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Decision Theory and De Minimis Risk 

Martin Smith 

 

A de minimis risk is defined as a risk that is so small that it may be legitimately ignored when making a decision.  

While ignoring small risks is common in our day-to-day decision making, attempts to introduce the notion of a 

de minimis risk into the framework of decision theory have run up against a series of well-known difficulties.  In 

this paper, I will develop an enriched decision theoretic framework that is capable of overcoming two major 

obstacles to the modelling of de minimis risk.  The key move is to introduce, into decision theory, a non-

probabilistic conception of risk known as normic risk. 
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1  Ignoring Small Risks 

While cooking one evening I notice that I’m missing one of the ingredients I need, and have to decide 

whether to drive to the local shops to try and get it.  In making this decision there are several things 

that I might consider; the time and effort involved in a trip to the shops, whether I can make do with 

what I have, the possibility that the shops are closed or don’t have what I’m looking for etc.  One thing 

I probably wouldn’t consider – at least not seriously – is whether I might cause a fatal car accident on 

this short, familiar drive.  It’s not that I regard this as impossible – it’s just that I would take it to be 

such a small risk as to be not worth factoring into the decision.  In short, I would treat the risk of a 

fatal car accident as being de minimis.  This term is taken from a well-known practice in risk 

management1 – a practice that employs a risk threshold to sort potential negative outcomes into those 

that need to be taken seriously and those that can be legitimately ignored.  De minimis risk 

management is controversial, and is something I will return to – but, as the present example 

illustrates, the basic idea of ignoring small risks is one that is common in day-to-day decision making. 

One place that we don’t find this idea however is in expected utility theory – the best known 

decision theory, or formal framework for navigating decisions under uncertainty.  To formally model 

a decision problem we require, first, a pairwise exclusive and jointly exhaustive set of available actions.  

Second, for each of these actions, we require a pairwise exclusive and jointly exhaustive set of possible 

outcomes.  Next we need a risk function which assigns some measure of risk to each outcome, given 

each action, and a value function which assigns some measure of value to each outcome.  The final 

element is a decision procedure which selects an action or actions based on the risks and values.  All 

of the decision theoretic frameworks that I consider here will appeal to these basic components. 

 
1 Which, in turn, borrowed the term from the legal principle de minimis non curat lex or ‘the law does not concern 
itself with trifles’ (see Peterson, 2002, p47).  
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Within standard expected utility theory (EUT), the risk function assigns probabilities to the 

outcomes that could result from an action – positive real numbers that sum to 1 – while the value 

function assigns utilities to these outcomes – positive or negative numbers.  The decision procedure 

selects the action or actions that have the highest expected utility, where the expected utility of an 

action is equal to the average of the utilities of its possible outcomes, weighted by the probabilities of 

those outcomes.  Utilities, when negative, might be referred to as disutilities and, if it is potential 

negative outcomes that bulk large in a particular decision problem, we might say that the decision 

procedure selects the action or actions that have the lowest expected disutility.  If A is the set of 

available actions, O is the set of possible outcomes, Pr is the probability function, and u is the utility 

function then, as is familiar, the expected utility of A  A can be written like this: 

𝐸𝑈(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴). 𝑢(𝑂)

𝑂 𝑶

2 

Though it will play only a small role in what is to come, it may be worth delving a little deeper 

into the formal foundations of this framework.  Following Jeffrey (1965), the As and Os can be 

regarded as propositions: An action proposition is, in effect, a proposition that an agent can choose to 

make true in a given decision problem, while the truth or falsity of the outcome propositions lies 

beyond the agent’s control, once an action has been chosen.  Let propositions be modelled as subsets 

of a set of possible worlds W and let  be a Boolean -algebra of propositions – a set of propositions 

that contains W and is closed under negation and disjunction (and under countable disjunction in case 

 is infinite).  The set of actions A and the set of outcomes O will both be partitions of W that are 

subsets of .  We assume here that outcomes are individuated in such a way as to include the action 

that gives rise to them, in which case O will be a refinement or fine-graining of A (every element of O 

is a subset of an element of A)3.  Pr can be defined as a function taking the members of  to real 

numbers in the unit interval and conforming to the probability axioms4.  The conditional probabilities 

 
2 The formula used here is characteristic of evidential decision theory.  In causal decision theory the probability 
assigned to an outcome O, given an action A, is understood not as a conditional probability, but as a kind of 
‘causal’ probability which, roughly speaking, reflects only A’s causal influence upon O, and brackets any purely 
evidential connection between A and O (see Gibbard and Harper, 1978, Lewis, 1981, Joyce, 1999, Egan, 2007, 
Buchak, 2016, section 2).  The dispute between evidential and causal decision theory (on which I mean to take 
no position here) is orthogonal to the issues under discussion – in the sense that none of the examples I consider 
would prompt a different treatment from the two approaches.  There are substantial questions about how one 
might develop ‘causal’ versions of the various decision theoretic frameworks I will consider – but these will have 
to be postponed to another occasion. 

3 A model of a decision problem will sometimes include, in addition, a set of states of the world, which are 
relevant to determining the outcomes of the available actions.  Formally, the set of states S will be another 

partition of W that is a subset of , such that every outcome O  O is associated with an action, state pair.  The 
probability of an outcome O, given an action A will be equal to the sum of the probabilities, given A, of those 
states that would, in combination with A, lead to O.  States, in effect, allow us to factor an outcome into a 
contribution that is due to the agent and a contribution that is due to the world.  This additional structure allows 
us to define richer relations between actions – such as relations of dominance.  I don’t include states in the 
formalism that I use in the main text, but it is easy enough to add them in, and I will mention them again in n9 
and n19.    

4 For X, Y  :  
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required for calculating expected utilities can be derived according to the standard ratio formula: 

Pr(X | Y) = Pr(X  Y)/Pr(Y), and is undefined in case Pr(Y) = 0. 

According to EUT, the action or actions that maximise expected utility will be rationally 

permissible for an agent, while the rest are rationally prohibited.  In a case where only a single action 

maximises expected utility, this action will be rationally obliged.  The ‘rationality’ here is, of course, 

relativised to the probability and utility functions, which can themselves be interpreted in different 

ways.  Sometimes the interpretation is purely subjective – u reflects the agent’s desires while Pr 

reflects the agent’s own probability judgments which, aside from general formal constraints, can be 

made in any way that the agent sees fit.  For present purposes, I will adopt a more objective 

interpretation on which Pr represents the probabilities imposed by the agent’s evidence, or the 

probability judgments that the agent’s evidence supports.    

 One thing we can immediately observe is that EUT has no mechanism whereby a low risk 

outcome can be ignored.  On the contrary, any outcome that has some risk of resulting from an action, 

no matter how small, will feature in the expected utility calculation for that action and, depending on 

the utility or disutility it is assigned, could have a decisive effect upon the result.  One might, at first, 

take the view that this is wholly appropriate.  While ignoring low risk outcomes may be a convenient 

way of simplifying or expediting certain decisions, one might think that it has no place in a theory of 

idealised rational decision making.  The idea, pursued a bit further, is that the ignoring of low risk 

outcomes might serve as a helpful heuristic – a way of reliably hitting upon a rational decision even 

when it would be too complex or laborious to try and consider everything – but when it comes to our 

theory of what constitutes a rational decision, we want every possible outcome to count5.   

This may be a natural thought to have – and yet, the fact that every possible outcome ‘counts’ 

in EUT is implicated in at least two well-known problems that arise for the framework.  The first 

problem stems from an attempt to model, within EUT, the relation of lexical priority.  The second 

problem concerns the way in which the predictions of EUT can, in some cases, be manipulated by the 

provision of highly suspect information.  

Say that one moral requirement is lexically prior to another just in case we are always morally 

obliged to uphold the first requirement at the expense of the second – no matter how many times the 

second must be violated thereby.  Suppose we are offered a choice between taking the life of an 

innocent person and inflicting a short-lived, mild headache upon each of a number of people.  Some 

 
P1 Pr(W) = 1 

P2 Pr(X)  0 

P3 If X and Y are inconsistent then Pr(X  Y) = Pr(X) + Pr(Y)  

If we are dealing with an infinite stock of propositions we might strengthen P3 to: 

If    is a set of pairwise inconsistent propositions then Pr(V) = X   Pr(X) 

5 Some have explicitly endorsed the view that the ignoring of low risk outcomes could only benefit boundedly 
rational agents, and is something that an ideal reasoner should dispense with (see for instance Adler, 2007).  If 
the points made here are on the right track, then this is not the right picture.   



4 
 

would claim that the preservation of life takes lexical priority over the avoidance of headaches and, as 

a result, we should always choose the latter option, no matter how many headaches this involves.  

While this claim is disputable (Norcross,  1997, 1998), some regard it as obviously true (Thomson, 

1990, p163) and it is sometimes described as a part of ‘common sense morality’ (see, for instance, 

Brennan, 2006, p251, Dorsey, 2009, pp36-37, Kirkpatrick, 2018, p107).  But if an agent assigns a 

constant disutility to each headache, as seems reasonable, then the only way to capture this 

preference in EUT is to allow the agent to assign an infinite disutility to the death of an innocent 

(Jackson and Smith, 2006, Huemer, 2010, Colyvan, Cox and Steele, 2010, section 3, Hansson, 2013)6. 

The trouble with an infinite disutility, though, is that it remains infinite when multiplied by any 

positive probability whatsoever.  If the death of an innocent is assigned an infinite disutility, then any 

action that has some risk of resulting in the death of an innocent will have negative infinity as one of 

the terms in its expected utility calculation.  As a result, the other terms in the calculation (if finite) no 

longer matter – the action will have an infinite expected disutility.  So if an agent would choose any 

number of headaches over the death of an innocent then, within EUT, the agent would also be 

committed to choosing any number of headaches over an action that merely risks the death of an 

innocent.  But this commitment is certainly not a part of common sense morality – particularly if the 

risk involved is very low.  If a friend is feeling a headache coming on then many of us would be perfectly 

willing to take a short drive to the pharmacy to buy some painkillers even though we are aware, at 

some level, that this action might result in an accident in which an innocent person loses their life. 

One could of course reject the claim that the death of an innocent should be assigned an 

infinite disutility, and deny that the preservation of life takes lexical priority over the avoidance of 

headaches.  But this would not altogether resolve the problem.  What we have here are two intuitive 

 
6 If we are prepared to give up the idea that every headache should add the same disutility, and assign the 
headaches a diminishing marginal disutility that tends towards 0, then it will be possible to capture this 
preference without the use of infinite disutilities.  In this case, the disutility of n headaches would tend to a finite 
limit as n approached infinity and the death of an innocent could be assigned a disutility that exceeds this limit 
(Lazar and Lee-Stronach, 2019).  Suppose, for instance, an agent assigns the first headache a disutility of 1, the 
second headache a disutility of ½, the third headache a disutility of ¼ and so on.  Provided the agent assigns the 
death of an innocent a disutility of 2 or more, this will exceed the disutility of any number of headaches.   There 
are significant drawbacks, however, to a utility assignment like this.  Most obviously, it requires the agent to 
place different value on the wellbeing of different people – to prefer relieving the first headache to relieving the 
tenth, even though they are equally painful etc.  I won’t discuss this further here – but for more on the strategy 
of capturing lexical priority by placing finite bounds on the utility and disutility of certain benefits and costs see 
Black (2020). 

Another option for modelling lexical priority is to allow the value of an outcome to be represented by 
a multidimensional utility – a sequence of positive or negative numbers.  Multidimensional utilities are then 
subject to a lexicographic ordering – ordered with respect to the first dimension, then with respect to the second 
dimension in the case of any ties, then the third dimension in case of further ties and so on (much as words 
would be ordered alphabetically).  In order for the death of an innocent to be reckoned worse than any number 
of headaches, it would be enough for it to be assigned disutility relative to an earlier dimension.   I think that 
this approach to the modelling of lexical priority is, in many ways, more promising than the use of infinite 
disutilities, but it won’t, on its own, solve the problem identified in the main text.  I discuss this further in Smith 
(ms) – see also Hájek (2003, section 4.2) and Lee-Stronach (2018, section 3). 



5 
 

preferences: I may be unwilling to sacrifice a human life in order to avoid any number of headaches, 

but I might also choose to drive to the pharmacy to help a friend avoid a single headache.  Given the 

above assumptions, these preferences simply cannot be recovered within the standard EUT 

framework.  If we think that these are the morally right preferences to have then the problem for EUT 

is obvious.  But even if we think that these preferences are not morally right, the fact that they cannot 

even be accommodated within a given decision theoretic framework could still be seen as a serious 

limitation, and reason enough to seek greater flexibility7.    

The second problem, in any case, doesn’t involve devices such as infinite disutilities, and can 

be generated by a utility function that anyone should find acceptable.  Suppose I am approached by a 

mysterious stranger who demands that I hand over my wallet.  When I refuse he tells me that he has 

the authority to order a nuclear strike and, if I continue to refuse, he will do so.  The resulting nuclear 

exchange, he informs me, would be so devastating as to cost billions of human lives.  While I don’t for 

a moment believe what the stranger is claiming, I can’t conclusively rule it out.  There may be some 

people on Earth who have the capability to trigger a nuclear exchange and, while it seems incredibly 

farfetched that the stranger is one of them and is sincere in his threat, it’s not impossible.  Even if the 

probability that the stranger is speaking the truth is only one-in-a-billion, the extreme disutility of the 

scenario he describes means that this could still have a significant effect on the expected utility of 

keeping my wallet.  If there is a one-in-a-billion chance that keeping my wallet will result in several 

billion deaths, and every death is assigned a constant disutility, then this option will have an expected 

disutility equal to the disutility of several deaths, which would surely exceed the expected disutility of 

losing my wallet.  Given these utilities and probabilities, EUT predicts that I am rationally obliged to 

hand my wallet over8.    

One might complain that the probability of the stranger’s claim shouldn’t be as high as one-

in-a-billion – perhaps one-in-ten-billion or one-in-a-hundred-billion would be more realistic.  But even 

if that’s right, any reduction in the probability of the stranger’s claim could be compensated by an 

increase in the disutility assigned to the prospect of global nuclear war.  The disutility assumed above 

only takes account of the loss of human life and doesn’t, for instance, factor in the loss of animal and 

plant life, the suffering that would be experienced by the survivors, the countless future humans that 

would be prevented from coming into existence and so on.  Whatever the rationale, I could 

 
7 There are some who spin these observations in a rather different way.  For some, the difficulties involved in 
modelling lexical priority within the standard EUT framework give us reason to reject the idea of lexical priority 
and the kinds of preferences that it demands (see for instance Jackson and Smith, 2006, 2016, Huemer, 2010).  
The contrary idea that these difficulties expose the limitations of our decision theoretic modelling is pursued by 
Lee-Stronach (2018).  I discuss this issue in more detail in Smith (ms).     

8 This example is based on the problem of ‘Pascal’s mugging’ described by Bostrom (2009) (see also 
http://www.lesswrong.com/posts/a5JAiTdytou3Jg749/pascal-s-mugging-tiny-probabilities-of-vast-utilities).  In 
Bostrom’s original case the mugger makes extravagant promises in the event that the wallet is handed over 
rather than extravagant threats in the event that it isn’t – but the effect is the same.  The case described here is 
closer to the version of Pascal’s mugging given by Balfour (2021).  The idea that these cases present a problem 
for EUT is (I think) implicit in Bostrom’s paper, but is developed in detail by Monton (2019).   

http://www.lesswrong.com/posts/a5JAiTdytou3Jg749/pascal-s-mugging-tiny-probabilities-of-vast-utilities
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legitimately assign this scenario a disutility that is trillions of times greater than that of losing my wallet 

– but surely this wouldn’t commit me to handing my wallet to the stranger.  Surely it is rationally 

permissible for me to hold on to my wallet irrespective of the disutility I assign to the scenario that the 

stranger describes. 

Both of these problems revolve around an expected utility calculation that is, in effect, 

hijacked by a very low risk outcome – an outcome of the kind that we would ordinarily ignore.  When 

it comes to the decisions described, considering every possible outcome is not just difficult or 

cumbersome – it seems to force us into the wrong decision or, at any rate, a decision that isn’t 

rationally mandated.  One way to make progress with these problems is to introduce, into decision 

theory, the notion of a de minimis risk – which might be defined as an outcome that is at such low risk 

of resulting from an action that we may ignore it for the purposes of decision making.  In this paper I 

will outline two proposals as to how this might be done.  The first proposal has been put forward, in 

slightly different forms, by a number of authors.  This proposal offers a straightforward solution to the 

lexical priority and suspect information problems, but runs into two problems of its own – the 

disjunction problem and the lottery problem.  The second proposal is more radical – in that it involves 

introducing a completely new component into the decision theoretic framework – but is able to avoid 

all four of these problems.   

 Some would argue that all of this fuss seems premature; to reject EUT on the strength of the 

lexical priority and suspect information problems is an overreaction.  I don’t altogether disagree.  It’s 

true that the problems are far from decisive, and there are a number of things that defenders of EUT 

could potentially say in response.  But, on the other side, we shouldn’t feel beholden to any particular 

formal framework, particularly if there are alternatives available.  The middle ground, I think, is to 

treat these problems as an incentive to develop alternatives to the standard EUT framework and see 

what, if anything, they have to offer.  The two alternatives that I develop here are very much presented 

in this spirit. 

 

2  De Minimis Expected Utility Theory  

On one level, introducing de minimis risk into decision theory is straightforward – after all, even if an 

outcome has some positive probability of resulting from an action, it could still, in principle, be ignored 

by a decision procedure.  Suppose we specify a probability value t greater than, but close to, 0 to serve 

as the de minimis threshold.  One natural option is to consider a decision procedure in which expected 

utilities are calculated while excluding any de minimis risks – any outcomes with a probability below 

t.  Rather than using Pr to assign the weights in an expected utility calculation for an action A, we now 

use an amended function, which results from conditionalising Pr on the conjunction of the negations 

of all de minimis risks – of all outcomes which, given A, have a probability below t.  That is, if  = 

{~O | O  O  Pr(O | A) < t} we have it that:  
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𝐷𝐸𝑈(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴). 𝑢(𝑂)

𝑂 𝑶

= ∑ 𝑃𝑟(𝑂 | 𝐴  ). 𝑢(𝑂)9

𝑂 𝑶

 

The decision procedure selects the action or actions that have the highest de minimis expected utility, 

as given by this formula.  We might call this framework de minimis expected utility theory (DEUT).   

Less formally, we might think of the calculation of a de minimis expected utility as a two-step 

process: First, we list all of the outcomes that could possibility result from an action and eliminate any 

outcomes that have a probability below t.  Second, we update the probabilities of those outcomes 

that remain and use these probabilities to calculate an expected utility in the usual way.  According to 

DEUT, the action or actions that maximise de minimis expected utility, calculated in this way, will be 

rationally permissible for an agent.  I won’t assume here that these are the only actions that are 

rationally permissible.  A de minimis risk was defined as an outcome that an agent may ignore when 

making a decision – but that’s not to say that it has to be ignored.  As a result, I leave it open whether 

the actions which maximise standard expected utility (if different) might also be regarded as rationally 

permissible.    

 Even if I assign an infinite disutility to the loss of a life and a finite disutility to a mild headache, 

within DEUT I may still be rationally permitted to drive to the pharmacy to buy painkillers for my friend.  

Although there is some probability that my driving to the pharmacy will result in a death, provided 

this is below the de minimis threshold, the action can still have a positive de minimis expected utility 

– and one that exceeds the de minimis expected utility of letting my friend suffer a headache10.   Even 

 
9 Since  entails A, the formula could be written more simply: 

𝐷𝐸𝑈(𝐴) = ∑ 𝑃𝑟(𝑂). 𝑢(𝑂)

𝑂 𝑶

= ∑ 𝑃𝑟(𝑂 | ). 𝑢(𝑂)

𝑂 𝑶

 

The way the formula is presented in the main text is more perspicuous, however, and has a closer 
correspondence with the familiar formula for calculating expected utility. 

Pr could also, in principle, be defined in a way that is not relative to a given action.  Recall that, in the 

present framework, every outcome O  O incudes a unique action.  If we let  be a function mapping each 

outcome to its associated action,  could then be defined as {~O | O  O  Pr(O | (O)) < t}.  With  defined 
in this way, we could not use the above simplification but, as can be easily checked, the outputs of the original 

formula will be unchanged for any action A  A.  Another option is to define  in terms of states (if we include 

them in the model) –  = {~S | S  S  Pr(S) < t}.  This will lead to the same results as the definition in the main 
text provided we make the following assumptions: (i) Outcomes are associated with a unique state as well as a 
unique action – that is, O is a more fine-grained partition than both A and S.  (ii) States and actions are 

probabilistically independent – for any S  S and A  A, Pr (S | A) = Pr(S).   

10 This is close to a suggestion made by Lee-Stronach in the context of an attempt to capture lexical priority  
within decision theory (Lee-Stronach, 2018, section 5).  Rather than amending the decision procedure, however, 
Lee-Stronach suggests that any possible outcomes with a probability lower than the de minimis threshold could 
simply be left out of a model of a decision problem.  While this may, in one sense, lead to the same results, I am 
inclined to think that there are some theoretical advantages to having the discounting of possible outcomes 
represented in the decision procedure itself, rather than being something that is concealed within the 
construction of a decision model.  On Lee-Stronach’s approach, the probability function Pr can no longer be 
interpreted as representing an agent’s evidential probabilities, since there may be outcomes with a positive 
evidential probability that are nevertheless missing from the model.  Pr should presumably be interpreted along 

the lines of Pr above – an evidential probability function conditionalised upon the negations of each outcome 
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if I assign the prospect of global nuclear war a disutility that is trillions of times greater than that of 

losing my wallet, within DEUT I may still be rationally permitted to hold on to my wallet, in spite of the 

stranger’s claim.  Provided the probability of the stranger’s claim is below the de minimis threshold, it 

will have no effect on the de minimis expected utility of holding on to my wallet which, all else equal, 

will exceed the de minimis expected utility of handing it over11.  If we want the stronger result that I 

am rationally obliged to hold on to my wallet, we will need the stronger assumption that the only 

actions that are rationally permissible for an agent are those that maximise de minimis expected utility 

– and, as noted above, I don’t commit to this here12.     

One question that immediately arises for DEUT is that of where the de minimis threshold 

should be set.  One place we might look for inspiration is the literature on de minimis risk 

management, where the problem of setting a de minimis threshold has received a good deal of 

attention.  De minimis risk management, as mentioned in the introduction, involves sorting the 

potential adverse consequences of a policy decision into two categories.  Those that have a risk below 

the de minimis threshold are dismissed, while those with a risk above the threshold are subjected to 

a full risk analysis to determine if they can be further controlled or mitigated.   

Some advocates of de minimis risk management propose a precise numerical threshold that 

might be used in any context (see for instance Comar, 1979, Mumpower, 1986) – an approach that 

immediately attracts charges of arbitrariness.  Others propose methods for deriving a threshold from  

the parameters of a given decision.  One prominent method is to let the threshold be guided by the 

level of equivalent background risk to which we are all exposed in our daily lives (see for instance 

Weinberg, 1985, section VII).  Suppose we are considering a policy that will affect a given population, 

such as the licensing of a new food additive.  If we consider the worst outcome that could befall 

individuals in the population as a result of exposure to the additive then, on the present approach, 

the de minimis threshold should be determined in relation to the background risk of comparable 

outcomes – the risk to which individuals are already subject as a result of ordinary everyday activities.  

Some have complained that this approach is still unacceptably arbitrary, however, as background 

levels of risk depend upon a range of contingent factors, can vary considerably from one time to 

 
that represents a de minimis risk.  And yet, since neither the de minimis threshold, nor the discounted outcomes, 
are represented anywhere in the model, the precise meaning of Pr is still left opaque.  Relatedly, a decision 
model will not, on this approach, contain sufficient information to construct a new model in the event that the 
de minimis threshold is adjusted or new evidence is acquired.  I discuss this further in Smith (ms).   

11 This is close to a suggestion made by Monton as a way of dealing with Pascal’s mugging scenarios (Monton, 
2019, section 4).  Monton does not develop the suggestion formally – rather, he sees himself as providing an 
‘impetus’ for a better decision theory (Monton, 2019, section 8).  His views are I think consistent with a 
development along the lines of DEUT, but could also be developed in alternative ways.  Others who have 
suggested the discounting of low probability outcomes include Smith (2014) and Buchak (2014, pp73-74) and 
Kosonen (2021) – though their motivations are different from those that I focus on here.  The idea is also present 
in much earlier sources, such Cournot (1843). 

12 The stronger assumption is endorsed by Monton (see Monton, 2019, p10).   
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another and one place to another, and are not always ignored (Peterson, 2002, pp52-53, Lundgren 

and Stefánsson, 2020, section 2). 

Concerns about fixing the de minimis threshold have led some to conclude that the very 

practice of de minimis risk management is wrongheaded (Lundgren and Stefánsson, 2020).  But it 

would be hasty, I think, to draw the same conclusion about a framework like DEUT.  Unlike a set of 

guidelines or instructions for managing risks, DEUT doesn’t have to specify a de minimis threshold, or 

even supply determinate criteria for finding one.  Rather, the de minimis threshold can simply be seen 

as another input into the decision procedure – another variable that gives the framework greater 

flexibility when it comes to capturing preferences.  Indeed, the preferences involved in the lexical 

priority and suspect information problems already place constraints upon where the de minimis 

threshold might be set – and this suggests a methodology on which our judgments about the 

rationality of certain preferences can serve as a guide to establishing the threshold (see Monton, 2019, 

section 6.1)13.  In any case, I won’t pursue this further here, as I think that DEUT is subject to at least 

two further problems – problems which show, in my view, that the framework is not viable as it stands.   

 

3  The Disjunction and Lottery Problems 

A disjunction is, in general, more probable than its disjuncts.  If we set a de minimis threshold t, the 

probability that an outcome O1 will result from action A and the probability that an outcome O2 will 

result from action A may both be below t, even though the probability that either O1 or O2 will result 

from A may be above t.  In this case it looks as though O1 and O2 can be legitimately ignored when 

deciding about A – as these are both de minimis risks.  And yet, if we ignore O1 and we ignore O2 then 

this is tantamount to ignoring O1  O2 which is not a de minimis risk and, thus, is the sort of thing that 

we are supposed to consider when making a decision.  As a result, the very idea of a de minimis risk 

seems to lead to inconsistent recommendations as to what we are allowed to ignore (Ebert, Smith and 

Durbach, 2020, pp438-440, for related discussion see Lundgren and Stefánsson, 2020, section 4).  

In a way, adopting a particular decision model resolves this dilemma, in that it forces us to 

specify the possible outcomes in one particular way.  But we now face the prospect that the rational 

permissibility of an action may hinge upon how finely the outcomes are individuated in the model.  

Suppose again that the probability that O1 will result from A and the probability that O2 will result from 

A are both below t, while the probability that either O1 or O2 will result from A is above t.  If our model 

includes O1 and O2 as separate outcomes then, according to DEUT, they can be legitimately ignored.  

If, on the other hand, we combine O1 and O2 into a single outcome – O1  2 – then, according to DEUT, 

this outcome must be considered.  This could make all the difference as to whether or not A is 

 
13 It is often observed that de minimis risk management cannot be squared with standard EUT (see for instance 
Peterson, 2002, p49, Adler, 2007).  While this practice would undoubtedly fit better with a framework like DEUT, 
that’s not to say that accepting DEUT would commit us to adopting the practice.  As explained in the main text, 
DEUT may offer the flexibility to capture preferences and practices that deviate from the recommendations of 
EUT, but it doesn’t, in and of itself, force us to endorse them. 
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predicted to be permissible.  Following Lee-Stronach, we might call this the disjunction problem (Lee-

Stronach, 2018, section 5, see also Monton, 2019, n26, Kosonen, ms, section 1). 

Suppose I’m considering whether to drill into the wall to hang a painting, and I’m concerned 

about the possibility that the wall contains asbestos.  Suppose I find out that, of all the houses built in 

the same area and around the same time as mine, one in 10,000 has asbestos in the walls, and that 

half of these contain blue asbestos and half contain brown asbestos.  If I drill into the wall then, given 

my evidence, there is a one in 20,000 chance that this will release blue asbestos dust (O1) and a one 

in 20,000 chance that this will release brown asbestos dust (O2)  – both of which are equally harmful 

to human health.  Suppose we set the de minimis threshold at one in 15,000.  If, in modelling this 

decision, we decide to distinguish these two outcomes then, since they both have a probability below 

the de minimis threshold, they will be discounted for the purposes of calculating a de minimis 

expected utility.  If these are the only negative outcomes that could result from my drilling into the 

wall then DEUT will predict that it is rationally permissible for me to proceed.  If, on the other hand, 

we roll these together into a single outcome – in which asbestos dust of some kind is released (O1  2) 

– then this will have a probability above the de minimis threshold and will be included in the 

calculation of de minimis expected utility.  If the disutility that I assign this outcome is sufficiently high, 

and eclipses the utility of hanging the painting, then DEUT will predict that it is not rationally 

permissible for me to proceed.    

What we have is a fine-grained model, which includes O1 and O2 as outcomes, and which 

predicts that it is permissible for me to drill into the wall, and a coarse-grained model, which includes 

O1  2 as an outcome, and which predicts that it is impermissible for me to drill into the wall.  EUT 

doesn’t face this problem.  In the standard EUT framework, if the release of asbestos dust is assigned 

a sufficiently high disutility, both the fine-grained and the coarse-grained models will predict that 

drilling into the wall is impermissible.  More generally, the predictions of EUT are guaranteed to be 

invariant under fine-graining14.   

   One way to approach the disjunction problem is to argue that certain ways of modelling a 

decision are to be strictly preferred over others.  A fine-grained model will, in effect, be more detailed 

and will include more information than a coarse-grained one.  A model in which the outcomes are 

differentiated more finely comes closer to Savage’s notion of a ‘grand world’ decision model in which 

every potentially relevant detail is included (see Savage, 1954, chap. 5).  Thus, it’s plausible that the 

predictions of a fine-grained model ought to take precedence over those of a coarse-grained model, 

in case those predictions conflict (Joyce, 1999, section 2.6, Thoma, 2019, section V).  If this thought is 

 
14 That is, substituting a coarse-grained outcome O1  …  n for a series of more fine-grained outcomes O1, …, On 

will make no difference to the standard expected utility of any action, provided the utility of O1 …  n in the coarse 
grained model is equal to the probability weighted average of the utilities of O1, …, On in the fine-grained model 

– u(O1  …  n) = 1≤x≤n Pr(Ox | O1  …  On).u’(Ox), where u is the utility function for the coarse-grained model and 
u’ is the utility function for the fine-grained model.  The proof is provided in the appendix.  As the above example 

illustrates, even if we observe this constraint, substituting O1  …  n and O1, …, On can still make a difference to 
the de minimis expected utility of an action. 
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on the right track then, in the above example, we should favour the first model, in which drilling into 

the wall is predicted to be permissible.  Whatever one thinks of this prediction, we would at least 

appear to have a definitive verdict about the case. 

 On closer inspection, though, matters are not so clear.  Aside from asbestos, there are any 

number of other materials that could be released if I drill into the wall – plaster, wood, concrete etc.  

I may be indifferent to these possibilities – but they could still be represented in a decision model.  If 

we took note of the precise quantity and chemical composition of the materials that could be released 

then we could, in principle, distinguish millions of possible outcomes that could result from my drilling 

into the wall – each of which has a probability below the de minimis threshold.  If we do this, however, 

then we will be unable to calculate a de minimis expected utility for the action.  That is, if O1, O2, …, 

On are all the possible outcomes which could result from an action A, such that Pr(O1| A)   Pr(O2 | A) 

 …  Pr(On | A) < t, then  = ~O1  ~O2  …  ~On = ~A and OO Pr(O | A).u(O) = OO 

Pr(O | A  ~A).u(O), which is undefined.  Rather than guiding us towards a definitive verdict about an 

action, the policy of differentiating outcomes as finely as possible will, in a case like this, cause the 

DEUT framework to collapse altogether15. 

While the disjunction problem draws attention to a kind of structural defect within DEUT, the 

second problem involves a straightforward counterexample: Consider a random process that could 

result in the death of an innocent.  Suppose a single marked ticket is spun in a barrel along with a 

number of blank tickets, before a ticket is randomly drawn.  If the result is a blank ticket then no action 

is taken, but if the marked ticket is drawn then an innocent person is put to death.   Or suppose, more 

vividly, that a single bullet is placed in a single chamber of one out of a set of revolvers before a 

revolver is selected at random, the cylinder is spun, it is pointed at an innocent person and the trigger 

is pulled.  Wherever we set the de minimis threshold, if the number of tickets or the number of 

revolvers is large enough, DEUT will predict that the outcome in which the person dies counts as a de 

minimis risk, which can be legitimately ignored.  But even if we accept the general idea that there are 

such things as de minimis risks, there is something deeply objectionable about the suggestion that an 

innocent dying in a ‘death lottery’ of these kinds could ever count as one.  If an agent was seriously 

considering subjecting a person to one of these set-ups, they would be obliged to consider the 

possibility that the person will die, irrespective of how low its probability might be.  

 
15 One way to avoid this result is to use what Lee-Stronach calls an ‘odds-based’ threshold, rather than an 

absolute probability threshold for the identification of de minimis risks (Lee-Stronach, 2018, p801).  On this 
approach, an outcome is deemed a de minimis risk if and only if its probability is low relative to some other 
outcome in the model – that is, lower than some set fraction of the probability of another outcome.  Moving to 
an odds-based threshold makes it impossible for all outcomes to be discounted, and ensures that the de minimis 
expected utility of an action is always defined.  The use of an odds-based threshold introduces a new problem, 
however – while a policy of finely individuating outcomes will no longer cause DEUT to break down, there is a 
danger that it will render the de minimis aspect of the framework inert.  If O1, O2, …, On are the possible outcomes 

which could result from an action A, such that Pr(O1| A)   Pr(O2 | A)  …  Pr(On | A) then, using an odds-based 
threshold, no outcome will count as a de minimis risk and the de minimis expected utility and the standard 
expected utility of A will coincide.  I won’t pursue this further here.  
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 We might term this the ‘lottery problem’ – in death lottery cases DEUT seems to make 

incorrect predictions about which outcomes count as de minimis risks.  And this will lead to incorrect 

predictions about our rational obligations.  As noted in section 2, in most circumstances I would be 

perfectly willing to drive to the pharmacy to buy painkillers to prevent a friend’s headache, even 

though there is some low risk that this action could result in the death of an innocent.  But I would not 

be willing to subject an innocent person to a death lottery in order to buy painkillers, no matter the 

number of tickets or revolvers involved16.  If the number is sufficiently large, however, then the 

probability of an innocent dying in the lottery may be lower than that incurred by a drive to the 

pharmacy.  In this case, if the death of an innocent counts as a de minimis risk relative to the pharmacy 

option, it must also count as a de minimis risk relative to the lottery option, and the two would have 

the same de minimis expected utility.  Further, it would not take much to tip the balance in favour of 

the death lottery.  If we added a small amount of additional utility to this option – say the painkillers 

come cheaper than they would at the pharmacy – then DEUT will predict that I am rationally obliged 

to choose this over the pharmacy option, as it would have both a higher de minimis expected utility 

and a higher standard expected utility.   

 

4  Normic Risk 

There is nothing in either EUT or DEUT that can make sense of the preferences just described; I would 

be willing to drive to the pharmacy to buy painkillers to prevent a friend’s headache, but I would not 

be willing to subject an innocent person to a death lottery for the same result, irrespective of the 

number of tickets involved.  That’s not to say, however, that such preferences are baseless.  The set-

up of a death lottery invites the thought that some ticket has to be drawn, and it could just as easily 

be the marked ticket as any other – or the bullet has to be in some chamber, and it might just as well 

be the chamber that rotates into alignment with the barrel when the trigger is pulled.  When it comes 

to driving to the pharmacy, this kind of reasoning doesn’t seem to apply.  Indeed, when evaluating 

this option, it would be natural to have the diametrically opposed thought that the only way in which 

an innocent could die is if something goes drastically wrong – the brakes fail, or I lose consciousness, 

or someone runs right in front of the car etc.  Under normal circumstances, a drive to the pharmacy is 

not going to result in a death.  But this seems not to be true of a death lottery, in which all of the 

outcomes would be equally normal.  These factors are not represented in a standard decision model 

– and yet they could well have some effect on our decision making. 

According to the conventional understanding of risk, the risk of a possible outcome is 

determined by its probability.  More precisely, the risk that a particular outcome would result from an 

action, given the agent’s evidence, depends upon how probable it is that the outcome would result 

 
16 There is a strong intuition to the effect that the former action is morally permissible while the latter is morally 
prohibited – a point made clearly by Thomson (1983, section 4) and anticipated by Nozick (1974, pp73-84).  For 
more recent discussion of this contrast see Hayenhjelm and Wolff (2012, section 7), Holm (2016, section 3). 
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from the action, given the agent’s evidence.  This account of risk has been taken for granted across a 

range of areas, including decision theory.  Recently, however, several authors have challenged the 

hegemony of this account, and put forward alternatives, such as the modal account (Pritchard, 2015), 

the relevant alternatives account (Gardiner, 2021) and the normic account (Ebert, Smith and Durbach, 

2020) – which will be my focus here.  According to the normic account, the risk of a possible outcome 

is determined by its abnormality.  More precisely, the risk that a particular outcome would result from 

an action, given the agent’s evidence, depends upon how abnormal it would be for the outcome to 

result from the action, given the agent’s evidence. 

But what is the notion of abnormality that is being invoked here?  Sometimes when we 

describe an event as ‘abnormal’ we mean only that it’s infrequent.  Suppose you are playing poker, 

holding a three-of-a-kind and, looking at your opponent, I whisper ‘she wouldn’t normally have a 

better hand than that’.  This may just be another way of saying that it would be relatively rare for your 

opponent to be dealt a better hand.  On other occasions, however, when we describe a possibility as 

abnormal, we are not just making a claim about frequencies.  Suppose you’re trying to decide whether 

to take the bus home and I remark ‘the bus ride wouldn’t normally take more than 20 minutes’.  Part 

of what I’m saying here is that circumstances would have to conspire against you in some way in order 

for the ride to take more than 20 minutes – it would have to be that the bus breaks down, or runs out 

of petrol, or gets stuck in traffic, or is diverted by roadworks etc. but, absent any of these interfering 

factors, the trip would take 20 minutes or shorter.  Put differently, if you get on the bus, and the trip 

ends up taking longer than 20 minutes, there would have to be some special explanation as to how 

this happened.  In contrast, if your opponent happened to be dealt a hand that beats your three-of-a-

kind then, while you may think yourself unlucky, no special explanation is needed for this.  When we 

say that a given outcome would be abnormal, what we are sometimes claiming is that there would 

have to be some special explanation if it were to result from the action in question (Smith, 2010, 2016, 

chap. 2).  It is this notion of abnormality that is appealed to in the normic account of risk. 

While it may be highly unlikely for the one marked ticket to be drawn, this is not something 

that would require a special explanation of any kind – as noted above, the marked ticket could be 

drawn just as easily as any other ticket.  If, on the other hand, an innocent person were to die as a 

result of my driving to the shops, there would have to be some explanation for this.  Possible 

explanations have already been suggested above – perhaps the brakes failed, or I lost consciousness, 

or someone ran right in front of the car etc.  Whatever the case, this could only happen as a result of 

some serious disruption to the normal course of events.  While a death is a possible outcome of a 

drive to the shops, it is a highly abnormal outcome.  But no disruption to the normal course of events 

is required for the marked ticket to be drawn.  Although a death lottery could, in principle, present a 

lower probabilistic risk of death than a drive to the shops, it will present a higher normic risk, and will 

do so irrespective of the number of tickets involved. 

It’s clear that the normic risk of various possible outcomes is something that could potentially 

be factored into a decision.  In order for this notion to play a role in a formal theory of decision making, 
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however, it will need to be made more formally tractable.  Suppose that propositions can be placed 

in an abnormality ordering, reflecting how much explanation their truth would require, given an 

agent’s evidence (see Smith, 2022, section 5).  Suppose that any two propositions can be compared 

for their normalcy – that is, suppose that, for any two propositions, either one is more normal than 

the other or both are equally normal.  Given these assumptions, propositions may be assigned 

numerical abnormality degrees – the maximally normal propositions will be assigned an abnormality 

degree of 0, the next most normal propositions will be assigned an abnormality degree of 1 and so 

on17.   

No proposition can be more normal than the universal proposition W which should always be 

assigned degree 0.  Similarly, no proposition can be less normal than the empty proposition  which 

should always be assigned an infinite degree of abnormality.  The final constraint to be placed upon 

an abnormality ordering concerns disjunctions: The only way in which X  Y can be true is if either X is 

true or Y is true.  To explain the truth of X  Y is to either explain the truth of X or the truth of Y.  As a 

result, the amount of explanation demanded by the truth of X  Y will be equal to either the amount 

demanded by X or by Y – whichever is less.  And the degree of abnormality of X  Y will be equal to 

the degree of abnormality of X or of Y – whichever is lower (see Smith, 2022, section 5).   

If, as above,  is a Boolean -algebra of propositions built from the elements of W, we can 

define an evidential abnormality function ab taking propositions in  into the set of nonnegative 

integers plus infinity – {0, 1, 2, 3, 4 … }.  Given the above constraints, ab will satisfy the axioms for a 

negative ranking function (see, for instance, Huber, 2009, section 4, Spohn, 2012, chap. 5, Smith, 2016, 

p169).  For X, Y  :   

R1 ab(W) = 0 

R2 ab() =  

R3 ab(X  Y) = min{ab(X), ab(Y)}18  

Conditional degrees of abnormality can be calculated according to the following formula: 

ab(X | Y) = ab(X  Y) – ab(Y) (where  –  = 0) – which corresponds to the standard definition of 

conditional negative ranks (Huber, 2009, p19, Spohn, 2012, section 5.3).  In this case, the abnormality 

of X given Y is equal to the abnormality that X adds to the existing abnormality of Y – the amount of 

additional explanation that X  Y requires over and above that required by Y.  This is equivalent to 

saying that the abnormality of Y and the abnormality of X given Y will together add up to the 

 
17 If we are dealing with an infinite stock of propositions, then one further assumption is needed; that every 
(potentially infinite) set of propositions has maximally normal members (the existing assumptions already 
guarantee this for finite sets).  

18 If, once again, we dealing with an infinite stock of propositions, we might strengthen R3 to: ab(V) = 

min{ab(X) | X  } for any   .  According to this principle, the degree of abnormality of the disjunction of a 
(potentially infinite) set of propositions will be equal to the degree of abnormality of its most normal members. 
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abnormality of X  Y.  On the normic account of risk, the risk that an outcome O will result from an 

action A can be gauged by the conditional abnormality of O given A – by ab(O | A).  The lower the 

value of ab(O | A), the greater the risk that O will result from A, with the risk being maximal when 

ab(O | A) = 0 – indicating that O represents one of A’s normal outcomes.   

Before proceeding further, it is important to emphasise that I am not proposing the normic 

account of risk as a competitor to the probabilistic account.  Rather, I take the view that both of these 

accounts capture prominent patterns in ordinary risk judgments, and that each may be regarded as a 

legitimate way of refining our ordinary risk concept (Ebert, Smith and Durbach, 2020, section 6).  When 

comparing the pharmacy option and the lottery option, on the present ‘pluralist’ approach there is no 

final fact of the matter as to which of these presents a higher risk that an innocent will die; the 

pharmacy option presents a higher probabilistic risk, while the lottery option presents a higher normic 

risk.  If forced to choose between these options, it might seem that we are forced to choose also 

between these two kinds of risk – to choose whether probabilistic or normic risk will serve as our 

guide.  In the next section, though, I will outline a picture on which both kinds of risk can play a role in 

determining which actions are rationally permissible. 

 

5  Normic De Minimis Expected Utility Theory 

There would be little purpose in introducing normic risk into EUT.  The notion of risk, in effect, plays 

only a single role in this framework – namely, determining the weights that are assigned to different 

outcomes for the purpose of calculating an expected utility – and probabilistic risk may be uniquely 

suited to this.  In DEUT, however, probabilistic risk is called upon to play two distinct roles; to 

determine which outcomes may be excluded from consideration and to determine the weights of 

those outcomes that remain.  The fundamental idea behind the final decision theoretic framework 

that I will describe is that these two roles should be decoupled – while probabilistic risk continues to 

determine how each of the outcomes in an expected utility calculation is weighted, it is normic risk 

that determines which outcomes have to be included in the calculation in the first place.  

 Suppose we specify some abnormality rank t to serve as the de minimis threshold, and 

consider a decision procedure in which expected utilities are calculated while excluding those 

outcomes that have an abnormality greater than t.  Rather than using Pr to assign the weights in an 

expected utility calculation for an action A, we use an amended function, which results from 

conditionalising Pr on the conjunction of the negations of all outcomes which, given A, have an 

abnormality greater than t.   That is, if  = {~O | O  O  ab(O | A) > t} we have it that:  
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𝑁𝐷𝐸𝑈(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴). 𝑢(𝑂)

𝑂 𝑶

= ∑ 𝑃𝑟(𝑂 | 𝐴  ). 𝑢(𝑂)

𝑂 𝑶

19 

The decision procedure selects the action or actions that have the highest normic de minimis expected 

utility, as given by this formula.  We might call this framework normic de minimis expected utility 

theory (NDEUT).   

NDEUT continues to embed the idea that if an outcome has a sufficiently low risk of resulting 

from a given action, then that outcome can be legitimately ignored – but the ‘risk’ is now interpreted 

as normic, rather than probabilistic.  According to NDEUT, the action or actions that maximise normic 

de minimis expected utility, calculated in this way, will be rationally permissible for an agent.  As with 

DEUT, I leave it open whether actions that maximise standard expected utility might also be regarded 

as rationally permissible.     

NDEUT, like DEUT, offers a straightforward solution to the problems of lexical priority and 

suspect information.  Not only would it be highly improbable for my drive to the shops to cause a fatal 

car accident or for the stranger to follow through on his threat, these outcomes would also be highly 

abnormal.  That is, these outcomes should be regarded as de minimis risks on either a probabilistic or 

a normic construal.  Given, then, an appropriate choice of threshold, driving to the shops and holding 

on to my wallet are options that could both have a positive normic de minimis expected utility – and 

a normic de minimis expected utility which exceeds that of handing my wallet over or of letting my 

friend suffer a headache.    

NDEUT also offers a solution to the lottery problem.  Unlike DEUT, NDEUT predicts that the 

outcome of a random lottery can never qualify as a de minimis risk, no matter how many tickets are 

involved.  As I argued in the previous section, all of the outcomes in a random lottery will be at maximal 

normic risk, as none would require special explanation.  Ultimately, though, we don’t need to rely here 

on this judgment – or any particular judgment about what does and doesn’t require explanation.  As 

long as it is accepted that all lottery outcomes are equally normal, and one of them is guaranteed to 

eventuate, then the formal properties of normic risk will ensure that the normic risk of each outcome 

is maximal.  Suppose O1, …, On are the possible outcomes of the lottery – one for each ticket in the 

barrel.  Since the lottery must have some outcome, we have it that ab(O1  …  On) = 0.  If the outcomes 

are all equally normal then ab(O1) = … = ab(On).  It now follows, using R3, that all outcomes are 

maximally normal – ab(O1) = … = ab(On) = 0.  Within NDEUT, no lottery outcome – including one that 

would result in the death of an innocent – could ever be regarded as a de minimis risk.   

As a result, NDEUT can recover the preferences described at the end of section 3.  Even if the 

probability of an innocent dying as a result of my drive to the shops is greater than the probability of 

 
19 An alternative non-action-relative definition of  could be given by {~O | O  O  ab(O | (O)) > t}, where 

, as introduced in n9, is a function mapping each outcome to its unique associated action.  As with DEUT, we 

could, once again, apply the de minimis threshold directly to states, defining  as {~S | S  S  ab(S) > t}.  This 
will lead to the same results on the assumption that every outcome is associated with a unique state, and states 

and actions are normically independent – for any S  S and A  A, ab(S | A) = ab(S). 
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an innocent dying in the death lottery, within NDEUT the former may count as a de minimis risk while 

the latter does not.  In this case, the normic de minimis expected utility of driving to the shops will 

exceed that of subjecting an innocent person to a death lottery, and it can exceed it by any amount, 

depending upon the disutility that one assigns to the death of an innocent.  

Finally, NDEUT offers a solution to the disjunction problem.  While a disjunction can be more 

probable than each of its disjuncts, it can never be more normal than each of its disjuncts.  The only 

way in which O1  O2 can result from an action A is if O1 results from A or if O2 results from A.  

Therefore, O1  O2 cannot represent a more normal possibility than both O1 and O2.  Rather, the 

abnormality of O1  O2 will be equal to either the abnormality of O1 or the abnormality of O2 – 

whichever is less.  Given R3, and the definition of conditional abnormality as detailed in the last 

section, it is straightforward to prove that, for any outcomes O1 and O2 that could result from an action 

A, ab(O1  O2 | A) = min{ab(O1 | A), ab(O2 | A)}20. 

On the normic account, unlike the probabilistic account, it is not possible for an outcome 

which is not a de minimis risk to be divided, without remainder, into outcomes which are de minimis 

risks.  If O1  O2 is not a de minimis risk then, on the normic account, the same will be true of O1 or O2 

(or both).  Within NDEUT, a policy of finely individuating outcomes will never generate a decision 

model in which every outcome that could result from an action represents a de minimis risk.  As a 

result, the normic de minimis expected utility of an action, unlike the de minimis expected utility, will 

always be defined, no matter how finely the outcomes in the model are individuated. 

While dividing outcomes more finely will never cause NDEUT to break down, it is important 

to note that it can still make a difference to the normic de minimis expected utility of an action, in 

which case the predictions of NDEUT, unlike those of EUT, are not completely invariant under fine-

graining.  Consider a coarse-grained model which includes an outcome O1  2 and a fine-grained model 

in which O1  2 is divided into the outcomes O1 and O2.  In NDEUT, if O1  2 is not a de minimis risk then, 

as we have seen, O1 and O2 cannot both be de minimis risks – but one of them may be.  Suppose O2 is 

a de minimis risk.  In this case, dividing O1  2 will lead to an adjustment in what we are required to 

consider; rather than having to consider O1  2 per se, we need only consider one of the ways in which 

O1  2 could be realised – the O1 way – and can legitimately ignore the O2 way.  This, in turn, could make 

a difference to the normic de minimis expected utility of the action which has O1  2 as one of its 

possible outcomes.  Importantly, though, this process of adjustment cannot continue indefinitely.  It 

can be shown that there is a point in the course of fine-graining at which the predictions of NDEUT 

will effectively stabilise, and will not change as a result of further fine-graining.  More precisely, it can 

 
20 ab(O1  O2 | A) = ab((O1  O2)  A) – ab(A)    [Defn of conditional abnormality] 

  = ab((O1  A)  (O2  A)) – ab(A)   

  = min{ab(O1  A), ab(O2  A)} – ab(A)   [R3] 

= min{ab(O1  A) – ab(A), ab(O2  A)} – ab(A)} 

= min{ab(O1 | A), ab(O2 | A)}    [Defn of conditional abnormality]  
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be shown that, for any NDEUT decision model, there is a more fine-grained model for which the normic 

de minimis expected utilities of all possible actions will be unaffected by any further fine-graining.  The 

proof of this result is provided in the appendix. 

Having set out some of the advantages of NDEUT, I will conclude by briefly noting one 

potential problem.  While the death lottery case revolves around a negative outcome which has a low 

probabilistic risk, but a high normic risk, cases of the reverse kind are also possible.  Suppose a building 

suffers structural damage during an earthquake and 20 supports are put in place to hold up the roof.  

Suppose these supports are only just able to bear the required weight – provided they all hold, the 

roof will remain in place, but if any one of them fails then the roof will collapse.  Suppose finally that 

each support has been carefully checked and tested and the risk of it failing is low, on both a 

probabilistic and a normic interpretation.  Probabilistic risk, as is well known, can aggregate.  That is, 

even if the probabilistic risk of any particular support failing is low, the probabilistic risk of at least one 

support failing – and the roof collapsing – may be high.  Normic risk, on the other hand, does not 

aggregate in this way.  If each support has a low normic risk of failing then, by R3, the normic risk of 

at least one of the supports failing will also be low – in which case, according to NDEUT, this could 

potentially count as a de minimis risk.  But if I was considering, say, taking up residence in the building, 

could it really be legitimate for me to ignore the outcome in which the roof collapses? 

 One immediate comeback is to point out that NDEUT will always allow us to set a threshold 

in such a way that this outcome will not count as a de minimis risk.  But, unless there is some 

independent reason as to why the threshold should be especially demanding in this kind of case, the 

response is liable to seem ad hoc.  I leave this problem open here – but I think it is important to correct 

at least one potential misconception.  One might think that cases of this kind would serve to favour 

DEUT – but this is not so.  As the discussion of the disjunction problem makes clear, the outcome in 

which the roof collapses could easily be divided into a series of fine-grained outcomes with 

probabilities below any de minimis threshold that we set, in which case DEUT would make the same 

problematic prediction.  This also serves to illustrate why the problem posed by this case could not be 

resolved by moving to a mixed normic/probabilistic conception of de minimis risk, on which an 

outcome can only be legitimately ignored if it has a low normic risk and a low probabilistic risk.  If we 

adopt a policy of finely individuating outcomes, then the second condition will effectively become 

redundant, and the mixed approach will collapse into NDEUT. 

If the gist of this paper is right, then the ignoring of small risks is not just a way of cutting 

corners when decision problems become too complex or unwieldy – it goes deeper than this, and may 

after all have a place in a formal theory of idealised decision making.  I have experimented with two 

attempts to import the idea of a de minimis risk into decision theory.  The first attempt, based upon a 

probabilistic conception of a small risk runs into two significant difficulties – it mishandles lottery 

cases, and threatens to collapse if the outcomes in a decision model are differentiated too finely.  The 

second attempt, based on a normic conception of a small risk, fares better, and is able to overcome 

these obstacles.  Whether this approach is ultimately acceptable will depend of course on the overall 
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balance of its costs and benefits – and this is not something I have been able to comprehensively 

assess here.   
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Appendix 1 

In n14 I claimed that dividing a coarse-grained outcome into a series of fine-grained outcomes will 

make no difference to the predictions of EUT – that is, will make no difference to the expected utility 

of any action – provided the utility assigned to the coarse-grained outcome is equal to the probability 

weighted average of the utilities assigned to the fine-grained outcomes.  In appendix 1, I make this 

claim, and the assumptions on which it rests, more precise, and outline a proof.  The theorem proved 

is, in effect, a variant upon a well-known result (see for instance Joyce, 1999, theorem 4.1, p121).   

An EUT decision model has the form W, , A, O, Pr, u.  W is a set of possible worlds, with 

propositions modelled as subsets of W.    (W) is a Boolean -algebra of propositions.  A and O 

  are partitions of W – sets of pairwise exclusive and jointly exhaustive nonempty subsets of W – 

which represent the set of actions and of outcomes respectively.  If    is a set of propositions, let 

cl() be the closure of  under the operation of disjunction.  Since O is a refinement of A we have it 

that cl(A)  cl(O) (with cl(A) = cl(O) in the case of a decision under certainty).  Finally, Pr is a probability 

function taking members of  into the set of real numbers in the unit interval and u is a utility function 

taking the members of O into the set of positive and negative real numbers (plus - if desired).  Say 

that a model W, , A, O’, Pr, u’ is a fine-graining of a model W, , A, O, Pr, u just in case cl(O)  

cl(O’) and u and u’ agree for any outcomes common to O and O’. 

Consider a model W, , A, O, Pr, u which includes O1  …  On as one of the outcomes in O, 

and a fine-graining W, , A, O’, Pr, u’ in which O1, …, On are each included in O’.  Assume that O and 

O’ are otherwise identical.  Assume that the utility of O1  …  On in the coarse-grained model is equal 

to the probability weighted average of the utilities of O1, …, On in the fine-grained model – 

u(O1  …  On) = 1≤x≤n Pr(Ox | O1  …  On).u’(Ox).  For any action X  A, EU(X) = EU’(X).  Proof Since 

cl(A)  cl(O), O1  …  On must entail a particular action A  A, in which case O1  …  On is logically 

equivalent to (O1  …  On)  A.  Since u(O1  …  On) = 1≤x≤n Pr(Ox | O1  …  On).u’(Ox) = 1≤x≤n 

Pr(Ox | (O1  …  On)  A).u’(Ox) we have it that: 

Pr(O1  …  On | A).u(O1  …  On)    = Pr(O1  …  On| A).1≤x≤n Pr(Ox | (O1  …  On)  A).u’(Ox) 

                 = 1≤x≤n Pr(O1  …  On | A).Pr(Ox | (O1  …  On)  A).u’(Ox) 

            = 1≤x≤n 1/Pr(A).Pr(Ox  A).u’(Ox) 

       = 1≤x≤n Pr(Ox | A).u’(Ox)  

In this case, substituting these two quantities in an expected utility calculation for A will make no 

difference to the result.  Since O and O’ only differ with respect to O1  …  On and O1, …, On, and u 

and u’ agree for all outcomes common to O and O’, any other terms in the expected utility calculation 

for A will be the same in the coarse-grained and fine-grained models, in which case EU(A) = EU’(A).  

Since O and O’ only differ with respect to O1  …  On and O1, …, On, and u and u’ agree for all outcomes 

common to O and O’, the expected utility calculation for any other action in A will be the same in the 

coarse-grained and fine-grained models in which case for any X  A, EU(X) = EU’(X).  QED  
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Appendix 2 

Within NDEUT we have enriched decision models of the form W, , A, O, Pr, ab, u, where ab is an 

abnormality function taking the propositions in  into the set of nonnegative integers plus  and 

meeting the constraints R1, R2 and R3 as detailed in section 4.  In section 5, I claimed that, for any 

NDEUT decision model, there is a more fine-grained model for which the normic de minimis expected 

utility of every action is stable and unaffected by further fine-graining.  In appendix 2, I make this claim, 

and the assumptions on which it rests, more precise, and outline a proof.    

As before, say that W, , A, O’, Pr, ab, u’ is a fine-graining of a model W, , A, O, Pr, ab, u 

just in case cl(O)  cl(O’) and u and u’ agree for all outcomes in O  O’.  Say that W, , A, O, Pr, ab, u 

is normically calibrated just in case for every outcome O  O if X is a nonempty proposition in  such 

that X  O then ab(X) = ab(O).  Less formally, W, , A, O, Pr, ab, u is normically calibrated just in case 

none of the outcomes in O ‘cuts across’ normalcy ranks – no outcome can be divided into more fine-

grained outcomes that differ in terms of their normalcy.   

Any NDEUT decision model W, , A, O, Pr, ab, u has a fine-graining that is normically 

calibrated.  Proof For each normalcy rank i, let Ni = {X   | ab(X)  i}.  Ni is the disjunction of all 

propositions that have an abnormality rank of at least i, and may be thought of as the set of worlds 

that have an abnormality of at least i.  Since  is a -algebra (and closed under countable disjunction), 

Ni will be included in , for each normalcy rank i.  For each i, let Ni =  Ni  ~Ni+1 (or  Ni = Ni  ~Ni>).  

Ni might be thought of as the set of worlds that have an abnormality of exactly i21.  If there are no 

propositions in  that are assigned an abnormality rank of i then Ni = .  Let N be the set of all 

nonempty propositions so defined.  Given a set of outcomes O, let O+ = {O  Ni | O  O, Ni  N, O  Ni 

 }.  Less formally, if an outcome O in O crosses several normalcy ranks then, in O+, O is divided 

according to these ranks.  If, say, some of the worlds at which O  O is true have abnormality 1, some 

have abnormality 2 and some have abnormality 3 then, instead of O, O+ will contain three outcomes: 

O-in-the-abnormality-1-way, O-in-the-abnormality-2-way and O-in-the-abnormality-3-way.  

From the definition of O+ it follows that cl(O)  cl(O+) in which case, if u is a utility function 

defined on O and u+ is a utility function defined on O+ such that u and u+ agree for any outcomes in 

O  O+ then W, , A, O+, Pr, ab, u+ will meet the conditions for a fine-graining of 

W, , A, O, Pr, ab, u.  For any outcome O+ in O+, O+ will be equal to O  Ni for some O  O and Ni  

N.  Consider a nonempty proposition X  O  Ni.  It follows that X  Ni  ~Ni+1 in which case ab(X)  i 

and X  Ni  Ni in which case ab(X)  i.  Therefore ab(X) = i.  It follows that W, , A, O+, Pr, ab, u+ is 

normically calibrated.  QED 

 
21 If  contains the singleton of each world in W – that is, if {w}   for each w  W – then it will be the case 

that Ni = {w  W | ab({w})  i} and Ni = {w  W | ab({w}) = i}.  If  does not contain the singleton of each world 

in W – and this constraint is not demanded here – then the possible world descriptions of Ni and Ni given in the 
main text won’t be reflected in the formalism (but can still serve as informal heuristics).   
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Suppose that we have a model W, , A, O, Pr, ab, u which includes O1  …  On as one of the 

outcomes in O and a fine-graining W, , A, O’, Pr, ab, u’ in which O1, …, On are each included in O’.  

Assume that O and O’ are otherwise identical.  Assume that u(O1  …  On) = 

1≤x≤n Pr(Ox | O1  …  On).u’(Ox).  Assume, finally, that W, , A, O, Pr, ab, u is normically calibrated.  

For any action X  A, NDEU(X) = NDEU’(X).  Proof As above, O1  …  On must entail a given action A 

in which case O1  …  On and (O1  …  On)  A are logically equivalent.  Let  = {~O | O  O, 

ab(O | A) > t} and ’ = {~O | O  O’, ab(O | A) > t}.  Suppose ab(O1  …  On | A) > t.  It follows, by 

R3, that ab(O1 | A) > t, …, ab(On | A) > t in which case Pr(O1  …  On | A) = 0 and Pr’(O1 | A) = … = 

Pr’(On | A) = 0 and u(O1  …  On) and u’(O1) … u’(On) will make no difference, respectively, to 

NDEU(A) or NDEU’(A).  Since O and O’ only differ with respect to O1  …  On and O1, …, On and u and 

u’ agree for all outcomes common to O and O’, it follows immediately that for any X  A, NDEU(X) = 

NDEU’(X).  

Assume instead that ab(O1  …  On | A)  t.  Given normic calibration, it follows that 

ab(O1  …  On | A) = ab(O1 | A) = … = ab(On | A)  t and that  = ’.  It follows further that O1  …  

On entails  in which case, for any proposition X  , Pr(X | O1  …  On) = Pr(X | O1  …  On) and 

Pr(X | (O1  …  On)  A) = Pr(X | (O1  …  On)  A).  Since u(O1  …  On) = 

1≤x≤n Pr(Ox | (O1  …  On)  A).u’(Ox) = 1≤x≤n  Pr(Ox | (O1  …  On)  A).u’(Ox)  we have it that: 

Pr(O1  …  On | A).u(O1  …  On)    = Pr(O1  …  On | A).1≤x≤n Pr(Ox | (O1  …  On)  A).u’(Ox) 

                   = 1≤x≤n Pr(O1  …  On | A).Pr(Ox | (O1  …  On)  A).u’(Ox) 

         = 1≤x≤n 1/Pr(A).Pr(Ox  A).u’(Ox) 

             = 1≤x≤n Pr(Ox | A).u’(Ox)  

In this case, substituting these two quantities in a normic de minimis expected utility calculation for A 

will make no difference to the result.  Since O and O’ only differ with respect to O1  …  On and O1, …, 

On, and u and u’ agree for all outcomes common to O and O’, any other terms in the normic de minimis 

expected utility calculation for A will be the same in both, in which case NDEU(A) = NDEU’(A).  Since O 

and O’ only differ with respect to O1  …  On and O1, …, On, and u and u’ agree for all outcomes 

common to O and O’, the normic de minimis expected utility calculation for any other action in A will 

be the same in both in which case for any X  A, NDEU(X) = NDEU’(X).  QED  

 

 

 

 

 


