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A moral requirement R1 is said to be lexically prior to a moral requirement R2 just in case we are morally obliged 

to uphold R1 at the expense of R2 – no matter how many times R2 must be violated thereby. While lexical priority 

is a feature of many ethical theories, and arguably a part of common sense morality, attempts to model it within 

the framework of decision theory have led to a series of problems – a fact which is sometimes spun as a ‘decision 

theoretic critique’ of lexical priority. In this paper, I develop an enriched decision theoretic framework that is 

capable of modelling lexical priority while avoiding all extant problems. This will involve introducing several new 

ingredients into the standard decision theoretic framework, including multidimensional utilities, de minimis 

risks, and the means to represent two different conceptions of risk. 
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1  Lives Over Headaches  

If offered a choice between taking the life of an innocent person and inflicting a short-lived, mild 

headache upon each of a number of people, some would say that we are always morally required to 

choose the latter option, no matter how many people are involved. On this view, no number of 

headaches could ever outweigh or counterbalance the value of a life – preserving life takes lexical 

priority over the avoidance of headaches. Principles like this concern decisions under certainty – they 

tell us what morality requires of us in a situation in which the outcomes of our choices are stipulated 

to be certain. According to some critics, however, the idea of lexical priority breaks down when it 

comes to decisions under risk – in which we have imperfect information about how our choices will 

turn out. What if avoiding the headaches incurs only a 50% chance that an innocent will die? Am I still 

morally required to inflict the headaches, no matter the number? What if the chance is only 20%, or 

1% or 0.000001% …? The most widely accepted formal framework for navigating decisions under risk 

is that provided by decision theory. According to some critics, any attempt to accommodate lexical 

priority within this framework will force us to stomach a series of unpalatable results, including highly 

implausible answers to the above questions (Jackson and Smith 2006, 2016; Huemer 2010; Colyvan, 

Cox and Steele 2010: section 3; Hansson 2013: chap. 2). This is sometimes referred to as the ‘decision 

theoretic critique’ of lexical priority (Lee-Stronach 2018). 

My aim here is not to argue that some things take lexical priority over others. My aim is not 

even to defend the possibility of lexical priority from the decision theoretic critique – though it will 

turn out that the critique, as it stands, trades upon modelling assumptions that are by no means 

obligatory. In this paper I will use the idea of lexical priority as a pretext for exploring several ways in 

which decision theory can be expanded and enriched. My primary aim is to develop and defend a new 
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decision theoretic framework which incorporates elements such as multidimensional utilities, de 

minimis risks and the means to represent two different conceptions of risk. The plan is as follows: In 

the next section I will explain the decision theoretic critique of lexical priority. More precisely I will 

outline two problems that are thought to beset any attempt to capture lexical priority within decision 

theory – the problem of permissiveness and the problem of risk. In the third section I will outline a 

strategy for solving the problem of permissiveness, linked to the idea of multidimensional utilities – 

utilities that capture several distinct and irreducible axes of value. In the fourth section I will outline a 

strategy for solving the problem of risk, linked to the idea of a de minimis risk – a risk that is so small 

it may be legitimately ignored for the purposes of decision making. In the fifth section, I discuss a 

problem associated with the introduction of de minimis risks into decision theory – one which could, 

at worst, precipitate the collapse of the entire framework. 

Up to this point, my paper will follow the contours of Chad Lee-Stronach’s excellent ‘Moral 

priorities under risk’ (2018). In particular, the idea of introducing multidimensional utilities to solve 

the problem of permissiveness, and the idea of introducing de minimis risks to solve the problem of 

risk are both pioneered by Lee-Stronach. Lee-Stronach is also aware that the second strategy has the 

potential to de-stabilise the decision-theoretic framework – though my way of shoring up the 

framework is rather different from his. In the sixth section, I take a new turn, outlining a novel 

conception of risk that I term the normic account. On the normic account, the risk of a given outcome 

is determined by its abnormality rather than its probability. In the final section, I argue that one way 

to successfully model lexical priority, while safeguarding the stability of the framework, is to equip 

decision theory with the means to represent both normic and probabilistic risk, and to define de 

minimis risks in normic terms. The appendix provides some supporting technical results.  

 

2 Lexical Priority and Expected Utility Theory 

Lexical priority is most naturally thought of as a relation between moral requirements or imperatives. 

We might say that a moral requirement R1 is lexically prior to a moral requirement R2 just in case a 

single violation of R1 is reckoned morally worse than any number of violations of R2. If R2 is the 

requirement that one not inflict mild headaches and R1 is the requirement that one not take the life 

of an innocent person, then we arrive at the ‘lives over headaches’ principle from the last section. 

While this suffices as a basic definition, for what follows we will need to rework it somewhat, in order 

to better fit with the vocabulary of decision theory.  

Lexical priority claims, of varying plausibility, are a feature of many ethical theories. For 

instance: Kant appeared to hold that one is never permitted to lie, even to protect others from harm 

(Kant 1797; Korsgaard 1986). Starkie claimed that it is always impermissible to deliberately convict an 

innocent person of a crime no matter how many guilty people one might convict in the process (Starkie 

1824: pp572-574). Dworkin held that one must never infringe an individual’s rights in order to pursue 
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general societal benefits or avoid societal costs (Dworkin 1977: chap 4, section 3, chap 7).1 The ‘lives 

over headaches’ principle, which is often used as a stand-in for lexical priority claims in general, is 

described as ‘obviously true’ by Thomson (1990: p169) and is sometimes said to be a part of common 

sense morality (see, for instance, Brennan 2006: p251; Dorsey 2009: pp36-37; Dougherty 2013: p1; 

Kirkpatrick 2018: p107). The principle is not universally accepted, though, and it’s prominence in the 

literature may be partly due to Norcross’s (1997, 1998) attempts to argue against it. 

The decision theoretic frameworks I consider here will use the following elements to model a 

decision problem: First, we require a pairwise exclusive and jointly exhaustive set of available actions. 

Second, for each action we require a pairwise exclusive and jointly exhaustive set of possible outcomes 

that could result. Third, we need a risk function which assigns some measure of risk to each outcome, 

given each action. Fourth, we need a value function which assigns some measure of value to each 

outcome. The final ingredient is a decision rule which selects an action or actions, given the outputs 

of the risk and value functions.2 

 Decision theory is sometimes given a subjective interpretation on which the value function 

and risk function are supposed to represent the views of a particular agent (who conforms to certain 

very broad constraints of rationality). On this interpretation, the decision rule selects the action or 

actions that are rational for that agent, given their own preferences and risk estimates. Our interest 

here, however, is with an interpretation on which decision theory offers moral guidance. For this 

purpose, we should take the value function to reflect objective values and the risk function to reflect 

the risk estimates that are supported by an agent’s evidence. On this interpretation, the action or 

actions that are selected by the decision rule are those that the agent is morally permitted to choose, 

given their evidence.3 I don’t assume here that the decision rule is something that an agent could 

necessarily follow when making decisions – at least not in all cases. It’s enough that the rule provide 

a means for us, as theorists, to identify the morally permissible options. 

 
1 Advocates and critics of lexical priority views don’t always use the term ‘lexical priority’. The term was coined 
by Rawls to describe one possible response to the problem of reconciling competing principles of justice (Rawls, 
1971: chap. 1, section 8). 

2 A model of a decision problem will sometimes include, in addition, a set of states of the world, which are 
relevant to determining the outcomes of the available actions and which lie beyond the agent’s control. While 
states won’t feature in the formalism used in the main text, I return to them in n6, n16 and n26. 

3 One might think that there is a fundamental mismatch between lexical priority and decision theory, on the 
grounds that the latter presupposes a consequentialist approach to morality, while the former is most at home 
within a non-consequentialist framework. One commitment that we do need to undertake, when modelling 
lexical priority in decision theoretic terms, is that lexical priority relations are grounded in underlying value 
differences: If we are morally obliged to inflict any number of headaches rather than a death, this is because a 
death has in some sense a greater disvalue than any number of headaches. Some might argue that lexical priority 
relations have a different source – that a large enough number of headaches would have a greater total disvalue 
than a death, but we would be obliged to choose them nonetheless, because acting morally is not always a 
matter of minimising total disvalue. While decision theory is, I think, flexible enough to emulate the predictions 
of such views, the question of whether it can be interpreted in a way that is faithful to their motivations is not 
one that I take up here. For discussion of these issues see, for instance, Colyvan, Cox and Steele (2010), Brown 
(2011), Lazar (2017), Smith and Black (2019), Black (2020) and Lazar and Graham (2021). 
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According to expected utility theory (EUT), which will serve as our starting point, the risk 

function assigns probabilities to the outcomes that could result from an action – that is, positive real 

numbers that sum to 1 – while the value function assigns utilities to these outcomes – that is, positive 

or negative numbers. On a moral interpretation, the probabilities should be understood as epistemic 

or evidential, and the utilities should be understood as measuring objective value. The decision rule 

selects the action or actions that have the highest expected utility, where the expected utility of an 

action is equal to the average of the utilities of each of its possible outcomes, weighted by their 

probabilities. When two or more actions are tied for the highest expected utility, all of these actions 

are selected. Utilities, when negative, might be referred to as disutilities and, if it is potential negative 

outcomes that bulk large in a decision problem, we might say that the decision rule selects the action 

or actions that minimise expected disutility. 

If A is the set of available actions, O is the set of possible outcomes, Pr is the probability 

function, and u is the utility function then, as is familiar, the expected utility of A  A can be written 

like this: 

𝐸𝑈(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴) 𝑢(𝑂)

𝑂 𝑶

4 

On a moral interpretation, the action or actions that maximise expected utility will be morally 

permissible for an agent, while the rest will be morally prohibited. In a case where only a single action 

maximises expected utility, this action will be morally required.5 

Following Jeffrey (1965), the As and Os can be regarded as propositions – the propositions 

that the action in question is performed or that the outcome in question is realised. Let propositions 

be modelled as subsets of a set of possible worlds W and let  be a Boolean -algebra of propositions 

– a set of propositions that contains W and is closed under negation and disjunction (and under 

countable disjunction in case  is infinite). The set of actions A and the set of outcomes O will both 

be partitions of W that are subsets of . We assume here that outcomes are individuated in such a 

way as to include the action that gives rise to them (see Colyvan, Cox and Steele 2010: section 3), in 

 
4 The formula used here is characteristic of evidential decision theory. In causal decision theory the probability 
assigned to an outcome O, given an action A, is understood not as a conditional probability, but as a kind of 
‘causal’ probability which, roughly speaking, reflects only A’s causal influence upon O, bracketing any purely 
evidential connection between A and O (see Gibbard and Harper 1978; Lewis 1981; Joyce 1999; Egan 2007; 
Buchak 2016: section 2). The dispute between evidential and causal decision theory (on which I mean to take no 
position here) is orthogonal to the issues under discussion – in the sense that none of the examples I consider 
would prompt a different treatment from the two approaches. There are substantial questions about how one 
might develop ‘causal’ versions of the various decision theoretic frameworks that I canvass – but these will have 
to be postponed for another occasion. 

5 For more on moral interpretations of expected utility theory see Broome (1991), Jackson (1991, 2001), Colyvan, 
Cox and Steele (2010), Lee-Stronach (2018: section 2), Lazar and Lee-Stronach (2019: section 2). 
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which case O will be a refinement or fine-graining of A (every element of O is a subset of an element 

of A).6 

Pr can be defined as a function taking the members of  to real numbers in the unit interval 

and conforming to the probability axioms: 

For X, Y  :  

P1 Pr(W) = 1 

P2 Pr(X)  0 

P3 If X and Y are inconsistent then Pr(X  Y) = Pr(X) + Pr(Y)  

If we are dealing with an infinite stock of propositions we might strengthen P3 to: 

If    is a set of pairwise inconsistent propositions then Pr(V) = X   Pr(X) 

The conditional probabilities required for calculating expected utilities can be derived according to the 

standard ratio formula: Pr(X | Y) = Pr(X  Y)/Pr(Y), and is undefined in case Pr(Y) = 0. Given this 

definition, we can easily prove a conditional version of the axiom P3:  

CP3 If X and Y are inconsistent and Pr(Z) > 0 then Pr(X  Y | Z) = Pr(X | Z) + Pr(Y | Z).7 

If there is only a single outcome O associated with an action A, then A and O will be identical 

propositions and the expected utility of A will be equal to whatever utility is assigned to O. If all 

available actions are like this, we have a decision under certainty, in which A = O. Otherwise, we have 

a decision under risk.8 In a decision under certainty an agent is, in effect, choosing between outcomes, 

 
6 As mentioned in n2 a formal model of a decision problem will sometimes include a set of states, which allow 
us to factor an outcome into a contribution due to the agent and a contribution due to the world. Formally, the 

set of states S will be another partition of , such that every outcome O  O is associated with an action, state 
pair. The probability of an outcome O, given an action A will be equal to the sum of the probabilities, given A, of 
those states that would, in combination with A, lead to O. This additional structure allows us to define richer 
relations between actions – such as relations of dominance. 

7 Assume X and Y are inconsistent and Pr(Z) > 0. 

Pr(X  Y | Z)  = Pr((X  Y)  Z)/Pr(Z)   [Defn of conditional probability] 

  = Pr((X  Z)  (Y  Z))/Pr(Z)   

  = (Pr(X  Z) + Pr(Y  Z))/Pr(Z)   [P3] 

= Pr(X  Z)/Pr(Z) + Pr(Y  Z)/Pr(Z) 

= Pr(X | Z) + Pr(Y | Z)    [Defn of conditional probability] 

8 It is common in decision theory to distinguish between a decision under risk, in which it is possible to assign a 
probability to each outcome given each action, and a decision under uncertainty or ignorance, in which some 
probabilities cannot be assigned and we may wish to use a decision rule that selects actions based only on the 
utilities of their possible outcomes (see for instance Resnik 1987: p14, chap. 2; Joyce 1999: p16). This way of 
drawing the distinction presupposes, however, that risk is to be understood exclusively in probabilistic terms 
and, since I will be questioning this assumption, we might opt for something more neutral: A decision under risk 
is one in which the risk function is defined for each action/outcome pair, and a decision under uncertainty is one 
in which there are action/outcome pairs for which the risk function goes undefined. My attention here will be 
restricted to decisions under risk, so characterised. 
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based upon their utilities. Suppose O* is an outcome in which an innocent person dies and O, O, 

O… are a series of outcomes in which one person suffers a mild headache, two people suffer a mild 

headache, three people suffer a mild headache and so on. If preserving the life of an innocent takes 

lexical priority over the avoidance of headaches then, in a decision under certainty, one is morally 

required to choose any one of the outcomes in O, O, O… over O*. In EUT, this will require that O* 

be assigned a disutility that is greater than every outcome in O, O, O… But if every headache adds 

a constant disutility9 then, given the constraints of the framework, the only way to achieve this is to 

allow O* to be assigned a disutility that is infinite (Jackson and Smith 2006; Huemer 2010; Colyvan, 

Cox and Steele 2010: section 3).10 

If O* is assigned infinite disutility, then we can capture the claim that preserving the life of an 

innocent takes lexical priority over the avoidance of headaches. But this strategy leads to a number of 

untoward consequences. The trouble with an infinite disutility is that it remains infinite when 

multiplied by any positive probability (Lee-Stronach 2018: section 3, for related discussion see Hájek 

2003: section 3). If O* has an infinite disutility, and an action has a non-zero probability of resulting in 

O* then one of the terms in the expected utility calculation for the action will be negative infinity. In 

 
9 If we are prepared to accept that there is no minimal unit of utility or disutility, then headaches could be 

assigned a diminishing marginal disutility tending towards 0. In this case, the disutility of O, O, O… would 
tend to a finite limit and the death of an innocent could be assigned a disutility that exceeds this limit (Lazar and 

Lee-Stronach 2019). Suppose, for instance, that O is assigned a utility of -1, O is assigned a utility of -1½, O is 
assigned a utility of -1¾ and so on. If O* were assigned a utility of -2, we would have the desired result that an 

agent would be morally required to choose any member of O, O, O…, rather than O*. There are significant 
drawbacks, however, to accommodating lexical priority in this way. Most obviously, it requires us to place 
different value on the wellbeing of different people. I won’t discuss this further here – but for more on the 
general strategy of capturing lexical priority by placing finite bounds on the utility and disutility of certain 
benefits and costs see Black (2020) and Hawthorne, Isaacs and Littlejohn (2023). 

10 Suppose we consider all of the possible lotteries that can be constructed from a set of outcomes O – that is, 
the first order lotteries that confer probabilities upon the outcomes, the second order lotteries that confer 
probabilities upon the first order lotteries and the outcomes, the third order lotteries that confer probabilities 
upon the first and second order lotteries and the outcomes and so on. Provided an agent’s preferences amongst 
these outcomes and lotteries conform to certain axioms, their preferences over O can be represented by a finite-
valued utility function, unique up to positive linear transformation (see, for instance, Resnik 1987: chap. 4, Steele 
and Stefánsson 2016: section 2.3). If we accept that rational preferences must conform to these axioms, then 
we have an argument for limiting ourselves to finite utilities and disutilities. On a moral interpretation, in order 
for this kind of argument to engage, we would need to think of the axioms as representing constraints upon the 
comparative value predictions of any viable axiology. 

One axiom that is crucial for driving this representation theorem is the Archimedean or continuity 
axiom. On the moral interpretation, the continuity axiom entails that if O1 is better than O2 which is in turn better 
than O3 then, for some real number p, O2 is just as good as a lottery which has a p probability of leading to O1 
and a 1-p probability of leading to O3. In effect, the continuity axiom guarantees that the value difference 
between any two outcomes can be bridged by lotteries that confer different probabilities upon them. On its 
face, it’s not obvious that any viable value assignment would have to satisfy this constraint. Many would take 
the view that a lottery which risks a severe negative outcome should never be tolerated for a minor benefit, no 
matter the probabilities involved. Whatever the case, it is clear that any approach which allowed infinite utilities 
or disutilities and, thus, infinite value differences, would permit violations of the axiom (Colyvan, Cox and Steele 
2010: pp513-515; Hájek 2018: n7). The significance of representation theorems is not my primary topic here, 
but I will return to the continuity axiom in n14 and n27. 
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this case, the other terms in the calculation (if finite) will make no difference to the result – the 

expected utility of the action will also be negative infinity. 

Suppose a patient is suffering from a disease which will be fatal if left untreated, and a doctor 

must choose between three different medications to administer. While all three medications will cure 

the disease, each has a chance of triggering a fatal reaction in the patient; there’s a 0.2 probability 

that the patient will have a fatal reaction to the first medication, a 0.01 probability that they will have 

a fatal reaction to the second and a 0.00000001 probability that they will have a fatal reaction to the 

third. All else is equal, it’s clear that the doctor would be morally obliged to administer the third 

medication. More generally, it’s clear that administering the third medication would be morally 

preferable to administering the second which would, in turn, be morally preferable to administering 

the first. And yet, on the infinite disutility strategy, the actions would all turn out to be morally 

equivalent – as each will have an expected utility of negative infinity. One might think this puts the 

doctor in a kind of a moral dilemma, in which all available actions are prohibited (see Hayenhjelm and 

Wolff 2012: section 7, Holm 2016). As Lee-Stronach points out, however, moral dilemmas are 

effectively precluded on a moral interpretation of expected utility theory, and the problem is really 

one of permissiveness (Lee-Stronach 2018: section 3). If every available action in a decision problem 

has the same expected utility – even if this happens to be negative infinity – then they will all be 

selected by the decision rule and deemed morally permissible. 

The problem of permissiveness stems from the fact that an infinite disutility will swamp any 

expected utility calculation in which it is allowed to feature. This also leads to what Lee-Stronach dubs 

the problem of risk (Lee-Stronach 2018: section 4). If a death is assigned an infinite disutility, then an 

action that is certain to result in a death will have the same expected disutility – infinite – as an action 

that merely risks a death, even if the risk involved is very low. In some sense, the infinite disutility 

strategy deems certain death and a risk of death to be equally (infinitely) bad. As a result, one would 

be morally obliged to choose any number of headaches over an action that risks a death. But many 

would take the view that if the risk of death is very low, then it may be morally acceptable to choose 

the action – particularly if the risk is comparable to that involved in everyday activities such as driving 

(see for instance Norcross 1998). If a friend is feeling a headache coming on then many of us would 

be perfectly willing to take a short drive to the pharmacy to buy them some painkillers even though 

we are aware, at some level, that this action might result in an accident in which an innocent person 

loses their life. Even if the probability that the drive will result in a death is, say, 0.00000001 (1 in 10 

million), on the infinite disutility strategy, the drive would still have an expected utility of negative 

infinity.11 

 
11 Another troubling feature of an infinite disutility is that, unless we introduce multiple orders of infinity, it will 
represent an upper limit on the disutility of any possible outcome. If a death is assigned an infinite disutility, as 
the strategy demands, then there will be no scope to assign a greater disutility to any other outcomes – including, 
say, two deaths or three deaths etc. If one were forced into a choice between these outcomes then they would 
all be deemed morally permissible, as they would have the same (infinite) disutility. This might be regarded as a 
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The problem of permissiveness and the problem of risk seem closely related – and may appear 

to share the same source. But that’s not to say that they necessarily have the same fix. Following Lee-

Stronach, I will be arguing that these two problems in fact require different amendments to the 

framework of expected utility theory, with the first prompting us to rethink the value function and the 

second prompting us to rethink the risk function. 

 

3  Multidimensional Utility 

To make headway with the problem of permissiveness, we need to move away from the idea that 

lexical priority requires us to posit infinite differences in value – to regard certain outcomes as being 

infinitely worse than others. An alternative approach is to suppose that certain factors can only 

contribute to the value or disvalue of an outcome on the condition that other factors are not in play. 

When comparing the value of two possible outcomes it may be that the number of headaches being 

suffered will only be a relevant consideration in so far as no lives are hanging in the balance. On this 

way of thinking, it’s not that a death is 1,000 times or 1,000,000 times or an infinite number of times 

as morally bad as a headache. It’s better to say that the two cannot be directly compared, because a 

headache will only assume moral significance when lives are not at stake – that is, when appropriate 

precautions have been taken against the loss of life. 

This perspective might be captured in a framework known as ‘lexicographic’ expected utility 

theory (LEUT).12 Rather than supposing that the values of outcomes can be can be measured along a 

single dimension, each outcome is now assigned a multidimensional utility – a sequence of positive or 

negative numbers. The possible outcomes in a decision model can then be placed in a lexicographic 

order, in much the same way that one would order words alphabetically; with respect to the first 

utility dimension (first letter), then with respect to the second utility dimension (second letter) in the 

case of any ties, then with respect to the third in the case of further ties and so on (thus ‘lexicographic’ 

– see Rawls 1971: n23). When comparing the value of two outcomes, the second dimension will only 

contribute to the comparison if the outcomes don’t differ with respect to the first dimension, and the 

third will only contribute to the comparison if the outcomes don’t differ with respect to the first or 

second and so on.13 

 
third problem that besets the infinite utility strategy – albeit one that can be easily solved by the measures 
introduced in the next section. I will return to this in n15. 

12 The possibility of lexicographic decision theory was mooted by von Neumann and Morgenstern (1947: p631), 
and developed in detail by Hausner (1954) (see also Fishburn 1982; Blume, Brandenburger and Dekel 1989). This 
framework has not been widely discussed in the philosophical literature – but see Hájek, (2003; section 4.2), 
Lee-Stronach (2018: section 3) and Russell and Isaacs (2021: sections 4 and 5). Lee-Stronach, as mentioned, uses 
the framework for the very same purpose that I do here. 

13 More formally, if the multidimensional utility of O1 is u1(O1), u2(O1), u3(O1) … and the multidimensional utility 

of O2 is u1(O2), u2(O2), u3(O2) … then the first outranks the second just in case, for some u i, ui(O1) > ui(O2) and 
for all j < i uj(O1) = uj(O2). 
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On this framework, the expected utility of an action will also be multidimensional, with the 

first dimension equal to the probability weighted average of the first utility dimensions of the 

outcomes that could result, the second dimension equal to the probability weighted average of the 

second dimensions etc. If the utility of an outcome O is written u1(O), u2(O), u3(O) …, then the 

expected utility of an action A can be written EU1(A), EU2(A), EU3(A) … where  

𝐸𝑈𝑖(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴) 𝑢𝑖(𝑂)

𝑂 ∈ 𝑶

 

The available actions in a model of a decision problem can also be placed in a lexicographic order 

according to their multidimensional expected utilities, with the decision rule selecting whichever 

action or actions are ranked first.14 On a moral interpretation, these will be the actions that are morally 

permissible for an agent.  

Rather than assigning a death a disutility that is infinitely greater than that of a headache, 

within LEUT we have a new option for realising lexical priority; the two can be assigned disutility 

relative to different dimensions. Suppose we posit just two dimensions to utility, such that a death is 

assigned the utility -1, 0 while a headache is assigned the utility 0, -1. In this case, the outcome O* 

in which an innocent loses their life is assigned -1, 0 while the outcomes O, O, O… in which one 

person suffers a mild headache, two people suffer a mild headache, three people suffer a mild 

headache… will be assigned, respectively 0, -1, 0, -2, 0, -3… In this case, O* will rank lower than 

every outcome in O, O, O and we will have the result that one is morally required, in a decision 

under certainty, to choose any one of these outcomes over O*. Importantly, this is not because a 

death is reckoned to be infinitely worse than a headache – rather it is because a headache will only 

assume moral significance on the condition that appropriate precautions have been taken against the 

loss of life – and deliberately taking a life is inconsistent with this condition being met. 

The lexicographic strategy avoids the problem of permissiveness. Suppose again that a doctor 

is forced to choose between administering three medications which have, respectively, a 0.2 

probability, a 0.01 probability and a 0.00000001 probability of triggering a fatal reaction in the patient. 

Assuming that the options are otherwise equal, administering the first medication will have an 

expected utility of -0.2, 0, administering the second will have an expected utility of -0.01, 0 and 

administering the third will have an expected utility of -0.00000001, 0. If administering no 

 
14 The continuity axiom, as mentioned in n6, is crucial to the transition from EUT to LEUT. Consider again the set 
of lotteries which can be constructed from the outcomes in O. If we give up continuity, but maintain that an 
agent’s preferences over these outcomes and lotteries conform to von Neumann and Morgenstern’s other 
axioms (order and independence), their preferences over the outcomes can be represented by a lexicographic 
ordering of multidimensional utilities, where each dimension ui is unique up to the summing of linear 
transformations of u1…ui, in which ui receives a positive linear transformation (see for instance, Fishburn, 1982: 
section 5.6; Blume, Brandenburger and Dekel 1989). If we are inclined to doubt that continuity represents a 
constraint on rational preferences or, on the moral interpretation, a constraint on legitimate value comparisons, 
then we have reason to adopt multidimensional over unidimensional utility. 
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medication has an expected utility of -1, 0 then we have the desired result that the doctor is morally 

required to choose the third.
15 

  

4  ‘Appropriate Precautions’ and De Minimis Risk  

While it offers a solution to the problem of permissiveness, LEUT is still subject to the problem of risk 

(see Lee-Stronach 2018; Hawthorne, Isaacs and Littlejohn 2023: section 1). If a death has the utility 

-1, 0 then an action such as driving to the pharmacy, which has a 0.00000001 probability of resulting 

in a death would, all else equal, have an expected utility of -0.00000001, 0. If letting one’s friend 

suffer a headache has utility 0, -1 then this would outrank the drive to the pharmacy and would still 

be the preferred option in a choice between the two. On the lexicographic strategy, like the infinite 

utility strategy, one is still morally obliged to choose any number of headaches over an action that 

risks a death. Unlike the infinite utility strategy, this is not because a death is deemed an infinitely 

worse outcome that must be avoided at all costs. Rather, it is because a 0.00000001 probability of a 

death – indeed any positive probability of a death – will be enough, within LEUT, to neutralise the 

moral significance of a headache. 

 This observation already points the way to a possible solution. The lexicographic strategy, as 

discussed in the last section, is based on the idea that a headache will only assume moral significance 

on the condition that appropriate precautions have been taken against the loss of life. But what if we 

were to adopt a less demanding conception of what constitutes ‘appropriate precautions’? In 

particular, what if taking appropriate precautions against the loss of life, and activating the moral 

significance of something like a headache, were compatible with there being some non-zero risk of a 

death? Suppose we specify a probability value to close to, but greater than, 0 to serve as the ‘de 

minimis’ threshold. If the probability that an outcome O would result from an action A is lower than t 

then O might be described as a de minimis risk. Suppose that, even if an action carries some risk of a 

death, if the risk is classified as de minimis, then the agent will still count as having taken appropriate 

precautions against the loss of life. 

One way to implement this idea within LEUT would be to change the way that actions are 

ranked based on their expected multidimensional utilities – to allow an action with an expected utility 

of -0.00000001, 0 to somehow rank higher than actions with expected utilities of 0, -1, 0, -2, 

0, -3… But the approach I pursue here is different, and intervenes at an earlier stage of the decision 

procedure. Rather than using the evidential probability function Pr to assign the weights in an 

expected utility calculation, we instead use a truncated function, which results from conditionalising 

Pr on the conjunction of the negations of every de minimis risk – every outcome which, given its 

associated action, has a probability less than or equal to the de minimis threshold t. If  is a function 

 
15 The lexicographic strategy is also capable of dealing with the ‘upper limit’ problem discussed in n11. That is, 

we now have the resources to separate the disutility of a single death (-1, 0) from that of two deaths (-2, 0), 

three deaths (-3, 0) etc.  
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that maps each outcome to its associated action and  is a proposition defined as {~O | O  O  

Pr(O |(O)) < t} then, for each utility dimension ui, we have it that:  

𝐷𝐸𝑈𝑖(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴) 𝑢𝑖(𝑂)

𝑂 ∈ 𝑶

= ∑ 𝑃𝑟(𝑂 | 𝐴  ) 𝑢𝑖(𝑂)

𝑂 ∈ 𝑶

16 

Actions are then subject to the usual lexicographic ordering, but based upon their de minimis 

multidimensional expected utilities, as supplied by this formula, with the decision rule selecting the 

action or actions that rank highest. We might call this framework de minimis lexicographic expected 

utility theory (DLEUT). 

Less formally, we might think of the calculation of de minimis multidimensional expected 

utilities as a two-step process: First, we list all of the outcomes that could possibility result from each 

action and discount any outcomes with a probability below t. Second, we update the probabilities of 

those outcomes that remain, and use these probabilities to calculate expected utilities, for each utility 

dimension, and generate a lexicographic ordering of actions in the usual way. On a moral 

interpretation of DLEUT, the action or actions that have the highest de minimis multidimensional 

expected utilities, calculated in this way, will be morally permissible for an agent. For present 

purposes, I don’t commit to the stronger assumption that these are the only actions that are morally 

permissible. In particular, I leave it open whether the actions which maximise standard 

multidimensional expected utility (if different) might also be morally permitted. DLEUT embeds the 

idea that de minimis risks may be legitimately discounted for the purposes of decision making – but, 

on the present interpretation, it doesn’t require that they be discounted. 

If the outcome O* in which an innocent loses their life is assigned utility -1, 0 while the 

outcomes O, O … in which one person suffers a mild headache, two people suffer a mild headache 

… are assigned, respectively, the utilities 0, -1, 0, -2… then DLEUT will predict that one is morally 

obliged to choose any one of the latter over the former. When it comes to decisions under certainty 

DLEUT will make the same predictions as LEUT. But when it comes to decisions under risk, the 

predictions can diverge. Suppose again that driving to the pharmacy has a 0.00000001 probability of 

leading to a death. Suppose we set the de minimis threshold at 0.00000002 (1 in 5 million). In this 

case, even if a death is assigned a utility of -1, 0, this won’t register in the de minimis expected utility 

of this action. Rather, driving to the pharmacy will have a de minimis expected utility of 0, 0 which 

will outrank the utility of letting one’s friend suffer a headache (0, -1) making it a morally permissible 

choice.17 DLEUT is capable of delivering the result that any number of headaches must be morally 

 
16 Another option is to define proposition  in terms of states (if we include them in our decision model) – 

{~S | S  S  Pr(S) < t}. This will lead to the same results provided we make the following assumptions: (i) 
Outcomes are associated with a unique state as well as a unique action – that is, O is a more fine-grained 

partition than both A and S. (ii) States and actions are probabilistically independent – for any S  S and A  A, 
Pr (S | A) = Pr(S). 

17 Note that DLEUT will not predict, on the present interpretation, that driving to the pharmacy is morally obliged 
since, when we switch to standard expected utility, the ranking of the two options is reversed. For this stronger 
result we would need an interpretation on which all and only the actions that maximise de minimis expected 
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preferred to a death, but without delivering the result that any number of headaches must be morally 

preferred to a mere risk of a death – not, at any rate, if the risk is sufficiently low.18 

The strategy of introducing a de minimis threshold as a way of solving the problem of risk is 

also pursued by Lee-Stronach (2018: section 5). But, rather than moving to a new framework such as 

DLEUT, Lee-Stronach suggests that we should adjust the way in which we model decision problems – 

leaving out any possible outcomes that have a probability lower than the threshold. On Lee-Stronach’s 

approach, the probability function that features in the model can no longer be interpreted as 

representing an agent’s evidential probabilities, since there may be outcomes with a positive 

evidential probability that are nevertheless missing from the model. Rather, it would need to be 

interpreted along the lines of Pr above – that is, as representing the agent’s evidential probabilities 

conditionalised on the negations of all de minimis risks. 

While Lee-Stronach’s approach may in one sense lead to the same results, I think there are 

significant advantages to representing the discounting of outcomes in the decision rule itself, rather 

than treating it as something that precedes the very construction of a decision model. For one thing, 

the richer models deployed in DLEUT contain sufficient resources to construct a new, updated model 

in the event that the de minimis threshold is altered or the agent acquires new evidence. I consider 

these possibilities in turn.  

Lee-Stronach accepts that the de minimis threshold is something that can vary from one 

context to another and may be sensitive to factors such the moral stakes and the time and resource 

pressures bearing on the decision-maker (Lee-Stronach 2018: pp800-801). I agree that the de minimis 

threshold can vary, and that these kinds of factors may have an influence on where it should be set. 

Changes in these factors may of course be reflected in the utility function or other aspects of a decision 

model, but they can also lead to changes in the de minimis threshold, which will have a distinctive 

effect on the moral permissibility of the actions one is considering. DLEUT allows us to model the 

effects of such changes such by inserting a new number into the definition of  and recalculating the 

de minimis expected utilities of each candidate action.  

Whether or not the de minimis threshold can shift in this way, it’s clear that the acquisition of 

new evidence is something that can alter the moral permissibility of actions. DLEUT can be given a 

dynamic aspect based on the idea that an agent’s evidential probability function will update by 

conditionalisation on any new evidence that the agent acquires. That is, if an agent with an evidential 

 
utility are morally permissible for an agent. While there may be a case to be made for such an interpretation, it 
is not needed to solve the problem of risk. 

18 It is often assumed that the discounting of low risk possibilities is something that is only useful for bounded 
agents, who have limited time and energy for making decisions (see for instance Adler 2007). But if the present 
considerations are right then taking every possibility seriously, no matter how low the risk, is not just something 
that can make a decision more laborious – it can actively obscure certain sources of value that would otherwise 
be revealed. If one is considering driving to the pharmacy, and treats it as a live possibility that the drive could 
result in a death then one will, in effect, treat this as a life-or-death decision which will, in turn, occlude the value 
of something like relieving a friend’s headache. As a result, ignoring low risk outcomes may be something that 
is important even for an idealised agent (for related discussion see Smith 2022b: section 1). 
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probability function Pr acquires evidence E, their evidential probability function will shift to PrE, where 

PrE(P) = Pr(P | E) for any P  , and a new truncated evidential probability function PrE, can then be 

calculated as above. This will provide a way of modelling changes in the moral permissibility of actions 

as evidence is acquired.  

It is important to note that conditionalising the agent’s original truncated evidential 

probability function Pr on E will not, in general, lead to the same results as conditionalising Pr on E 

and constructing a new truncated function – that is, PrE, will not in general be equal to Pr,E. The 

reason, roughly put, is that conditionalising Pr on E can lead to a reclassification of de minimis risks – 

outcomes which counted as de minimis risks prior to the update may cease to do so once the update 

has taken place. This effect cannot be reproduced by directly conditionalising Pr on E.19 In fact, a 

unique PrE, cannot be derived, by any method, from Pr and E alone – the nature of PrE, will be 

sensitive to the Pr and t from which Pr is generated.20 As a result, any decision model that leaves 

these elements out, such as the models proposed by Lee-Stronach, will be too impoverished to 

capture these dynamics.  

 

5  The Threat of Collapse  

While it offers a solution to the problem of risk, introducing the notion of a de minimis risk brings a 

certain instability into the framework of expected utility theory. Suppose an agent is faced with a pile 

of 10 million indistinguishable pills. One of these pills is poisoned and will cause death if ingested. The 

remaining pills are painkillers that will relieve a headache that the agent’s friend is currently suffering. 

The decision the agent faces is whether to hand over one of these pills for their friend to take. Suppose 

again that we set the de minimis threshold at 0.00000002. In this case the outcome in which the agent 

happens to hand over the one poisoned pill, with a probability of 0.00000001, will qualify as a de 

minimis risk. Even if a death is assigned a disutility of -1, 0 and a headache is assigned a disutility of 

0, -1 DLEUT would appear to predict that it is morally permissible for the agent to proceed. Handing 

over a pill will have a de minimis expected utility of 0, 0 which exceeds the de minimis expected 

utility of letting a person suffer a headache (0, -1). 

 
19 The potential reclassification of de minimis risks means that PrE, may be impossible to reach, from Pr, by 

conditionalisation on any proposition. After all, a reclassified de minimis risk will be assigned 0 probability by Pr 

and a positive probability by PrE, – a change which, as is well known, can never be induced by conditionalisation 
alone. Suppose, for instance, that an action A has three possible outcomes O1, O2 and O3 such that Pr(O1 | A) = 
0.99, Pr(O2 | A) = 0.0099 and Pr(O3 | A) = 0.0001. If we let t = 0.001, then O3 will count as a de minimis risk in 

which case Pr(O3 | A) = 0. If we then learn E = ~O1 and conditionalise Pr on this proposition, we derive PrE(O2 | A) 

= 0.99 and PrE(O3 | A) = 0.01. With t = 0.001, O3 no longer counts as a de minimis risk in which case PrE,(O3 | A) 

= 0.01. Thus, there is no proposition X such that Pr,X = PrE,. 

20 For a simple illustration let Pr = Pr from the previous footnote. While Pr = Pr, we have it that PrE,  PrE, 

(since PrE,(O3 | A) = 0 and PrE,(O3 | A)  0). 
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 Now suppose that there are 10 poison pills in the pile. With this change, one might assume 

that the outcome in which the agent’s friend is poisoned would no longer count as a de minimis risk, 

leading to a reversal of the above verdict. But matters are not so clear. Since there are now 10 separate 

poison pills, we effectively have a choice as to how we specify the possible outcomes of this action. 

Does handing over two distinct poison pills count as two distinct outcomes or as the same outcome? 

If we give the first answer then there will be 10 different poison pill outcomes, each of which, with a 

probability of 0.00000001, will be classified as a de minimis risk. In this case the de minimis expected 

utility of handing over a pill will remain at 0, 0 and DLEUT will continue to predict that handing over 

a pill is morally permissible. If we give the second answer, then there will only be one poison pill 

outcome which, with a probability of 0.0000001, will not be classified as a de minimis risk. In this case, 

the de minimis expected utility of handing over a pill will be -0.0000001, 0 which will be exceeded 

by the de minimis expected utility of letting the friend suffer a headache. Since the de minimis 

expected utility and standard expected utility will be equal in this case, DLEUT will predict that the 

agent is morally prohibited from handing over a pill. So which is it? 

Neither LEUT nor EUT faces this problem. Irrespective of whether we associate a unique 

outcome with each poison pill, or roll these together into a single outcome, the standard expected 

utility of handing over a pill is unchanged. More generally, the predictions of LEUT and of EUT have 

the property of invariance under fine-graining. Suppose we have a coarse-grained model which 

includes an outcome O1  …  n and a fine-grained model in which O1  …  n is divided into O1, …, On but 

which is otherwise identical. Suppose we stipulate that the utility of O1 …  n in the coarse grained 

model is equal to the probability weighted average of the utilities of O1, …, On in the fine-grained 

model – that is, ui(O1  …  n) = 1≤x≤n Pr(Ox | O1  …  On)ui(Ox), where the uis are the utility dimensions 

in the coarse grained model and the uis are the utility dimensions in the fine grained model. In this 

case the utility of O1  …  n in the coarse-grained model is, in effect, equal to the expected utility of 

O1  …  On in the fine-grained model. Given this constraint, the expected utilities of all actions will be 

the same in both models (see for instance Joyce 1999: p121; Smith 2022b: appendix A). But even if 

this condition is observed, substituting O1  …  n and O1, …, On can still make a difference to the de 

minimis expected utility of an action, as the above example illustrates. 

At the very least, a defender of DLEUT is in need of some principled way of settling on a 

decision model with a particular fineness of grain. One initially tempting thought is that the 10 

poisoned pill outcomes should be grouped together on the grounds that handing over any one of 

these pills would result in the same disutility. We could even propose a general policy on which we 

distinguish outcomes O1 and O2 in a decision model iff ui(O1)  ui(O2) for some ui. With this policy, 

DLEUT would give a definite verdict in the preceding case – namely, that it is impermissible to hand 

over a pill. But now imagine a variant of the case in which the 10 different pills are associated with 

different utilities; handing over the first pill would result in a single death (-1, 0), handing over the 

second pill would result in two deaths (-2, 0), handing over the third pill would result in three deaths 

(-3, 0) and so on. Under the current policy we would now be forced to differentiate these outcomes 

in our model, in which case they would once again be classified as de minimis risks. But we would then 
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have the absurd result that it is impermissible to hand over a pill in the original case, but permissible 

to hand over a pill in this new case, even though there are even more lives at stake. 

Another policy we could adopt, when constructing a decision model, is to distinguish 

outcomes as finely as we possibly can. After all, a fine-grained model contains more information – 

information that is missing, or glossed over, in a coarse-grained model. A model in which the outcomes 

are differentiated more finely comes closer to Savage’s notion of a ‘grand world’ decision model in 

which every potentially relevant detail is included (see Savage 1954: chap. 5). It’s natural to think that 

the predictions of a fine-grained model ought to take precedence over those of a coarse-grained 

model, in case those predictions conflict (Joyce 1999: section 2.6; Thoma 2019: section V). If we 

adopted this policy then DLEUT would, once again, appear to yield a definite verdict in the preceding 

case – only this time it is the verdict that handing over a pill is morally permissible. 

But we have not yet followed through on the policy of differentiating outcomes as finely as 

we can. In the same way that there are 10 different poison pills that the agent could hand over, there 

are 9,999,990 different painkillers that the agent could hand over. If the poison pills each get their 

own unique outcome in the model then so too should the painkillers. But we are now faced with a 

model in which the action of handing over a pill has 10 million separate outcomes each of which, with 

a probability of 0.00000001, is below the de minimis threshold. And this will prevent us from 

calculating any de minimis expected utility for the action. Let A be the action of handing over a pill and 

let O1, …, O10,000,000 be the fine-grained outcomes corresponding to each pill in the pile. We have it that 

Pr(O1| A) = Pr(O2 | A) = … = Pr(O10,000,000 | A) < t, in which case  = ~O1  ~O2  … ~O10,000,000 = ~A and 

OO Pr(O | A)u(O) = OO Pr(O | A  ~A)u(O), which is undefined. Rather than guiding us towards a 

definitive verdict about whether it is morally permissible to hand over a pill, the policy of finely 

differentiating outcomes has, in effect, caused the DLEUT framework to collapse.  

More generally, assume that W, , Pr is an infinite, atomless probability space – that is, 

assume that W contains an infinite number of worlds,  contains an infinite number of propositions 

and for any X  , there is a Y   such that Y  X and Pr(X) > Pr(Y) > 0. Given these assumptions, for 

any action A and any set of outcomes O constructed from  there is a fine-graining O’ of O such that 

for every Ox  O’, Pr(Ox | A) < t (see Smith 2010b; 2016: section 9.3).21 If t is the de minimis threshold 

then, relative to O’, the de minimis expected utility of A will be undefined.  

Lee-Stronach is aware that the use of a probabilistic de minimis threshold invites collapse, and 

proposes to replace it with what he calls an ‘odds-based’ threshold (Lee-Stronach 2018: p801). On this 

approach, an outcome will count as a de minimis risk if and only if its probability is low relative to 

some other outcome that could result from the action. For any outcome O if we let Omax designate the 

outcome that is most likely, given (O), then proposition  could be reformulated along the following 

lines: {~O | Pr(O |(O))/Pr(Omax |(O)) < t}. By this method we can avoid the eventuality in which 

 
21 The proof of this result makes use of countable additivity (strengthened P3 from section 2) and Zorn’s Lemma. 

It also assumes that, for each Ox  O, Pr(Ox | A) is rational (can be expressed as r/k for r and k integers).  
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every outcome that could result from an action is classified as a de minimis risk, and we can ensure 

that the de minimis expected utility of an action will always be defined, no matter how finely its 

outcomes are individuated.22 But there is still a problem. No matter what decision model we adopt, 

there will always be the potential for further fine-graining to alter the probabilistic balance of the 

outcomes which can, in turn, alter the classification of de minimis risks and the de minimis expected 

utilities of the available actions. 

If we assume, once again, an infinite and atomless probability space, we can prove a corollary 

of the above result: For any action A, any set of outcomes O and any outcome Oy  O such that 

Pr(Oy | A) > 0 there is a fine-graining O’ of O such that Oy  O’ and for every Ox  O’ such that x  y, 

Pr(Ox | A)/Pr(Oy | A) < t. If t is the de minimis threshold then every possible outcome of A, other than 

Oy, will be discounted for the purpose of calculating a de minimis expected utility. Since the process 

can be repeated for O’, fine-graining will always have the potential to alter the de minimis expected 

utility of A (provided some of the possible outcomes of A are assigned different utilities). While the 

use of an odds-based de minimis threshold will protect against the collapse of the framework, it will 

not guide us to a stable set of predictions. I will return to this in section 7. 

 To summarise, the predictions of DLEUT, unlike those of EUT or LEUT, depend on how finely 

the outcomes in a decision model are individuated. As a result, a defender of DLEUT is obliged to adopt 

some principled policy regarding the individuation of outcomes. But what appears to be the most 

natural policy, that of individuating outcomes as finely as possible, will trigger the collapse of the 

framework, leaving the de minimis expected utilities of all actions undefined. And even if we adopt an 

odds-based threshold to guard against collapse, the predictions of DLEUT remain unstable under fine-

graining. One might think that the present considerations add further momentum to the decision 

theoretic critique of lexical priority – for here is yet another failed attempt to capture lexical priority 

within a decision theoretic framework. As I will argue in the next section, however, the problems that 

beset DLEUT have nothing to do with lexical priority per se – rather, they come from asking too much 

from a single notion of risk. 

 

6  Probabilistic and Normic Risk  

In section 2 I noted that any decision theoretic framework requires a function that tracks the risks of 

each possible outcome, given each available action. So far we have assumed that the risk function 

works by assigning probabilities – the higher the probability the higher the risk, and the lower the 

probability the lower the risk. It has also been assumed, accordingly, that a de minimis threshold 

should take the form of a probability value, such as 0.00000002. Probabilities, on one level, are simply 

 
22 Lee-Stronach’s approach is inspired by the probabilistic acceptance rule defended by Lin and Kelly (2012a; 

2012b) which, amongst other things, guarantees that the set of accepted propositions is always consistent. If we 
think of a de minimis risk as the negation of an accepted proposition, then this is equivalent to saying that the 
de minimis risks cannot, between them, exhaust all logical possibilities. 



17 
 

numbers in the unit interval that sum to 1 when all of the possible outcomes of an action are included. 

But this seemingly mundane constraint already has significant consequences for the logic of risk.  

To adopt this ‘probabilistic’ account is to treat risk as a quantity – as something that can be 

divided and apportioned. On the probabilistic account, when an outcome is divided into an exclusive 

and exhaustive set of more specific outcomes, its risk is also divided – the risks of the fine-grained 

outcomes must add up to the risk of the original coarse-grained outcome. This is a direct result of CP3 

from section 2. Suppose several people have contracted a contagious illness and have been placed in 

quarantine. If an agent were to walk into the quarantine facility, without taking any precautions, there 

is a high risk that they would be infected. But what is the risk that they would be infected in the first 

second after stepping through the door? On the probabilistic account, the risk is very low. If this 

scenario were repeated over and over it would be very rare for the agent to be infected during the 

first second. And the same goes for the next second, and the second after that etc. And yet, if the 

agent spends an hour in the facility and ends up infected, then this must have happened during some 

particular second. 

Suppose the probability of the agent being infected, during their hour in the facility, is equal 

to 0.8. If we divide that hour into 3600 one second intervals then that 0.8 probability must be 

apportioned between them. And these one-second intervals could of course be further divided into 

intervals of a half second or a quarter second etc. in which case the probability will be spread even 

more thinly. On the probabilistic account, the high risk possibility of being infected during an hour in 

the facility can be divided up into a set of possibilities, each of which has an arbitrarily low risk. The 

divisibility of probabilistic risk is also illustrated by the poison pill example. Given the set-up, if the 

agent hands over a pill then there is a risk that their friend will be poisoned. But if we divide this 

outcome into 10 sub-outcomes based upon the 10 different poison pills then, on the probabilistic 

account, the risk must also be divided. 

The divisibility of probabilistic risk is precisely what makes it apt for supplying the weights in 

an expected utility calculation – but it is fundamentally at odds with the idea of a de minimis risk. In 

the quarantine example, as we’ve seen, the probabilistic risk that the agent will be infected in the first 

second is very low. If the agent is entitled to discount possibilities with a very low risk then this may 

be something they are entitled to discount. But if the agent discounts the possibility of being infected 

in the first second then, to be consistent, they should also discount the possibility of being infected in 

the next second, and the second after etc., as these possibilities all have a similarly low risk. But if the 

agent discounts every one of these possibilities then they will in effect have discounted the possibility 

of being infected at all.23  

If the probabilistic account were the only legitimate way to think about risk, then the idea of 

a de minimis risk may need to be abandoned – which would have repercussions for the viability of 

lexical priority. But a number of authors have recently challenged the idea that risk must be thought 

of in probabilistic terms, and put forward alternatives such as the modal account (Pritchard 2015), the 

 
23 For further objections to the discounting of low probability outcomes see Kosonen (2024). 



18 
 

relevant alternatives account (Gardiner 2021) and the normic account (Ebert, Smith and Durbach 

2021; Smith 2022b; Mace and O’Sullivan 2024) – which will be my focus here. On the normic account, 

the risk of a given outcome is determined by how abnormal it would be – the less abnormal the 

outcome the higher the risk, and the more abnormal the outcome the lower the risk.  

Suppose again that an agent is considering whether to drive to the pharmacy to buy painkillers 

for a friend. The agent has the evidence that the pharmacy is only a short drive away, that the car has 

recently been serviced and is working fine, that they’re not especially tired or under the influence of 

alcohol or drugs etc. On both the probabilistic and normic accounts, the risk that this drive will result 

in a fatal accident will be rated as very low. On the probabilistic account the reason for this is that 

occurrences of fatal accidents on short drives with working cars and sober drivers etc. are very 

infrequent – such drives happen all the time and rarely result in fatal accidents. On the normic account 

the reason is somewhat different; if a short drive with a working car and sober driver did result in a 

fatal accident, then there would have to be some explanation as to how this could have possibly 

happened. Perhaps the driver suddenly lost consciousness or the brakes had been tampered with, or 

someone ran out right in front of the car etc. Whatever the case, a fatal accident is not a normal 

outcome of a decision to drive to the pharmacy – it is an outcome that requires significant 

explanation.24 If we were to imagine instead that the driver is drowsy, drunk etc. then, on both 

accounts, the risk would be higher. Under these new conditions, fatal accidents would be more 

frequent and the need for explanation, in the event of a fatal accident, would be reduced. 

The probabilistic and normic accounts will often be in broad agreement about individual risk 

assessments – but they don’t invariably agree, and they make quite different predictions about the 

logical properties of risk. Return to the quarantine example. Given that the new disease is contagious 

and the agent has taken no precautions, no special explanation would be needed if they were infected 

during their one hour in the quarantine facility. But the same is true of the first second and of the next 

second etc. None of these events would be abnormal in the sense of requiring special explanation. If 

the agent was wearing full PPE then that might introduce the need for special explanation in the event 

that they end up infected – perhaps the equipment is faulty or damaged or the virus survived on their 

clothing after they left the facility etc. – but simply narrowing in on a smaller time interval is not going 

to have that effect. 

On the normic account there is a high risk that the agent will be infected during their one hour 

in the facility, but there is also a high risk that the agent will be infected in the first second, or the next 

second etc. If the agent thinks to themselves ‘There’s a low risk that I’ll be infected in the next second’ 

then on the probabilistic account that may be true, but on the normic account it’s false. In the poison 

pill example if the agent decides to hand over a pill, there is a high normic risk that their friend will be 

poisoned. If the pile contains 10 poison pills and the agent chooses at random then no special 

explanation is needed in the event that they hand over a poisoned pill. But the very same remarks 

apply even if we focus on just one of the poison pills. If the pill is somewhere in the pile and the agent 

 
24 For more on the link between normalcy and the need for explanation see Smith (2010a; 2016, chap. 2; 2022a). 
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chooses at random then no special explanation is needed in the event that the agent chooses that 

very pill. 

Normic risk, unlike probabilistic risk, is not divisible. When an outcome is divided into a series 

of more specific outcomes, the normic risk of these new fine-grained outcomes may be just as high as 

the normic risk of the original coarse-grained outcome. If the de minimis threshold were defined in 

normic rather than probabilistic terms then the agent would not be entitled to ignore the possibility 

of being infected during the first second in the facility, or the possibility of being infected during the 

next second and so on. More generally, if the de minimis threshold is defined in normic terms, it will 

not be possible to circumvent that threshold by dividing up a coarse-grained outcome – no matter 

how finely we do it. 

 

7  Multidimensional Risk  

Rather than supposing that the risk of an outcome can be can be measured along a single dimension, 

in the final decision theoretic framework I will consider, every outcome is assigned two numbers by 

the risk function; one representing its probability and the other representing its abnormality, given an 

agent’s evidence. As above, let  be a Boolean -algebra of propositions built from the elements of a 

set of possible worlds W. Suppose the propositions in  can be placed in an abnormality ordering, 

reflecting how much explanation their truth would require, given the evidence. Suppose that any two 

propositions can be compared for their normalcy – that is, suppose that, for any two propositions, 

either one is more normal than the other or both are equally normal. Suppose, in addition, that there 

are no infinite ascending chains of increasingly normal propositions that continue without end. In this 

case, the propositions in  could be assigned numerical abnormality degrees – the maximally normal 

propositions will be assigned a degree of 0, the next most normal propositions will be assigned a 

degree of 1 and so on. 

No proposition can be more normal than the universal proposition W which will be assigned 

an abnormality degree of 0. No proposition can be less normal than the empty proposition  which 

will be assigned an infinite degree of abnormality. The final constraint on an abnormality ordering 

concerns the relation between disjunctions and their disjuncts: The only way in which X  Y can be 

true is if either X is true or Y is true. To explain the truth of X  Y one must either explain the truth of 

X or the truth of Y. As a result, the amount of explanation demanded by the truth of X  Y will be equal 

to either the amount demanded by X or by Y – whichever is less. And the degree of abnormality of 

X  Y will be equal to the degree of abnormality of X or of Y – whichever is lower (see Smith, 2022a, 

section 5, 2022b, section 4). 

We can now define an evidential abnormality function ab taking members of  into the set of 

nonnegative integers plus infinity – {1, 2, 3, 4 … }. Given the above constraints, ab will satisfy the 

axioms for a negative ranking function (see, for instance, Huber 2009: section 4; Spohn 2012: chap. 5; 

Smith 2016: chap. 8, n7; 2022b, section 4): 
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R1 ab(W) = 0 

R2 ab() =  

R3 ab(X  Y) = min{ab(X), ab(Y)}  

If we are dealing with an infinite stock of propositions we might strengthen R3 to: 

If    then ab(V) = min{ab(X) | X  } 

where  is any set of propositions. 

Conditional degrees of abnormality are defined by the following formula: ab(X | Y) = ab(X  Y) 

– ab(Y) (where  –  = 0) (Huber 2009: p19; Spohn 2012: section 5.3; Smith 2022b: section 4). In this 

case, the abnormality of X given Y is equal to the abnormality that X adds to the abnormality of Y – the 

amount of additional explanation that X  Y requires over and above that required by Y. This is 

equivalent to saying that the abnormality of Y and the abnormality of X given Y add up to the 

abnormality of X  Y. Given this definition, we can easily prove a conditional version of the axiom R3:  

CR3 ab(X  Y | Z) = min{ab(X | Z), ab(Y | Z)}25 

On the normic account of risk, the risk that an outcome O will result from an action A can be gauged 

by the conditional abnormality of O given A – by ab(O | A). The lower the value of ab(O | A), the 

greater the risk that O will result from A, with the risk being maximal when ab(O | A) = 0 – indicating 

that O is one of the normal outcomes of A. 

Suppose we specify some abnormality rank t to serve as the de minimis threshold. Rather than 

using Pr to assign the weights in an expected utility calculation, we now use a truncated function, 

which results from conditionalising Pr on the conjunction of the negations of every de minimis risk – 

every outcome which, given its associated action, has an abnormality greater than t. If  is once again 

a function that maps each outcome to its associated action and  is a proposition defined as 

{~O | O  O  ab(O |(O)) > t} then for each utility dimension ui we have it that:  

𝑁𝐷𝐸𝑈𝑖(𝐴) = ∑ 𝑃𝑟(𝑂 | 𝐴) 𝑢𝑖(𝑂)

𝑂 ∈ 𝑶

= ∑ 𝑃𝑟(𝑂 | 𝐴  ) 𝑢𝑖(𝑂)

𝑂 ∈ 𝑶

26 

Actions are then subject to a lexicographic ordering, based upon their normic de minimis 

multidimensional expected utilities, as supplied by this formula, with the decision rule selecting the 

 
25 ab(X  Y | Z)  = ab((X  Y)  Z) – ab(Z)    [Defn of conditional abnormality] 

  = ab((X  Z)  (Y  Z)) – ab(Z)   

  = min{ab(X  Z), ab(Y  Z)} – ab(Z)   [R3] 

= min{ab(X  Z) – ab(Z), ab(Y  Z) – ab(Z)} 

= min{ab(X | Z), ab(Y | Z)}    [Defn of conditional abnormality] 

26 As with DLEUT, we could opt to apply the de minimis threshold directly to states, defining  as {~S | S  S  
ab(S) > t}. This will lead to the same results on the assumption that every outcome is associated with a unique 

state, and states and actions are normically independent – for any S  S and A  A, ab(S | A) = ab(S). 
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action or actions that rank highest. We might call this framework normic de minimis lexicographic 

expected utility theory (NDLEUT). On a moral interpretation of NDLEUT, the action or actions that have 

the highest normic de minimis multidimensional expected utility will be morally permissible for an 

agent. As with DLEUT, I won’t commit to the stronger interpretation on which these are the only 

actions which are morally permissible. 

If the outcome O* in which an innocent loses their life is assigned utility -1, 0 while the 

outcomes O, O … in which one person suffers a mild headache, two people suffer a mild headache, 

… are assigned, respectively, the utilities 0, -1, 0, -2… then NDLEUT will predict that one is morally 

obliged to choose any one of the latter over the former. In a decision under certainty the predictions 

of NDLEUT will converge with those of DLEUT and LEUT – it is only when it comes to decisions under 

risk that the distinctive features of the three frameworks emerge. 

In the choice over whether to drive to the pharmacy to buy painkillers for a friend, NDLEUT 

offers the same predictions as DLEUT. As observed in the last section, it would not only be highly 

improbable for a drive to the pharmacy to result in a fatal car accident, it would also be highly 

abnormal. That is, this outcome could be regarded as a de minimis risk on either a probabilistic or a 

normic construal. Given a suitable de minimis threshold, even if a death is assigned a utility of -1, 0, 

the act of driving to the pharmacy will have a normic de minimis expected utility of 0, 0 which will 

outrank the utility of letting one’s friend suffer a headache (0, -1). NDLEUT, like DLEUT, offers a 

solution to the problem of risk; just because any number of headaches must be morally preferred to 

a death, it doesn’t follow that any number of headaches must be morally preferred to a risk of death 

– not if the risk is sufficiently low. 

NDLEUT avoids the threat of collapse. Return to the poison pill example. In this case, an agent 

is confronted with a pile of 10 million indistinguishable pills, 10 of which are poisoned, while the 

remainder are painkillers. Suppose again that a death is assigned a utility of -1, 0 and a headache is 

assigned a utility of 0, -1. As discussed in section 5, if we adopt a fine-grained model in which we 

have one outcome for every pill in the pile then, within DLEUT, every outcome of handing over a pill 

could count as a de minimis risk, and we will be unable to calculate a de minimis expected utility for 

the action. NDLEUT avoids this result. If the pill is chosen at random then for the agent to choose any 

one pill requires no more explanation than the agent choosing any other. 

Let A be the action of handing over a pill and let O1, …, O10,000,000 be the fine-grained outcomes 

of this action – one for each pill in the pile. We have it that ab(O1  …  O10,000,000 | A) = 0. If the 

outcomes are all equally normal then ab(O1 | A) = … = ab(O10,000,000 | A). It now follows, by CR3, that 

the outcomes are all maximally normal – ab(O1 | A) = … = ab(O10,000,000 | A) = 0 in which case none of 

them will count as a de minimis risk, no matter where the threshold is set. Handing over a pill has a 

normic de minimis expected utility of -0.000001, 0 which will be exceeded by the normic de minimis 

expected utility of letting a person suffer a headache (0, -1) in which case, according to NDLEUT, it 

will be impermissible for the agent to proceed. This prediction will, in fact, hold true irrespective of 

how many poison pills and how many painkillers there are in the pile – whether it is 10 out of 10 
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million, 1 out of 10 million, 1 out of a billion etc. As long as there are some poison pills in the pile, and 

the pill is selected at random, the outcome in which the agent hands over a poison pill will never 

qualify, within NDLEUT, as a de minimis risk.27 

More generally, there are no NDLEUT decision models in which every possible outcome of an 

action is classified as a de minimis risk. Suppose O1, …, On are all of the possible outcomes of an action 

A. In this case we have it that A  (O1  …  On) = A in which case ab(A  (O1  …  On)) = ab(A). By the 

definition of conditional abnormality ab(O1  …  On | A) = ab(A  (O1  …  On)) – ab(A) = 0. It then 

follows, by CR3, that there is at least one Ox  {O1, …, On} such that ab(Ox | A) = 0 in which case Ox 

cannot count as a de minimis risk and the normic de minimis expected utility of A will be defined. As 

a result, a policy of individuating outcomes as finely as possible will never cause NDLEUT to collapse – 

no matter how fine-grained the model, NDLEUT will continue to make concrete predictions. It’s 

important to note, though, that NDLEUT can make different predictions with respect to a fine-grained 

and a coarse-grained model. That is, the predictions of NDLEUT, unlike those of EUT or LEUT, are not 

completely invariant under fine-graining.  

Suppose we have a coarse-grained model which includes an outcome O1  …  n and a fine-

grained model in which O1  …  n is divided into O1, …, On but is otherwise identical. Recall that, provided 

the utility of O1 …  n in the coarse grained model is equal to the expected utility of O1  …  On in the 

fine-grained model – ui(O1  …  n) = 1≤x≤n Pr(Ox | O1  …  On)ui(Ox) – the expected utility of A will be 

the same in both models. Suppose that ab(O1  …  On | A)  t in which case O1  …  n is not a de minimis 

risk in the coarse-grained model. CR3 guarantees that there must be at least one outcome Ox  

 
27 This prediction is in direct conflict with the continuity axiom mentioned in n10. If O1 is better than O2 which is 
in turn better than O3 then the continuity axiom requires that, for some real number p, O2 is just as good as a 
lottery which has a p probability of leading to O1 and a 1-p probability of leading to O3. If we let O3 be the 
outcome in which my friend is poisoned, O2 be the outcome in which my friend suffers a headache and O1 be 
the outcome in which my friend is headache free, we have our desired counterexample – O2 will be preferable 
to any lottery that has O3 as an outcome. As explained in n10, continuity is crucial in proving that a comparative 
value ordering of outcomes can be represented by a unidimensional utility function, and it is no surprise that 
this axiom should fail for any framework that incorporates a lexicographic element. While the ‘normic de 
minimis’ element of the framework is not instrumental to the failure of the axiom, it can perhaps offer a rationale 
as to why the axiom should be discarded. 

As remarked in n10, many would take the view that a minor benefit is never worth a lottery that risks 
a severe negative outcome, no matter the probability of that outcome (Temkin 2001). Defenders of the 
continuity axiom, and of EUT, typically try to mollify our intuitions about such cases by alleging that we are 
regularly involved in lotteries of this kind, and willing to accept them without a second thought (Steele and 
Stefánsson 2016: section 2.3; Arrhenius and Rabinowicz 2005: p179, see also see also Joyce 1999: p94). Here is 
one example of such reasoning due to Steele and Stefánsson: ‘Is there any probability p such that you would be 
willing to accept a gamble that has that probability of you losing your life and probability (1−p) of you winning 
$10? Many people think there is not. However, the very same people would presumably cross the street to pick 
up a $10 bill they had dropped. But that is just taking a gamble that has a very small probability of being killed 
by a car but a much higher probability of gaining $10’. From the viewpoint of normic risk, the comparison is 
specious – the two choices are not equivalent, and crossing the street in the latter case in no way commits one 
to taking the gamble in the former. It is true, of course, that the difference between these two decisions cannot 
be represented within EUT – but to appeal to EUT in defending the continuity axiom would, in effect, be to argue 
in a circle. 
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{O1, …, On} such that ab(Ox | A)  t, but is consistent with there being another outcome Oy  {O1, …, On} 

such that ab(Oy | A) > t. That is if O1  …  n is not classified as a de minimis risk in the coarse-grained 

model, CR3 is consistent with some, but not all, of the outcomes in {O1, …, On} being classified as de 

minimis risks in the fine-grained model. As a result, A may have a different normic de minimis expected 

utility in the two models, even if the expected utility constraint above is observed. 

Importantly, though, it can be shown that there is a point in the process of fine-graining at 

which the predictions of NDLEUT will effectively stabilise. More precisely, it can be shown that, for any 

NDLEUT decision model, there is a more fine-grained model for which the normic de minimis expected 

utilities of the available actions will not be affected by any further fine-graining. The proof of this result 

is provided in the appendix. A policy of individuating outcomes as finely as possible will not lead to the 

collapse of NDLEUT – it will lead, rather, to a stable set of predictions. 

In section 5, I discussed the possibility of using an odds-based threshold, rather than an 

absolute probability threshold, for the classification of de minimis risks. An odds-based variant of 

DLEUT will be collapse-proof, in the sense that the de minimis expected utilities of the available actions 

will always be defined, no matter how fine-grained the outcomes. However, for the reasons outlined 

in section 5, the use of an odds-based threshold will not secure the stability property just described. 

Given appropriate assumptions about the underlying probability space, for any odds-based DLEUT 

model there will be a more fine-grained model in which the available actions have different de minimis 

expected utilities. 

Two final points. First, NDLEUT can also be used to model changes in moral permissibility 

prompted by the acquisition of new evidence. When an agent acquires a new piece of evidence E, we 

might suppose that the agent’s evidential probability function Pr and the agent’s evidential 

abnormality function ab will both be updated by conditionalisation on E. That is, Pr will shift to PrE, 

where PrE(P) = Pr(P | E) for any P   and ab will shift to abE, where abE(P) = ab(P | E) for any P  . 

A new truncated evidential probability function PrE,, used for the calculation of normic de minimis 

expected utilities, can then be constructed in the way described above. By this method, the acquisition 

of new evidence can lead to a change in the class of de minimis risks, with outcomes either gaining or 

losing de minimis status – ab(O | A)  t is consistent with abE(O | A) > t and ab(O | A) > t is consistent 

with abE(O | A)  t. As was observed in the case of DLEUT, there is no shortcut to this new truncated 

function – PrE, will not in general be equivalent to conditionalising Pr on E. I hope to explore the 

dynamic aspect of NDLEUT in future work. 

The second point concerns the logical independence of normic and probabilistic risk. As I have 

discussed, it is possible for an outcome to combine a low probabilistic risk with a high normic risk. This 

possibility is, in fact, crucial for ensuring that NDLEUT has the stability property described above. But 

the flipside of this is that it’s also possible for an outcome to combine a high probabilistic risk with a 

low normic risk (one such case is described in Smith, 2022b, section 5). As a result, it is possible, within 

NDLEUT, for a high probability outcome to be classified as a de minimis risk. One could, in practice, 

avoid this result by adjusting the de minimis threshold to make it more demanding, particularly in a 
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case in which the stakes are high. As discussed in section 5 I regard a de minimis threshold as 

something that can vary from one context to another, in response to factors such as moral stakes. And 

even if a high probability outcome were classified as a de minimis risk, on the present interpretation 

of NDLEUT, that would mean only that one is entitled to ignore it, and not that one is obliged to ignore 

it. Having said that, the prospect of a high probability de minimis risk remains troubling, and a full 

treatment of this issue will have to await another occasion. 

 

8 Conclusion  

In this paper I have developed a new decision theoretic framework by gradually augmenting standard 

expected utility theory – first adding the ‘lexicographic’, then the ‘de minimis’ and finally the ‘normic’. 

I have argued that the resulting framework – NDLEUT – is capable of faithfully modelling relations of 

lexical priority while avoiding all of the main problems that have been identified in the literature. More 

than this, I have tried to show that these additions to expected utility theory are not just convenient 

technical devices, but can be squared with independently motivated conceptions of lexical priority 

and of risk. 

And what, then, of the ‘decision theoretic’ critique of lexical priority – the claim that lexical 

priority becomes incoherent once we consider decisions under risk? Nothing that I have said here 

definitively shows that no critique of this kind could ever succeed. It could be that any framework 

capable of modelling lexical priority – including NDLEUT – is subject to insurmountable problems in 

the end (one potential problem for NDLEUT was just noted). But those who have pursued the decision 

theoretic critique have not, as yet, established any such conclusion. In its present form, the critique 

does more to expose the limitations of a particular decision theoretic framework than to cast doubt 

upon the idea of lexical priority.  
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Appendix: Stability of NDLEUT Decision Models 

In section 7, I claimed that, although NDLEUT does not exhibit invariance under fine-graining, it has 

the following stability property: For any NDLEUT decision model, there is a more fine-grained model 

for which the normic de minimis expected utility of every action is unaffected by further fine-graining. 

In the appendix I make this claim precise and outline a proof. 

We begin by setting things up more formally. In NDLEUT we have decision models of the form 

W, , A, O, Pr, ab, u1, …, un, t. W is a set of possible worlds and   (W) is a Boolean -algebra of 

propositions. A and O   are partitions of W – sets of pairwise exclusive and jointly exhaustive 

nonempty subsets of W – which represent the set of actions and of outcomes respectively. If    

is a set of propositions, let cl() be the closure of  under disjunction. Since O is a refinement of A we 

have it that cl(A)  cl(O) (with cl(A) = cl(O) in the case of a decision under certainty). Pr is a probability 

function taking the members of  into the set of real numbers in the unit interval and conforming to 

the axioms P1, P2 and P3, and ab is an abnormality function taking the members of  into the set of 

nonnegative integers plus  and conforming to the axioms R1, R2 and R3. u1, …, un are utility functions 

taking the members of O into the set of positive and negative real numbers. Finally, t is some 

nonnegative integer, or . 

Say that W, , A, O’, Pr, ab, u1, … un, t is a fine-graining of W, , A, O, Pr, ab, u1, …, un, t 

just in case cl(O)  cl(O’) and for all i, 1  i  n, ui and ui agree for all outcomes in O  O. Say that 

W, , A, O, Pr, ab, u1, …, un, t is normically calibrated just in case for every outcome O  O if X is a 

nonempty proposition in  such that X  O then ab(X) = ab(O). Less formally, W, , A, O, Pr, ab, u1, 

…, un, t is normically calibrated just in case no outcome in O ‘cuts across’ normalcy ranks – no outcome 

can be divided into more fine-grained outcomes that differ in terms of their normalcy. 

Any NDLEUT decision model W, , A, O, Pr, ab, u1, …, un, t has a fine-graining that is 

normically calibrated. Proof For each normalcy rank r, let Nr = {X   | ab(X)  r}. Nr is the 

disjunction of all propositions that have an abnormality rank of at least r, and may be thought of as 

the set of worlds that have an abnormality of at least r. Since  is a -algebra (and closed under 

countable disjunction), Nr will be included in , for each normalcy rank r. If there are no nonempty 

propositions in  that are assigned an abnormality rank of at least r then Nr = . By R3, ab(Nr)  r. 
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For each r, let Nr = Nr  ~Nr+1 (or Nr = Nr  ~Nr>). Nr might be thought of as the set of worlds that have 

an abnormality of exactly r.28 If there are no propositions in  that are assigned an abnormality rank 

of r then Nr = . Since Nr  Nr it follows, by R3, that ab(Nr)  r.  If ab(Nr) > r then, by the definition of 

Nr+1, Nr  Nr+1. But, since Nr  ~Nr+1 it follows that either Nr =  or ab(Nr) = r. Let N be the set of all 

nonempty propositions so defined. 

Given a set of outcomes O, let O+ = {O  Nr | O  O, Nr  N, O  Nr  }. Since O  Nr  Nr it 

follows, from R3, that ab(O  Nr)  r. If ab(O  Nr) > r then, by the definition of Nr+1, O  Nr  Nr+1. 

But, since O  Nr  Nr  ~Nr+1, it follows that ab(O  Nr) = ab(Nr) = r. Less formally, if an outcome O in 

O crosses several normalcy ranks then, in O+, O is divided according to these ranks. If, say, some of 

the worlds at which O is true have abnormality 1, some have abnormality 2 and some have 

abnormality 3 then, instead of O, O+ will contain three outcomes: O-in-the-abnormality-1-way (which 

would itself have an abnormality of 1), O-in-the-abnormality-2-way (which would itself have an 

abnormality of 2) and O-in-the-abnormality-3-way (which would itself have an abnormality of 3).  

From the definition of O+ it follows that cl(O)  cl(O+) in which case if, for each i, 1  i  n, ui 

is a utility function defined on O and ui+ is a corresponding utility function defined on O+ such that ui 

and ui+ agree for any outcomes in O  O+ then W, , A, O+, Pr, ab, u1+, …, un+, t will meet the 

conditions for a fine-graining of W, , A, O, Pr, ab, u1, … un, t. For any outcome O+ in O+, O+ will be 

equal to O  Nr for some O  O and Nr  N. Consider a nonempty proposition X  O  Nr. Since X  O 

 Nr it follows, from R3, that ab(X)  r. If ab(X) > r then, by the definition of Nr+1, X  Nr+1. But, since X 

 O  Nr  ~Nr+1 it follows that ab(X) = ab(O  Nr) = r. It follows from this that W, , A, O+, Pr, ab, u1+, 

… un+, t is normically calibrated. QED 

Suppose we have a normically calibrated model W, , A, O, Pr, ab, u1, …, un, t and a fine-

graining W, , A, O, Pr, ab, u1, …, un, t that meets the expected utility constraint. For any A  A, 

and any i, 1  i  n, NDEUi(A) = NDEUi(A). Proof Define a function  from the elements of O to sets of 

elements of O’ such that, for each O  O, (O) = {Ox  O| Ox  O}. The function , in effect, maps 

each outcome in O to the set of sub-outcomes in O into which it is divided (and if an outcome is a 

member of both O and O,  will map it to its own singleton). Note that, for any O  O, O = (O) and, 

since outcomes are exclusive,  is a one-to-one correspondence between the elements of O and a 

partition of the elements of O. Given normic calibration, for every O  O and every Ox  (O), ab(O) 

= ab(Ox) from which it follows that {~O | O  O  ab(O |(O)) > t} = {~O | O  O  ab(O |(O)) > t} 

and  = . By the expected utility constraint, for any O  O, ui(O) = Ox(O) Pr(Ox | O)ui(Ox). 

Assume, for reductio, that there is an A  A and an i, 1  i  n such that NDEUi(A)  NDEUi(A). 

It follows that OO Pr(O | A)ui(O)  OO Pr’(O | A)ui(O). By the definition of , 

 
28 If  contains the singleton of each world in W – that is, if {w}   for each w  W – then it will be the case 

that Nr = {w  W | ab({w})  r} and Nr = {w  W | ab({w}) = r}. If  does not contain the singleton of each world 

in W – and this constraint is not demanded here – then the possible world descriptions of Nr and Nr given in the 
main text won’t be reflected in the formalism (but can still serve as informal heuristics). 
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OO Pr(O | A)ui(O) = OO Ox(O) Pr(Ox | A)ui(Ox). But if OO Pr(O | A)ui(O)  OO Ox(O) 

Pr(Ox | A)ui(Ox) then there must be some O*  O such that Pr(O* | A)ui(O*)  Ox(O*) 

Pr(Ox | A)ui(Ox). Suppose that ab(O* | A) > t. It follows, by normic calibration, that for every Ox  

(O*), ab(Ox | A) > t in which case Pr(O* | A) = 0 and Pr(Ox | A) = 0 for every Ox  (O*). In this case 

Pr(O* | A)ui(O*) = Ox(O*) Pr(Ox | A)ui(Ox) = 0 contrary to assumption. 

Suppose instead that ab(O* | A)  t. Given normic calibration, it follows that for every Ox  

(O*), ab(Ox | A)  t. It follows further that O* entails  in which case, for any proposition X  , 

Pr(X | O*) = Pr(X | O*). Recall that, given normic calibration,  = . Since ui(O*) = 

Ox(O*) Pr(Ox | O*)ui(Ox) we have it that: 

Pr(O* | A)ui(O*)  = Pr(O* | A)Ox(O*) Pr(Ox | O*)ui(Ox) 

   = Pr(O* | A)Ox(O*) Pr(Ox | O*)ui(Ox) 

= Ox(O*) Pr(O* | A)Pr(Ox | O*)ui(Ox) 

= Ox(O*) (Pr(O*)/Pr(A))(Pr(Ox)/Pr(O*))ui(Ox) 

 = Ox(O*) Pr(Ox)/Pr(A)ui(Ox) 

= Ox(O*) Pr(Ox  A)/Pr(A)ui(Ox) 

     = Ox(O*) Pr(Ox | A)ui(Ox)  

     = Ox(O*) Pr’(Ox | A)ui(Ox) 

Once again we have it that Pr(O* | A)ui(O*) = Ox(O*) Pr’(Ox | A)ui(Ox) contrary to assumption. It 

follows that, for every A  A OO Pr(O | A)ui(O) = OO Ox(O) Pr(Ox | A)ui(Ox) = 

OO Pr(O | A)ui(O) and NDEUi(A) = NDEUi(A). QED 

 


