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The Elusive Higgs Mechanism

Chris Smeenk†‡

The Higgs mechanism is an essential but elusive component of the Standard Model
of particle physics. Without it Yang-Mills gauge theories would have been little more
than a warm-up exercise in the attempt to quantize gravity rather than serving as the
basis for the Standard Model. This article focuses on two problems related to the Higgs
mechanism clearly posed in Earman’s recent papers (Earman 2003, 2004a, 2004b):
what is the gauge-invariant content of the Higgs mechanism, and what does it mean
to break a local gauge symmetry?

1. Introduction. The Higgs mechanism is an essential but elusive com-
ponent of the Standard Model of particle physics. Without it Yang-Mills
gauge theories would have been little more than a warm-up exercise in
the attempt to quantize gravity rather than serving as the basis for the
theory of the strong and weak interactions, the Standard Model. The
Higgs boson has so far eluded the grasp of experimenters, who have
pinned their hopes for detection on CERN’s Large Hadron Collider. Al-
though theorists have several complaints regarding the Higgs mechanism,
it is a simple model that has proven to be remarkably resilient, even as
competing ideas such as “technicolor” have fallen out of favor. Philo-
sophical interest in the Higgs mechanism stems from its connection with
the concept of symmetry. According to the conventional wisdom, in the
Higgs mechanism a local gauge symmetry is broken due to the nonin-
variance of the vacuum state. The fundamental symmetries of the La-
grangian are then “hidden” in the broken symmetry state, just as the
rotational invariance of the laws governing a ferromagnet would be hidden
in a particular state since the mean magnetization picks out a preferred
direction. Hiding symmetries via the Higgs mechanism allows physicists
to hold on to a symmetric Lagrangian and to preserve the renormaliza-
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488 CHRIS SMEENK

bility of the theory. Although its status as a central component of the
Standard Model is secure, philosophers have been skeptical of the con-
ventional wisdom and have wondered, for example, whether the Higgs
mechanism has a standing similar to that of Maxwell’s ether model.1

This article focuses on two problems related to the Higgs mechanism
clearly posed in Earman’s recent papers (Earman 2003, 2004a, 2004b) on
spontaneous symmetry breaking (SSB): what is the gauge-invariant content
of the Higgs mechanism, and what does it mean to “spontaneously break”
a local gauge symmetry? If gauge symmetry merely indicates descriptive
redundancy in the mathematical formalism, it is not clear how spontane-
ously breaking a gauge symmetry could have any physical consequences,
desirable or not.2 Standard textbook accounts of the Higgs mechanism
describe the gauge bosons as “eating” would-be Goldstone bosons to ac-
quire mass; Earman counters that “neither mass nor any other genuine
attribute can be gained by eating descriptive fluff.” He further conjectures
that eliminating gauge freedom from a classical field theory including a
Higgs field, using the techniques of the constrained Hamiltonian formalism,
and then quantizing will reveal that “the Higgs mechanism has worked its
magic . . . by quashing spontaneous symmetry breaking” (Earman 2004a,
190–191).

Earman’s criticisms echo debates within the physics literature regarding
the gauge dependence of the Higgs mechanism and the nature of local
gauge symmetry breaking. The basic tools for studying the Higgs mech-
anism in conventional, perturbative quantum field theory (QFT) include
a number of gauge-dependent quantities, leading to the worry that the
Higgs boson mass and other physical parameters might be contaminated
with gauge dependence. Below I will briefly explain one way of addressing
this worry, namely, by proving that physical consequences of the Higgs
mechanism are gauge invariant. Regarding local gauge symmetry break-
ing, Earman is right to suspect that the standard textbook account of the
Higgs mechanism is misleading. Perturbative treatments assume that the
Higgs field has a nonzero vacuum expectation value, . Thisˆ ˆf A0FfF0S ( 0
seems paradoxical in light of Elitzur’s (1975) theorem, a result in lattice
gauge field theory showing that must vanish. I will discuss theˆA0FfF0S

1. Morrison makes the comparison with Maxwell’s ether theory in arguing against a
“realistic interpretation” of the Higgs mechanism; her paper and the other papers
collected in Part 3 of Brading and Castellani (2003) are an excellent entry point to the
topic. See also Brown and Cao (1991), Hoddeson et al. (1997, Chapter 28), Kosso
(2000), Liu (2001), and Liu and Emch (2005) for historical accounts.

2. Here I will adopt the view that gauge symmetry represents descriptive redundancy,
in that many state descriptions related by gauge transformations all describe the same
physical state; for further discussion of the interpretative options, see, e.g., Brading
and Castellani (2003, Part 1).
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THE ELUSIVE HIGGS MECHANISM 489

gauge dependence of the Higgs mechanism and the nature of local, gauge
symmetry breaking following introductions to SSB in Section 2 and Gold-
stone’s theorem and the perturbative treatment of the Higgs mechanism
in Section 3. My treatment will be brief, and my intent is primarily to
indicate how these issues are handled within conventional QFT, setting
aside the more ambitious project of studying SSB using different formal
tools (such as the constrained Hamiltonian formalism favored by
Earman).

2. Spontaneous Symmetry Breaking. A typical quick gloss of SSB in QFT
is that the vacuum state of a broken symmetry theory is not invariant
under all the symmetries of the underlying Lagrangian. Symmetry break-
ing in a loose sense is a familiar feature in physics: solutions to a set of
differential equations typically do not have the full symmetries of the
equations. Symmetry breaking in QFT results from a mismatch between
variational symmetries of the Lagrangian and symmetries that can be
implemented as unitary transformations on the Hilbert space of states.
(The inapt adjective ‘spontaneous’ differentiates symmetry breaking that
arises due to the noninvariance of the vacuum state from that due to
explicitly adding asymmetric terms to the Lagrangian.) The second sense
of symmetry is familiar in quantum mechanics: a symmetry transfor-
mation preserves transition probabilities; that is, it is an (invertible) map

defined on rays FfS in a separable Hilbert space such that′f : FfS r Ff S
. Wigner proved that corresponding to any such′ ′G(f, w)(FAwFfSF p FAw Ff SF)

mapping f there is a unitary (or antiunitary) operator implementingÛ
the symmetry transformation.3

The mismatch between the two senses of symmetry occurs when there is
no unitary operator corresponding to the Noether “charge” generating a
variational symmetry. Noether’s first theorem establishes the existence of a
conserved charge for every global variational symmetry of the Lagrangian.
The theorem applies to the broad class of theories that derive equations of
motion via Hamilton’s principle from the action ,m 4S p L(f , � f , x )d x∫R i m i

where f(x) are the dependent variables, xm are the independent variables,
and the Lagrangian densityL is integrated over a compact space-time region
R. A solution F(xm) is a map from space-time to the space of field variables
such that the equations of motion, the Euler-Lagrange equations for L, are
satisfied. Suppose that there is an r-parameter Lie group G whose elements
map such that S is invariant. Noether’s first theorem es-′ ′(x, f) r (x , f )
tablishes that there are then r conserved currents, quantities jm(F) such that

3. Antiunitary operators correspond to symmetries that are not continuously connected
to the identity, such as time reversal or parity reversal. See Weinberg (1995, Chapter
2) for a proof of Wigner’s theorem.
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490 CHRIS SMEENK

“on-shell” (i.e., for solutions of the equations of motion). Them� j (F) p 0m

charge associated with the symmetry is the integral of the time component
of this conserved current, that is, ; it follows from the van-0 3Q(F) p j d x∫R

ishing divergence of the four vector that Q(F) is constant and that
, if the current flux vanishes on the boundary of the region R.dQ/dt p 0

If the two senses of symmetry matched, then in the quantized field
theory based on this Lagrangian one would find a one-parameter family
of unitary operators implementing the symmetry, where isˆiyQ ˆÛ(y) p e Q
the operator corresponding to the Noether charge. Fabri and Picasso
(1966) showed that if the vacuum state F0S is translationally invariant,
then the vacuum is either invariant under the internal symmetry,

, or there is no state corresponding to in the Hilbert space.4ˆ ˆQF0S p 0 QF0S
The second case corresponds to SSB. The symmetry is hidden in that
there is no unitary operator to map a physical state to its symmetric
counterparts; instead, the symmetry is (roughly speaking) a map from
one Hilbert space of states to an entirely distinct space. This is usually
described as ‘vacuum degeneracy’, although each distinct Hilbert space
has a unique vacuum state.

This degeneracy depends on two features of field theory: long-distance
or infrared behavior of the fields, and infinite degrees of freedom. Even in
the case of classical field theory, the continuity equation for the current jm

does not guarantee the existence of a constant of the motion QV in the limit
without assumptions regarding the asymptotic behavior of the fields.V r �

Parenti, Strocchi, and Velo (1977) study the features of SSB in classical,
nonlinear field theories; in these theories, solutions to the equations of
motion fall into distinct “sectors,” corresponding to global field configu-
rations that cannot be transformed into each other via local perturbations.
The variational symmetries of the Lagrangian then fall into the unbroken
symmetries, for which QV converges in the limit, and broken symmetries,
for which QV fails to converge. The broken symmetries map between the
“physically disjoint worlds” represented by the distinct global field config-
urations. Similarly, in QFT, the degenerate vacua correspond to distinct
global field configurations with minimum energy, with Hilbert spaces built
up from a particular vacuum state. Earman’s (2003, 2004a, 2004b) algebraic
treatment of SSB emphasizes that these Hilbert spaces are unitarily inequiv-
alent representations of the canonical commutation relations. On the al-
gebraic approach, the fundamental structure of a quantum theory is given

4. By definition, an internal symmetry implemented by commutes with the four-Q̂
momentum operators , i.e., , and by translation invariance of them mˆ ˆˆP [Q, P ] p 0
vacuum state, . These two facts imply that .ˆiP7x ˆ ˆe F0S p 0 A0Fj (x)QF0S p A0Fj (0)QF0S0 0

The norm of can then be calculated by integrating the current,ˆ ˆ ˆQ A0FQQF0S pV

, which diverges as unless .3 3ˆ ˆ ˆd xA0Fj (x)QF0S p d xA0Fj (0)QF0S V r � QF0S p 0∫ ∫V V0 0
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THE ELUSIVE HIGGS MECHANISM 491

by an abstract algebra of the canonical commutation relations, which can
be given various different representations in terms of subalgebras of the
bounded operators on a Hilbert space. Two such representations, each
consisting of a Hilbert space H and the set of bounded operators definedÔi

on it, are unitarily equivalent if there is a (one-to-one, linear, norm pre-
serving) map such that . The Stone–von′ �1 ′ˆ ˆU : H r H (Gi)(U O U p O )i i

Neumann theorem guarantees that in the finite-dimensional case all ir-
reducible representations of the abstract algebra are unitarily equivalent,
but in the infinite-dimensional case there are unitarily inequivalent rep-
resentations of the algebra.

What the vacuum degeneracy represents physically is perhaps easiest
to see in nonrelativistic quantum statistical mechanics, where these ideas
were initially developed.5 Consider, for example, constructing the Hilbert
space for an infinite chain of spin-1/2 systems interacting via a specified
Hamiltonian. Operators on the Hilbert space of states are linear combi-
nations of the spin operators ji for each site, and a state specifies the spin
for each system. For any particular global state of the system, such as
all jz-spin �, there are other states, such as all jz-spin �, that cannot be
reached by the finite application of spin operators, corresponding to “flip-
ping” the spin of finitely many individual sites. In the case of QFT, the
degeneracy corresponds to field configurations that differ globally in a
similar sense; particles defined as excitations over distinct vacua cannot
be transformed into each other via local operations analogous to flipping
the spins at individual sites.

3. Goldstone’s Theorem and the Higgs Mechanism. Goldstone’s theorem
(Goldstone 1961; Goldstone, Salam, and Weinberg 1962) presented a
roadblock to using SSB in particle physics. Goldstone showed that break-
ing a global continuous symmetry implied the existence of massless, spin-
zero bosons; this was an unwelcome consequence since there was no place
for such Goldstone bosons in the particle physicists’ menagerie. However,
several physicists soon exploited the fact that the theorem did not apply

5. Liu and Emch (2005) argue that the study of SSB in statistical mechanics brings
out several features lacking in the typical QFT characterization given above. They
characterize SSB in terms of a “decompositional account”: fundamental states invariant
under the action of a symmetry decompose into noninvariant fundamental states, such
that these have “witnesses” of the broken symmetry. In quantum statistical mechanics,
the fundamental states are equilibrium Kubo-Martin-Schwinger (KMS) states, which
decompose into extremal KMS states (pure thermodynamic phases), and the relevant
witnesses are space averages of local observables, such as the magnetization for a lattice
spin system; for QFT the fundamental state is the vacuum state, and the decomposition
corresponds to vacuum degeneracy. I do not have the space here to enter into the
debate regarding which approach offers a better definition and “explanation” of SSB.
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492 CHRIS SMEENK

to SSB of a gauge symmetry (see Brown and Cao 1991). Anderson was
the first to suggest that breaking a gauge symmetry might cure the com-
mon problem facing Yang-Mills style gauge theories and SSB applied to
particle physics, namely, the prediction of unwanted massless particles.
The massless gauge bosons of Yang-Mills theories were not suited to
describe short-range interactions like the strong and weak forces. Forcing
the issue by adding mass terms directly to the Lagrangian would destroy
its gauge invariance and presumably render the theory unrenormalizable.
But perhaps the Goldstone bosons could become “tangled up” with the
gauge bosons, leaving only a massive gauge boson behind (Anderson 1963,
422); within a year several physicists independently developed different
versions of what is now called the Higgs mechanism (Englert and Brout
1964; Guralnik, Hagen, and Kibble 1964; Higgs 1964a, 1964b).

Goldstone’s theorem shows that the existence of an observable with a
nonvanishing vacuum expectation value implies the existence of states
whose energy goes to zero as the momentum does; that is, asE(p) r 0

. In relativistic field theory, this implies the existence of masslessp r 0
particles since . For an intuitive picture, imagine ap-2 2 4 2 2E p m c � p c
plying the operator corresponding to the broken symmetry to the vac-Q̂
uum state F0S. The result would be a distinct vacuum state, but with the
same energy since commutes with the Hamiltonian. Now consider in-Q̂
stead the operator defined over some finite region V; the statesQ̂V

should have the same energy as F0S except for boundary terms. ButQ̂ F0SV

since this operator implements a continuous symmetry, the region V can
be smoothly deformed so that the boundary terms vanish as , whichV r 0
implies that the energy of the state must go to zero for short wave-Q̂ F0SV

lengths. To make this (slightly) more rigorous, consider an observable
whose commutator with has a nonzero vacuum expectation value,ˆ ˆA Q

.6 Rewriting as an integral of the chargeˆ ˆ ˆlim A0F[Q , A]F0S p c ( 0 QVr� V V

density, we have . Assuming that the cur-3 0 ˆˆlim d xA0F[ j (x), A]F0S p c∫VVr�

rent is conserved, if the boundary terms vanish then this integral will be
time invariant. Manipulation of this expression shows that massive par-
ticles would, however, lead to explicit time dependence. For the left-hand
side to be nonzero, there must be states FnS such that , with0ˆA0F j FnS ( 0
vanishing spatial momenta; these states are the massless Goldstone
modes.7 A full proof of the theorem depends on various standard as-

6. The commutator is more well behaved than the operator ; in particular,Q̂
exists in cases where does not.ˆ ˆ ˆlim [Q , A] lim QVr� V Vr� V

7. Start with the expression in the text and introduce a complete set of states � FnSAnFn

in the commutator (following Guralnik et al. [1968, Section 2]). The vacuum state is
translationally invariant, and . Using these facts and performingˆ ˆ�iP7x iP7xˆ ˆj(x) p e j(0)e
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THE ELUSIVE HIGGS MECHANISM 493

sumptions in relativistic QFT (see, e.g., Guralnik, Hagen, and Kibble
1968), along with the crucial assumption that the commutator isˆ ˆ[Q , A]V

time invariant in the limit as .V r �
Higgs (and others who independently discovered the idea) illustrated

the gauge symmetry loophole in Goldstone’s theorem by constructing
simple models that avoid Goldstone bosons.8 Consider the classical La-
grangian for a complex scalar field f(x) coupled to electromagnetism,

1† m mnL p (D f) (D f) � F F � V(f), (1)1 m mn4

where , the covariant derivative operator isF p � A � � A D p � �mn m n n m m m

, and V(f) is the potential for the scalar field, which we will assumeieAm

to be given by with . This Lagrangian has2 2V(f) p l(f*f) � m f*f l 1 0
a local U(1) gauge symmetry, , under which Am transforms′ �iy(x)f r f p e f

as .9 If , V(f) has a unique minimum at′ �1 2A (x) r A (x) � e � y(x) m ! 0m m m

. However, choosing the “wrong” sign in the potential by settingf*f p 0
leads to the “Mexican hat” potential, with a ring of minima at2m 1 0

. The state of lowest energy is a constant field minimizing2f*f p (m /2l)
the potential. This leads to the natural assumption that in the QFT based
on L1, the quantum field will acquire a vacuum expectation value v inf̂

the “true” vacuum state. To take the true vacuum state into account, we
rewrite the Lagrangian by shifting the field variable, . Taking′f p f � v
advantage of the U(1) gauge invariance allows us to get rid of one degree
of freedom of the field entirely by a clever choice of gauge (called unitary

the spatial integration yields:
0 0 0 03 0 ip 7x 0 �ip 7xˆ ˆˆ ˆn nd (p )A0F j (0)FnSAnFAF0Se � A0FAFnSAnF j (0)F0Se p c.� n

n

For massive particles, the exponential terms do not vanish, leading to a time dependence
that is incompatible with the assumptions above; so for the sum to be nonzero, there
must be nonvanishing matrix elements with vanishing spatial momenta (as0ˆA0F j FnS
enforced by the delta function).

8. Here, I will focus on the simple Abelian Higgs model, which is only a toy model
since the photon has zero mass. However, this model suffices for my purposes, since
SSB of the non-Abelian gauge symmetries of Yang-Mills theories leads to similar
problems regarding gauge dependence. For clear treatments of this model and the
generalization to non-Abelian symmetries, see, e.g., Aitchison (1982) and Coleman
(1985).

9. A “local” gauge transformation is an element of an infinite-dimensional group
specified by functions of space and time, such as y(x); a “global” transformation, by
contrast, is an element of a finite-dimensional group specified by a finite number of
parameters.
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494 CHRIS SMEENK

gauge), leaving only .10 These two steps lead to the′ �f p (1/ 2)(v � v(x))
following Lagrangian:

1 1 1
mn 2 2 m m 2 2L p � F F � g v AA � (� v� v � 2m v ) � . . . (2)2 mn m m4 2 2

The second term indicates that the vector field Am has become massive,
and the third term corresponds to a massive scalar field v; the ellipsis
includes couplings between Am and v, as well as self-interaction terms, but
there are no massless scalar fields. The usual way of describing this result
is that the massive vector field has “eaten” the would-be Goldstone boson,
in the sense that Am has acquired the extra degree of freedom required to
be massive, namely, a longitudinal polarization state. Finally, there is a
trace of the original gauge-invariant Lagrangrian L1 in the form of re-
lationships that hold between the coupling constants in L2, and it is these
relationships that guarantee renormalizability.

What, exactly, is the “gauge loophole” exploited by this model? The
answer depends on the choice of gauge used in analyzing the model (see
Guralnik et al. 1968; Bernstein 1974). For some gauge choices, the as-
sumptions of Goldstone’s theorem fail to hold; for others, the theorem
holds, but the Goldstone bosons “decouple” from the other fields. Treating
the QFT based on L1 in Coulomb gauge, in which (with i rangingi∇A p 0i

over spatial components), there is a nonlocal term analogous to the
“instantaneous Coulomb term” that arises in Coulomb gauge QED.11 As
a result, boundary terms do not vanish in calculating the commutator

, which then fails to be a time-invariant constant3 0 ˆˆlim d xA0F[ j (x), A]F0S∫VVr�

of the motion—and this was a crucial assumption needed to prove Gold-
stone’s theorem. In Lorentz gauge, , by contrast, the as-m� A (x) p 0m

sumptions of Goldstone’s theorem hold, and there are Goldstone bosons.
However, as with QED, the Lorentz gauge condition cannot be taken as
an operator identity, or it would conflict with the canonical commutation
relations; instead, one requires that for all physicalmAfF� A (x)FfS p 0m

states FfS (following the Gupta-Bleuler approach; see, e.g., Schweber
[1962, 242–252]). This subsidiary condition defines the physical states as

10. Explicitly, v is given by . Take ,′ ir(x)/v2�� �v p 2A0FfF0S p (m /l) f(x) p (1/ 2)e (v � v(x))
where r(x) is the “phase” and v(x) is the “modulus” of the field, and the gauge choice
required to get rid of the r(x) term is .y(x) p �r(x)/v

11. In QED, this is a term with the form , obviously3 3 0 0d x d yj (x, t)j (y, t)/4pFx � yF∫ ∫
not a Lorentz covariant quantity; however, it is exactly canceled by the Coulomb inter-
action term appearing in the interaction Hamiltonian (see, e.g., Weinberg 1995, Section
8.5). In Coulomb gauge, QED is often characterized as not “manifestly” Lorentz invariant
because imposing the gauge condition leaves various noninvariant quantities (e.g., Am(x)
is not a four vector); however, this does not spoil the Lorentz-invariance of the S-matrix.
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THE ELUSIVE HIGGS MECHANISM 495

a subspace of a larger space with an indefinite inner product; the larger
space includes “unphysical” or “ghost” states. Imposing the subsidiary
condition eliminates the Goldstone bosons, in the sense that they are not
part of the physical subspace and have vanishing matrix elements with
all physical states.

These striking differences in the mathematical structure of the model
with respect to different gauge choices aggravate Earman’s worries re-
garding gauge dependence. The problem arises in other perturbative cal-
culations in QFT. The Green’s functions, propagators, and so on are gauge
dependent, but the gauge dependence does not matter as long as calcu-
lations yield results that are provably gauge invariant (as emphasized by,
e.g., Coleman [1985, 168]). The simple Higgs model described above leads
to the same predictions for the masses of the vector and scalar fields in
Coulomb and Lorentz gauge (as well as others). But the model includes
a number of suspicious gauge-dependent quantities, and next I will turn
to the problem of extracting gauge-invariant content.

4. Gauge Dependence of the Higgs Mechanism. The fact that the analysis
of Goldstone’s theorem depends on the gauge choice may be troubling,
but the more essential issue is whether gauge dependence undermines the
physical predictions of the Higgs mechanism. The discussion above slid
from the identification of the minima of the classical potential V(f) to
the idea that the corresponding QFT should be constructed as a pertur-
bative expansion around this classical minima; however, we should attend
to quantum corrections to the classical potential and assess their impact.
The effective potential Veff(f) was introduced precisely to do this; it agrees
with the classical potential V(f) appearing in equation (1) to lowest order
in perturbation theory, but it includes quantum corrections. The true
vacua of the field theory are defined by the global minima of Veff (f) (setting
aside nonperturbative effects). Finding Veff(f) exactly requires summing
an infinite series of Feynman diagrams in a loop expansion, but one can
calculate Veff(f) to a given order. The effective potential replaces the
classical potential in the procedure above: find the true minima of Veff

(f), shift the field variables by the vacuum expectation value v, and then
calculate quantities using standard perturbation theory techniques. Jackiw
(1974) first noted a potential problem with this procedure: Veff(f) is itself
a gauge-dependent quantity, which casts doubt on the physical significance
of its minimum.

Physicists explored several different responses to this problem in early
studies of the effective potential. One response is to retreat to using only
the gauge-invariant classical potential V(f), the first term of the expansion
for Veff (f), to define the minima and the vacuum expectation values used
to shift the field variables. But this rules out several interesting possibilities.
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496 CHRIS SMEENK

In Coleman and Weinberg’s (1973) important model, SSB occurs due to
one-loop quantum corrections; this would be completely missed by the
study of V(f) alone since the classical potential does not exhibit SSB. One
can also err in the opposite direction and identify “too many” vacua using
the classical rather than the effective potential, a situation called “acci-
dental symmetry” (see Coleman 1985, 142–144). A different response des-
ignates one gauge as the “true” gauge. Dolan and Jackiw (1974) argued
that unitary gauge describes the true dynamics without gauge degrees of
freedom and, hence, that the effective potential is only physically mean-
ingful in unitary gauge.

Nielsen (1975) showed that these earlier responses were unnecessary. He
proved that the gauge invariance of various quantities, such as the value
of the effective potential at its minima, the mass of the Higgs boson, the
mass of the vector boson, and so on, follows from the Ward-Takahashi
identities for the Abelian Higgs model. This is analogous to QED, in which
the Ward-Takahashi identities express the consequences of gauge invariance
for the perturbative evaluation of S-matrix elements (see, e.g., Weinberg
1995, 442–452). In this case, the identities imply the following partial dif-
ferential equation for Veff(f, y), where we have included explicit dependence
on the gauge parameter y (used to characterize a one-parameter family
of gauge choices):

� �
y � C(f, y) V (f, y) p 0, (3)eff( )�y �f

where C(f, y) is calculated by a perturbative expansion. This result implies
that the total derivatives of both Vmin (the value of the effective potential
at the minima) and the Higgs masses with respect to y vanish, even though
both quantities depend explicitly on y and also implicitly on y (through the
value of f that minimizes Veff). As with calculations of S-matrix elements
in QED, identities that are ultimately consequences of gauge invariance are
imposed on a formalism rife with complicated gauge-dependent expressions
in order to ensure that the gauge dependencies do not appear in observable
quantities.

5. Breaking a Local Gauge Symmetry? Shifting from a global to a local
gauge symmetry following Higgs and others neatly avoids the conse-
quences of Goldstone’s theorem while granting mass to gauge bosons,
but how exactly is this connected to SSB as described in Section 2? In
one sense the connection is clear: consider an “ungauged” Lagrangian
with a global U(1) symmetry, , alongside the† mL p (� f) (� f) � V(f)0 m

“gauged” Lagrangian, equation (1) above (with the same V(f)). The sym-
metry-breaking behavior of the two theories is generally the same; for the
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THE ELUSIVE HIGGS MECHANISM 497

Mexican hat potential described above, the global U(1) symmetry of L0

is broken by the choice of a particular vacuum state—a particular point
along the circle of minimum energy—and textbook descriptions use the
same language in describing symmetry breaking in L1. However, the two
cases are not similar. Breaking the global symmetry of L0 leads to vacuum
degeneracy, and there are operators that take different expectation values
depending on which vacuum state is realized (these are analogues of mean
magnetization in a ferromagnet). By way of contrast, all of the states
along the minimum circle are fully equivalent in the case of L1; any
particular point along the circle can be mapped to any other via a gauge
transformation, and all local operators (such as the ) will have the samef̂

expectation values regardless of which state is realized.
The contrast between the two cases is reinforced by Elitzur’s (1975)

theorem, which holds in slogan form that “local observables cannot ex-
hibit spontaneous breaking of local gauge symmetry” (Itzykson and
Drouffe 1989, 342). In particular, the theorem shows that although in the
case of global symmetry breaking it may be the case that , inˆA0FfF0S ( 0
the case of local gauge symmetry breaking this quantity (along with the
vacuum expectation values of any other gauge-invariant local operator)
vanishes. This result threatens to do more than just highlight the difference
between gauge and global symmetry breaking. Does it undermine the
fundamental assumption of the treatment above, namely, that the Higgs
fields acquire nonzero vacuum expectation values? Elitzur proved the the-
orem in the context of lattice gauge theory, an entirely gauge-invariant
formalism that avoids the gauge-dependent quantities appearing in con-
ventional QFT, and the relation of these two different approaches is com-
plicated. But there are two points that mitigate the consequences of Elit-
zur’s theorem. First, the standard account tends not to emphasize the
importance of the order of the two separate steps leading up to equation
(2): if the gauge is fixed first, then the field operators are no longer gauge
invariant and we can set in the perturbative treatment andˆA0FfF0S p 0
shift the field variables around this value without running afoul of the
theorem; the residual global symmetry may be spontaneously broken, but
there is no spontaneous breaking of a local gauge symmetry. The standard
accounts typically present the two steps in the opposite order—the field
values are shifted, and then one chooses unitary gauge to study the re-
sulting particle spectrum—without assessing whether the two choices are
consistent. Second, in this case, Fröhlich, Morchio, and Strocchi (1981)
give a treatment of the Higgs mechanism in entirely gauge-invariant lan-
guage, without appealing to the vacuum expectation value of a local
observable; the consequences of this treatment agree with the conven-
tional, perturbative account outlined above.
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6. Conclusions. Philosophers of physics have begun the difficult task of
“lifting the veil” of gauge invariance in order to understand the structure
of gauge field theories. This peek behind the veil has revealed, first, that
physicists have developed a wide variety of tools for isolating the gauge-
invariant content in conventional QFT; the Nielsen identities are one
example of how to establish gauge invariance. However, these identities
only establish the invariance of the Higgs masses and the minima of the
effective potential, leaving open the more general question of the gauge
invariance of other quantities appearing in the theory—for example, what
is the status of a semiclassical description of the scalar field rolling down
the effective potential toward or tunnelling to the minima during a phase
transition, an idea invoked in inflationary cosmology? Second, Earman
(2003, 2004a, 2004b) is correct to emphasize that describing the Higgs
mechanism as SSB of a local, gauge symmetry is an abuse of terminology.
However, it appears to be a relatively benign case of abuse; the conse-
quences of the Higgs mechanism have been rederived within a fully gauge-
invariant framework without invoking the suspect notion. Obviously there
is much more to be done fully to understand the relationship between
these results in lattice gauge theory and the conventional approach, but
it will require an extended look behind the veil rather than this brief peek
to pin down the Higgs mechanism.
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