
BCl-algebra. Hence, — is associative and commutative, it follows that (X, —) is a neutrosophic
triplet group.

Conversely, if (X, —) is a neutrosophic triplet group, then — is associative, thus

x—=l=x—=>x—=>x)=x—>x)—>x=1—>x=x
By Definition 8 we know that (X; —, 1) is a strong singular Cl-algebra. [J

Example 6. Let X ={a, b, c, d, e,1}. Define operation — on X, as following Table 6. Then, (X; —, 1) is a
Cl-algebra, and (X, —) is a (I-1)-quasi neutrosophic triplet loop, such that

{neuty(a)} = {1}, {antiy(a)} = {a,b}; {neut (D)} = {1}, {anti;;)(b)} ={a,b,c};

{neutp)(c)} = {1}, {antiq)(c)} = {c,de}; {neut)(d)} = {1}, {antiyy(d)} = {d,e};
{neut(l_l)(e)}z{l}, {anti(l_l)(e)}z{d,e}; {neut(l_l)(l)}z{l}, {anti(l_l)(l)}z{l}.

Table 6. Cl-algebra and (I-)-quasi neutrosophic triplet loop.

— a b c d e 1
a 1 1 c c c 1
b 1 1 c c c 1
c d 1 1 a b c
d c c 1 1 1 c
e c c 1 1 1 c
1 a b c d e 1

4.2. BE-Algebras (CI-Algebras) and Their Adjoint Semi-Groups

I. Fleischer [16] studied the relationship between BCK-algebras and semigroups, and W.
Huang [17] studied the close connection between the BCl-algebras and semigroups. In this section,
we have studied the adjoint semigroups of the BE-algebras and Cl-algebras, and will give some
interesting examples.

For any BE-algebra or Cl-algebra (X; —, 1), and any element a in X, we use p, to denote the
self-map of X defined by the following:

pa: X = X;—a—x, forallx € X.

Theorem 5. Let (X; —, 1) be a BE-algebra (or Cl-algebra), and M(X) be the set of finite products p, * ... * py
of self-map of X with a, ... , b €X, where * represents the composition operation of mappings. Then, (M(X), *) is
a commutative semigroup with identity py.

Proof. Since the composition operation of mappings satisfies the associative law, (M(X), *) is a
semigroup. Moreover, since
p1: X—=X—1—x, forallx € X.

Applying Definition 3 (ii), we get that p; (x)=x for any x€X. Hence, p;*m= p1*m=m for any meM(X).
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For any 4, b€ X, using Definition 3 (iii) we have (Vx&X) the following:

(Pa* pp) () =palb = ) =a = (b = x) =b — (a = x) = pp(a = x) = (pp” pa)(x)-
Therefore, (M(X), *) is a commutative semigroup with identity p;. O
Now, we call (M(X), *) the adjoint semigroup of X.

Example 7. Let X ={a, b, ¢, 1}. Define operation — on X, as following Table 7. Then, (X; —, 1) is a
BE-algebra, and

pa: X = X;a—1,b—1,c—1,1— 1. Itis abbreviated top, = (1,1, 1, 1).
pp: X = X;a—c,b—1,c—a,1— 1. Itis abbreviated to p, = (¢, 1, 4, 1).
pe: X—X;a—1,b—1,c— 1,1 1. Itis abbreviated top. = (1,1, 1, 1).
p1: X =+ X;a—a,b—b,c—c, 1~ 1. Itisabbreviated top; =(a, b, ¢, 1).

We can verify that p; * pa = pa, Pa * Po = Pas Pa *Pc =P Po *Pr=(a, 1, ¢, 1), pp * Pc =Pc = Pa; Pa *
Py * Pv) = Pa, Po * (o * Pb) = Pos Pc * (b * Pb) = Pc = pa- Denote pyy = pp* py = (a, 1, ¢, 1), then M(X) = {p,,
Py, Prbs P11, and its Cayley table is Table 8. Obviously, (M(X), *) is a commutative neutrosophic triplet
group and

neut(pa) = pa, anti(p,) = pa; neut(py) = pyy, anti(py) = py; neut(pyy) = ppp, anti(pyy) = ppy; neut(pr) = p1, anti(pr) = p1.

Table 7. BE-algebra.

— a b c 1
a 1 1 1 1
b c 1 a 1
c 1 1 1 1
1 a b c 1

Table 8. Adjoint semigroup of the above BE-algebra.

*

Pa Pb Pbb P1
Pa Pa Pa Pa Pa
Pb Pa Pob Pb P
Puvb Pa Pb Pub Pbb
p1 Pa Pb Pub P1

Example 8. Let X ={a, b, 1}. Define operation — on X, as following Table 9. Then, (X; —, 1) is a Cl-algebra, and

pa: X = X;a—1,b—a,1— b. Itis abbreviated to p, = (1, a, ).
pp: X = X;a—b,b—1,1— a. Itis abbreviated to p, = (b, 1, a).
p1: X =+ X;ara,b—b,1— 1. Itis abbreviated top; = (a, b, 1).

We can verify that p; * pa = py, Pa * Po = P1; Pp * Pb = Pa- Then M(X) = {pa, pp, p1} and its Cayley table
is Table 10. Obviously, (M(X), *) is a commutative group with identity p; and (;7,1)_1 =pp, (Pp) " = pa-
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Table 9. Cl-algebra.

— a b 1
a 1 a b
b b 1 a
1 a b 1

Table 10. Adjoint semigroup of the above Cl-algebra.

*

Pa Po P1
Pa Pbv P1 Pa
Pb P1 Pa P
p1 Pa Py P1

Theorem 6. Let (X; —, 1) be a singular Cl-algebra, and M(X) be the adjoint semigroup. Then (M(X), ¥) is a
commutative group with identity p;, where M(X) ={p, | a €X}and IM(X)| = 1 X]I.

Proof. (1) First, we prove that for any singular Cl-algebra,a - (b - x)=(@a = 1) = b) = x, Va, b,
xeX.
In fact, by Definition 7 and Lemma 2, we have the following;:

(a—=1)—=>b)—>x =(@@—>1)—=Db—=>((x—1)—1)
=x—>1D—=>((a—1)—b—1
=x—-1D—=>(a—1)—>1)—b-—-1)
=x—-1)—>@—b-—1))
=a—=>(x—=>1)—>0b-—-1)
= a— (b—x).

(2) Second, we prove that for any singular Cl-algebra, a # b = p, #pp, Va,b € X.
Assume p; = pp, a, b € X. Then, for all x in X, p,(x) = pp(x). Hence,

a—b=p,(b)=ppb)=b—0b=1.
From this, applying Lemma 2 (1) and (6) we get
a=a—>1)—>1=@—1)—>@—>b=b—->1)—@—>a)=0—>1)—1=0>.

(3) Using Lemma 2 (1), we know that for any a, b € X, there exist ¢ € X, such that p, * pp = pe,
where c = (2 — 1) — b. This means that M(X) C {p, |a € X}. By the definition of M(X), {p,a € X} C
M(X). Hence, M(X) = {p, la € X}.

(4) Using Lemma 2 (2) and (3), we know that IM(X) |=1X1. O

5. Quasi Neutrosophic Triplet Structures in Pseudo BE-Algebras and Pseudo CI-Algebras

Like the above Section 4, we can discuss the relationships between pseudo BE-algebras (pseudo
Cl-algebras) and quasi neutrosophic triplet structures. This section will give some related results and
examples, but part of the simple proofs will be omitted.
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5.1. Pseudo BE-Algebras (Pseudo CI-Algebras) and (I-1)-Quasi Neutrosophic Triplet Loops

Theorem 7. Let (X; —, ~», 1) be pseudo BE-algebra. Then (X, —) and (X, ~+) are (I-])-quasi neutrosophic
triplet loops. And, when | X| > 1, (X, —) and (X, ~~) are not (Ir-1)-quasi neutrosophic triplet loops with neutral
element 1.

Example 9. Let X ={a, b, ¢, 1}. Define operations — and ~~ on X as following Tables 11 and 12. Then, (X; —,
~+, 1) is a pseudo BE-algebra, and (X, —) and (X, ~) are (I-1)-quasi neutrosophic triplet loops.

Table 11. Pseudo BE-algebra (1).

— a b c 1
a 1 1 b 1
b a 1 c 1
c 1 1 1 1
1 a b c 1

Table 12. Pseudo BE-algebra (2).

~ a b c 1
a 1 1 a 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Definition 9. ([44,46]) Let a be an element of a pseudo Cl-algebra (X; —, ~=, 1). a is said to be an atom in X if
forany x € X,a — x =1 implies a = x.

Applying the results in Ref. [44-46] we have the following propositions (the proofs are omitted).

Proposition 3. If (X; —,~+, 1) is a pseudo Cl-algebra, then for all x, y €X

1) x<@x—=y~yx<(x~y —y,

(2) x<y—zeoy<xwz,

B x—=y—=l=x—=D~Y~1D x~y)~1=x~1)—=Yy—=1),
4) x—1=x~1,

(5) x<yimpliesx 1=y —1.

Proposition 4. Let (X; —,~, 1) be a pseudo Cl-algebra. If a, b €X are atoms in X, then the following are true:

(1) a=@—1)—1,

(2) foranyx e X, (a—x)~~x=a,(a~x)—=x=a,

(3) foranyxe X, (a—x)~1l=x—a(a~x)=>1=xwa,

(4) foranyxeX, x—a=@—-1)~x—=>1),x~a=@@~1) — (x~1)

Definition 10. A pseudo Cl-algebra (X; —,~+, 1) is said to be singular if every element of X is an atom.
A pseudo Cl-algebra (X; —,~+, 1) is said to be strong singular if for any x €X, x = 1=x=x~ 1.

Proposition 5. If (X; —,~+, 1) is a strong singular pseudo Cl-algebra. Then (X; —,~-, 1) is singular.
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Proof. For any x € X, assume thata — x = 1, where a € X. It follows from Definition 10,
x—1l=x=x~1,a—>1=a=a~1.
Hence, applying Definition 4 and Proposition 3,
a=a—=1l=a—=>x~x)=x~@—=x)=x~1=x.
By Definition 9, x is an atom. Therefore, (X; —, ~», 1) is singular pseudo Cl-algebra. [J
Applying Theorem 3.11 in Ref. [46], we can get the following:

Lemma 3. Let (X; —, ~+, 1) be a pseudo Cl-algebra. Then the following statements are equivalent:

(1) x—=y—=2=x—y) —zforalxyzinX;
(2) x—1=x=x~1,forevery x in X;

(B) x—=y=x~y=y—xforalx,yinX;

(4) x~>(y~z)=(x~y)~z forallx,y zin X.

Proposition 6. Let (X; —,~, 1) be a pseudo Cl-algebra. Then (X; —,~-, 1) is a strong singular pseudo
Cl-algebra if, and only if, — =~ and (X; —, 1) is an associative BCI-algebra.

Proof. We know that every associative BCI-algebra is a strong singular pseudo Cl-algebra. [J

Now, suppose that (X; —, 1) is a strong singular pseudo Cl-algebra. By Definition 10 and Lemma 3
(3),x = y=x~y, Vx,y € X. Thatis, — = ~». Hence, (X; —, 1) is a strong singular CI-algebra. It follows
that (X; —, 1) is an associative BCI-algebra (using Proposition 2).

Theorem 8. Let (X; —,~+, 1) be a pseudo Cl-algebra. Then (X, —) and (X,~-) are(l-1)-quasi neutrosophic
triplet loops. Moreover, (X, —) and (X,~) are neutrosophic triplet groups if, and only if, (X; —,~, 1) isa
strong singular pseudo Cl-algebra (associative BCl-algebra).

Proof. Applying Lemma 3, and the proof is omitted. U

5.2. Pseudo BE-Algebras (Pseudo CI-Algebras) and Their Adjoint Semi-Groups

For any pseudo BE-algebra or pseudo Cl-algebra (X; —, ~~, 1) as well as any element a in X,
we use p,~” and p,™” to denote the self-map of X, which is defined by the following:

pa i X = X;—a—x forallx € X.

pa X = X;—a~x forallx € X.

Theorem 9. Let (X; —, ~~, 1) be a pseudo BE-algebra (or pseudo Cl-algebra), and
M7 (X) = {finite products p,~ * ... *p, " of self-map of X | a, ..., b€ X},
M™(X) = {finite products p,” * ... *pp”" of self-mapof X | a, ... ,b € X},

M(X) = {finite products p,~ (orpa™) * ... *pp " (or pp™") of self-map of X 1 a, ..., b € X},

where * represents the composition operation of mappings. Then (M (X), *), (M™(X), *), and (M(X), *)
are all semigroups with the identity p; =p1 7 =p1™.
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Proof. It is similar to Theorem 5. [J
Now, we call (M7 (X), *), (M (X), *), and (M(X), *) the adjoint semigroups of X.

Example 10. Let X = {a, b, ¢, 1}. Define operations — and ~+ on X as following Tables 13 and 14. Then, (X;
—, ~», 1) is a pseudo BE-algebra, and

Pa_> = (1/ b/ b/ 1)/ Pb_> = (ﬂ, 1/ C/ 1)r pc—) = (1/ 1/ 1/ 1)r pl_) = ({1, b/ Cr 1)

We can verify the following:

Pa *pa =pa P ey =LLb D), pa e =0 e Y =P s

— % — — % — % — % — —

Py *Pa =P Py Py =0 Py fPe =P Py fP1 =Py
Pc_> *Pa_> = Pc—>/ Pc—> *Pb% =Pc—>/ Pc_> * Pc_> =Pc_>r 77c_> >(-]91—> = pc_>}
p1~> * pﬂ—> — pa%/ Plﬁ * Pbﬁ — pb*)/ Plﬁ % pc—) — pCH/ Plﬁ * Plﬁ — pl—)'

Denote pyy ™ =pa *pp~" = (1,1,b,1), then poy™ *pa ™ =pc™", pav™ *Po" =Pap s Pab *Pab =
P, Py Fpe =pc . Hence, M (X) =1{pa ", Po ", Pav ', Pc ', p1_ } and its Cayley table is Table 15.
Obviously, (M (X), *) is a non-commutative semigroup, but it is not a neutrosophic triplet group.

Table 13. Pseudo BE-algebra and adjoint semigroups (1).

— a b c 1
a 1 b b 1
b a 1 c 1
c 1 1 1 1
1 a b c 1

Table 14. Pseudo BE-algebra and adjoint semigroups (2).

s a b c 1
a 1 b c 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

Table 15. Pseudo BE-algebra and adjoint semigroups (3).

* pa% ph% pab% pcﬁ plﬁ
pa” Pa”’ Pap Pab pe Pa”
Py pe pe~ pe pe po
Pab~ pe Pav” pe pe Pab ™
pc pe”’ pe” pe” pe” pe”
p1 pa Py Pab” pe’ P

Similarly, we can verify that

pﬂw = (]-/ b/ C/ 1)/ pbw = (ﬂ, ]-/ a/ 1)/ pCW = (1/ ]-/ 1/ ]-)/ le = (ﬂ, b/ C/ 1)

~ g ~

P pd T =0 p e = e = (L L L), p T = a7

s sy

pr” ¥pa T =L La, ), e = e e = ey Y =
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~ % ~

pa =p T ey =0T peT e =0T pe

~ % ~ ~

Pc pP1 =Pc

Denote py,™ =pp™ *pa™ = (1, 1,4, 1), then pp,™ * pa™ =pra™, Pa™ * Poa™” =P Poa” * P~ =
pcw/ wa * plmW = pbaw; pbaW * pbaw = pcw; pbaw * Pcw = Pcwr Pcw * pbaW = Pcw- Hence, M™(X) = {ﬁawl
P, Pea” P, p177 ) and its Cayley table is Table 16. Obviously, (M~ (X), *) is a non-commutative
semigroup, but it is not a neutrosophic triplet group.

Table 16. Pseudo BE-algebra and adjoint semigroups (4).

¥ pa” Py~ Poa” pe” 1
pa~ Pa” pe™ pe™ pe™ pa”
[ Poa™ Py~ Poa™ p™ P~
Poa” Pra” pe” pe” pe” Poa”
pcw pcw Pcw pcW pcW Pcw
p1” pa” P Poa” pe™ p1”

Now, we consider M(X). Since

Pcﬁ = (1/ 1/ 1/ 1) = pCW/ P]*> = (ﬂ, b/ C/ 1) = plwr

Pa” *Pa” =Pa P *Pa =Pa
pa *py T =L L L) =p 7 pp Fpa =L, L) =pc

P ¥y = *paT = (1, 1,¢1);
Pab =Pab s Pab “Pa =Pab Py P =Pe T peT P =P
P " =(LLL D) =p 7,0 o = (1,1, 1L, ) =p 7
Pa” P =L L L) =pe 7 pp Fpa = (L1 L) =pc

Po o =00 Pe” P =P

P P =L L L D) =p 7 o = (1,1,1, 1) =p

Denotep=(1,1,¢,1), then M(X) ={pa", pa™", b ", Pb™" Pab "+ Pra s P,Pc ", P1 "}, and Table 17 is
its Cayley table (it is a non-commutative semigroup, but it is not a neutrosophic triplet group).

%

Pa

*

Table 17. Pseudo BE-algebra and adjoint semigroups (5).

* pa” P P Py Pab Pba p pe 1
pa” P Pa Pw P Pa . P Pa P pa~
pa” pa”  paT P P Pa T P 4 pe pa”
Py~ |2 R O P P P pe P
[ pe” T mT pe P Poa” pe Py
P P Pa Pab | P pe pe Pab pe” Pab”
Poa” P PwT PeT P pe pe Poa” p Poa”

p pe’ P P pe’ pe”’ pe P pe’ p
PcH pcﬁ Pcﬂ Pc% Pc% pcﬁ Pcﬂ Pc% Pc% pcﬁ
i P T e T Pa T P p pe’ -

The following example shows that the adjoint semigroups of a pseudo BE-algebra may be a

commutative neutrosophic triplet group.
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Example 11. Let X={a, b, ¢, d, 1}. Define operations — and ~~ on X as Tables 18 and 19. Then, (X; —, ~~, 1)
is a pseudo BE-algebra, as well as the following:

Pa_) = (1/ ¢ C 1/ 1)/ Pb—> = (d/ 1/ 1/ d/ 1)/ Pc_> = (d/ 1/ 1/ dr 1)/ Pd—> = (1/ ¢ C, 11 1)/ P1_> = (ﬂ, b/ c, d/ 1)

We can verify the following;:

—

Pa *Pa =Pa P Py =P Fpe =L L L0, pa T pa T =0 P P =P s
pr e =(LLL L, 0, K = e = Ly e =(LLLLY), g T =
pe ¥ =(,1,1,1L,0),pc7 ¥y =pc T K pe T =pe e Fpa T =(LLLLY),pe T e = s

pa” pa =pa opa Yy =pa e =L L L), pa T tpa T =pa L pd T =pa

Denote ppy " =pa *pp = (1, 1,1, 1, 1), then poy™ *Pa™” =pap” *po" =Pab *Pc” =Pav *Pa
=P TP =P *P1 =Pa - Hence, M7 (X) =1{p.", p» ", Py ", p1 "} and its Cayley table is
Table 20. Obviously, (M~ (X), *) is a commutative neutrosophic triplet group.

Table 18. Pseudo BE-algebra and commutative neutrosophic triplet groups (1).

— a b c d 1
a 1 c c 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 c c 1 1
1 a b c d 1

Table 19. Pseudo BE-algebra and commutative neutrosophic triplet groups (2).

~ a b ¢ d 1
a 1 b ¢ 1 1
b d 1 1 d 1
c d 1 1 d 1
d 1 b ¢ 1 1
1 a b ¢ d 1

Table 20. Pseudo BE-algebra and commutative neutrosophic triplet groups (3).

* pa’ Py~ Pav p1
Pa_> Ptl—> pab_) puhﬁ pﬂ_>
o Pab Py Pab Py
pubH pabH pabH PabH pabH
p~ pa~ po Pav~ P

Similarly, we can verify the following:

Puw = (1/ b/ C/ 1/ 1)/ pbw = (d/ 1/ 1/ d/ 1)/ pCW = (d/ 1/ 1/ d/ 1)/ pdw = (1/ b/ C/ 1/ 1)/ plw = (ﬂ, b/ C/ d/ 1)

sy

o =pa” e =L L L), 007 *pd” =0

M ~ ~ ~ %

Pa Pa =Pa ,Pa
Py pa T =(LLLLL), T T =0y e = e e =(1,1,1,1,1).

Denote pp™” =pa™” *pp” =(1,1,1,1,1), then M (X) = {pa™", pp™", pap”™", p1”~} and its Cayley table
is Table 21. Obviously, (M™(X), *) is a commutative neutrosophic triplet group.
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Table 21. Pseudo BE-algebra and commutative neutrosophic triplet groups (4).

* pa” o Pap™ p1”
pa” pa”” Pab”™ Pap™ pa””
v~ Pav™” Py~ Pav™” Py~
pabW pabW pubW pabW pubW
p1” pa™” Py~ Pav™ p”

Now, we consider M(X). Since the following:

pb_> = pC_) = (d/ 1/ 1/ d/ 1) = pbw = pCW/ Pa_> = pd—> = (1/ ¢ c, 1/ 1)/ Paw = pdw = (1/ b/ c, 1/ 1)1

— %

Pa Puw = Puﬁ/ Puw * PaH = paﬁ} PaH * wa =(1,1,1,1,1)= Pab 7= pabwz wa * paH =(1,1,1,1,1).

Hence, M(X) ={pa ", P, P» ", Par ', 1"}, and Table 22 is its Cayley table (it is a commutative
neutrosophic triplet group).

Table 22. Pseudo BE-algebra and commutative neutrosophic triplet groups (5).

* pa”’ pa” Py’ Pab P’
pﬂ_> pl?—> Pa% Pub_> pab—> Pu_>
pa” Puﬁ pa” pabﬁ Pabﬁ pa”
Py Pab™ Pab Py Pab~ Py’
pubH pabﬁ Pabﬁ PabH pabH pabH
P’ pa” pa” Py Pab” p1’

Remark 3. Through the discussions of Examples 10 and 11 above, we get the following important revelations:

(1) (M(X), *), (M™(X), *), and (M(X), *) are usually three different semi-groups; (2) (M~ (X), *) and (M (X),
*) are all sub-semi-groups of (M(X), *), which can also be proved from their definitions; (3) (M (X), *), (M (X),
*), and (M(X), ¥) may be neutrosophic triplet groups. Under what circumstances they will become neutrosophic
triplet groups, will be examined in the next study.

6. Conclusions

In this paper, the concepts of neutrosophic triplet loops (groups) are further generalized, and
some new concepts of generalized neutrosophic triplet structures are proposed, including (I-)-type,
(I-r)-type, (r-I)-type, (r-r)-type, (I-Ir)-type, (r-Ir)-type, (Ir-])-type, and (Ir-r)-type quasi neutrosophic
triplet loops (groups), and their basic properties are discussed. In particular, as a corollary of these new
properties, an important result is proved. For any commutative neutrosophic triplet group, its every
element has only one neutral element. At the same time, the BE-algebras and its various extensions
(including Cl-algebras, pseudo BE-algebras, and pseudo Cl-algebras) have been studied, and some
related generalized neutrosophic triplet structures that are contained in these algebras are presented.
Moreover, the concept of adjoint semigroups of (generalized) BE-algebras are proposed for the first
time, abundant examples are given, and some new results are obtained.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant Nos.
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Certain Notions of Neutrosophic Topological
K-Algebras

Muhammad Akram, Hina Gulzar, Florentin Smarandache, Said Broumi

Muhammad Akram, Hina Gulzar, Florentin Smarandache, Said Broumi (2018). Certain Notions
of Neutrosophic Topological K-Algebras. Mathematics 6, 234; DOI: 10.3390/math6110

Abstract: The concept of neutrosophic set from philosophical point of view was first considered by
Smarandache. A single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific
and engineering point of view and an extension of intuitionistic fuzzy sets. In this research article,
we apply the notion of single-valued neutrosophic sets to K-algebras. We introduce the notion of
single-valued neutrosophic topological K-algebras and investigate some of their properties. Further,
we study certain properties, including Cs-connected, super connected, compact and Hausdorff,
of single-valued neutrosophic topological K-algebras. We also investigate the image and pre-image
of single-valued neutrosophic topological K-algebras under homomorphism.

Keywords: K-algebras; single-valued neutrosophic sets; homomorphism; compactness;
Cs-connectedness

1. Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram in [1].
A K-algebra is built on a group G by adjoining the induced binary operation on G. The group
G is particularly of the type in which each non-identity element is not of order 2. This algebraic
structure is, in general, non-commutative and non-associative with right identity element [1-3].
Akram et al. [4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other
researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy
setting frames by applying Zadeh’s fuzzy set theory and its generalizations, namely, interval-valued
fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and
vague sets [5]. In handling information regarding various aspects of uncertainty, non-classical logic is
considered to be a more powerful tool than the classical logic. It has become a strong mathematical
tool in computer science, medical, engineering, information technology, etc. In 1998, Smarandache [6]
introduced neutrosophic set as a generalization of intuitionistic fuzzy set [7]. A neutrosophic set
is identified by three functions called truth-membership (T), indeterminacy-membership (I) and
falsity-membership (F) functions. To apply neutrosophic set in real-life problems more conveniently,
Smarandache [6] and Wang et al. [8] defined single-valued neutrosophic sets which takes the value
from the subset of [0, 1]. Thus, a single-valued neutrosophic set is an instance of neutrosophic set.

Algebraic structures have a vital place with vast applications in various areas of life. Algebraic
structures provide a mathematical modeling of related study. Neutrosophic set theory has also been
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applied to many algebraic structures. Agboola and Davazz introduced the concept of neutrosophic
BCI/BCK-algebras and discuss elementary properties in [9]. Jun et al. introduced the notion of (¢, i)
neutrosophic subalgebra of a BCK/BCI-algebra [10]. Jun et al. [11] defined interval neutrosophic sets
on BCK/BCI-algebra [11]. Jun et al. [12] proposed neutrosophic positive implicative N-ideals and
study their extension property [12] Several set theories and their topological structures have been
introduced by many researchers to deal with uncertainties. Chang [13] was the first to introduce the
notion of fuzzy topology. Later, Lowan [14], Pu and Liu [15], and Chattopadhyay and Samanta [16]
introduced other concepts related to fuzzy topology. Coker [17] introduced the notion of intuitionistic
fuzzy topology as a generalization of fuzzy topology. Salama and Alblowi [18] defined the topological
structure of neutrosophic set theory. Akram and Dar [19] introduced the concept of fuzzy topological
K-algebras. They extended their work on intuitionistic fuzzy topological K-algebras [20]. In this paper,
we introduce the notion of single-valued neutrosophic topological K-algebras and investigate some
of their properties. Further, we study certain properties, including Cs-connected, super connected,
compact and Hausdorff, of single-valued neutrosophic topological K-algebras. We also investigate the
image and pre-image of single-valued neutrosophic topological K-algebras under homomorphism.

2. Preliminaries

The notion of K-algebra was introduced by Dar and Akram in [1].

Definition 1. [1] Let (G, -, e) be a group in which each non-identity element is not of order 2. A K-algebra is a
structure IC = (G, -, ®, ) over a particular group G, where ® is an induced binary operation © : G x G = G
is defined by © (s, t) = s ® t = s.t~1, and satisfy the following conditions:

(i) (sOH)oEou)=(0((evu)o(e0t)))os;
(ii) sO(eH =(s@(eOt)Os;

(iii) s®s =c¢;

(iv) s®e =s;and

(v) e®s=s"1

foralls, t, u € G. The homomorphism between two K-algebras K1 and Ky is a mapping f : K1 — Ky such
that, forall u, v € Ky, f(u ©v) = f(u) © f(v).

In [6], Smarandache initiated the idea of neutrosophic set theory which is a generalization of
intuitionistic fuzzy set theory. Later, Smarandache and Wang et al. introduced a single-valued
neutrosophic set (SNS) as an instance of neutrosophic set in [8].

Definition 2. [8] Let Z be a space of points with a general element s € Z. A SNS A in Z is equipped with
three membership functions: truth membership function (T 4), indeterminacy membership function (I 4) and
falsity membership function(F 4), where¥' s € Z, T(s), Z4(s), Fa(s) € [0,1]. There is no restriction on the
sum of these three components. Therefore, 0 < T 4(s) +Z 4(s) + F(s) < 3.

Definition 3. [8] A single-valued neutrosophic empty set (Dsn) and single-valued neutrosophic whole set
(1sn) on Z is defined as:

. @51\](1/{) = {Ll S (M,0,0,l)}.
o Isn(u)={uez:(u1,1,0)}.
Definition 4. [8] If f is a mapping from a set Zy into a set Zy, then the following statements hold:

(i) Let A bea SNS in Zy and B be a SNS in Z, then the pre-image of B is a SNS in Z1, denoted by f~1(B),
defined as:
fHB) = {z1 € Zy = f1(Tp)(z1) = Ts(f(21)), f(Tp)(21) = Ip(f(z1)). f ' (FB)(z1) =
Fp(f(21))}-
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(ii) Let A = {z1 € Z1 : Ta(z1),Za(z1),Fa(z1)} be a SNS in Zy and B = {z, € Z,
T(22),Ip(z2), F(z2)} be a SNS in Z,. Under the mapping f, the image of A is a SNS in Z;,
denoted by f(A), defined as: f(A) = {z2 € Zo : foup(Ta)(22), foup(Z4)(22), fint(F.4)(22)}, where
forall zy € Z,.

iffi) #

otherwise,

foup(Ta)(z2) = {supzlefl(zz)TA(Zl)’

7

0, otherwise,

i1
fsup(IA)(Zz) = {Supzlef_l(zz)IA(Zl)’ lff(ZZ) #Q,

. 1
fint(Fa)(z2) = {mleef](zz)fA(Zﬂ/ lff(ZZ) # Q,
0

otherwise.

We formulate the following proposition.

Proposition 1. Let f : Zy — Zyand A, (Aj,j € J) bea SNS in Zy and B be a SNS in Z. Then, f possesses
the following properties:

(i) If f is onto, then f(lsy) = 1sn.
(i) f(Dsn) = Dsn-
(iii) fﬁl(lsN) = lSN~
(iv) f~1(DsN) = Dsn-
(v) If f is onto, then f(f~1(B) = B.
W) £ (0A) = UF (A,

' i=1

3. Neutrosophic Topological K-algebras

Definition 5. Let Z be a nonempty set. A collection x of single-valued neutrosophic sets (SNSs) in Z is called
a single-valued neutrosophic topology (SNT) on Z if the following conditions hold:

(@) Osn,1sn € X
(b) If A, B € x, then ANB € x
(c) If A; € x, Vi€ I, then Ui Ai € x

The pair (Z,x) is called a single-valued neutrosophic topological space (SNTS). Each member of x is
said to be x-open or single-valued neutrosophic open set (SNOS) and compliment of each open single-valued
neutrosophic set is a single-valued neutrosophic closed set (SNCS). A discrete topology is a topology which
contains all single-valued neutrosophic subsets of Z and indiscrete if its elements are only Dsn, 1gn.

Definition 6. Let A = (T4,Z4,F4) be a single-valued neutrosophic set in K. Then, A is called a
single-valued neutrosophic K-subalgebra of K if following conditions hold for A:

(i) Tale) > Ta(s), Zale) > Za(s), Fale) < Fals)
(i) Ta(s®t) > min{T4(s), Ta(t)},
7

At)
Za(s©t) > min{Z4(s),Z4(t)},
Fals ®t) <max{F4(s), Fa(t)} Vs,t € K.
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6

Example 1. Consider a K-algebra K = (G,-,®,e), where G = {e,x,x%,x3,x*,x°,x°,x7,x8} is the cyclic

group of order 9 and Caley’s table for © is given as:

fee]

O] e X PR R I A

e | e A8 7 x® X At B ¥ x
x | x e x A7 X6 x5 ot B 42
2|2 x e 8 X7 x5 5 xt K3
B8 x2 ox e 8 X7 a0 x5yt
lat 3 2 ox e ¥ A K6 K
O a2 x e a8 X7«
20 X ot 3 X2 ox e 8 A7
a7 x5 ot 3 X2 x e A8
B X7 a0 X xr 3 2 x e

If we define a single-valued neutrosophic set A, B in K such that:

A =1{(e,04,05,08),(s,0.3,04,0.7)},
B ={(e,0.3,04,0.8),(s,0.2,0.3,0.6)}

Vs#eeG.

According to Definition 5, the family {@Dsn, 15N, A, B} of SNSs of K-algebra is a SNT on K. We define
aSNS A ={T4,Za, Fa}in K suchthat Ty(e) =0.7,Z4(e) = 0.5, F(e) = 0.2, T4(s) =02,Z4(s) =
0.4, F4(s) = 0.6. Clearly, A = (T4, Z4, F4) isa SN K-subalgebra of K.

Definition 7. Let K = (G, -, ®, ) be a K-algebra and let x i be a topology on K. Let A be a SNS in K and let
Xx be a topology on K. Then, an induced single-valued neutrosophic topology on A is a collection or family
of single-valued neutrosophic subsets of A which are the intersection with A and single-valued neutrosophic
open sets in K defined as x 4 = {ANF : F € xx}. Then, x 4 is called single-valued neutrosophic induced
topology on A or relative topology and the pair (A, x 4) is called an induced topological space or single-valued
neutrosophic subspace of (IC, x).

Definition 8. Let (KC1, x,) and (ICy, x,) be two SNTSs and let f : (K1, x,) — (K2, x,). Then, f is called
single-valued neutrosophic continuous if following conditions hold:

(i) Foreach SNS A€ x,, f1(A) € x,.
(ii) For each SN K-subalgebra A € x,, f 1 (A) is a SN K-subalgebra € x,.

Definition 9. Let (K1, x,) and (Ko, x,) be two SNTSs and let (A, x 4) and (B, xp) be two single-valued
neutrosophic subspaces over (K1, x,) and (Ky, x,). Let f be a mapping from (K1, x,) into (Ky, x,), then f is
a mapping from (A, x.4) to (B, xs) if f(A) C B.

Definition 10. Let f be a mapping from (A, x 4) to (B, xg). Then, f is relatively single-valued neutrosophic
continuous if for every SNOS Yg in x5, f~1(Y5) N A € x4.

Definition 11. Let f be a mapping from (A, x 4) to (B, xg). Then, f is relatively single-valued neutrosophic
open if for every SNOS X 4 in x 4, the image f(X 4) € xp-

Proposition 2. Let (A, x 1) and (B, xp) be single-valued neutrosophic subspaces of (K1, x,) and (K, x,),
where Ky and KCy are K-algebras. If f is a single-valued neutrosophic continuous function from ICq to Ky and
f(A) C B. Then, f is relatively single-valued neutrosophic continuous function from A into B.

Definition 12. Let (KCy, x,) and (Ka, x,) be two SNTSs. A mapping f : (K1, x,) = (K2, x,) is called a
single-valued neutrosophic homomorphism if following conditions hold:
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(i)  fis a one-one and onto function.
(ii)  f is a single-valued neutrosophic continuous function from Ky to ICy.
(i) f~'is a single-valued neutrosophic continuous function from K to K1.

Theorem 1. Let (K1, x,) be a SNTS and (K, x,) be an indiscrete SNTS on K-algebras ICq and KCo,
respectively. Then, each function f defined as f : (K1,x,) — (K2, x,) is a single-valued neutrosophic
continuous function from KCq to Ky. If (Kq, x, ) and (Ka, x,) be two discrete SNTSs KCy and ICy, respectively,
then each homomorphism f : (K1, x,) — (Ko, x,) is a single values neutrosophic continuous function from K4
to Kz.

Proof. Let f be a mapping defined as f : K1 — K. Let x, be SNT on Ky and ), be SNT on K, where
X, = {Dsn, 1sn }. We show that f~1(A) is a single-valued neutrosophic K-subalgebra of K, i.e., for
each A € x,, f1(A) € x,. Since x, = {Dsn, 1sn}, then for any u € yx,, consider Dsy € x, such that
FH@sn) (u) = Dsn(f (u)) = Dsn (1)

Therefore, (f1(@sn)) = @sy € x,- Likewise, (f 1(1sy)) = 1sy € x,. Hence, f is a SN
continuous function from C; to /Cs.

Now, for the second part of the theorem, where both x, and x, are SNTSs on K; and Ky,
respectively, and f : (K1, x,) — (K2, x,) is a homomorphism. Therefore, forall A € x, and f 1A € x,,
where f is not a usual inverse homomorphism. To prove that f~1(.A) is a single-valued neutrosophic
K-subalgebra in of K. Let for u,v € K4,

FHTA) (4 ©0)=Ta(f(u ©v))
=Ta(f(u) © f(v))
> min{Ta(f(1)) © Tf(0))}
=min{f 1 (T4) (), f1(Ta)(v)},
FHZA)(u©0)=TA(f(u©v))
— Li(f(w) © £(2))
> min{Z(f(u)) ©Zf(v))}
=min{f " YZ4) (), "1 (Z4)(v)},
FUFD) o 0)=Fa(f(uov))
= Falf(u) © f(v))
< max{F(f(u)) © F(f(v))}
= max{f 1 (Fa)(u), f 1 (Fa)(v)}.

Hence, f is a single-valued neutrosophic continuous function from K; to Kp. O

Proposition 3. Let x, and x, be two SNTSs on K. Then, each homomorphism f : (IC, x,) — (IC, x,) isa
single-valued neutrosophic continuous function.

Proof. Let (K, x1) and (IC, x,) be two SNTSs, where K is a K-algebra. To prove the above result,
it is enough to show that result is false for a particular topology. Let A = (74,Z4,F4,) and B =
(T8,Zp, F) be two SNSs in K. Take x1 = {@Dsn, 1sn, A} and x2 = {Dsn, 1sn, B} If f: (K, x1) —
(K, x,), defined by f(u) = e®u, forall u € K, then f is a homomorphism. Now, foru € A, v € x,,
(f1(B)(u) = B(f(u)) = Ble © u) = B(u),

Vue€K,ie, f1(B) = B. Therefore, (f~1(B)) & x,. Hence, f is not a single-valued neutrosophic
continuous mapping. [

Definition 13. Let K = (G, -, ®, e) be a K-algebra and x be a SNT on K. Let A be a single-valued neutrosophic
K-algebra (K-subalgebra) of K and x 4 be a SNT on A. Then, A is said to be a single-valued neutrosophic
topological K-algebra (K-subalgebra) on IC if the self mapping pa : (A, x 1) — (A, x.4) defined as p,(u) =
u®a,Va € K, is a relatively single-valued neutrosophic continuous mapping.
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Theorem 2. Let x, and x, be two SNTSs on Ky and K5, respectively, and f : K1 — Ky be a homomorphism
such that f~Y(x2) = x1. If A = {Ta,Za, Fa} is a single-valued neutrosophic topological K-algebra of KC,,
then f~1(A) is a single-valued neutrosophic topological K-algebra of K.

Proof. Let A = {T4,Z4, F 4} be a single-valued neutrosophic topological K-algebra of 5. To prove
that f~1(.A) be a single-valued neutrosophic topological K-algebra of ;. Let for any u,v € K1,

Tr1a)(u©v) =Ta(f(u©0))

> min{T4(f(u)), Ta(f(v))}

= min{7;1(4) (), Tr104)(0) },
Zraay(uoo) =Za(f(uo0))

> min{Z4(f(u)), Za(f(v))}

= min{If,l(A)(u),Iffl(A)(v)},
Frawwoo) =Fa(f(u©o))

< max{Fa(f(u)), Falf(v))}

= max{F 14 (1), Fr104)(0)}-

Hence, f~!(A) is a single-valued neutrosophic K-algebra of K;.

Now, we prove that f~1(A) is single-valued neutrosophic topological K-algebra of K;. Since
f is a single-valued neutrosophic continuous function, then by proposition 3.1, f is also a relatively
single-valued neutrosophic continuous function which maps (f~1(A), x F14)) to (A xa)-

Leta € K1 and Y be a SNSin x 4, and let X be a SNS in Xf-1(4) such that

fFHY) =X (1)

We are to prove that p, : (f_l(.A),)(fq(A)) — (f_l(A),Xffl(A)) is relatively single-valued
neutrosophic continuous mapping, then for any a € K1, we have

To100(0) = T (palw) = T (w @ 0)
77‘ 1 Y)(M@H)_ﬁ )(f(uQa))
—T (f( )© f(a)) = (Pf( ) (f ()
—Tpflf(a) (f(u)) = Tf 1(p (a)(Y)(“))/

= T(x)(pa(u)) = I(x)(”®ﬂ)

Iy 1(Y)( a) =Ty (f(u©a))
=Zy)(f(u) © f(a)) = I(Y)(Pf o) (f(u)))
=Ly (f(1) = Zpa (py,) (V) (1)),

Tt (1) = Fix)(0a(u)) = Fixy(u©a)
=Fray(uoa) = fY)(f(MQQ))
=Fy)(f(u)© f(a )) (Y)( o) (f(1)))
7: )y (f(1)) = F (Y (u)).

It concludes that p; 1 (X) = ffl(pjj(la)(Y)). Thus, o, 1(X) N f~1(A) = ffl(pjj(la)(Y)) Nf1(A)is
aSNSin f~1(A) and a SNSin x £-1(4)- Hence, f ~1(A) and a single-valued neutrosophic topological
K-algebra of K. Hence, the proof. [J

x)(#)

Theorem 3. Let (K1, x,) and (Ky, x,) be two SNTSs on K1 and Ky, respectively, and let f be a bijective
homomorphism of KCq into Ky such that f(x1) = xo. If A is a single-valued neutrosophic topological K-algebra
of K1, then f(A) is a single-valued neutrosophic topological K-algebra of IC,.

Proof. Suppose that A = {7 4,Z4, F 4} is a SN topological K-algebra of ICy. To prove that f(A) is a
single-valued neutrosophic topological K-algebra of Ky, let, for u, v € I,
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fA) = (fsup(T) (0), foup(Z4) (0), fint(Fa)(0)).

Leta, € f~1(u), b, € f~1(v) such that

Now,

—-
=]
=

=
m
—
L
S
by
=
I
b
—~
N
=]
=
=3
=
m
)
=
by
—~
=
~—
I

Tra)(u©0) sup  Ta(x)

xef~H(uov)
Ta(ao, bo)
min{7a(a0), Ta(bo)}

min{ sup T4(x), sup Ta(x)}
xef~1(u) xef~1(v)

min{7(4)(u), Tr(a)(0)},

v 1V

sup  Z4(x)
xef L (uoo)

Z (a0, bo)
mil’l{IA(ﬂo), IA(bo)}

min{ sup Zy(x), sup Z4(x)}
xef~1(u) xef~1(v)

mm{If(A) (M), If(_A) (Z)) }’

If(A)(” O] U)

(A\VARAYS

Frauov)=  inf F
f(A)(” U) xef*l{l(t@v) A(X)

]:A(ﬂo/ bo)
max{]—"A(ao), -FA(bo)}

inf Fu(x), inf F
max{xe}rjl(u) A(x) ot A(x)}

= max{Fs4)(u), Fra)(v)}-

IA A

Hence, f(A) is a single-valued neutrosophic K-subalgebra of K. Now, we prove that the self
mapping oy : (f(A), xf(A)) = (f(A), xf(A)), defined by p,(v) = v O b, for all b € Ky, is a relatively
single-valued neutrosophic continuous mapping. Let Y 4 be a SNS in ) 4, there exists a SNS “Y” in x;
such that Y4 = Y N A. We show that for a SNSin x (1),

o o (Yra) NF(A) € xfa)

Since f is an injective mapping, then f(Y4) = f(YNA) = f(Y) N f(A) isa SNS in xf(4) which
shows that f is relatively single-valued neutrosophic open. In addition, f is surjective, then for all
be Ky a=f(b), wherea € K;.
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Now,

Tt s () = Tr1(0-1 (0 () (W)
= 7}—1f(a)(yf<,4))(f(u))
= Tiv, ) (O (a) (F (1))
= Tt ) (f(#) © f(a))
= Ty (O )
= Tr1(v,4y) (Pa (1))
=To1a) (fFH (Ypa)) (w),

Lr1(p-1(vpa)) (1) = L1071 p(a) (v 4)) (M)
= Zom1 4 a) (v f (1))
= Liyy ) (Op(a) (f (1))
= Ty, 0 (W) @ £(a))
= Zp10r) (1 ©
= Ty, ) (0al®)
=T, 10 (f 7 (Yp)) (),

a)
)

T 101, (p)) 1) = F 160714 a) (0 ()
= F o1 (a) (v ) (1)
= vy Of(a) (f (1))
= Flyy ) () © f(a))
= Ffa (Y;4)) (u®a)
= ]:ffl(yf(A))(Pa(“))
= Fo10) (F T (Ypa))) ().

This implies that f~ ( ((Yf( ) = p@% (f_l(Y(A))). Since pg : (A, x4) = (A, x.4) is relatively
single-valued neutrosophlc contmuous mapping and f is relatively single-valued neutrosophic

continues mapping from (A, x 4) into (f(A), xf(4)), ffl(p(*bﬁ((Yf(A)))) NA= p(;% (ffl(Y(A))) NAis
aSNSin x 4. Hence, f(f_l(p(b)((Yf(A)))) NA) = p(_bl)(Yf(A)) N f(A) is a SNS in x 4, which completes
the proof. O

Example 2. Let K = (G, -, ®,e) be a K-algebra, where G = {e, x, x?,x3,x*,x°,x8,x7,x8} is the cyclic group
of order 9 and Caley’s table for ® is given in Example 1. We define a SNS as:

A ={(e,04,05,0.8),(s,0.3,0.4,0.6)},
B ={(,03,04,058),(5,02,0.3,0.6)},

foralls # e € G, where A, B € [0,1]. The collection xx = {@sn,1sn, A, B} of SNSs of K isa SNT on K
and (K, xic) is a SNTS. Let C be a SNS in IC, defined as:

C ={(e,0.7,0.5,0.2),(5,0.5,04,0.6)}, Vs # e € G.
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Clearly, C is a single-valued neutrosophic K-subalgebra of KC. By direct calculations relative topology
Xc is obtained as x¢ = {@a,14, A}. Then, the pair (C, xc) is a single-valued neutrosophic subspace
of (K, xx). We show that C is a single-valued neutrosophic topological K-subalgebra of K, i.e., the self
mapping pa : (C, xc) — (C, xc) defined by pa(u) = u ® a,Va € K is relatively single-valued neutrosophic
continuous mapping, i.e., for a SNOS A'in (C,xc), ps {(A) NC € xe. Since p, is homomorphism, then
pa(A)NC = A € xc. Therefore, pa : (C,xc) — (C, xc) is relatively single-valued neutrosophic continuous
mapping. Hence, C is a single-valued neutrosophic topological K-algebra of K.

Example 3. Let K = (G, -, ®, ) be a K-algebra, where G = {e, x, x?,x3,x*,x°,x8,x7,x8} is the cyclic group

of order 9 and Caley’s table for ® is given in Example 3.1. We define a SNS as:

A= {(e,04,05,08),(s,0.3,0.4,0.6)},
B = {(¢,0.3,04,0.8), (5,0.2,0.3,0.6)},
D = {(¢,0.2,0.1,0.3), (5,0.1,0.1,0.5)},

forall s # e € G, where A, B € [0,1]. The collection x1 = {Dsn,1sn, D} and xo = {Dsn, 1sn, A, B} of
SNSs of K are SNTs on K and (IC, x1), (IC, x2) be two SNTSs. Let C be a SNS in (K, x2), defined as:

C ={(e,0.7,05,0.2), (5,0.5,0.4,0.6)}, Vs # ¢ € G.

Now, Let f : (K, x1) — (K, x2) be a homomorphism such that f~1(x2) = x1 (we have not consider K to
be distinct), then, by Proposition 3, f is a single-valued neutrosophic continuous function and f is also relatively
single-valued neutrosophic continues mapping from (I, x1) into (KC, x2). Since C is a SNS in (K, x2) and
with relative topology xc = {D, 1.4, A} is also a single-valued neutrosophic topological K-algebra of (K, x2).
We prove that f~1(C) is a single-valued neutrosophic topological K-algebra in (IC, x1). Since f is a continuous
function, then, by Definition 8, f~1(C) is a single-valued neutrosophic K-subalgebra in (K, x1). To prove that
F~Y(c) is a single-valued neutrosophic topological K-algebra, then for b € K1 take

oo (fHC) xp110) = (FHC) Xpr(e)),

for A € Xf—l(c),pgl(A) NfHC) € xf-1(c) which shows that f~1(C) is a single-valued neutrosophic
topological K-algebra in (K, x1). Similarly, we can show that f(C) is a a single-valued neutrosophic topological
K-algebra in (IC, x2) by considering a bijective homomorphism.

Definition 14. Let x be a SNT on K and (IC, x) be a SNTS. Then, (I, x) is called single-valued neutrosophic
Cs-disconnected topological space if there exist a SNOS and SNCS H such that H = (T3, Ty, Fr, ) 7 1sn
and H = (T, Ty, Fy, ) # Dsn, otherwise (IC, x) is called single-valued neutrosophic Cs-connected.

Example 4. Every indiscrete SNT space on K is Cs-connected.

Proposition 4. Let (K1, x1) and (Ky, x2) be two SNTSs and f : (Kq1,x1) — (K2, x2) be a surjective
single-valued neutrosophic continuous mapping. If (IC1, x1) is a single-valued neutrosophic Cs-connected space,
then (KCa, x2) is also a single-valued neutrosophic Cs-connected space.

Proof. Suppose on contrary that (K, x2) is a single-valued neutrosophic Cs-disconnected space.
Then, by Definition 14, there exist both SNOS and SNCS # be such that H # 1gy and H # Dgy. Since
f is a single-valued neutrosophic continuous and onto function, so f~}(#H) = 1sy or f 1 (H) = Dsy,
where f~1(H) is both SNOS and SNCS. Therefore,

H=f(f'(H) = f(lsn) = Lsn ¢)
and

H=f(f(H)) = f(Dsn) = Dsn, ®3)
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a contradiction. Hence, (K02, x2) is a single-valued neutrosophic Cs-connected space. [

Corollary 1. Let x bea SNT on KC. Then, (K, x) is called a single-valued neutrosophic Cs-connected space if
and only if there does not exist a single-valued neutrosophic continuous map f : (IC, x) — (Fr, xr) such that

f # sy and f # Dsn

Definition 15. Let A = {T4,Z4, F4} bea SNSin K. Let x be a SNT on K. The interior and closure of A in
K is defined as:

A!": The union of SNOSs which contained in A.

ACIo: The intersection of SNCSs for which A is a subset of these SNCSs.
Remark 1. Being union of SNOS A"t is a SNO and A being intersection of SNCS is SNC.

Theorem 4. Let A bea SNS ina SNTS (K, x). Then, A" is such an open set which is the largest open set of
K contained in A.

Corollary 2. A = (T4, L4, Fy)isaSNOS in K if and only if A™ = Aand A = (T4, Za, Fa)isa SNCS
in K if and only if AC° = A.

Proposition 5. Let A be a SNS in KC. Then, following results hold for A:

(i) (1sn) = 1gn.
ii) (®SN)CIO = DsN-

(
(iii) (A) " = (A)°P.
(

o) (A)° = (A,

Definition 16. Let K be a K-algebra and x be a SNT on K. A SNOS A in K is said to be single-valued
neutrosophic regular open if

A= (ACIO)Int' ()

Remark 2. Every SNOS which is regular is single-valued neutrosophic open and every single-valued
neutrosophic closed and open set is a single-valued neutrosophic reqular open.

Definition 17. A single-valued neutrosophic super connected K-algebra is such a K-algebra in which there does
not exist a single-valued neutrosophic regular open set A = (T4, L4, F 4) such that A # Qg and A # 1gn.
If there exists such a single-valued neutrosophic regular open set A = (T4, Z 4, F 4) such that A # Dgn and
A # 1N, then K-algebra is said to be a single-valued neutrosophic super disconnected.

Example 5. Let K = (G, -, ®,e) be a K-algebra, where G = {e, x, x2,x3,x*, x°,x8,x7, x8} is the cyclic group
of order 9 and Caley’s table for © is given in Example 1 We define a SNS as:

A =1{(,02,03,08),(s,0.1,0.2,0.6)}.

Let xx = {@sn, 1sn, A} be a SNT on K and let B = {(e,0.3,0.3,0.8), (s,0.2,0.2,0.6)} be a SNS in
K. here

SNOSs : @5y = {0,0,1}, 1w = {1,1,0}, 4 = {(6,02,03,08), (5,0.1,02,06)}.
SNCSs: (Osn)¢ = ({0,0,1})° = ({1,1,0}) = 1sn, (1sn)° = ({1,1,0})° = ({0,0,1}) = Dsn,
(A) = ({(¢,02,03,0.8), (s, 0.1,0.2,0.6)}) = ({(¢,0.8,0.3, 0.2), (5,0.6,02,0.1)}) = A (say).
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Then, closure of B is the intersection of closed sets which contain BB. Therefore,

A = BClo, (5)

Now, interior of B is the union of open sets which contain in B. Therefore,
osnlJA=A

A= B, (6)

Note that (BCZO)UO = B, Now, if we consider a SNS A = {(¢,0.2,0.3,0.8), (5,0.1,0.2,0.6) } in a
K-algebra K and if xic = {@sn, 1sn, A} is a SNT on K. Then, (A)C"° = Aand (A)™ = A. Consequently,

A — (ACIO)Int, (7)

which shows that A is a SN reqular open set in K-algebra KC. Since A is a SN regular open set in K and
A # QDsn, A # 1gn, then, by Definition 17, K-algebra K is a single-valued neutrosophic supper disconnected
K-algebra.

Proposition 6. Let K be a K-algebra and let A be a SNOS. Then, the following statements are equivalent:

(i) A K-algebra is single-valued neutrosophic super connected.

(ii) (A)C1° =15y, for each SNOS A # Qs

(iii) (A)"™ = @gy, for each SNCS A # 1gy.

(iv) There do not exist SNOSs A, F such that A C F and A # Qs # F in K-algebra K.

Definition 18. Let (IC, x) be a SNTS, where K is a K-algebra. Let S be a collection of SNOSs in K denoted by
S ={(Ta;,Za;, Fa;):j €]} Let Abea SNOS in K. Then, S is called a single-valued neutrosophic open
covering of A if A C US.

Definition 19. Let K be a K-algebra and (IC, x) be a SNTS. Let L be a finite sub-collection of S. If L is also
a single-valued neutrosophic open covering of A , then it is called a finite sub-covering of S and A is called
single-valued neutrosophic compact if each single-valued neutrosophic open covering S of A has a finite sub-cover.
Then, (IC, x) is called compact K-algebra.

Remark 3. If either K is a finite K-algebra or x is a finite topology on IC, i.e., consists of finite number
of single-valued neutrosophic subsets of IC, then the SNT (IC, x) is a single-valued neutrosophic compact
topological space.

Proposition 7. Let (ICq, x1) and (ICy, x2) be two SNTSs and f be a single-valued neutrosophic continuous
mapping from Kq into K. Let A bea SNS in (K1, x1) . If A is single-valued neutrosophic compact in (K1, x1),
then f(A) is single-valued neutrosophic compact in (Ko, x2).

Proof. Let f : (K01, x1) — (K2, x2) be a single-valued neutrosophic continuous function. Let
S = (f"'(Aj: j € ])) be a single-valued neutrosophic open covering of A since A be a SNSin (K1, x1).
Let L = (A : j € ]) be a single-valued neutrosophic open covering of f(.A). Since A is compact, then

n
there exists a single-valued neutrosophic finite sub-cover |J f~* (A;) such that
j=1

AC LnJ fHA))
j=1

We have to prove that there also exists a finite sub-cover of L for f(.A) such that
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Now,

Hence, f(.A) is single-valued neutrosophic compact in (Ko, x2). O

Definition 20. A single-valued neutrosophic set A in a K-algebra K is called a single-valued neutrosophic

point if
) a€(0,1], ifv=u
Tav)= { 0, otherwise,
) Be(0,1], ifv=u
Ta(v)= { 0, otherwise,

B otherwise,

Falo)= { ge 0,1), ifo=u

with support u and value («,B,y), denoted by u(w, B, 7). This single-valued neutrosophic point is said
to “belong to” a SNS A, written as u(a, B,v) € Aif To(u) > a,Za(u) > B, F(u) < vy and said to be
“quasi-coincident with” a SNS A, writtenas u(a, B,v) q Aif Tg(u) +a > 1L, Z (u)+p > 1, Fo(u)+9 < L

Definition 21. Let K be a K-algebra and let (K, x) be a SNTS. Then, (I, x) is called a single-valued
neutrosophic Hausdorff space if and only if, for any two distinct single-valued neutrosophic points uq,uy € IC,
there exist SNOSs By = (Tg,, Zp,, FB,), B2 = (TB,, L,, FB,) such that uy € By, up € By, ie.,

T, (u1) =1,Zp, (u1) =1, Fp,(u1) =0,
TB,(u2) =1,Ip,(uz) =1, Fp,(u2) =0

and satisfy the condition that By N By = Qgn. Then, (K, x) is called single-valued neutrosophic Hausdorff
space and K-algebra is said to ba a Hausdorff K-algebra. In fact, (I, x) is a Hausdorff K-algebra.

Example 6. Let K = (G, -, ®,e) be a K-algebra and let (I, x ) be a SNTS on IC, where

G = {e,x,x2,x3,x*,x5,x6,x7,x8} is the cyclic group of order 9 and Caley’s table for ® is given in Example 1.
We define two SNSsas A = {(e,1,1,0),(s,0,0,1)}. B = {(¢,0,0,1),(s,1,1,0) }. Consider a single-valued
neutrosophic point for e € K such that

_J 03, ife=u
Tale)= { 0, otherwise,

0.2, ife=u
T =
ae) { 0, otherwise,
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0.4, ife=u
Fale)= { 0, otherwise.
Then, ¢(0.3,0.2,0.4) is a single-valued neutrosophic point with support e and value (0.3,0.2,0.4).
This single-valued neutrosophic point belongs to SNS “A” but not SNS “B”.
Now, foralls #e € K

0.5, ifs=u
Ts(s)= { 0, otherwise,

IB(S)={ 04, ifs=u

0, otherwise,

0.3, ifs=u
0, otherwise.

Then, s(0.5,0.4,0.3) is a single-valued neutrosophic point with support s and value (0.5,0.4,0.3). This
single-valued neutrosophic point belongs to SNS “B” but not SNS “A”. Thus, €(0.3,0.2,04) € A and
€(0.3,0.2,0.4) ¢ B,s(0.5,0.4,0.3) € Band s(0.5,04,0.3) ¢ Aand AN B = Qgn. Thus, K-algebra is a
Hausdorff K-algebra and (IC, xx) is a Hausdorff topological space.

Theorem 5. Let (K1, x1), (Ko, x2) be two SNTSs. Let f be a single-valued neutrosophic homomorphism from
(K1, x1) into (KCo, x2). Then, (K1, x1) is a single-valued neutrosophic Hausdorff space if and only if (Ko, x2)
is a single-valued neutrosophic Hausdorff K-algebra.

Proof. Let (K1, x1), (K2, x2) be two SNTSs. Let K; be a single-valued neutrosophic Hausdorff space,
then, according to the Definition 21, there exist two SNOSs X and Y for two distinct single-valued
neutrosophic points uq, 1y € xp alsoa,b € KC1(a # b) such that XN Y = Dgy.

Now, for w € K1, consider (f 1 (uy))(w) = u1(f 1 (w)), where u1 (f 1 (w)) =s € (0,1] ifw = f~1(a),
otherwise 0. Thatis, (f~(u1))(w) = ((f }(u));(w)). Therefore, we have f~1(u3) = (f1(u));.
Similarly, f~!(u2) = (f ' (u))2. Now, since f ! is a single-valued neutrosophic continuous mapping
from KC; into Ky, there exist two SNOSs f(X) and f(Y) of u; and up, respectively, such that
FX)NFY) = f(Dsn) = Dsn. This implies that I, is a single-valued neutrosophic Hausdorff
K-algebra. The converse part can be proved similarly. O

Theorem 6. Let f be a single-valued neutrosophic continuous function which is both one-one and onto, where
f is a mapping from a single-valued neutrosophic compact K-algebra K1 into a single-valued neutrosophic
Hausdorff K-algebra KCy. Then, f is a homomorphism.

Proof. Let f : K1 — K; be a single-valued neutrosophic continuous bijective function from
single-valued neutrosophic compact K-algebra K; into a single-valued neutrosophic Hausdorff
K-algebra IC;. Since f is a single-valued neutrosophic continuous mapping from K; into KCp, f is
a homomorphism. Since f is bijective, we only prove that f is single-valued neutrosophic closed.
Let D = (7p,Zp, Fp) be a single-valued neutrosophic closed in K. If D = Qgy is single-valued
neutrosophic closed in K, then f(D) = Qg is single-valued neutrosophic closed in K. However,
if D # @gn, then D will be a single-valued neutrosophic compact, being subset of a single-valued
neutrosophic compact K-algebra. Then, f(D), being single-valued neutrosophic continuous image of a
single-valued neutrosophic compact K-algebra, is also single-valued neutrosophic compact. Therefore,
KCy is closed, which implies that mapping f is closed. Thus, f is a homomorphism. [
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4. Conclusions

Non-classical logic is considered as a powerful tool for inspecting uncertainty and indeterminacy
found in real world problems. Being a great extension of classical logic, neutrosophic set theory
is considered as a useful mathematical tool to cope up with uncertainties in science, technology;,
and computer science. We have used this mathematical model with a topological structure to
investigate the uncertainty in K-algebras. We have introduced the notion of single-valued neutrosophic
topological K-algebras and presented certain concepts, including continuous function between
two topological on K-algebras, relatively continuous function and homomorphism. We have
investigated the image and pre-image of single-valued neutrosophic topological K-algebras under
this homomorphism. We have proposed some conclusive concepts, including single-valued
neutrosophic compact K-algebras and single-valued neutrosophic Hausdorff K-algebras. We plan
to extend our study to: (i) single-valued neutrosophic soft topological K-algebras; and (ii) bipolar
neutrosophic soft topological K-algebras.

For other notations and terminologies, readers are referred to [21-26].
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Study on the Development of Neutrosophic
Triplet Ring and Neutrosophic Triplet Field
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of Neutrosophic Triplet Ring and Neutrosophic Triplet Field. Mathematics 6, 46; DOI:
10.3390/math6040046

Abstract: Rings and fields are significant algebraic structures in algebra and both of them are based
on the group structure. In this paper, we attempt to extend the notion of a neutrosophic triplet group
to a neutrosophic triplet ring and a neutrosophic triplet field. We introduce a neutrosophic triplet
ring and study some of its basic properties. Further, we define the zero divisor, neutrosophic triplet
subring, neutrosophic triplet ideal, nilpotent integral neutrosophic triplet domain, and neutrosophic
triplet ring homomorphism. Finally, we introduce a neutrosophic triplet field.

Keywords: ring; field; neutrosophic triplet; neutrosophic triplet group; neutrosophic triplet ring;
neutrosophic triplet field

1. Introduction

The concept of a ring first arose from attempts to prove Fermat'’s last theorem [1], starting with Richard
Dedekind in the 1880s. After contributions from other fields, mainly number theory, the notion of a ring
was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull [2] Modern
ring theory, a very active mathematical discipline, studies rings in their own right. To explore rings,
mathematicians have devised various notions to break rings into smaller, more understandable pieces,
such as ideals, quotient rings, and simple rings. In addition to these abstract properties, ring theorists
also make various distinctions between the theories of commutative rings and noncommutative rings,
the former belonging to algebraic number theory and algebraic geometry. A particularly rich theory
has been developed for a certain special class of commutative rings, known as fields, which lies
within the realm of field theory. Likewise, the corresponding theory for noncommutative rings,
that of noncommutative division rings, constitutes an active research interest for noncommutative
ring theorists. Since the discovery of a mysterious connection between noncommutative ring theory
and geometry during the 1980s by Alain Connes [3-5], noncommutative geometry has become a
particularly active discipline in ring theory.

The foundation of the subject (i.e., the mapping from subfields to subgroups and vice versa) is set
up in the context of an absolutely general pair of fields. In addition to the clarification that normally
accompanies such a generalization, there are useful applications to infinite algebraic extensions and
to the Galois Theory of differential equations [6]. There is also a logical simplicity to the procedure:
everything hinges on a pair of estimates of field degrees and subgroup indices. One might describe it
as a further step in the Dedekind-Artin linearization [7].

An early contributor to the theory of noncommutative rings was the Scottish mathematician
Wedderburn who, in 1905, proved “Wedderburn’s Theorem”, namely that every finite division ring is
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commutative and so is a field [8]. It was only around the 1930s that the theories of commutative and
noncommutative rings came together and that their ideas began to influence each other.

Neutrosophy is a new branch of philosophy which studies the nature, origin, and scope of neutralities
as well as their interaction with ideational spectra. The concept of neutrosophic logic and a neutrosophic
set was first introduced by Florentin Smarandache [9] in 1995, where each proposition in neutrosophic logic
is approximated to have the percentage of truth in a subset T, the percentage of indeterminacy in a subset
I, and the percentage of falsity in a subset F such that this neutrosophic logic is called an extension of fuzzy
logic, especially to intuitionistic fuzzy logic [10]. The generalization of classical sets [9], fuzzy sets [11],
and intuitionistic fuzzy sets [10], etc., is in fact the neutrosophic set. This mathematical tool is used to
handle problems consisting of uncertainty, imprecision, indeterminacy, inconsistency, incompleteness,
and falsity. By utilizing the idea of neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache
studied neutrosophic algebraic structures [12-14] by inserting a literal indeterminate element “I”,
where I? = I, in the algebraic structure and then combining “I” with each element of the structure
with respect to the corresponding binary operation, denoted *. They call it the neutrosophic
element, and the generated algebraic structure is then termed as a neutrosophic algebraic structure.
Some other neutrosophic algebraic structures can be seen as neutrosophic fields [15], neutrosophic vector
spaces [16], neutrosophic groups [17], neutrosophic bigroups [17], neutrosophic N-groups [15],
neutrosophic semigroups [12], neutrosophic bisemigroups [12], neutrosophic N-semigroups [12],
neutrosophic loops [12], neutrosophic biloops [12], neutrosophic N-loop [12], neutrosophic groupoids [12]
and neutrosophic bigroupoids [12] and so on.

In this paper, we introduce the neutrosophic triplet ring. Further, we define the neutrosophic
triplet zero divisor, neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent neutrosophic
triplet, integral neutrosophic triplet domain, and neutrosophic triplet ring homomorphism.
Finally, we introduce a neutrosophic triplet field. The rest of the paper is organized as follows.
After the literature review in Section 1 and basic concepts in Section 2, we introduce the neutrosophic
triplet ring in Section 3. Section 4 is about the introduction of the integral neutrosophic triplet domain
with some of its interesting properties, and is also where we develop the neutrosophic triplet ring
homomorphism. In Section 5, we study neutrosophic triplet fields. Conclusions are given in Section 6.

2. Basic Concepts

In this section, all definitions and examples have been taken from [18] to provide some basic
concepts about neutrosophic triplets and neutrosophic triplet groups.

Definition 1. Let N be a set together with a binary operation . Then N is called a neutrosophic triplet set if
for any a € N, there exists a neutral of “a” called neut(a), different from the classical algebraic unitary element,
and an opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N, such that

axneut(a) = neut(a)xa =a

and
axanti(a) = anti(a) xa = neut(a).

The element a, neut(a), and anti(a) are collectively called a neutrosophic triplet and we denote it by
(a,neut(a),anti(a)). By neut(a), we mean the neutral of a, and a is just the first coordinate of a neutrosophic
triplet and not a neutrosophic triplet [18].

For the same element “a” in N, there may be more than one neutral neut(a) and more than one opposite
anti(a).

Definition 2. The element b in (N, %) is the second component, denoted by neut(-), of a neutrosophic triplet,

if there exist other elements a and ¢ in N such that axb = bxa = aandaxc = cxa = b. The formed
neutrosophic triplet is (a, b, c) [12].

328



Florentin Smarandache (author and editor) Collected Papers, IX

Definition 3. The element c in (N, *) is the third component, denoted by anti(-) of a neutrosophic triplet,
if there exist other elements a and b in N such that axb = bxa =aandaxc = cxa = b. The formed
neutrosophic triplet is (a, b, c) [12].

Example 1. Consider Zg under multiplication modulo 6, where
Z¢ =10,1,2,3,4,5}.

Then the element 2 gives rise to a neutrosophic triplet because neut(2) =4 #1,as2 x4 =4x2=8=
2(mod6). Also, anti(2) = 2 because 2 x 2 = 4. Thus (2,4,2) is a neutrosophic triplet. Similarly 4 gives rise
to a neutrosophic triplet because neut(4) = anti(4) = 4 So (4,4, 4) is a neutrosophic triplet. However, 3 does
not give rise to a neutrosophic triplet as neut(3) = 5 but anti(3) does not exist in Zg, and lastly, O gives
rise to a trivial neutrosophic triplet as neut(0) = anti(0) = 0. The trivial neutrosophic triplet is denoted by
(0,0,0) [12].

Definition 4. Let (N, x) be a neutrosophic triplet set. Then N is called a neutrosophic triplet group if the
following conditions are satisfied [12].

1. If (N, x) is well defined, i.e., for any a,b € N, one has axb € N.
2. If (N, x) is associative, i.e., (a*b) xc=ax (bxc) forall a,b,c € N.

The neutrosophic triplet group, in general, is not a group in the classical algebraic sense.
We consider the neutrosophic neutrals as replacing the classical unitary element, and the neutrosophic
opposites as replacing the classical inverse elements.

Example 2. Consider (Zy,#), where # is defined as a#b = 3ab(mod10). Then (Zyo,#) is a neutrosophic
triplet group under the binary operation #, as shown in Table 1 [18].

Table 1. Cayley table of neutrosophic triplet group (Zig, #).

O X I ADUT B WNR=O| IFH
SO OO OO oo oOoQoOo o
NP OO OVOONWO| -
O NI NP OINIINO N
RN WHE TN 0O o W
RN DNOONNENO| -
GO U1 Ul O U1To Oro | u
NEABANOONEBENO | &
O O NV WNF~ O
AN OB OAN®OBO| ®
WO ONUIO - k= NJO| WY

It is also associative, i.e.,
(a#tb)#c = a#(bi#c).

Now we take the LHS to prove the RHS.
(attb)#c = (3ab)#c

= 3(3ab)c = abc
= 3a(3bc) = 3a(bic)
= a#(b#c)
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For each a € Zyg, we have neut(a) in Zqp.

That is, neut(0) = 0, neut(1) =7, neut(2) = 2, neut(3) =7, neut(4) = 2, and so on.

Similarly, for each a € Zyy, we have anti(a) in Zy.

That is, anti(0) = 0, anti(1) =9, anti(2) = 2, anti(3) = 3, anti(4) = 1, and so on. Thus (Zqp, #) is a
neutrosophic triplet group with respect to # [12].

3. Neutrosophic Triplet Rings
In this section, we introduce neutrosophic triplet rings and study some of their basic properties

and notions.

Notations 1. Since the neutrosophic triplet ring and the neutrosophic triplet field are algebraic structures
endowed with two internal laws * and #, in order to avoid any confusion, we use the following notation:
neut x (x) and anti x (x) for the neutrals and anti’s, respectively, of the element x with respect to the law * and
neu#(x) and ant#(x) for the neutrals and anti’s, respectively, of the element x with respect to the law #.

Definition 5. Let (NTR, *,#) be a set together with two binary operations % and #. Then NTR is called a
neutrosophic triplet ring if the following conditions hold:

1.  (NTR, %) is a commutative neutrosophic triplet group with respect to *;
2. (NTR,#) is well defined and associative;
3. a#(bxc) = (a#b)  (attc) and (b * c)#a = (b#a) = (c#a) forall a,b,c € NTR.

Remark 1. An NTR in general is not a classical ring.

Definition 6. Let (NTR, *,#) be a neutrosophic triplet ring and let a € NTR. We call the structure a unitary
neutrosophic triplet ring (UNTR) if each element a has a neut*(a).

Definition 7. Let (NTR, *,#) be a neutrosophic triplet ring. We call the structure a commutative unitary
neutrosophic triplet ring if it is a UNTR and # is commutative.

Definition 8. Let (NTR, *,#) be a neutrosophic triplet ring and let 0 # a € NTR. If there exists a nonzero
element b € NTR such that b#a = 0, then b is called a left zero divisor of a. Similarly, an element b € NTR is
called a right zero divisor of a if a#b = 0.

A zero divisor of an element is one which is both a left zero divisor and a right zero divisor of
that element.

Theorem 1. Let NTR be a commutative neutrosophic triplet ring and a,b € NTR such that a, b, neut#(a),
neut®(b), neut (a#b), and anti* (a#b) are cancellable and that neut®(a), neut*(b) and anti* (a), anti* (b) do
exist in NTR. Then

1. neut(a)#neut’(b) = neut* (a#b); and
2. anti*(a)#anti® (b) = anti* (a#b).
Proof.

(1) Consider the left-hand side, with neut*(a)#neut*(b). Multiply by a to the left and by b to the
right; then we have

attneut” (a)#neut” (by#b = (attneut® (a))#(neut” (b)#b) = a#b,
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since # is associativeNow we consider the right-hand side; we have neut*(a#b). Multiplying by a to
the left and by b to the right, we have

attneut” (a#b)#b = (a#b)#neut” (a#tb) = a#b,

since # is associative and commutative,
Thus, LHS = a#b = a#b = RHS.
(2) Considering the left-hand side, we have anti® (a)#anti* (b).

Multiplying by a to the left and by b to the right, we have
attanti® (a(#anti® (b)#b = (attanti® (a))#(anti® (b)#b) = a#b.

Now consider the right-hand side, where we have anti* (a#b).
Multiplying by a to the left and by b to the right, we have a#anti® (a#b)#b = (a#b)#anti* (a#b) = a#b,
since # is associative and commutative, [J

Definition 9. Let (NTR, %, #) be a neutrosophic triplet ring and let S be a subset of NTR. Then S is called a
neutrosophic triplet subring of NTR if (S, x,#) is a neutrosphic triplet ring.

Definition 10. Let (NTR, *,#) be a neutrosophic triplet ring and I be a subset of NTR. Then I is called a
neutrosophic triplet ideal of NTR if the following conditions are satisfied.

1. (I, *) is a neutrosophic triplet subgroup of (NTR, *); and
2. Forallx € landr € NTR, x#r € [ and r#x € I.

Theorem 2. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring, but the converse is not
true in general.

Remark 2. Let (NTR, *,#) be a neutrosophic triplet ring and let a € NTR. Then the following are true.

1. neut*(a) and anti*(a) in general are not unique in NTR.
2. neut#(a) and anti#(a) (if they exist for some element a) in general are not unique in NTR.

Definition 11. Let NTR be a neutrosophic triplet ring and let a € NTR. Then a is called a nilpotent element if
a" = 0, for some positive integer n > 1.

Theorem 3. Let NTR be a commutative neutrosophic triplet ring and let a € NTR. If a is a nilpotent,
the following are true.

1. (neutx (a))" = neut * (0); and
2. (antix (a))" = anti« (0).

Proof.

(1) Suppose that a is a nilpotent in a neutrosophic triplet ring NTR. Then, by definition, 4" = 0
for some positive integer n > 1.

We prove by mathematical induction.

We can show that neut * (a) * neut * (a) = neut  (ax b) and anti x (a) x anti x (a) = anti* (a x b)
in the same way as we did in Theorem 1 above by just replacing the law * by #.

Now we make a = b, so we get neut * (a)? = neut * (a) * neut * (a) = neut(a?).
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We assume, by mathematical induction, that our equality is true for any positive integer up ton — 1,
and we need to prove it for n.
Now we consider left-hand side of 1:

(neut * (a))" = (neut x (a)) * (neut  (a))"~! = neut x (a* a" ') = neut * (a") = neut * (0).

This completes the proof.
The proof of (2) is similar to that of (1) O

4. Integral Neutrosophic Triplet Domain and Neutrosophic Triplet Ring Homomorphism

Section 4 is about the introduction of the integral neutrosophic triplet domain and some of its
interesting properties. Moreover, in this section, we develop a neutrosophic triplet ring homomorphism.

Definition 12. Let (NTR, %, #) be a neutrosophic triplet ring. Then NTR is called a commutative neutrosophic
triplet ring if a#b = b#a forall a,b € NTR.

Definition 13. A commutative neutrosophic triplet ring NTR is called an integral neutrosophic triplet domain
ifforalla,b € NTR, at#b = 0 impliesa = 0or b = 0.

Theorem 4. Let NTR be an integral neutrosophic triplet domain. Then the following are true for all a, b € NTR.

1. Ifneut*(a) and neut*(b) do exist, then neut* (a)#neut” (b) = 0 implies neut*(a) = 0 or neut*(b) = 0;

2. Ifanti*(a) and anti*(b) do exist, then anti* (a)#anti* (b) = 0 implies anti*(a) = 0 or anti* (b) = 0.

Proof.

(1) Obvious, since NTR is an integral neutrosophic triplet domain, and neut*(a) and neut*(b)
belong to NTR.

(2) Obvious, since NTR is an integral neutrosophic triplet domain, and anti*(a) and anti*(b)
belong to NTR. O

Proposition 1. A commutative neutrosophic triplet ring NTR is an integral neutrosophic triplet domain if,
and only if, whenever a,b,c € NTR such that a#b = a#icand a # 0, then b = c.

Proof. Suppose that NTR is an integral neutrosophic triplet domain and let 4,b,c € NTR. Since a # 0
and a € NTR, a is not a zero divisor, so a is cancellable, i.e.,

attb = a#fc = b =r—c.

Reciprocally, let a € NTR, such that a # 0; then, by hypothesis, a is cancellable, so a is not a zero
divisor. NTR is an integral neutrosophic triplet domain. [

Definition 14. Let (NTR;, *,#) and (NTRy, ®, ®) be two neutrosophic triplet rings. Let f : NTRy — NTR,
be a mapping. Then f is called a neutrosophic triplet ring homomorphism if the following conditions are true.

flaxb) = f(a) @ f(b), foralla,b € NTR;.
f(a#tb) = f(a) ® f(b), foralla,b € NTR;.
f(neut * (a)) = neut®(f(a)), foralla € NTR;.
f(antix (a)) = anti®(f(a)), foralla € NTR;.

=
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5. Neutrosophic Triplet Fields

In this section, we study neutrosophic triplet fields and some of their interesting properties.

Definition 15. Let (NTR, x,#) be a neutrosophic triplet set together with two binary operations x and #.
Then (NTR, %, #) is called a neutrosophic triplet field if the following conditions hold.

1.  (NTR, %) is a commutative neutrosophic triplet group with respect to *.
2. (NTR,#) is a neutrosophic triplet group with respect to #.
3. a#(bxc) = (a#b)  (attc) and (b * c)#a = (b#a) = (c#a) forall a,b,c € NTF.

Example 3. Let X be a set and let P(X) be the power set of X. Then (P(X), U, N) is a neutrosophic triplet field
since neut(A) = A and anti(A) = A forall A € P(X) with respect to both U and N.

Proposition 2. A neutrosophic triplet field NTF always has an anti(a) for every a € NTF with respect to both
laws * and #.

Proof. The proof is straightforward. [J

Theorem 5. A neutrosophic triplet ring is not in general a neutrosophic triplet field.

Counterexample:
NTR = ({1,2}, %, #)

* 1 2
1 1
2 1

({1,2}, #) is well defined, associative, and commutative.

For the element 2 there is no neut*(2) and, consequently, no anti*(2).

Therefore, NTR = ({1,2},#) is a neutrosophic triplet commutative semigroup, but not a neutrosophic
triplet group.

In conclusion, NTR = ([1], *, #) is a neutrosophic triplet commutative ring, but it is not a
neutrosophic triplet field.

Theorem 6. A neutrosophic triplet field NTF is not in general an integral neutrosophic triplet domain NTD.

Proof. Consider the NTF N = ({0,5}, ,#), where 0% 0 = 0,05 = 5% 0 = 5,5 %5 = 5. The neutrosophic
triplets with respect to * are (0,0,0) and (5,0,5). Hence, we get5*5 = 0.

Also 0#0 = 0#5 = 5#0 = 5 and 5#5 = 0. The neutrosophic triplets with respect to # are (0,5,0)
and (5,0,5).

As we can see, 5#5 = 0.

Therefore, this is a NTF which is not an integral neutrosophic triplet domain. [J

Theorem 7. Assume that f : NTRy — NTR, is a neutrosophic triplet ring homomorphism. The following
then hold.
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1. If S is a neutrosophic triplet subring NTRy(x,#), then f(S) is a neutrosophic triplet subring of
NTRy (&, ®).

2. If U is a neutrosophic triplet subring of NTRy, then f~1(U) is a neutrosophic triplet subring of NTR;.

3. If I is a neutrosophic triplet ideal of NTRy, then f~1(I) is a neutrosophic triplet ideal of NTR,.

4. If fisonto, and | is an ideal of NTRy, then f(j) is an ideal of NTR;.

Proof.

(1) If S is a neutrosophic triplet subring NTR; (x,#), then f(S) is a neutrosophic triplet subring of
NTR(®, ®).

Leta,b € S,thenaxb € S, neut x (a) € S,antix (a) € S.

Then f(a), f(b) € f(S) and f(axb) € f(S),but f(axb) = f(a) ® f(), since f is a homomorphism.
Thus, we have proved that if f(a), f(b) € f(S), then f(a) & f(b) € f(S).

Since neut*(a) and anti*(a) € S, f(neut(a)) and f(anti(a)) € f(S) since f is a homomorphism.

But f(neut*(a)) = neut®f (a), and f(anti*(a)) = anti®f(a).

Therefore, if f(a) € f(S), then neut® f(a) = f(neut * (a)) € f(S) and, similarly,

anti® f(a) = f(anti* (a)) € f(S).

Now, if a,b € S, then a#b € S. Since a#b € S, f(a#b) € f(S).

But f(a#b) = f(a) ® f(b).
Therefore, if f(a), f(b) € S, then f(a) ® f(b) = f(a#b) = f(S).

(2) Letc,d € U. Then f~1(c), f~1(d) € f~1(U). Also c®d € U, hence
fHewd) e fH(U),

fFHe)x 1) e FHu).
But

(@) ef(f1@) =cod
chd=cdd.
Similarly,
FrHO#fHd) € FHU).
But

fHefHd) = fH(c®d),

because if we apply f on both sides, we get
FFHHN@) = F(f @ d)),

orf(f_l(c)) ®f(f-1(d)) = c®d,
cRd=c®d.
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Since ¢ € U, we have neut®(c) and anti®(c) € U, f~(neut®(c)) = neut*(f ~1(c)) and f~(anti®(c)) =

anti*(f~1(c)).
We prove them by applying f on both sides for each equality.

ff~ Y neut™(c))) = fineut*(f ((c))),

or neut®(c) = neut® (f (ffl (c))),
or neut®(c) = neut®(c).

Similarly,
FF Hanti®(c)) = flanti*(F~1((©))),

or
anti® (c) = anti® (f (ffl (c)))
or
anti®(c) = anti®(c)
(3)Leti € Iand r € NTR,. Then, i @®r € I, and therefore, f (i) € f~1(I).
flG) € fY(I)and f1(r) € NTR;.
We prove that
RO =@,
Applying f to both sides, we get

fE D= = F(FMien);
fE e f(fin) =iorn

idr=i+r.
Therefore,ifi € I, r € NTR,, theni®r € f_l(I).
(4) Letj € f(J) and r € NTR;,. Since f is onto, then 31 € | C NTR; such that f(h) = jand

ds € NTR; such that f(s) = r. We need to prove that j & r € f(]).
Applying f~! to both sides, we get

frGen e ),
fGfH e

or

hxse]

which is true, since h € |, which is an ideal in NTRq, whiles € NTRy. O

6. Conclusions

In this paper, we presented the neutrosophic triplet ring. Further, we presented the zero divisor,
neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent, integral neutrosophic triplet domain,
and neutrosophic triplet ring homomorphism. Finally, we presented the neutrosophic triplet field. In the
future, we can develop neutrosophic triplet vector spaces, neutrosophic modules, and neutrosophic
triplet near rings, and so on.
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Positive implicative BMBJ-neutrosophic ideals
in BCK-algebras

Rajab Ali Borzooei, M. Mohseni Takallo, Florentin Smarandache, Young Bae Jun

Rajab Ali Borzooei, M. Mohseni Takallo, Florentin Smarandache, Young Bae Jun (2018).
Positive implicative BMBJ-neutrosophic ideals in BCK-algebras. Neutrosophic Sets and
Systems 23, 126-141

Abstract: The concepts of a positive implicative BMBJ-neutrosophic ideal is introduced, and several properties are
investigated. Conditions for an MBJ-neutrosophic set to be a (positive implicative) BMBJ-neutrosophic ideal are pro-
vided. Relations between BMBJ-neutrosophic ideal and positive implicative BMBJ-neutrosophic ideal are discussed.
Characterizations of positive implicative BMBJ-neutrosophic ideal are displayed.

Keywords: MBJ-neutrosophic set; BMBJ-neutrosophic ideal; positive implicative BMBJ-neutrosophic ideal.

1 Introduction

In 1965, L.A. Zadeh [18] introduced the fuzzy set in order to handle uncertainties in many real applications.
In 1983, K. Atanassov introdued the notion of intuitionistic fuzzy set as a generalization of fuzzy set. As
a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued
(intuitionistic) fuzzy set, the notion of neutrosophic set is initiated by Smarandache ([13], [14] and [15]).
Neutrosophic set is applied to many branchs of sciences. In the aspect of algebraic structures, neutrosophic
algebraic structures in BCK/BCI-algebras are discussed in the papers [1], [3], [4], [5], [6], [11], [12], [16]
and [17]. In [9], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic
set, and it is applied to BCK/BCI-algebras. Mohseni et al. [9] introduced the concept of MBJ-neutrosophic
subalgebras in BC'K/BCI-algebras, and investigated related properties. Jun and Roh [7] applied the notion
of MBJ-neutrosophic sets to ideals of BC'K/BI-algebras, and introduced the concept of MBJ-neutrosophic
ideals in BC'K/ BCI-algebras.

In this article, we introduce the concepts of a positive implicative BMBJ-neutrosophic ideal, and investigate
several properties. We provide conditions for an MBJ-neutrosophic set to be a (positive implicative) BMBIJ-
neutrosophic ideal, and discussed relations between BMBJ-neutrosophic ideal and positive implicative BMBJ-
neutrosophic ideal. We consider characterizations of positive implicative BMBJ-neutrosophic ideal.
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2 Preliminaries

By a BCI-algebra, we mean a set X with a binary operation * and a special element 0 that satisfies the
following conditions:

@D ((xy)* (xx2))x(zxy) =0,
) (z*x(xxy))*xy =0,

D) z*xx =0,

V) zxy=0,yxx=0 = z=y

forall x,y, z € X. If a BCI-algebra X satisfies the following identity:
(V) Vz e X) (0xz=0),

then X is called a BC K -algebra.
Every BCK/BCI-algebra X satisfies the following conditions:

(Ve e X)(xx0=ux), (2.1)
Vo,y,ze€ X)(x <y => ox2<yxz z2xy<zxzx), (2.2)
(Vz,y,z€ X) ((xxy)x 2= (xx2) xy), (2.3)
(Vo,y,z€ X)((xx2)* (y*2) < xxy) (2.4

where v < y if and only if z x y = 0.
A nonempty subset S of a BC K /BC'I-algebra X is called a subalgebra of X if v xy € Sforall z,y € S.
A subset I of a BC'K/BC'I-algebra X is called an ideal of X if it satisfies:

0€l, (2.5)
VeeX)Vyel)(zxyel = xel). (2.6)

A subset [ of a BC'K-algebra X is called a positive implicative ideal of X (see [8]) if it satisfies (2.5) and
(Vo,y,z€ X)((xxy)xz€l,yxz€l = xxzel). (2.7)

Note from [8] that a subset I of a BC'K-algebra X is a positive implicative ideal of X if and only if it is
an ideal of X which satisfies the condition

Ve,ye X)((xxy)xyel = zxyel). (2.8)

By an interval number we mean a closed subinterval @ = [a~,a™] of I, where 0 < a~ < a* < 1. Denote
by [I] the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and
refined maximum (briefly, rmax) of two elements in [/]. We also define the symbols “>”, “<”, “="in case of
two elements in []. Consider two interval numbers a; := [af, aﬂ and ag 1= [a; ,ag } . Then

rmin {@, @>} = [min {ay,a; } ,min {a],a}],
rmax {dr, a2} = [max {a;,a; } ,max{af,af}],

ay = ay & a; >ay, af >ag,
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and similarly we may have a; <X a, and a; = ao. To say a; > as (resp. a; < as) we mean a; > as and
ay # as (resp. a1 = ag and a; # as). Let a; € [I] where i € A. We define

rinfa; = |infa; ,infaf | and rsupa; = |supa; ,supa; | .
IS (1SN LIS ic€A i€A icA

Let X be a nonempty set. A function A : X — [I] is called an interval-valued fuzzy set (briefly, an IVF set)
in X. Let [/]¥ stand for the set of all IVF sets in X. Forevery A € [[|* and z € X, A(z) = [A™(z), AT(z)]
is called the degree of membership of an element x to A, where A~ : X — I and A" : X — I are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A=[A",AT].

Let X be a non-empty set. A neutrosophic set (NS) in X (see [14]) is a structure of the form:
A= {{z; Ap(x), Ar(x), Ap(x)) | x € X}

where Ar : X — [0,1] is a truth membership function, A; : X — [0, 1] is an indeterminate membership
function, and A : X — [0, 1] is a false membership function.

We refer the reader to the books [2, 8] for further information regarding BC'K/ BCI-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an MBJ-neutrosophic set in X (see [9]), we mean a structure of the form:
A= {(x; Ma(z), Ba(z), Ja(2)) | z € X}
where M, and Jy4 are fuzzy sets in X, which are called a truth membership function and a false membership
function, respectively, and B 4 is an IVF set in X which is called an indeterminate interval-valued membership

function.

For the sake of simplicity, we shall use the symbol A = (M, By, J4) for the MBJ-neutrosophic set

A= {(x;MA($),BA(x), Ja(x)) | x € X}.

Let X be a BCK/BCI-algebra. An MBJ-neutrosophic set A = (M 4, B 4, J4)in X is called a BMBJ-
neutrosophic ideal of X (see [10]) if it satisfies

(Vo € X)(Ma(z) + B4 (z) <1, Bf(z) + Ja(z) < 1), (2.9)
fo(o) > ]W_A(x)
e B
J4(0) < Ja(z)
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and

My(z) > min{Mu(z xy), Ma(y)}

By(0) < max{ B (), B (1)
v €O Bl > win{Bi ). B} | .
Ja(e) < max{Ja(x + ), Ja(0)

3 Positive implicative BMBJ-neutrosophic ideals

In what follows, let X denote a BC' K -algebra unless otherwise specified.

Definition 3.1. An MBJ-neutrosophic set A = (M4, By, J 4) in X is called a positive implicative BMBJ-
neutrosophic ideal of X if it satisfies (2.9), (2.10) and

]\é[,%ac * z)) > minEgA((((x * y)) * z)),éJA((y * z))}}
Alzxz) <maxiB((zxy)xz2), B, (y*x=z
V.92 € X0\ Bl uaz) > minf B (0 + y) * 2), By )}
Ja(z*z) < max{Ja((zxy) *2), Ja(y*2)}

3.1

Example 3.2. Consider a BC' K -algebra X = {0, 1, 2, 3,4} with the binary operation * which is given in Table
L Let A= (M y, B 4, J 4) be an MBJ-neutrosophic set in X defined by Table 2. It is routine to verify that

Table 1: Cayley table for the binary operation “x”

W N = O %
= w N = OO
=W N OO
=W OO O
= O O O OoOlWw
S W NN OO

Table 2: MBJ-neutrosophic set A = (My, BA, Ja)

X MA(ZE) BA(.T) JA(JZ>
0 0.71 [0.04,0.09] 0.22
1 0.61 0.03,0.08] 0.55
2 0.51 0.02,0.06] 0.55
3 0.41 0.01,0.03] 0.77
4 0.31 0.02,0.05] 0.99

A= (My, By, J4) is a positive implicative BMBJ-neutrosophic ideal of X..
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Theorem 3.3. Every positive implicative BMBJ-neutrosophic ideal is a BMBJ-neutrosophic ideal.
Proof. The condition (2.11) is induced by taking z = 0 in (3.1) and using (2.1). Hence every positive
implica-tive BMBJ-neutrosophic ideal is a BMBJ-neutrosophic ideal. O

The converse of Theorem 3.3 is not true as seen in the following example.

Example 3.4. Consider a BC' K-algebra X = {0, 1,2, 3} with the binary operation * which is given in Table
3

., "

Table 3: Cayley table for the binary operation “x

W N = O *
w N = oo
W= O Ol
W O O O
SN = OlWw

Let A = (My, By, J4) be an MBJ-neutrosophic set in X defined by Table 4.

Table 4: MBJ-neutrosophic set A = (Mg, By, J4)

X MA(x) BA(x) JA(SC)
0 0.6 [0.04,0.09] 0.3
1 0.5 0.03,0.08] 0.7
2 0.5 0.03,0.08] 0.7
3 0.3 [0.01,0.03] 0.5

It is routine to verify that A = (M, By, J 4) is a BMBJ-neutrosophic ideal of X. But it is not a positive
implicative MBJ-neutrosophic ideal of X since

Ma(2%1)=0.5<0.6=min{Ma((2%x1) % 1), Ms(1x1)},
Lemma 3.5. Every BMBJ-neutrosophic ideal A = (M4, By, J 4) of X satisfies the following assertion.

Ma(s) > Ma(y). B3 (0) < B3(y).
e ) (z <o = { B0 2B S ) 2

Proof. Assume that x < y for all x,y € X. Then z x y = 0, and so

My(x) > min{M4(x xy), Ma(y)} = min{Ma(0), Ma(y)} = Ma(y),
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By (x) < max{ By (z *y), By(y)} = max{B,(0), By (y)} = B4 (y),

Bji(z) > min{ B} (v *y), Bi(y)} = min{B;(0), B} (y)} = Bi(y),
and

Ja(z) < max{Ja(r xy), Ja(y)} = max{Ja(0), Ja(y)} = Ja(y).

This completes the proof. 0

We provide conditions for a BMBJ-neutrosophic ideal to be a positive implicative BMBJ-neutrosophic
ideal.

Theorem 3.6. An MBJ-neutrosophic set A = (M4, By, J ) in X is a positive implicative BMBJ-neutrosophic
ideal of X if and only if it is a BMBJ-neutrosophic ideal of X and satisfies the following condition.

Ma(x+y) = Ma((x % y) *y)

(Va,y € X) %Eiiigzw&ﬁi% ; . (3.3)
Ja(zxy) < Ja((z*y) *y)

Proof. Assume that A = (M 4, B 4, J 4) is a positive implicative MBJ-neutrosophic ideal of X. If z is replaced
by yin (3.1), then

Ma(z xy) > min{ Ma((z * y) xy), Ma(y * y)}
=min{M,((zxy) xy), Ma(0)} = Ms((z *xy) *xy),

By (z*y) < max{B,((z xy) *y), B, (y *y)}
=max{ B, ((z*y) xy), B4(0)} = B, ((z xy) *y),

By(z*y) > min{By((z xy) *y), By(y *y)}
= min{B}((z *y) *y), B;(0)} = Bi((z xy) *y),

and

Ja(xxy) < max{Ja((z xy) xy), Ja(y *y)}
= max{Ja((z xy) *y), Ja(0)} = Ja((x x y) x y)

forall z,y € X.

Conversely, let A = (M4, B 4, J 4) be an MBJ-neutrosophic ideal of X satisfying the condition (3.3).
Since

(xxz2)xz)x(yxz) < (zxz)xy=(rxy)*z
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for all x, y, z € X, it follows from Lemma 3.5 that
((zxy)*z) < MA((

By((zxy)*z) = By (((

Bi((xxy)xz) < B*(((
(xy)*z) = Ja(((z

forall z, y, z € X. Using (3.3), (2.11) and (3.4), we have

*Z))*? *((y*Z)))),
*2)*xz)x (Y *2)),
K 2) % 2) (g + 7)), 4

x2) % (Y * 2))

(x

x

x
*

Ma(x*2) > Ma((xx2)x2z) >min{Ma(((x*x2) *2) % (y*2)), Ma(y * 2)}
> min{ M4 ((x *y) * 2), Ma(y * 2)},

Bi(xxz) < By((r*x2)*2) <max{B,(((z*x2)*2)*(y=*2)),By(y*z)}
< max{B} ((x*y) * z), By (y * 2)},

Bli(zx2) > Bl((x*x2)*2) >min{Bi(((zx2)*2) * (y*x2)), Bi(y*2)}
> min{ B} ((z *y) * ), By (y * 2)},
and

Ta(ew2) < Jal(ax2) x 2) < max{Ua(((a 2) x 2) % (9% 2)), Jaly * 2)}
< max{Ja((z *xy) *2), Ja(y * 2)}

forall z,y, z € X. Therefore A = (My, By, J 1) is a positive implicative BMBJ-neutrosophic ideal of X. [J

Given an MBJ-neutrosophic set A = (M4, B 4, Ja) in X, we consider the following sets.

U(Ma;t) :={z € X | My(z) > t},
L(Byia) = {r € X | By(x) Sa ),
U(BY;at):={r € X |Bli(zx)>a"},
L(Ja;8) :=={z € X | Ja(z) < s}

where t,s,a”,at € [0,1].

Lemma 3.7 ([10]). An MBJ-neutrosophic set A = (My, BA, Ja) in X is a BMBJ-neutrosophic ideal of
X if and only if the non-empty sets U(Ma;t), L(By;a™), U(BY;a™) and L(Ja; s) are ideals of X for all
t,s,a”.at €[0,1].

Theorem 3.8. An MBJ-neutrosophic set A = (M4, B, J 1) in X is a positive implicative BMBJ-neutrosophic
ideal of X if and only if the non-empty sets U(My;t), L(By;a™), U(BY;a") and L(Ja;s) are positive
implicative ideals of X forall t,s,a”.a™ € [0,1].

Proof. Suppose that A = (Ma, By, J 4) is a positive implicative BMBJ-neutrosophic ideal of X. Then

A= (May, B 4 J 4) is a BMBJ-neutrosophic ideal of X by Theorem 3.3. It follows from Lemma 3.7 that the
non-empty sets U(Ma;t), L(By; o), U(B};a™) and L(J4; s) are ideals of X forall ¢, s,a.a™ € [0, 1]. Let
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z,y,a,b,c,d,u,v € X be such that (z *y) xy € U(My;t), (axb)xb € L(By;a™), (cxd)xd € U(B};a™)
and (u % v) x v € L(Jy; s). Using Theorem 3.6, we have

My(x xy) >MA((x*y)*y) > t,thatis, x xy € U(Ma;t),
Bi(axb) < B ((axb)xb) <a ,thatis,axbe€ L(B;a ),
Bi(cxd) > Bi((cxd) xd) > ot thatis,cxd € U(BY;a"),
Ja(uxv) < Ja((u*v)*xv) < s, thatis, ux v € L(Ja;s).

Therefore U (M y4;t), L(By; o™ ), U(B}; o) and L(J4; s) are positive implicative ideals of X forall¢, s,a™.a™ €
[0, 1].

Conversely, suppose that the non-empty sets U(Ma;t), L(By;a™), U(BY;a™) and L(J4; s) are positive
implicative ideals of X for all ¢, s,a.a™ € [0,1]. Then U(Ma;t), L(B,;a™), U(B};a") and L(Ja; s) are
ideals of X for all ¢, s, .a* € [0,1]. It follows from Lemma 3.7 that A = (M, By, J4) is a BMBIJ-
neutrosophic ideal of X. Assume that Ma(zo * yo) < Ma((xo * yo) * yo) = to for some xg,yo € X. Then
(xoxyo)*yo € U(Ma;to) and zo*yo ¢ U(Ma;to), which is a contradiction. Thus My (zxy) > Ma((zxy)*y)
for all z,y € X. Similarly, we have B (z * y) > B} ((z x y) x y) for all z,y € X. If there exist ag,by € X
such that Ja(ag * by) > Ja((ag * by) * by) = so, then (ag * by) * by € L(Ja;5s0) and ag * by ¢ L(J4; So0).
This is impossible, and thus Ja(a * b) < J4((a * b) * b) for all a,b € X. By the similar way, we know that
B (axb) < B;((axb)xb) forall a,b € X. It follows from Theorem 3.6 that A = (M4, By, .J,) is a positive
implicative BMBJ-neutrosophic ideal of X. [

Theorem 3.9. Let A = (My, By, Ja) be a BMBJ-neutrosophic ideal of X. Then A = (My, By, J4) is
positive implicative if and only if it satisfies the following condition.

(xx2)*x(y=*2)) > Ma((z*xy)*2),

Ma(
(Va2 € X) %E(Z‘H) x (y*2)) < By((zxy) * 2), (3.5)
(x )

SRS

r*z)x (y*x2)) > Bi((zxy)*2),
Ja((z* 2) * (y x 2)) < Ja((z +y) * 2).

Proof. Assume that A = (My, By, J4) is a positive implicative BMBJ-neutrosophic ideal of X. Then
A = (My, Ba, Ja) is a BMBJ-neutrosophic ideal of X by Theorem 3.3, and satisfies the condition (3.3) by
Theorem 3.6. Since

forall z, y, z € X, it follows from Lemma 3.5 that

)% 2), (3.6)
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for all x, y, z € X. Using (2.3), (3.3) and (3.6), we have

Ma((zx2)x(y*x2)) = Ma((x* (y*2)) *2)
> Ma(((0 (3 2) * 2) * 2)
> Mu((zxy) * 2),
By((x*2)x(y=xz2)) = By((x*(yx2))*2)
< By(((x*(y=*2)) *2) xz)
< By ((zxy) * 2),
Bi((x*z)x(y*2)) = Bi((z*(y*2))*z
> Bi(((x+ (5 2)) ) * 2)
> Bi((x*y)*2),

and

Hence (3.5) is valid.

Conversely, let A = (My, B 4, J4) be a BMBJ-neutrosophic ideal of X which satisfies the condition (3.~5).
If we put z = y in (3.5) and use (II) and (2.1), then we obtain the condition (3.3). Therefore A = (M4, By,
J4) is a positive implicative BMBJ-neutrosophic ideal of X by Theorem 3.6. ]

Theorem 3.10. Let A = (Ma, B, J4) be an MBJ-neutrosophic set in X. Then A = (Ma, Ba, Ja) is a
positive implicative BMBJ-neutrosophic ideal of X if and only if it satisfies the condition (2.9), (2.10) and

gz e
_a:*y <max{B,(((z*xy)*xy)*z), B,(2)},
(.02 € X) | Bl (o« ) > ming B ((w 9) +y) + 2), B4 () 37
Ja(zxy) < max{Ja(((zxy) *y) x 2), Ja(2)}.

Proof. Assume that A = (Ma, By, J 4) is a positive implicative BMBJ-neutrosophic ideal of X. Then
A = (My, Ba, J4) is a BMBJ-neutrosophic ideal of X (see Theorem 3.3), and so the conditions (2.9) and
(2.10) are valid. Using (2.11), (IIT), (2.1), (2.3) and (3.5), we have

((z*y) *2), Ma(2)}

= min{ Ma(((z * 2) xy) * (y xy)), Ma(2)}
> min{ My (((z % z) *y) *y), Ma(2)}

= min{Ma(((z * y) *y) x 2), Ma(2)},

Ma(z *y) > min{ M4
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B, (z*y) < max{B,((z *y) * 2)

Bl (z *y) > min{B}

and

Ja(z *y) < max{Ja((zxy) *2),Ja(z)}

forall z,y,z € X.

Conversely, let A = (M4, B 4, Ja) be an MBJ-neutrosophic set in X which satisfies conditions (2.9),
(2.10) and (3.7). Then

Ma(x) = Ma(x % 0) > min{ M4 (((z % 0) % 0) x 2), Ma(2)} = min{Ma(x x 2), Ma(2)},
B, (z) = B;(x*0) <max{B,(((x % 0)*0) % 2), B, (2)} = max{B,(x * z), B, ()}

Bl (z) = Bi(z % 0) > min{B} (((x % 0) x0) * 2), B (2)} = min{ B} (z * 2), B; (2)},
and
Ja(z) = Ja(z % 0) < max{Ja(((z *0) % 0) * 2), Ja(2)} = max{Ja(x x 2), Ja(2)}

for all z, 2 € X. Hence A = (M, BA, J4) is a BMBJ-neutrosophic ideal of X. Taking z = 0 in (3.7) and
using (2.1) and (2.10) imply that

Ma(z *y) > min{Ma(((z * y) *y) * 0), Ma(0)}
=min{Ms((x *xy) *xy), Ma(0)} = Ma((x *y) *y),

By (zxy) < max{By (((x *y) xy) x0), B4(0)}
= max{B,((z xy) xy), B4(0)} = By((z xy) *y),

346



Florentin Smarandache (author and editor) Collected Papers, IX

Bji(z*y) > min{B1(((z *y) *y) x0), B;(0)}
=min{B}((z *y) *y), B1(0)} = By ((z xy) *y),

and

Ja(rxy) < max{Ja(((z*y) *y) *0), Ja(0)}
= max{Ja((z xy) *y), Ja(0)} = Ja((z x y) * y)

for all z,y € X. It follows from Theorem 3.6 that A = (My, By, Ja) is a positive implicative BMBJ-
neutrosophic ideal of X. O

Proposition 3.11. Every BMBJ-neutrosophic ideal A = (M4, By, J 4) of X satisfies the following assertion.

)

B, (r) < max y Z)5,

PSS 2 B0 S it B, oy
Ja(z) < maX{JA(y),JA( )}

forallz,y,z € X.
Proof. Letx,y,z € X be such that z x y < z. Then

Ma(zxy) > min{Ms((x *y) x 2), Ma(2)} = min{M(0), Ma(2)} = Ma(z),

By (wxy) < max{By((x +y) * 2), By(2)} = max{B,(0), By (2)} = B4 (2),

B (r*y) > min{B((z xy) * 2), B (2)} = min{ B} (0), B1(2)} = B (2),
and

Ja(z xy) < max{Ja((z *xy) * 2), Ja(2)} = max{Js(0), Ja(2)} = Ja(2).
It follows that

Ma(z) = min{Ma(z + y), Ma(y)} > min{Ma(y), Ma(2)},
B (x) < max{B, (z *y), B, (y)} < max{B,(y), B,(2)},

B (z) = min{ B (z xy), Bi(y)} = min{B(y), B} (2)},
and

Ja(z) <max{Ja(z*xy), Jaly)} < max{Ja(y), Ja(2)}.

This completes the proof. []
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We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-
algebras.

Theorem 3.12. Every MBJ-neutrosophic set in X satisfying (2.9), (2.10) and (3.8) is a BMBJ-neutrosophic
ideal of X.

Proof. Let A = (Ma, Ba, J 1) be an MBJ-neutrosophic set in X satisfying (2.9), (2.10) and (3.8). Note that
xx (x*xy) <yforall x,y € X. It follows from (3.8) that

My(z) > min{M4(x xy), Ma(y)},
By (z) < max{B,(z *y), B4(y)},

B} () > min{ B} (z *y), B} (y)},
and
Ja(z) < max{Ja(z xy), Ja(y)}.

Therefore A = (M4, B 4, J4) is a BMBJ-neutrosophic ideal of X. U]

Theorem 3.13. An MBJ-neutrosophic set A = (M4, BA, Ja) in X is a BMBJ-neutrosophic ideal of X if and
only if (M4, By) and (B}, J4) are intuitionistic fuzzy ideals of X.

Proof. Straightforward. 0

Theorem 3.14. Given an ideal I of X, let A = (M, By, J 4) be an MBJ-neutrosophic set in X defined by

t ifwel, o .. [a ifzel
Ma(z) = { 0 otherwise, By () = { 1 otherwise,

L .
n e ifxel, s itz el,
Bi(x) = { 0  otherwise, Jalz) = { 1 otherwise,

where t,a* € (0,1] and s,a~ € [0,1) witht + o~ < land s + a* < 1. Then A = (My, Ba, J4) is a
BMBJ-neutrosophic ideal of X such that U(My;t) = L(By;a”) = U(By;a™) = L(Ja;s) = L.

Proof. Tt is clear that A = (M, By, J,) satisfies the condition (2.9) and U(M;t) = L(Bj;a7) =
UBL;a™)=L(Ja;s)=1.Letz,y € X. Ifxxy € [andy € I, then z € I and so
Ma(z) =t =min{Ma(x *y), Ma(y)}

a(x) =a” =max{B,(z +y), By(y)},
a(x) = o =min{Bj(z xy), By(y)},
Ja(z) = s =max{Ja(z xy), Ja(y)}.

Sy

Ss)
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If any one of z * y and y is contained in [, say x xy € I, then My(zxy) =t, B (zxy) = o=, Ja(z*y) = s,
Ma(y) =0, B4(y) =1, B (y) = 0 and Ja(y) = 1. Hence

Ma(z) = 0 =min{t, 0} = min{Ma(z * y), Ma(y)}
By (z) <1 =max{B} (v *y), By(y)},

Bji(z) = 0 =min{B}(z *y), B (y)},

Ja(z) <1 =max{s, 1} = max{Ja(zx *y), Ja(y)}.

Ifzxy ¢ Tandy ¢ I, then Ma(zxy) =0= Ma(y), By(xxy) =1 = By(y), Bf(x*xy) =0= Bj(y) and
Ja(xzxy) =1= Ja(y). It follows that

It is obvious that M4(0) > Ma(zx), B;(0) < By (z), Bf(0) > B}(z) and J4(0) < Ja(x) forall z € X.

Therefore A = (M4, Ba, Ja) is a BMBJ-neutrosophic ideal of X. O

Lemma 3.15. For any non-empty subset I of X, let A = (My, By, J 1) be an MBJ-neutrosophic set in X
which is given in Theorem 3.14. If A = (Ma, Ba, Ja) is a BMBJ-neutrosophic ideal of X, then I is an ideal
of X.

Proof. Obviously, 0 € I. Letz,y € X besuchthat x xy € I andy € I. Then Ma(x xy) =t = Ma(y),
Bi(zxy)=a = B,(y), Bi(zxy) =a™ = Bf(y) and J4(z xy) = s = Ja(y). Thus

Ma(z) > min{Ma(z * y), Ma(y)} = t,
By(z) <max{B,(r*y),B,(y)} =a,
Bj(x) > min{B}(z xy), Bf(y)} = o,
Ja(z) < max{Ja(z xy), Ja(y)} = s,
and hence « € I. Therefore [ is an ideal of X. ]

Theorem 3.16. For any non-empty subset I of X, let A = (My, By, J 4) be an MBJ-neutrosophic set in X
which is given in Theorem 3.14. If A = (M, Ba, Ja) is a positive implicative BMBJ-neutrosophic ideal of
X, then [ is a positive implicative ideal of X.

Proof. If A = (My, By, J4) is a positive implicative BMBJ-neutrosophic ideal of X, then A = (M4, By,
J4) is a BMBJ-neutrosophic ideal of X and satisfies (3.3) by Theorem 3.6. It follows from Lemma 3.15 that
I is anideal of X. Let z,y € X be such that (z *xy) xy € I. Then

Ma(zxy) > Ma((zxy) xy) =t, By (r*xy) < By((x*xy)*y) =a,
Bi(zxy) > Bi((xxy)xy) = a, Ja(z xy) < Ja((z*xy) xy) = s,

and so x * y € 1. Therefore [ is a positive implicative ideal of X. ]
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Proposition 3.17. Every positive implicative BMBJ-neutrosophic ideal A = (M 4, Ba, J 4) of X satisfies the
following condition.

((x y) > mln{MA((a), Ma(b)},

I B B )
(z*xy)*y)*xa)xb=0 = Bi(x+y) > min{B(a), BL(b)}, 3.9
Ja(z xy) < max{Ja(a), Ja(b)}

forall x,y,a,b e X.

Proof. Assume that A = (M4, By, J 4) is a positive implicative BMBJ-neutrosophic ideal of X. Then
A = (Mga, Ba, J4) is a BMBJ-neutrosophic ideal of X (see Theorem 3.3). Let a,b, z,y € X be such that
(((x *y) xy) xa) «b=0. Then

Ma(z xy) = Ma((z * y) * y) = min{Ma(a), Ma(b)},

By(z*y) < Ba((w+y) xy) < max{Bj(a), By(b)},

Bi(z*y) = Bi((x*y) xy) > min{B}(a), B (b)},

and Ja(z xy) < Ja((z * y) * y) < max{Ja(a), Ja(b)} by Theorem 3.6 and Proposition 3.11. Hence (3.9) is
valid. [

Theorem 3.18. If an MBJ-neutrosophic set A = (Ma, B 4, Ja) in X satisfies the conditions (2.9) and (3.9),
then A = (My, Ba, Ja) is a positive implicative BMBJ-neutrosophic ideal of X.

Proof. Let A = (Ma, B 4, Ja) be an MBJ-neutrosophic set in X which satisfies the conditions (2.9) and (3.9).
It is clear that the condition (2.10) is induced by the condition (3.9). Let z,a,b € X be such that x x a < b.
Then (((z % 0) *x0) * a) * b =0, and so

Ma(x) = Ma(x % 0) > min{My(a), Ma(b)},
B (z) = By (z % 0) < max{B(a), B;(b)},

Bj(x) = B} (v *0) > min{B}(a), By (D)},
and
Ja(z) = Ja(x *0) < max{Ja(a), Ja(b)}

by (2.1) and (3.9). Hence A = (M4, B, J4) is a BMBJ-neutrosophic ideal of X by Theorem 3.12. Since
((xxy)*xy)*((xr*xy)*y))*0=0forall z,y € X, we have

Ma(z *y) > min{Ma((z * y) *y), Ma(0)} = Ma((z * y) *y),
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By(zxy) <max{B,((x*y)*y), B,(0)} = B,((z xy) xy),

Bi(zxy) > min{Bf((z*y) *y), Bf(0)} = Bi((z xy) xy),
and
Ja(r*y) <max{Ja((zxy) xy), Ja(0)} = Ja((z * y) * y)

b