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Axiomatics and problematics as two 
modes of formalisation: De leuze 5 
epistemology of mathematics* 

Da n i e l  W. S m i t h  

1 .  Introduction: problematics, dialectics, and ideas 

Throughout his work, Gilles Deleuze has developed a distinction 
between two modes of formalisation, in mathematics and elsewhere, 
which he terms,  respectively, 'axiomatics' and 'problematics . ' 1  The 
axiomatic (or 'theorematic') method of formalisation is a familiar one, 
already having a long history in mathematics, philosophy, and logic, 
from Euclid's geometry to Spinoza's philosophy to the formalised 
systems of modem symbolic logic. Although problematics has had an 
equally determinate trajectory in the history of mathematics, it is a more 
subterranean and less visible trajectory, but one that has increasingly 
become the object of study in contemporary philosophy of mathematics. 
Deleuze argues that the recognition of the irreducibility of problems and 
their genetic role in mathematics is 'one of the most original characteris­
tics of modem epistemology,' as exemplified in the otherwise diverse 
work of thinkers such as Canguilhem, Bouligand, Vuillemin, and 
Lautman.2 

Deleuze's contribution to these debates has been to take up the 
mathematical concept of problematics and to give it an unparalleled 
status in philosophy. The fundamental difference between these two 
modes of formalisation can be seen in their differing methods of deduc­
tion: in axiomatics,  a deduction moves from axioms to the theorems that 
are derived from it, whereas in problematics a deduction moves from the 
problem to the ideal accidents and events that condition the problem and 
fonn the cases that resolve it. More generally, Deleuze characterises 
axiomatics as belonging to a 'major' or royal form of science, which con­
stantly attempts to effect a reduction or repression (or more accurately, 
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an arithmetic conversion) of  the problematic pole of  mathematics, its4Jf 
wedded to a 'minor ' or nomadic conception of science. 'What we ha�e 
are two formally different conceptions of science, and ontologically 1J 
single field of interaction in which royal science [e.g. ,  axiomatics] COn· 
tinually appropriates the contents of vague or nomad science [probletll· 
atics] , while nomad science continually cuts the contents of royal scienCe 
loose' (Deleuze and Guattari 1987, 362, 367 . Emphasis added). Many of 
the most important concepts in Deleuze's own philosophy - such as 
multiplicity, the differential, singularity, series , zones of indiscemibility, 
and so on - were adopted from this problematic pole of mathematics, wid 
particularly from the history of the calculus . My primary purpose in tins 
essay will be to elucidate the epistemological differences between 
problematics and axiomatics . 

We should note, however, that Deleuze's interest in the mathemat· 
ics of problematics is not purely epistemological, but stems from Ins 
more general interest in the status of problems in philosophy. The activ­
ity of thinking has often been conceived of as the search for solutionsto 
problems, but this is a prejudice whose roots, Deleuze suggests, are OOih 
social and pedagogical: in the classroom,  it is the mathematics teacher 
who poses the problems, the pupil's task being to discover the correct 
solution. What the notions of 'true' and 'false' serve to qualify are 
precisely the responses or solutions that are given to these already� 
formulated questions or problems .  Yet at the same time, everyone recog• 
nises that problems are never given ready-made, but must be constructed 
or constituted - hence the scandal when a 'false' or badly-formulated 
problem is set in an examination.  'While it is relatively easy to define the 
true and the false in relation to solutions whose problems are already 
stated,' Deleuze writes in Bergsonism, 'it is much more difficult to say 
what the true and false consist of when they are applied directly to prog,. 
lems themselves' ( 1 988, 1 6--17) .  In fact, philosophy is concerned less 
with the solution to eternal problems than the constitution of problems 
themselves,  and the means for distinguishing between legitimate and ille­
gitimate problems, that is, between true and false problems. 

In the history of philosophy, the science of problems has always 
had a precise name: dialectics. In Plato's dialectic, for instance, the 
appeal to a foundational realm of essence (Ideas) first appeared as the 
response to a particular way of posing problems, a particular form of the 
question - namely the question 'What is. .?' [ti estin?] . 'The idea, 
writes Deleuze, 'the discovery of the Idea, is not separable from a certain 
type of question . The Idea is first of all an 'objectity ' [objectite] that 
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corresponds, as  such, to a way of posing questions' (Deleuze 2004, 95 . 
Translation modified) . The question 'What is. .?' thus presupposes a 
particular way of thinking that points one in the direction of essence: for 
Plato, it was the question of essence, the only question capable of dis­
covering the Idea. Aristotle in tum defined dialectics as the art of posing 
problems as the subject of a syllogism, while analytics gives us the 
means of resolving the problem by leading the syllogism to its necessary 
conclusion. Deleuze's own dialectic, however, is indexed primarily on 
Kant's 'Transcendental Dialectic' in the Critique of Pure Reason. 
Against Plato, Kant attempted to provide a purely immanent conception 
of Ideas that exposed the illusion of assigning to Ideas a transcendent 
object (such as the Soul , the World, or God) . If the Ideas of reason give 
rise to illusion and lead us into false problems,  Kant argued, this is first 
of all because reason is the faculty of posing problems in general: the 
object of the Idea, since it lies outside of experience, can neither be given 
nor known, but must be represented in a problematic form, without being 
determined. But this does not mean that Ideas have no real object; more 
profoundly, it means that problems as problems are the real objects of 
Jdeas.3 

This is the source of the link one finds in Deleuze's work between 
dialectics, problematics ,  and Ideas: dialectics is the science of problems,  
but problems themselves are Ideas . Deleuze has often been characterised 
(wrongly) as an anti-dialectical thinker, but it would be more accurate to 
say that Difference and Repetition (especially its fifth chapter, 'Ideas and 
the Synthesis of Difference')  is a book that proposes a new concept of 
dialectics, one that both is indebted to but breaks with the work of the 
great dialectical thinkers such as Plato, Kant, and Hegel . This is where 
Deleuze's interest in mathematical problematics intervenes: it provides 
him with a model for this new conception of dialectics. If Plato found his 
model in Euclidian geometry, and contemporary philosophers tend to 
turn toward set theory and axiomatics ,  Deleuze has found his model for 
dialectical Ideas in problematics and the history of the calculus . The 
discussion that follows focuses primarily on the mathematical origins of 
Deleuze's conception of dialectics, and the problematic/axiomatic dis­
tinction that lies at its core . It will examine, in turn , the historical back­
ground of Deleuze's notion of problematics ,  the precise nature of the 
relation between axiomatics and problematics, and finally, the means by 
which Deleuze has attempted to provide aformalisation of problematics 
in his theory of multiplicities. 

147 



A X I O M AT I C S  A N D  P R O B L E M AT I C S  

2. Problematics versus axiomatics: historical background 

Although Deleuze formulates the problematic-axiomatic distinction.� 
his own manner, it in fact reflects a fairly familiar tension within '�e 
history of mathematics, which can be illustrated by means of tlfree 
historical examples . 

I .  The first example comes from the Greeks .  Proclus, in his Cof* 
mentary of the First Book of Euclid's Elements, had already formulat�4a 
distinction, within Greek geometry, between problems and theorems.4 
Theorems concern the demonstration, from axioms or postulates, of the 
inherent properties belonging to a figure , whereas problems concern the 
actual construction of figures , usually using a straightedge and compass. 
From this viewpoint, determining a triangle the sum of whose anglesu 
180 degrees is theorematic, since the angles of every triangle will total 
180 degrees. By contrast, constructing an equilateral triangle on a given 
finite straight line is problematic , since we could also construct a non­
equilateral triangle or a non-triangular figure on the line (moreover, the 
construction of an equilateral triangle must first pass through the con­
struction of two circles) .  Classical geometers struggled for centuries with 
the three great unresolved 'problems' of antiquity - trisecting an angle, 
constructing a square equal to a circle, and constructing a cube havmg 
double the volume of a given cube - although only in 1 882 was it proved 
(theorematically) that none of these problems was solvable using only a 
straightedge and compass .5 

But this is why theorematics and problematics involve two differ, 
ent conceptions of deduction: if in theorematics a deduction moves from 
axioms to theorems , in problematics a deduction moves from the prob­
lem to the ideal events that condition it and form the cases of solution that 
resolve it. In theorematics, for instance, a figure is defined statically, m 
Platonic fashion, in terms of its essence and its derived properties: 
Euclidean geometry defines the essence of the line in purely static tenns 

that eliminate any reference to the curvilinear ('a line which lies evenly 
with the points on itself') .6 Problematics, by contrast, found its classtcal 
expression in the 'operative' geometry of Archimedes ,  in which the 
straight line is characterised dynamically as 'the shortest distance 
between two points. '  Here, the problem (How to construct a line between 
two points?), with its determinate conditions ,  has an infinite set of possi· 
ble solutions (curves, loops, etc.) ,  and the straight line is simply the case 
that constitutes the ' shortest' solution. Similarly, in the theory of coruc 
sections , the ellipse, hyperbola, parabola, straight lines , and the point are 
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� 'cases' of the projection of a circle onto secant planes in relation to the 
lex of a cone. If Archimedean geometry (especially the Archimedes of 
�On the Method') can be said to be an operative geometry, it is because 
it defines the line less as an essence than as a continuous operation or 
process of 'alignment' ,  the circle as a continuous process of 'rounding' 
$e square as the process of 'quadrature' ,  and so on. In problematics, a 
figure is defined dynamically by its capacity to be affected - that is, by 
the ideal accidents and events that can befall the figure (sectioning, cut­
ting, projecting , folding, bending, stretching, reflecting, rotating, and so 
on). As a theorematic figure, a circle may indeed be an organic and fixed 
essence, but the morphological variations of the circle (figures that are 
'lens-shaped' ,  'umbelliform' 'indented' ,  etc.) form problematic figures 
that are, in Husserl's words, 'vague yet rigorous' 'essentially and not 
accidentally inexact. '  7 

Greek thought nonetheless set a precedent that would be followed 
by later mathematicians and philosophers: Proclus had already pointed 
to (and defended) the relative triumph, in Greek geometry, of the 
theorematic over the problematic .  The reason: to the Greeks, 'problems 
concern only events and affects which show evidence of a deterioration 
or a projection of essences in the imagination,' and theorematics could 
thus present itself as a necessary 'rectification' of thought.8 This 'rectifi­
cation' must be understood, in a literal sense, as a triumph of the recti­
linear over the curvilinear. In the 'minor' geometry of problematics, 
figures are inseparable from their inherent variations, affections, and 
events (the straight line being a simple case of the curve) . The explicit 
aim of 'major' theorematics is 'to uproot variables from their state 
of continuous variation in order to extract from them fixed points 
and constant relations,' thereby setting geometry on the 'royal' road 
of theorematic deduction and proof (De leuze and Guattari 1987 , 
408-409). 

2. For our second example, we jump ahead two millennia. By the 
seventeenth-century, the tension between problems and theorems, which 
was internal to Greek geometry, had shifted to a more general tension 
between geometry itself, on the one hand, and algebra and arithmetic on 
the other. Desargues' projective geometry, for instance, which was a 
qualitative and 'minor' geometry centred on problems-events (as devel­
oped, most famously, in Desargues' Draft Project of an Attempt to Treat 
the Events of the Encounters of a Cone and a Plane), was quickly 
opposed in favour of the analytic geometry of Fermat and Descartes - a 
quantitative and 'major' geometry that translated geometric relations 
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into arithmetic relations that could be expressed in algebraic equations 
(Cartesian coordinates) (Boyer 1 968 , 393).  ' Royal' science, in other 
words, now entailed an arithmetisation of geometry itself. 'There is a 
correlation,' Deleuze writes ,  'between geometry and arithmetic, geome­
try and algebra that is constitutive of major science.'9 Descartes was 
dismayed when he heard that Desargues' Draft Project treated conic sec· 
tions without the use of algebra, since to him ' it did not seem possible to 
say anything about conics that could not more easily be expressed with 
algebra than without. '  10 As a result, Desargues' methods were repudiated 
as dangerous and unsound, and his practices of perspective banned. 
Theorematics (in the form of algebra) once again triumphed, and brought 
about an arithmetic conversion of a problematic field. 

This triumph of theorematics can be said to have reached its great· 
est philosophical expression in Spinoza's Ethics, which assumes a purely 
theorematic or axiomatic form of argumentation and deduction. 'In 
Spinoza,' Deleuze complains , ' the use of the geometric method involves 
no 'problems ' at all' ( 1994, 323 , n .  2 1 ) .  Indeed, with regard to problem­
atics, Deleuze suggests that in fact Descartes actually went further than 
Spinoza, and that Descartes the geometer went further than Descartes the 
philosopher. The 'Cartesian method' (the search for the clear and dis· 
tinct) is a method for solving problems, but the analytic procedure that 
Descartes presents in his Geometry is focused on the constitution of 
problems as such ( 'Cartesian coordinates '  appear nowhere in the 
Geometry) . 1 1  The Geometry does not move from axioms to theorems, but 
rather starts with a problem and 'analyses' it to find a solution. 'With the 
[analytic] method I use,' Descartes wrote, 'everything falling under the 
geometers consideration can be reduced to as single class of problem 
namely, that of looking for the value of the roots of a certain equation. 
Nonetheless, one of the most significant innovations of Deleuze's read· 
ing of Spinoza is to have presented a problematic reading of the Etlucs, 
which operates alongside and within Spinoza's explicit demonstrative 
apparatus .  Rather than beginning with the axioms and followmg 
Spinoza's theorematic deductions, Deleuze starts his analysis 'in the 
middle' , that is, with the problematic composition of finite modes and the 
affections that befall them, and undertakes a problematic deduction of the 
concept. Human modes of existence have affections just as geometrical 
figures. 'The relation between mathematics and humanity,' Deleuze 
writes in Logic of Sense, 'may thus be conceived in a new way: the ques­

tion is not that of quantifying or measuring human properties, but rather, 
on the one hand, that of problematising human events and, on the other, 
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that of developing as various human events the conditions of a problem' 
(p. 55). Spinoza's work is thus susceptible to two kinds of reading: a con­
ceptual (theorematic) reading and an affective (problematic) reading. 
This is why, in his analysis of the Ethics, Deleuze consistently empha­
sised the role of the scholia (which are the only elements of the Ethics 
that fall outside the axiomatic deductions, and develop the theme of 
'affections') and the fifth book (which introduces problematic hiatuses 
and contractions into the deductive exposition itself)." Pierre Macherey 
has complained that Deleuze, in approaching Spinoza's thought in such 
a manner, is attempting to introduce a new version of Spinozism that is 
at variance, if not completely at odds, with the model of 'demonstrative 
rationality' explicitly adopted by Spinoza himself.14 But it should be 
clear that Deleuze's approach to Spinoza is itself a 'case' of his broader 
approach to philosophy from the viewpoint of problematics. 'The whole 
problem of reason,' De leuze has suggested elsewhere, 'will be converted 
by Spinoza into a special case of the more general problem of the affects' 
(De leuze 1980c). 

The attempt to 'arithmetise' geometry would continue well into the 
nineteenth-century, when Desargues' projective geometry was revived in 
the work of Monge, the inventor of descriptive geometry, and Poncelet, 
who formulated the 'principle of continuity,' which led to developments 
in analysis situs and topology. Topology (so-called 'rubber-band geome­
try') was initially a problematic science that concerned the property of 
geometric figures that remain invariant under transformations such as 
bending or stretching. Under such transformations, figures that are 
theorematically distinct in Euclidean geometry - such as a triangle, a 
square, or a circle - can be seen as one and the same 'homeomorphic' 
figure, since they can be continuously transformed into one another. This 
entailed an extension of geometric ' intuitions' far beyond the limits of 
empirical or sensible perception (a la Kant). 'With Monge, and especially 
Poncelet,' writes Deleuze, commenting on Leon Brunschvicg's work, 
'the limits of sensible, or even spatial , representation (striated space) are 
indeed surpassed, but less in the direction of a symbolic power of 
abstraction [i.e., theorematics] than toward a trans-spatial imagination, 
or a trans-intuition (continuity).' 15 In the twentieth-century, computers 
have extended the reach of this 'trans-intuition' even further, provoking 
renewed interest in qualitative geometry, and allowing mathematicians to 
'see' hitherto unimagined objects such as the Mandelbrot set and the 
Lorenz attractor, which have become the poster children of the new 
sciences of chaos and complexity. 'Seeing, seeing what happens ,' 
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continues Deleuze, ' has always had an  essential importance, greaterthatt 

demonstrations, even in pure mathematics, which can be called vtslla}1 
figural, independently of its applications: many mathematicians nowa, 

days think that a computer is more precious than an axiomatic' (Deleuze 
and Guattari 1994, 1 28 .  Translation modified) . But already in the early 
nineteenth-century, there was a renewed attempt to turn projective 
geometry into a mere practical dependency on analysis, or so-called 
higher geometry (the debate between Ponce let and Cauchy) . 16 The devel­
opment of the theory of functions would eventually eliminate the appeal 
to the principle of continuity, substituting for the geometrical idea �f 
smoothness of variation the arithmetic idea of 'mapping' or a one-to-one 
correspondence of points (point -set topology).  Theorematics would once 
again triumph over problematics . 

3 .  Finally, this double movement of major science toward 
theorematisation and arithmetisation would reach its full flowering in the 
late nineteenth-century, primarily in response to problems posed by the 
invention of the calculus . In its origins ,  the calculus was tied to prob­
lematics in a double sense . The first refers to the problems that the 
calculus confronted: the differential calculus addressed the problematic 
of tangents (how to determine the tangent lines to a given curve), while 
the integral calculus addressed the problematic of quadrature (how to 
determine the area within a given curve) . The greatness of Leibniz and 
Newton was to have recognised the intimate connection between these 
two problematics (the problem of finding areas is the inverse of deter· 
mining tangents to curves) , and to have developed a symbolism to link 
them together and resolve them. The calculus quickly became the pri· 
mary mathematical engine of what we call the ' scientific revolution' Yet 
for two centuries, the calculus , not unlike Archimedean geometry, itself 
maintained a problematic status in a second sense: it was allotted a para­
scientific status, labelled a 'barbaric ' or ' Gothic' hypothesis, or at best a 
convenient convention or well-grounded fiction. In its early formula· 
tions , the calculus was shot through with dynamic notions such as 
infinitesimals, fluxions and fluents , thresholds, passages to the limit, 
continuous variation - all of which presumed a geometrical conception 
of the continuum, in other words , the idea of a process . For most 
mathematicians, these were considered to be 'metaphysical' ideas 
that lay beyond the realm of mathematical definition. Berkeley 
famously ridiculed infinitesimals as 'the ghosts of departed quantities'; 
D' Alembert famously responded by telling his students, Allez en avant, 
et la foi vous viendra ( 'Go forward, and faith will come to you')Y 
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The calculus would not have been invented without these notions,  yet 
tltey remained problematic ,  lacking an adequate mathematical ground. 

For a long period of time, the enormous success of the calculus in 
·solving physical problems delayed research into its logical foundations. 
It was not until the end of the nineteenth-century that the calculus would 
receive a 'rigorous '  foundation through the development of the 'limit­
concept.' 'Rigour' meant that the calculus had to be separated from 
Its problematic origins in geometrical conceptions or intuitions, and 
reconceptualised in purely arithmetic terms (the loaded term ' intuition' 
ltere having little to do with empirical perception, but rather the ideal 
geometrical notion of continuous movement and space) . 18  This 'arith­
metisation of analysis ' ,  as Felix Klein called it,19 was achieved by Karl 
Weierstrass , one of Husserl's teachers , in the wake of work done by 
Cauchy (leading Guilio Giorello to dub Weierstrass and his followers 
the 'ghostbusters') .20 Analysis (the study of infinite processes) was 
concerned with continuous magnitudes, whereas arithmetic had as its 
domain the discrete set of numbers . The aim of Weierstrass' 'discretisa­
tion' programme was to separate the calculus from the geometry of con­
tinuity and base it on the concept of number alone. Geometrical notions 
were thus reconceptualised in terms of sets of discrete points, which in 
tum were conceptualised in terms of number: points on a line as individ­
ual numbers , points on a plane as ordered pairs of numbers , points in 
n-dimensional space as n-tuples of numbers . As a result, the concept 
of the variable was given a static (arithmetic) rather than a dynamic 
(geometrical) interpretation . Early interpreters had tended to appeal to 
the geometrical intuition of continuous motion when they said that a 
variable x ' approaches' a limit (e .g . ,  the circle defined as the limit of a 
polygon). Weierstrass' innovation was to reinterpret this variable x arith­
metically as simply designating any one of a collection of numerical 
values (the theory of functions) , thereby eliminating any dynamism or 
'continuous variation' from the notion of continuity, and any interpreta­
tion of the operation of differentiation as a process.  In Weierstrass' limit­
concept, in short, the geometric idea of 'approaching a limit' was 
arithmetised, and replaced by static constraints on discrete numbers 
alone (the episilon-delta method) . Dedekind took this arithmetisation a 
step further by rigorously defining the continuity of the real numbers 
in terms of a ' cut' :  ' it is the cut which constitutes . .the ideal cause of 
continuity or the pure element of quantitativity' (Deleuze 1 994, 172). 
Cantor's set theory, finally, gave a discrete interpretation of the notion of 
infinity itself, treating infinite sets like finite sets (the power set axiom) -
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or rather, treating all sets , whether finite or infinite, a s  mathematical 
objects (the axiom of infinity) .21 

Weierstrass, Dedekind, and Cantor thus form the great triumvirate 
of the programme of discretisation and the development of the 'arith· 
metic' continuum (the redefinition of continuity as a function of sets over 
discrete numbers) .  In their wake, the basic concepts of the calculus ­
function, continuity, limit, convergence, infinity, and so on - were pro­
gressively 'clarified' and 'refined,' and ultimately given a set theoretical 
foundation. The assumptions of Weierstrass '  discretisation problem 
that only arithmetic is rigorous ,  and that geometric notions are unsuitable 
for secure foundations - are now largely identified with the 'orthodox' or 
'major' view of the history of mathematics as a progression toward ever 
more 'well-founded' positions.22 This contemporary orthodoxy has often 

been characterised as an 'ontological reductionism' ;  as Penelope Maddy 

describes it, 'mathematical objects and structures are identified with or 
instantiated by set theorematic surrogates ,  and the classical theorems 
about them proved from the axioms of set theory.'23 Reuben Hersh gives 
it a more idiomatic and constructivist characterisation: ' Starting from the 
empty set, perform a few operations , like forming the set of all subsets. 
Before long you have a magnificent structure in which you can embed the 
real numbers , complex numbers, quaterions, Hilbert spaces, infinite­
dimensional differentiable manifolds, and anything else you like' (1997, 
1 3) .  The programme would pass through two further developments. The 
contradictions generated by set theory brought on a sense of a 'crisis' in 
the foundations, which Hilbert's formalist (or formalisation) programme 
attempted to repair through axiomatisation, that is, by attempting to show 
that set theory could be derived from a finite set of axioms, which were 
later codified by Zermelo-Fraenkel (given his theological leanings, even 
Cantor needed a dose of axiomatic rigor) . Godel and Cohen, finally, in 
their famous theorems,  would eventually expose the internal limits of 
axiomatisation (incompleteness, undecidability), demonstrating that 
there is a variety of mathematical forms in ' infinite excess' over our 
ability to formalise them consistently. Deleuze, for his part, fully recog­
nises the position of the orthodox programme: 'Modern mathematics is 
regarded as based upon the theory of groups or set theory rather than on 
the differential calculus'  ( 1 994, 1 80) . Nonetheless, he insists that the fun­
damental difference in kind between problematics and axiomatics 
remains, even in contemporary mathematics: ' Modern mathematics also 
leaves us in a state of antinomy, since the strict finite interpretation that 
it gives of the calculus nevertheless presupposes an axiom of infinity in 
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':lie set theoretical foundation, even though this axiom finds no illustra­
:�n in the calculus. What is still missing is the extra-propositional and 
sub-representative element expressed in the Idea by the differential , 
'precisely in the form of a problem' (p . 178).  

A final example can help serve to illustrate the ongoing tension 
between problematics and axiomatics, even in contemporary mathemat­
:tcs. Even after Weierstrass '  work, mathematicians using the calculus 
continued to obtain accurate results and make new discoveries by using 
infinitesimals in their reasoning, their mathematical conscience assuaged 
'by the (often unchecked) supposition that infinitesimals could be 
replaced by Weierstrassian methods . Despite its supposed 'elimination' 
as an impure and muddled metaphysical concept, the ghostly concept of 
mfinitesimals continued to play a positive role in mathematics as a prob­
lematic concept, reliably producing correct solutions. 'Even now,' wrote 
Abraham Robinson in 1 966, 'there are many classical results in differen­
tial geometry which have never been established in any other way [than 
through the use of infinitesimals] , the assumption being that somehow 
the rigorous but less intuitive e, 8 method would lead to the same 
result.'24 In response to this situation, Robinson developed his non­
'tandard analysis, which proposed an axiomatisation of infinitesimals 
themselves, at last granting mathematicians the 'right' to use them in 
proofs . Using the theory of formal languages, he added to the ordinary 
theory of numbers a new symbol (which we can call i for infinitesimal) , 
and posited axioms saying that i was smaller than any finite number 1/n 
and yet not zero; he then showed that this enriched theory of numbers is 
consistent, assuming the consistency of the ordinary theory of numbers . 
The resulting axiomatic model is described as 'non-standard' in that it 
contains, in addition to the ' standard' finite and transfinite numbers, 
non-standard numbers such as hyperreals and infinitesimals. In the non­
standard model , there is a cluster of infinitesimals around every real 
number r, which Robinson, in a nod to Leibniz, termed a 'monad' (the 
monad is the ' infinitesimal neighbourhood' of r) . Transfinites and infin­
itesimals are two types of infinite number, which characterise degrees of 
infinity in different fashions .  In effect, this means that contemporary 
mathematics has 'two distinct rigorous formulations of the calculus' :  
that of Weierstrass and Cantor, who eliminated infinitesimals, and that 
of Robinson, who rehabilitated and legitimised them.25 Both these 
theorematic endeavours, however, had their genesis in the imposition of 
the notion of infinitesimals as a problematic concept, which in turn gave 
rise to differing but related axiomatisations. Deleuze's claim is that the 
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ontology o f  mathematics i s  poorly understood i f  i t  does not take intO 
account the specificity and irreducibility of problematics. 

3. The relation between problematics and axiomatics 

With these historical examples in hand, we can now make several sum­
mary points concerning the relation between the problematic and 
axiomatic poles of mathematics, or more broadly, the relation between 
minor and major science. First, according to Deleuze, mathematics is 
constantly producing notions that have an objectively problematic status; 
the role of axiomatics (or its precursors) is to codify and solidify these 
problematic notions, providing them with a theorematic ground or rigor­
ous foundation. Axiomaticians, one might say, are the ' law and order' 
types in mathematics: 'Hilbert and de Broglie were as much politicians 
as scientists: they reestablished order' (Deleuze and Guattari 1 987, 144). 
In this sense, as Jean Dieudonne suggests, axiomatics is a foundational 
but secondary enterprise in mathematics, dependent for its very existence 
on problematics: 'In periods of expansion , when new notions are intro­
duced, it is often very difficult to exactly delimit the conditions of their 
deployment, and one must admit that one can only reasonably do so once 
one has acquired a rather long practice in these notions, which necessi­
tates a more or less extended period of cultivation [ defrichement] , during 
which incertitude and controversy dominates. Once the heroic age of 
pioneers passes, the following generation can then codify their work, get­
ting rid of the superfluous, solidifying the bases - in short, putting the 
house in order. At this moment, the axiomatic method reigns anew, until 
the next overturning [bouleversement] that brings a new idea. '26 Nicholas 
Bourbaki puts the point even more strongly, noting that 'the axiomatic 
method is nothing but the "Taylor System" - the "scientific manage­
ment" - of mathematics' ( 1 97 1  , 3 1 ) .  De leuze has adopted a similar 
historical thesis, noting that the push toward axiomatics at the end of 
the nineteenth-century arose at the same time that Taylorism arose in 
capitalism: axiomatics does for mathematics what Taylorism does for 
'work' .27 

Second, problematic concepts often (though not always) have their 
source in what Deleuze terms the 'ambulatory' sciences , which includes 
sciences such as metallurgy, surveying, stonecutting, and perspective. 
(One need only think of the mathematical problems encountered by 
Archimedes in his work on military installations , Desargues on the tech­
niques of perspective, Monge on the transportation of earth , and so on.) 
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The nature of such domains ,  however, is that they do not allow science 
to assume an autonomous power. The reason, according to De leuze, is 
that the ambulatory sciences ' subordinate all their operations to the sen­
sible conditions of intuition and construction - following the flow of 
matter, drawing and linking up smooth space. Everything is situated in 
the objective zone of fluctuation that is coextensive with reality itself. 
However refined or rigorous ,  "approximate knowledge" is still depen­
dent upon sensitive and sensible evaluations that pose more problems 
than they solve: problematics is still its only mode' (Deleuze and 
Guattari 1987, 373). Such sciences are linked to notions - such as 
heterogeneity, dynamism, continuous variation, flows, and so on - that 
are barred or banned from the requirements of axiomatics, and conse­
quently they tend to appear in history as that which was superseded or left 
behind. By contrast, what is proper to royal science, to its theorematic or 
axiomatic power, is 'to isolate all operations from the conditions of intu­
Jtion, making them true intrinsic concepts, or 'categories' .Without this 
categorical, apodictic apparatus, the differential operations would be 
constrained to follow the evolution of a phenomenon'(p. 373-374) . In 
the ontological field of interaction between minor and major science, in 
other words, 'the ambulant sciences confine themselves to inventing 
problems whose solution is tied to a whole set of collective, nonscientific 
activities but whose scientific solution depends, on the contrary, on royal 
science and the way it has transformed the problem by introducing it into 
its theorematic apparatus and its organisation of work. This is somewhat 
like intuition and intelligence in Bergson, where only intelligence has 
the scientific means to solve formally the problems posed by intuition' 
(p. 374). 

Third, what is crucial in the interaction between the two poles are 
thus the processes of translation that take place between them - for 
instance, in Descartes and Fermat, an algebraic translation of the geo­
metrical; in Weierstrass, a static translation of the dynamic; in Dedekind, 
a discrete translation of the continuous. The 'richness and necessity of 
translations,' writes Deleuze, 'include as many opportunities for open­
ings as risks of closure or stoppage' (De leuze and Guattari 1987, 486). In 
general, Deleuze's work in mathematical epistemology tends to focus on 
the reduction of the problematic to the axiomatic, the intensive to the 
extensive, the continuous to the discrete, the nonmetric to the metric,  the 
nondenumerable to the denumerable, the rhizomatic to the arborescent, 
the smooth to the striated. Not all these reductions, to be sure, are equiv­
alent, and Deleuze (following Lautman) analyses each on its own 
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account. Deleuze himself highlights two of them. The first i s  'the com, 
plexity of the means by which one translates intensities into extensive 
quantities, or more generally, multiplicities of distance into systems of 
magnitudes that measure and striate them (the role of logarithms in tlus 
connection) ' ;  the second, 'the delicacy and complexity of the means by 
which Riemannian patches of smooth space receive a Euclidean con· 
junction (the role of the parallelism of vectors in striating the infinitesi­
mal)' (p. 486). At times, Deleuze suggests, axiomatics can possess a 
deliberate will to halt problematics: 'State science retains of nomad 
science only what it can appropriate; it turns the rest into a set of strictly 
limited formulas without any real scientific status, or else simply 
represses and bans it' (p. 362; cf. p .  1 44) . But despite its best efforts, 
axiomatics can never have done with problematics, which maintains its 
own ontological status and rigor. 'Minor science is continually enriching 
major science, communicating its intuitions to it, its way of proceeding, 
its itinerancy, its sense of and taste for matter, singularity, variation, into· 
itionist geometry and the numbering number. Major science has a 
perpetual need for the inspiration of the minor; but the minor would be 
nothing if it did not confront and conform to the highest scientific 
requirements' (p. 485-6) . In Deleuzian terms, one might say that while 
'progress' can be made at the level of theorematics and axiomatics, all 
'becoming' occurs at the level of problematics .  

Fourth, this means that axiomatics, no  less than problematics, 
is itself an inventive and creative activity. One might be tempted to 
follow Poincare in identifying problematics as a 'method of discovery' 
(Riemann) and axiomatics as a 'method of demonstration' (Weier. 
strass) .28 But just as problematics has its own modes of formalisation and 
deduction, so axiomatics has its own modes of intuition and discovery 
(axioms are not chosen arbitrarily, for instance, but in accordance with 
specific problems and intuitions) .29 'In science an axiomatic is not at all 
a transcendent, autonomous, and decision-making power opposed to 
experimentation and intuition. On the one hand, it has its own gropings 
in the dark, experimentations, modes of intuition. Axioms being inde· 
pendent of each other, can they be added, and up to what point (a 
saturated system)? Can they be withdrawn (a 'weakened' system)? On 
the other hand, it is of the nature of axiomatics to come up against so­
called undecidable propositions, to confront necessarily higher powers 
that it cannot master. Finally, axiomatics does not constitute the cutting 
edge of science; it is much more a stopping point, a reordering that pre­
vents decoded flows in physics and mathematics [ = problematics] from 
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escaping in  all directions. The great axiomaticians are the men of State 
within science, who seal off the lines of flight that are so frequent in 
mathematics, who would impose a new nexum, if only a temporary one, 
and who lay down the official policies of science. They are the heirs of 
the theorematic conception of geometry' (Deleuze and Guattari 1987 , 
461). For all these reasons, problematics is, by its very nature, 'a kind of 
science, or treatment of science, that seems very difficult to classify, 
whose history is even difficult to follow' (p. 361 ) .30 

4. The formalisation of problematics: 

Deleuze's theory of multiplicities 

One of the aims of Deleuze's new concept of dialectics is to provide a 
formalisation of problematics that would constitute the basis for the 
theory of Ideas - a parallel to the formalisation that long ago took place 
in axiomatics. The difficulties of such a task, however, should be evident 
from the remarks above. The formalisation of theorematics has had a 
long history in mathematics and philosophy, and the theory of extensive 
multiplicities (Cantor's set theory) and its rigorous axiomatisation 
(Zermelo-Fraenkel , et al.) is one of the great achievements of modern 
mathematics. Deleuze, by contrast, is proposing to construct a hitherto 
non-existent (philosophical) formalisation of problematic multiplicities 
that are, by his own account, selected against by 'major' mathematics. In 
this regard, Deleuze's relation to the history of mathematics is similar to 
his relation to the history of philosophy: even in canonical figures there 
is something that 'escapes ' the official histories of mathematics.31 
Nonetheless, there were a number of important precursors in mathemat­
ics who were working in this direction: Abel, Galois, Riemann, and 
Poincare are among the great names in the history of problematics, just 
as Weierstrass, Dedekind, and Cantor are the great names in the discreti­
sation programme, and Hilbert, Zermelo, Frankel, G6del, and Cohen the 
great names in the movement toward formalisation and axiomatisation . 
We can therefore highlight at least three mathematical domains that have 
served as precursors in formalising the theory of problems in mathemat­
ics, and which Deleuze appealed to in formulating his own concept of 
problems as multiplicities.32 

1 .  The first domain is the theory of groups, which initially arose 
from questions concerning the solvability of certain algebraic (rather 
than differential) equations. There are two kinds of solutions to algebraic 
equations, particular and general. Whereas a particular solution is given 
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by numerical values (x2 + 3x - 4 = 0 has as its solution x = 1 ) ,  a general 
solution provides the global pattern of all particular solutions to an alge­
braic equation (the above equation, generalised as x2 + ax - b = 0, has the 
solution X =  ya2/2 + b - a/2). But such solutions,  writes De leuze, 'whether 
general or particular, find their sense only in the subjacent problem which 
inspires them' ( 1994, 1 62). By the sixteenth century, it had been proved 
(Tataglia-Cardan) that general solvability was possible with squared, 
cubic, and quartic equations.  But equations raised to the fifth power and 
higher refused to yield to the previous method (via radicals), and the 
puzzle of the 'quintic' remained unresolved for more than two centuries, 
until the work of Lagrange, Abel , and Galois in the nineteenth-century. 
In 1 824, Abel proved the startling result that the quintic was in fact 
unsolvable, but the method he used was as important as the result: Abel 
recognised that there was a pattern to the solutions of the first four cases, 
and that it was this pattern that held the key to understanding the recalci­
trance of the fifth. Abel showed that the question of 'solvability' had to 
be determined internally by the intrinsic conditions of the problem itself, 
which then progressively specifies its own 'fields' of solvability. 

Building on Abel's work, Evariste Galois developed a way to 
approach the study of this pattern, using the technique now known as 
group theory. Put simply, Galois 'showed that equations that can be 
solved by a formula must have groups of a particular type, and that the 
quintic had the wrong sort of group' (Stewart and Golubitsky 1992, 42). 
The 'group' of an equation captures the conditions of the problem; on the 
basis of certain substitutions within the group, solutions can be shown to 
be indistinguishable insofar as the validity of the equation is concemed.l1 
In particular, Deleuze emphasises the fundamental procedure of adjunc· 
tion in Galois: 'Starting from a basic 'field' R,  successive adjunctions to 
this field (R' ,  R" ,  R"' .) allow a progressively more precise distinctiOll 
of the roots of an equation, by the progressive limitation of possible su"' 
stitutions. There is thus a succession of 'partial resolvants' or an embed· 
ding of 'groups' which make the solution follow from the very 
conditions of the problem' ( 1994, 1 80). In other words, the group of an 
equation does not tell us what we know about its roots, but rather, as 
George Verriest remarks, 'the objectivity of what we do not know about 
them.'34 As Galois himself wrote, 'in these two memoirs, and especially 
in the second, one often finds the formula, I don 't know. '35 This 
non-knowledge is not a negative or an insufficiency, but rather a rule 
or something to be learned that corresponds to an objective dimension of 
the problem. What Deleuze finds in Abel and Galois, following the 
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exemplary analyses of Jules Vuillemin in his Philosophy of Algebra, is  'a 
radical reversal of the problem-solution relation, a more considerable 
revolution than the Copernican. '36 In a sense, one could say that 'unsolv­
ability' plays a role in problematics similar to that played by 'undecid­
ability' in axiomatics. 

2. The second domain Deleuze utilises is the calculus itself, and on 
this score Deleuze's analyses are based to a large extent on the interpre­
tation proposed by Albert Lautman in his Essay on the Notions of Struc­
ture and Existence in Mathematics ( 1 938). Lautman 's work is based on 
the idea of a fundamental difference in kind between a problem and its 
solution, a distinction that is attested to by the existence of problems 
without solution. Leibniz, Deleuze notes, 'had already shown that the 
calculus. .expressed problems that could not hitherto be solved, or 
indeed, even posed' ( 1 994, 1 77) . In tum Lautman establishes a link 
between the theory of differential equations and the theory of singulari­
ties, since it was the latter that provided the key to understanding the 
nature of nonlinear differential equations, which could not be solved 
because their series diverged. As determined by the equation, singular 
points are distinguished from the ordinary points of a curve: the singu­
larities mark the points where the curve changes direction (inflections, 
cusps, etc .) ,  and thus can be used to distinguish between different types 
of curves. In the late 1 800's, Henri Poincare, using a simple nonlinear 
equation, was able to identify four types of singular points that corre­
sponded to the equation (foci, saddle points, knots, and centres) and to 
demonstrate the topological behaviour of the solutions in the neighbour­
hood of such points (the integral curves) .37 On the basis of Poincare's 
work, Lautman was able to specify the nature of the difference in kind 
between problems and solutions . The conditions of the problem posed by 
the equation is determined by the existence and distribution of singular 
points in a differentiated topological field (a field of vectors),  where each 
singularity is inseparable from a zone of objective indetermination (the 
ordinary points that surround it) . In tum, the solution to the equation 
will only appear with the integral curves that are constituted in the 
neighbourhood of these singularities, which mark the beginnings of the 
differenciation (or actualisation) of the problematic field. In this way, the 
ontological status of the problem as such is detached from its solutions: 
m itself, the problem is a multiplicity of singularities , a nested field of 
directional vectors which define the 'virtual' trajectories of the curves in 
the solution, not all of which can be actualised. Non-linear equations 
can thus be used to model objectively problematic (or indeterminate) 
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physical systems, such as the weather (Lorenz): the equations can define 
the virtual 'attractors' of the system (the intrinsic singularities toward 
which the trajectories will tend in the long-term), but they cannot say in 
advance which trajectory will be actualised (the equation cannot be 
solved) , making accurate prediction impossible. A problem, in other 
words , has an objectively determined structure (virtuality) , apart from its 
solutions (actuality).38 

3. But 'there is no revolution ,' in the problem-solution reversal, 
continues Deleuze, 'as long as we remain tied to Euclidean geometry: we 
must move to a geometry of sufficient reason, a Riemannian-type differ­
ential geometry which tends to give rise to discontinuity on the basis of 
continuity, or to ground solutions in the conditions of the problems' 
( 1994, 1 62) . This leads to Deleuze's third mathematical resource, the 
differential geometry of Gauss and Riemann. Gauss had realised that the 

utilisation of the differential calculus allowed for the study of curves and 
surfaces in a purely intrinsic and 'local' manner; that is, without any ref­
erence to a 'global' embedding space (such as the Cartesian coordinates 
of analytic geometry) .39 Riemann's achievement, in turn, was to have 
used Gauss's differential geometry to launch a reconsideration of the 
entire approach to the study of space by analysing the general problem of 
n-dimensional curved surfaces. He developed a non-Euclidean geometry 
(showing that Euclid's axioms were not self-evident truths) of a multi­
dimensional, non-metric, and non-intuitable ' any-space-whatever,' 
which he termed a pure 'multiplicity' or 'manifold' [Mannigfaltigkeit]. 
He began by defining the distance between two points whose corre­
sponding coordinates differ only by infinitesimal amounts, and defined 
the curvature of the multiplicity in terms of the accumulation of neigb• 
bourhoods , which alone determine its connections .4° For our purposes, 
the two important features of a Riemannian manifold are its variable 
number of dimensions (its n-dimensionality), and the absence of any 
supplementary dimension which would impose on it extrinsicaRy 
defined coordinates or unity.41 As Deleuze writes, a Riemannian multt­
plicity is ' an n-dimensional , continuous , defined multiplicity . . . .By 
dimensions, we mean the variables or coordinates upon which a 
phenomenon depends; by continuity, we mean the set of [differential} 
relations between changes in these variables - for example, a quadratic 
form of the differentials of the co-ordinates; by definition, we mean the 
elements reciprocally determined by these relations, elements whi�h 
cannot change unless the multiplicity changes its order and its metric1 
( 1994, 1 82) . 
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In Difference and Repetition, Deleuze draws upon all these 
resources to develop his general theory of problematic or differential 
multiplicities. The fifth chapter of Difference and Repetition ('Ideas and 
the Synthesis of Difference' )  draws on all these resources in order to pre­
sent a theory of Ideas as problematic (problems are Ideas), which in 
effect presents Deleuze's new concept of dialectics. The formal condi­
tions of a problematic Idea can be briefly summarised as follows. (I) The 
elements of the multiplicity are merely 'determinable' ,  their nature is not 
determined in advance by either a defining property or an axiom (e.g. ,  
extensionality) . Rather, they are pure virtualities that have neither 
identity, nor sensible form, nor conceptual signification, nor assignable 
function (principle of determinability). (2) They are nonetheless deter­
mined reciprocally as singularities in the differential relation, a 'non­
localisable ideal connection' that provides a purely intrinsic definition of 
the multiplicity as 'problematic' ;  the differential relation is not only 
external to its terms, but constitutive of its terms (principle of reciprocal 
determination). (3) The values of these relations define the complete 
determination of the problem, that is, 'the existence, the number, and the 
distribution of the determinant points that precisely provide its condi­
tions' as a problem (principle of complete determination) .42 These three 
aspects of sufficient reason, finally, find their unity in the temporal prin­
ciple of progressive determination, through which, as we have seen in the 
work of Abel and Galois, the problem is resolved (adjunction, etc .) 
(1994, 210) .  

The strength of Deleuze's project, with regard to problematics, is 
that, in a certain sense, it parallels the movement toward 'rigour' that was 
made in axiomatics: it presents a formalisation of the theory of problems, 
freed from the conditions of geometric intuition and solvability, and 
existing only in pure thought (even though Deleuze presents his theory in 
a purely philosophical manner, and explicitly refuses to assign a scien­
tific status to his conclusions) .43 In undertaking this project, he had few 
philosophical precursors (Lautman, Vuillemin) , and the degree to which 
he succeeded in the effort no doubt remains an open question . Manuel 
DeLanda, in a recent work, has proposed several refinements in 
Deleuze's formalisation, drawn from contemporary science: certain 
types of singularities are now recognisable as ' strange attractors' ;  the res­
olution of a problematic field (the movement from the virtual to the 
actual) can now be described in terms of a series of spatio-temporal 
'symmetry-breaking cascades' and so on.44 But as DeLanda insists, 
despite his own modifications to Deleuze's theory, Deleuze himself 
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'should get the credit for having adequately posed the problem' of prob­
lematics (2002, 102) . 

Notes 

This essay draws on earlier work that was published in the Southern Journai 
of Philosophy 41 .3 (2003) .  See Smith 2003 . 
See Deleuze 1994, 323 n. 22: Given the irreducibility of 'problems' in his 
thought, De leuze writes that 'the use of the word "problematic" as a substan· 
tive seems to us an indispensable neologism.' 

2 Deleuze 1994, 323 n. 22. Deleuze is referring to the distinction between 
'problem' and 'theory' in Canguilhem 1 978; the distinction between the 
'problem-element' and the 'global synthesis element' in Bouligand 1949; and 
the distinction between 'problem' and ' solution' in Lautman 1 939, discussed 
below. All these thinkers insist on the double irreducibility of problems: prob· 
!ems should not be evaluated extrinsically in terms of their ' solvability' (the 
philosophical illusion), nor should problems be envisioned merely as the con­
flict between two opposing or contradictory propositions (the natural illusion) 
(see Deleuze 1 994, 1 6 1 ) . On this score, Deleuze largely follows Lautman's 
thesis that mathematics participates in a dialectic that points beyond itself to 
a meta-mathematical power -that is, to a general theory of problems and their 
ideal synthesis - which accounts for the genesis of mathematics itself. See 
Lautman 1939, particularly the section entitled 'The Genesis of Mathematics 
from the Dialectic' :  'The order implied by the notion of genesis is no longer 
of the order of logical reconstruction in mathematics, in the sense that from 
the initial axioms of a theory flow all the propositions of the theory, for the 
dialectic is not a part of mathematics, and its notions have no relation to the 
primitive notions of a theory' (p. 1 3- 14) . 

3 When Kant says that Ideas are 'problems to which there is no solution' (Kant 
1 998, 3 19 ,  A328/B384), he does not mean that they are necessarily false 
problems, and therefore insoluble; on the contrary, this means that true prob· 
lems are Ideas, and that these Ideas do not disappear with their solutions, 
since they are the indispensable condition without which no solution wollld 
ever exist. See De leuze 1994, 1 68 .  

4 Proclus 1 970, 63-67, a s  cited i n  Deleuze 1 994, 1 63 ;  D e  leuze 1 987, 554 n.21; 
and Deleuze 1990a, 54. See also Deleuze's comments in Deleuze 1989, 174: 
theorems and problems are are 'two mathematical instances which constantly 
refer to each other, the one enveloping the second, the second sliding into the 
first, but both very different in spite of their union.' On the two types of 
deduction, see 1 85 .  

5 See E. T. Bell's comments on this issue in  Bel1 1 937, 3 1 -32. 
6 See Deleuze 1 994, 1 74: 'The mathematician Houel remarked that the shortest 

distance was not a Euclidean notion at all, but an Archimedean one, more 
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physical than mathematical; that i t  was inseparable from a method of exhaus­
tion; and that it served less to determine the straight line than to determine the 
length of a curve by means of a straight line - "integral calculus performed 
unknowingly"' (citing Houel 1 867 , 3 ,  75). Carl B .  Boyer makes a similar point 
in his 1 968: 'Greek mathematics sometimes has been described as essentially 
static,  with little regard for the notion of variability; but Archimedes, in his 
study of the spiral , seems to have found the tangent to the curve through kine­
matic considerations akin to the differential calculus' (p. 4 1 ) .  

7 Husser! 1 93 1 ,  208 , §74. Whereas Husser! saw problematics as 'proto­
geometry,' Deleuze sees it as a fully autonomous dimension of geometry, but 
one he identifies as a 'minor' science; it is a 'proto' -geometry only from the 
viewpoint of the ' major' or 'royal' conception of geometry, which attempts 
to eliminate these dynamic events or variations by subjecting them to a 
theorematic treatment. 

8 Deleuze 1 994, 1 60. Emphasis added. Deleuze continues: 'As a result [of 
using reductio ad absurdum proofs] , however, the genetic point of view is 
forcibly relegated to an inferior rank: proof is given that something cannot not 
be, rather than that it is and why it is (hence the frequency in Euclid of nega­
tive, indirect and reductio arguments , which serve to keep geometry under the 
domination of the principle of identity and prevent it from becoming a geom­
etry of sufficient reason).' 

9 Deleuze and Guattari 1 987, 484. On the relation between Greek theorematics 
and seventeenth-century algebra and arithmetic as instances of 'major' math­
ematics, see Deleuze 1 994, 1 60--1 6 1 .  

10 Boyer 1968, 394. De leuze writes that 'Cartesian coordinates appear to me to 
be an attempt at reterritorialization' (De leuze 1 972). 

11  See Deleuze 1 994, 1 6 1  and 323 n. 2 1 . See also Reuben Hersh's comments on 
Descartes in Hersh 1 997 , 1 12-1 1 3: 'Euclidean certainty boldly advertised in 
the Method and shamelessly ditched in the Geometry.' 

12 Descartes, as cited in Hersh 1997, 1 1 3 .  
1 3  For the role of the scholia, see De leuze 1 992, 342-350 (the appendix on  the 

scholia); for the uniqueness of the fifth book, see 'Spinoza and the Three 
Ethics' ,  in De leuze 1 997 , 1 49 .  

1 4  See Macherey 1996, 143. For a discussion of these issues, see Duffy 2006, 
155-158. 

15 De leuze and Guattari 1 987, 554 n. 23, commenting on Brunschvicg 1 972. 
Deleuze also appeals to a text by Michel Chasles ( 1 837), which establishes a 
continuity between Desargues, Monge, and Poncelet as the 'founders of a 
modern geometry' (Deleuze and Guattari 1987, 554 n. 28). 

16 See Brunschvicg 1 972, 327-33 1 .  
17 See Boyer 1959, 267 . De leuze praises Boyer's book as 'the best study of the 

history of the differential calculus and its modern structural interpretation' 
(1990a, 339). 
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1 8  For a discussion of the various uses of the term ' intuition' i n  mathematics, see 
the chapters on ' Intuition' and 'Four-Dimensional Intuition' in Davis and 
Hersch 198 1 ,  391-405; as well as Hans Hahn's classic article 'The Crisis in 
Intuition' , in Newman 1 956, 1 956-1976. 

19 Boyer 1968, ch. 25 , 'The Arithmetization of Analysis' (p. 598-61 9). 
20 Giorello 1992, 1 35 .  I thank Andrew Murphie for this reference. 
21 See Maddy 1 997, 5 1-52, for a discussion of Cantorian 'finitism' 
22 For a useful discussion of Weierstrass's 'discretisation program' (albeit writ­

ten from the viewpoint of cognitive science), see Lakoff and Nunez 2000, 
257-324. 

23 Maddy 1997 , 28. Reuben Hersh gives this a more idiomatic and constructivist 
characterization: 'Starting from the empty set, perform a few operations, like 
forming the set of all subsets. Before long you have a magnificent structure 
in which you can embed the real numbers, complex numbers, quaterions, 
Hilbert spaces, infinite-dimensional differentiable manifolds, and anything 
else you like' ( 1 997, 1 3) .  

24 Robinson 1966, 83.  See also p. 277: 'With the spread of Weierstrass' ideas, 
arguments involving infinitesimal increments, which survived particularly in 
differential geometry and in several branches of applied mathematics, began 
to be taken automatically as a kind of shorthand for corresponding develop­
ments by means of the e, 8 approach.'  

25 Hersh 1997, 289. For discussions of Robinson's achievement, see Jim Holt's 
useful review, 'Infinitesimally Yours' ,  in The New York Review of Books, 20 
May 1 999, as well as the chapter on 'Non-standard Analysis' in Davis and 
Hersh 1 98 1 , 237-254. The latter note that 'Robinson has in a sense vindicated 
the reckless abandon of eighteenth-century mathematics against the straight­
laced rigour of the nineteenth-century, adding a new chapter in the never 
ending war between the finite and the infinite, the continuous and the dis­
crete' (p. 238). 

26 Jean Dieudonne, L'Axiomatique dans les mathematiques modernes, 47-48, 
as cited in Blanche 1955, 9 1 .  

27 See Deleuze 1 972: 'The idea of a scientific task that no longer passes through 
codes but rather through an axiomatic first took place in mathematics towatd 
the end of the nineteenth-century. .One finds this well-formed only in the 
capitalism of the nineteenth-century.' Deleuze's political philosophy is itself 
based in part on the axiomatic-problematic distinction: 'Our use of the word 
"axiomatic" is far from a metaphor; we find literally the same theoretical 
problems that are posed by the models in an axiomatic repeated in relation to 
the State' (Deleuze and Guattari 1 987, 455). 

28 Poincare 1 898-1899, l-18,  as cited in Boyer 1 968, 601 .  Boyer notes that 
one finds in Riemann 'a strongly intuitive and geometrical background in 
analysis that contrasts sharply with the arithmetizing tendencies of the 
Weierstrassian school' (p. 601 ) .  
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29 See Deleuze 1 988a, 64: 'axioms concern problems , and escape demonstra­
tion.' 

30 This section of the 'Treatise on Nomadology' (p. 361-374) develops in detail 
the distinction between 'major' and 'minor' science. 

31 At one point, he even provides a list of 'problematic' figures from the history 
of science and mathematics: ' Democritus, Menaechmus, Archimedes, 
Vauban, Desargues, Bernouilli, Monge, Carnot, Poncelet, Perronet, etc.: in 
each case a monograph would be necessary to take into account the special 
situation of these scientists whom State science used only after restraining 
or disciplining them, after repressing their social or political conceptions.' 
Deleuze and Guattari 1 987, 363 . See Deleuze's well-known comments on his 
relation to the history of philosophy in 'Letter to a Harsh Critic' , in Deleuze 
1995 , 5-6. The best general works on the history of mathematics are Boyer 
1968 and Kline 1 972. 

32 For analyses of Deleuze's theory of multiplicities, see Durie 2002, 1 -29; 
Ansell-Pearson 2002; and DeLanda 2002. 

33 See Kline 1972, 759: 'The group of an equation is a key to its solvability 
because the group expresses the degree of indistinguishability of the roots. It 
tells us what we do not know about the roots. '  

34 Deleuze 1 994, 1 80, citing Verriest 1 95 1 , 4 1 .  
35 Deleuze 1 997, 149, citing a text by Galois in Dalmas 1 956, 1 32. 
36 Deleuze 1 994, 1 70. Deleuze is referring to Vuillemin 1 962. 
37 For discussions of Poincare, see Kline 1 972, 732-738; Lautman1 946, 41-43; 

and Deleuze 1 980b. Such singularities are now termed 'attractors' :  using the 
language of physics , attractors govern 'basins of attraction' that define the 
trajectories of the curves that fall within their 'sphere of influence' 

38 For this reason, Deleuze's work has been seen to anticipate certain develop­
ments in complexity theory and chaos theory. Delanda in particular has 
emphasized this link in his 2002 (see n. 78). For a presentation of the mathe­
matics of chaos theory, see Stewart 1 989, 95-144. 

39 See Lautman 1938a, 43 : 'The constitution, by Gauss and Riemann, of a 
differential geometry that studies the intrinsic properties of a variety, inde­
pendent of any space into which this variety would be plunged, eliminates 
any reference to a universal container or to a center of privileged coordi­
nates.' 

40 See Lautman 1938a, 23-24: 'Riemannian spaces are devoid of any kind of 
homogeneity. Each is characterized by the form ofthe expression that defines 
the square of the distance between two infinitely proximate points. .It 
follows that "two neighboring observers in a Riemannian space can locate the 
points in their immediate vicinity, but cannot locate their spaces in relation to 
each other without a new convention." Each vicinity is like a shred of Euclid­
ean space, but the linkage between one vicinity and the next is not defined and 
can be effected in an infinite number of ways. Riemannian space at its most 
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general thus presents itself as an amorphous collection of pieces that are jux­
taposed but not attached to each other.' 

41 See Deleuze 1994, 1 83 ,  1 8 1 :  A Riemannian multiplicity 'is intrinsically 
defined, without external reference or recourse to a uniform space in which it 
would be submerged. .It has no need whatsoever of unity to form a 
system.' 

42 See, in particular Deleuze 1 994, 1 83, although the entirety of the fifth chap­
ter is an elaboration of Deleuze's theory of multiplicities.  

43 See De leuze 1994, xxi: 'We are well aware. .that we have spoken of science 
in a manner which was not scientific .' 

44 See Delanda 2002, 15 (on attractors) ,  and chapters 2 and 3 (on symmetry­
breaking cascades) . 




