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I shall attempt to setout the basic issues of this workshop by introducing the concepts at 
the heart of topology in an informal and intuitive fashion. Two well-known alternatives 
present themselves to this end; while these prove to be equivalent from the mathematical 
point of view, they point to distinct sorts of extensions and applications from the 
perspective of cognitive science. 

1. The Concept of Transformation 
On the one hand we can take as our starting point the notion of transformation. W.f; note, 
familiarly, that we can transform a spatial body such as a sheet of rubber in various ways. 
We can invert it, stretch or compress it, move it, bend it, twist it or otherwise knead it out 
of shape. Certain properties of the body will in general be invariant under transformations 
such as these: transformations which are neutral as to shape, size, motion and orientation, 
transformations which are such that they cannot affect the possibility of our connecting 
two points on the surface or in the interior of the body by means of a continuous line. Let 
us provisionally use the term 'topological spatial properties' to refer to those spatial 
properties of bodies which are invariant under transformations such as these (broadly: 
transformations which do not affect the integrity of the body, path, or other sort of spatial 
structure with which we begin). Topological spatial properties will then in general fail to 
be invariant under more radical transformations, for example those which involve tearing 
or gluing or carving holes through a body, or which lead to a decomposition of the body 
into separate constituent parts. 

The class of phenomena structured by topological spatial properties is wider than 
the class of phenomena to which, for example, Euclidean geometry, with its determinate 
Euclidean metric, can be applied. Everything (spatial) has topological spatial properties. 
(This holds, too, of mental images of spatially extended bodies: Cf. Brentano 1988.) 

The property of being a (single, connected) body is a topological spatial property, 
as also are certain properties relating to the possession of holes (more specifically: 
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properties relating to the possession of tunnels and internal cavities). The property of 
being a collection of bodies and that of being an undetached part of a body, too, are 
topological spatial properties. Thus it is a topological spatial property of a pack of playing 
cards that it consists of this or that number of separate cards and it is a topological spatial 
property of my arm that it is connected to my body. 

This concept of topological spatial properties can of course be generalized beyond 
the spatial case. Thus we can distinguish those properties of temporal structures which 
are invariant under transformations of (for example) stretching (slowing down, speeding 
up) and temporal translocation. Intervals of time, melodies, simple and complex events, 
actions and processes can be seen to possess topological properties. Thus the motion of a 
bouncing ball can be said to be topologically isomorphic to another, slower or faster, 
motion of, for example, a trout in a lake or a child on a pogo-stick. 

2. The Concept of Boundary 
On the other hand we can take as our starting point the intuitive notion of boundary. We 
begin, once again, with spatial examples. Imagine a spatial body, for example a solid and 
homogeneous metal sphere. We can then distinguish, with some intellectual effort, two 
disjoint parts of the sphere: on the one hand is its exterior swface; on the other hand is the 
difference between the sphere and this exterior surface (that which would result if, per 
impossibile, the latter could be subtracted from the former). Similarly in the temporal 
realm we can imagine an interval as being composed of its initial and its final points 
together with its interior: the result of subtracting, abstractly, the given points from the 
interval as a whole. The boundary of an entity is from the point of view of classical 
mathematical topology also the boundary of the complement of that entity. My outer 
surface is then also a boundary of that object which results when we imagine me as 
having been deleted from the rest of the universe. We can imagine, however, a variant 
topology which would recognize asymmetric boundaries, such as we find, for example, 
in the figure-ground structure as this is manifested in visual perception. As Rubin ( 1921) 
and many others have pointed out, the boundary of a figure is experienced as a part of the 
figure, and not simultaneously as boundary of the ground, which is experienced as 
running on behind the figure. Something similar applies also in the temporal sphere: the 
beginning and ending of a race, for example, are not in the same sense boundaries of any 
complement-entities as they are boundaries of the race itself. 

Perhaps the best examples of asymmetrical boundaries are manifested in the 
conceptual sphere. We may imagine the instances of a concept arranged in a quasi-spatial 
way, as happens for example in familiar accounts of colour- or tone-space. Suppose that 
this is done in such a fashion that the most typical instances are located in the centre of the 
relevant region and the Jess typical instances located at distances from this centre in 
proportion to their degree of non-typicality. (Degree of non-typicality is thus employed to 
define a crude topological distance-function on the space of instances in question.) 
Boundary or fringe cases would then be those which are so untypical that even the 
slightest further deviation from the norn1 would imply that they are no longer instances of 
the given concept at all. The notion of similarity can be understood in this light as a 
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topological notion (Mostowski 1983): a is similar to b might mean, for example, that the 
colours of a and b lie close together in colour-space, so that they cannot be discriminated 
with the naked eye. The similarity relation is in general symmetric and reflexive, but it 
falls shon of transitivity; thus it panitions the initial space not into tidily disjoint and 
exhaustive equivalence classes, but rather into overlapping circles of similars or natural 
kinds (and this falling short of the discreteness of partitions of the son which are 
generated by equivalence relations is characteristic of non-trivial topological structures). 
The boundaries of these circles, constituted by the fringe-instances just referred to, may 
then be asymmetrical in the sense that the given fringe-instances need not be fringe
instances of any neighbouring natural kinds (or of any putative complement kinds): the 
transition from red to yellow may be continuous in this sense, but this is not the case in 
regard to the transition from, say, dog to cat or from eyclo-octatetrene to eyclobutadiene. 

3. Closure 
The two approaches briefly sketched above may be unified into a single system by means 
of the notion of closure, which we can think of as an operation of such a son that, when 
applied to an entitycx it results in a whole which comprehends both x and its (or the 
nearest circumcluding) boundaries. (We shall concentrate here primarily on definitions of 
closure in terms of boundaries, and shall mention only in passing the connections 
between closure and topological transformations.) We employ as basis of our definition 
of closure the notions of mereology. (Smith 1993, Varzi 1994) Some of the reasons why 
we shun the set-theoretical instruments employed in standard presentations of the 
foundations of topology will be set out below. 

The operation of closure (c) is now defined in such a way as to satisfy the 
following axioms (where we shall employ •::;;• to signify the relation 'is a proper or 
improper pan of', and where the range of variables can be assumed to be regions of one 
or other type). 

(ACl) x::;; c(x) 
(each object is a pan of its closure) 
(AC2) c(c(x)) S c(x) 
(the closure of the closure adds nothing to the closure of an object) 
(AC3) c(x u y) = c(x) u c(y) 

(expansiveness) 

(idempotence) 

(additivity) 
(the closure of the sum of two objects is equal to the sum of their closures) 

These axioms were first set out by the Hungarian topologist Friedrich Riesz in 1906, and 
independently by the Pole Kazimierz Kuratowski in 1922. The axioms define a 
well-known kind of structure, that of a closure algebra, which is the algebraic equivalent 
of the simplest kind of topological space. The structure is algebraic in the sense that its 
definition does not involve the notion of point. Note that Kuratowski's original list 
includes in addition the following axiom, where 0 would be a null element (the empty set, 
or empty region) which would complete the underlying lattice from below: 
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(ACO) c(O) = 0 (zero) 

Note that various modifications and weakenings of the original Riesz:-Kuratowski 
axioms are possible which, as has been shown by Ore, Hammer, Nobeling, Netzer and 
others, still preserve the possibility of defining analogues of the standard topological 
notions of boundary, interior, etc. Thus we may drop the axiom of additivity, which, as 
Hammer puts it, might most properly 'be called the sterility axiom .... it requires that two 
sets cannot produce anything (a limit point) by union that one of them alone cannot 

· produce.' (1962, p. 65) 

On the basis of the notion of closure we can define the standard notion of 
(symmetrical) boundary, b(x), as follows: 

(DB) b(x) := c(x) n c(x') (boundary) 

where x' is the mereological complement of x (that which remains when x is considered 

as having been removed from the universe as a whole) and 'n' signifies mereological 

intersection. Note that it is a consequence of the definition of boundary here supplied that 
the boundary of an entity is in every case also the boundary of the complement of that 
entity. 

It is possible to define an asymmetrical notion of "border" in standard topological 
terms, as the intersection of an object with ·the closure of its complement: 

(DB*) b*(x) = x n c(x') 

As Zarycki showed ( 1927), the notion of border (like those of closure, interior, and 
boundary) can ser\Te as a primitive in terms of which a system equivalent to the 
Kuratowski system can be defined. 

Similarly we can define the notion of the interior, i(x), of an object by: 

(DI) i(x) := x - b(x) (interior) 

We may define a closed object as an object for which x = c(x), and an open object as an 
object whose complement is closed. (We can then use these notions to relate the two 
approaches to. topology distinguished above, in that topological transformations are 
transformations which map open objects onto open objects.) A closed object is, 
intuitively, an independent constituent. A closed object may however fall short of being 
unitary, i.e. it need not be connected in the sense that we can proceed from any one point 
in the object to any other and remain within the confines of the object itself. The notion of 
connectedness, too, is a topological notion, which we can define as follows: 

(DCn) Cn(x) := '\/yz(x = y u z -7 3w(w $ c(y) n c(z))) 

A connected object is such that all ways· of splitting the object into two parts yield parts 
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whose closures overlap. An alternative definition might be: 

(DCn*) Cn*(x) := V'yz(x = y u z ~ (3w(w ~ x & w ~ c(y)) v 3w(w ~ c(x) & w ~ y))) 

Examination reveals, however, that even two adjacent spheres which are 
momentarily in contact with each other will satisfy either condition of connectedness as 
thus defined. For certain purposes, therefore, it is useful to operate in terms of a notion of 
strong connectedness which rules out cases such as this. This latter notion may be 
defined as follows: 

(DSCn) Scn(x) := Cn*(i(x)) 

4. Foundations of Cognitive Science: A Preliminary Survey 
Topology is a branch of mathematics which deals with the large class of topological 
properties in the sense broadly indicated in the above, or with the topological spaces 
which the corresponding transformations define. Topology in this sense has been 
exploited by cognitive scientists above all in work on connectionist networks. In the 
papers that follow, however, the focus is not on connectionist mathematics and on the 
corresponding neural-network-like structures located on what Smolensky (1988) calls the 
'sub-symbolic' level (which is to say on a level of cognitive architecture reputed to lie 
below that oil which meanings are consciously articulated (see also Zeeman 1962)). 
Rather, these papers are concerned primarily with the application of topological ideas and 
methods to the 'symbolic' level of cognitive behaviour and to the corresponding objects. 
Thus we shall be concerned with topological features of the world as this is orga~ized in 
meaningful human experience, and with topological features of this experience itself. 
Moreover, we shall be concerned with topology not (or not primarily) as a branch of 
mathematics. Rather we shall understand topology in a generalized fashion as a theory of 
a certain family of concepts centred around the notions of 'region', 'connectedness', 
'boundary', 'surface', 'point', 'neighbourhood', 'nearness', etc. These concepts will be 
interpreted in a fashion that is initially inspired by standard mathematical treatments, the 
work here presented will however involve departures from standard mathematical 
topology in ways designed to meet the requirements of given subject-matters. 

Work of the sort included in the present collection is not of course without 
precedent. In a range of cognitive science disciplines concepts and theories derived from 
topology have been utilized already in a variety of ways. Examples of existing work 
include: 
- work on logical semantics in the field of modal and tense logics (for example under 

the rubric of 'interval semantics'): Tarski 1938, McKinsey and Tarski 1944, Freksa 
1992, Cresswell 1978, 1979, 1985, van Benthein 1983, Allen 1981, 1984; 

- analyses of natural-language expressions and of the categorizations of objects, events 
and situations effected thereby: Wild gen 1981, 1982, Heydrich 1982, Habel et al. 
1988, 1993a, Habel 1989, 1990, Wunderlich and Herweg 1991, Kaufmann 1991, 
Aurnague and Vieu 1992; Bach 1986, Kamp 1979, Pianesi and Varzi 1994; 
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- work on verb-aspect and the mass-count distinction with a topological orientation: 
Mourelatos 1981, Galton 1984, Hoeksema 1985, Descles 1989, Brandt 1989; 

-· topological work in cognitive linguistics by Lakoff, Talmy, Langacker, Jackendoff 
and others; see especially Talmy 1977ff., Brugman and Lakoff 1988, Lakoff 1989, 
Jackendoff 1991, and the related work of Petitot 1982ff., and Wildgen 198lff. The 
importance of topology to the conceptual structuring effected by language is illustrated 
most easily in the case of prepositions. As Talmy notes, a preposition such as 'in' is 
magnitude neutral (in a thimble, in a volcano), shape neutral (in a well, in a trench), 
closure-neutral (in a bowl, in a ball); it is not however discontinuity neutral (in a bell
jar, in a bird cage); 

- topological studies of the notion of semantic dependence in text-linguistics: Saloni and 
Trybulec 1974, Lipski 1974, 1975, Frawley 1980, Heydrich 1989; 

-. topological work in the theory of geographic infonnation systems: Mark and Frank 
. 1991, Freksa-1991, Herring 1991, Frank et al. 1992, Frank and Campari 1993; 
I 

- in the investigation of phenomenal spaces and in 'the spatial properties of mental 
representations: Freksa 1991, 1992,.Varzf 1993, Smith 1993, Casati and Varzi 1994; 

'· 
- in contributions to qualitative or 'naive' physics and to the field of common-sense 

reasoning: Randell and Cohn 1989, Thom 1990, Petitot and Smith 1990 and (in 
press), Cui et al.1992, Randell et al. 1992, Smith 1992, Smith and Casati 1994; in 
studies of perceptual representation, motor learning, granularity, etc.: Hobbs 1985, 
Habel 1991, 1993, McCalla et al. 1992, Zimmennann and Freksa 1993, Zimmer 
1994; 

- in related naive-physical studies of phenomena such as cutting, friction, connection, 
grasping, assemblage, and so on: Forbus 1984, Hayes 1985, Hager 1985. 
Topological structures play a central role in studies of naive physics not least in virtue 
of the fact that even well-attested departures from true physics on the pan of common 
sense (Bozzi 1958, 1959, McCloskey 1983) leave the topology and vectorial 
orientation of the underlying physical phenomena invariant: our common sense would 
thus seem to have a veridical grasp of the topology and broad general orientation of 
physical phenomena even where it illegitimately modifies the relevant shape and 
metric properties; 

- in image-processing, for example in automatic analysis of X-ray images for medical 
and other purposes: Randell and Cohn 1989, Cui et al. 1992, Randell et al. 1992, 
Latecki 1992; 

- philosophically oriented studies of topological categories: Adams 1973, 1984, 1986, 
Tiles 1981, Simons 1987, Smith 1987ff., Stroll 1988, Chisholm 1989, 1992/93, 
Boehman 1990, Eschenbach and Heydrich (in press). 

In talking somewhat grandly of 'topological foundations for cognitive science', 
now, we are contending that the topological approach yields not simply a collection of 
insights and methods in selected fields, but an over-arching perspective for a range of 
different types of research across the breadth of cognitive science and a common language 
for the formulation of hypotheses drawn from a variety of seemingly disparate fields. 
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Initial evidence for the correctness of this view is provided not just by the scope of the 
inquiries referred to above, but also by the degree to which in different ways they overlap 
amongst themselves and support each other mutually. 

One rationale behind the idea that the inventory of topological concepts can yield a 
single unified framework for cognitive scienc.e turns on the fact that, as we saw, as has 
often been pointed out (see e.g. Gibson 1986), boundaries are centres of salience not 
only in the spatial but also in the temporal world (the beginnings and endings of events, 
the boundaries of qualitative changes for example in the unfolding of speech events: cf. 
Petitot 1989). Moreover, topological properties are more widely applicable than are those 
properties (for example of a geometrical sort) with which metric notions are associated. 
(Topological phenomena may also be referred to as 'qualitative' phenomena.) Metric 
features have certainly proved highly useful for the purposes of natural science. Given the 
pervasiveness of qualitative elements in every cognitive dimension, however, and also the 
similar pervasiveness of notions like continuity, integrity, boundary, prototypicality, etc., 
we can conjecture that topology will be not merely sufficiently general to encompass the 
subject-matter of the different cognitive sciences, but also that it will have the tools to do 
justice to this subject-matter without imposing alien features thereon. 

5. Topology vs. Set Theory 
Some of the reasons for shunning a set-theoretic treatment of the fundamentals of 
topology for present purposes can now be deduced as follows. Imagine that we are 
seeking a theory of ~he boundary-continuum structure as this makes itself manifest in the 
realm of everyday human experience, then the standard set-theoretic account of the 
continuum, initiated by Cantor and Dedekind and contained in all standard textbooks of 
the theory of sets, will be inadequate for at least the following reasons: 
1. The experienced continuum does not sustain the sorts of cardinal number 

constructions imposed by the Dedekindian approach. The experienced ccmtinuum is 
not isomorphic to· any real-number structure; indeed standard mathematical 
oppositions, such as that between a dense and a continuous series, here find no 
application. 

2. The set-theoretical construction of the continuum is predicated on the highly 
questionable thesis that out of unextended building blocks an extended whole can 
somehow be constructed. (Brentano 1988, Asenjo 1993) The experienced continuum, 
in contrast, is organized not in such a way that it would be built up out of particles or 
atoms, but rather in such a way that the wholes, including the medium of space, come 
before the parts which these wholes might contain and which might be distinguished 
on various levels within them. 

3. The application of set theory to a subject-matter presupposes the isolation of some 
basic level of Urelemente in such a way as to make possible a simulation of all 
structures appearing on higher levels by means of sets of successively higher types. 
If, however, as holds in the case of investigations of the ontology of the experienced 
world, we are dealing with mesoscopic entities and with their mesoscopic constituents 
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(the latter the products of more or less arbitrary real or imagined divisions along a 
variety of distinct axes), then there are no Urelemente to serve as our starting-point. 
(Cf. Boehman 1990.) This idea is, incidentally, at the heart also of Gestalt-theoretical 
criticisms of psychological atomism, which in many respects parallel criticisms of set
the~ry-induced atomism of the sort presented here. 

Of course, set theory is a mathematical theory of tremendous power, and none of 
the above precludes the possibility of reconstructing topological theories adequate for 
cognitive-science purposes also in set-theoretic terms, as is standardly done. The 

· reservations stated above however suggest that the set-theoretic framework can yield at 
best a model of the experienced continuum and similar structures, not a theory of these 
structures themselves (for the latter are after all not sets). Our suggestion, then, is that 
mereotopology will yield more interesting research hypotheses, and in a more direct and 
straightforward fashion, than would be the case should we choose to work instead with 
set-theoretic instruments. 

6. Topological Psychology 
The idea of using topology as a foundation for cognitive science is not without 
precursors. Of these, the most important, and the most notorious, is the work on 
"topological and vector psychology" of the German Gestalt psychologist Kurt Lewin. It 
will suffice for our present purposes merely to illustrate some of the ways in which 
Lewin uses topological notions in his 1936. 

We begin, following Lewin, with the opposition thing (intuitively: a closed 
connected unity) and region (intuitively: a space within which things ~e free to ~ove). 
As Lewin points out, what is a thing from one psychological perspective may be a region 
from another: 'A hut in the mountain has the character of a thing as long as one is trying 
to reach it from a distance. As soon as one goes in, it serves as a region in which one can 
move about.' (1936, p. 116) We then define the notion of a boundary zone z between 
two regions m and n, as the region, foreign to m and n, which has to be crossed in 
passing from one to the other. The whole m + n + z is then connected in the topological 
sense. (1936, p. 121) 

We can further define the concept of a barrier defined as a boundary zone which 
offers resistance to passage of things between one region and another. Such resistance 
may then be asymmetric; thus it may be greater in one dimension than in the opposite 
direction. Barriers effect the degree of communication between one region and another, or 
in other words the degree r~f if!f/uence of the state of one region on that of another region. 
Hence the notion of degree· of influence, too, need not be symmetric: the fact that a is in a 
certain degree of communication with b does not imply that b is in equally close 
communication with a. These notions applied psychological-no need for real 
influence-similar ideas worked out in greater sophistication later by Talmy in the 
linguistic sphere in his work on force dynamics (1988). 

Two regions a and bare said to be parts of a connected region if a change of state of 
a results in a change of state of b. The notion of connectedness, too, is by what was said 
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earlier a matter of degree. In fact we can distinguish a hierarchy of degrees of interlinkage 
between regions, and here Lewin echoes discussions in the Gestalt-theoretical literature of 
the notions of 'strong' and 'weak' Gestalten (1936, pp. 173f.). A ~trong Gestalt may be 
defined as a complex with a high degree of connectedness between its parts; a weak 
Gestalt has a lesser but still some minimal connectedness between its parts, while a purely 
summative whole (an 'Und-\lerhindung' in Gestaltist terminology) has a zero degree of 
connectedness between its separate units. Interestingly, the notions central to ,Gestalt 
theory can be defined not merely on the basis of the notion of connectedness, but also in 
terms of structure-preserving transformations (Simons 1988). 

We have deliberately introduced the above notions in a rather general way, 
abstaining from any specific applications to psychological matters. The notions are, as 
Lewin himself smnetimes recognizes, formal in the sense that they can be applied 
indiscriminately to a wide range of different sorts of material regions. The general 
tendency of Lewin' s writings, however, is to switch too unthinkingly to psychological 
applications, whereby his use of the concepts in question (concepts of 'barrier', 'path', · 
'(psychological) locomotion', 'dynamic interdependence (as the main determinant of the 
topology of the person)', 'tension', 'resistance', 'inhibition', etc. seems often to remain 
on the level of metaphor. While some cognitive scientists may be content never to pass 
beyond this level in their investigations, Lewin's methodology rightly drew the attention 
of critics who pointed to a certain crucial shortfall in his use of mathematical notions in 
his writings. As was correctly pointed out, Lewin rarely makes the mathematical theory 
of such notions do any substantial work within the framework of his investigations. This 
criticism was put forward in an influential article by I. London (1944), an article which 
did much to thwart the further development of topological psychology (or of a 
topologically founded cognitive science) as Lewin had conceived it. Yet Lo'ndon's 
critique is in some respects ill-drawn: London neglects the degree to which certain aspects 
of Lewin's generalizations of standard topology have since shown themselves to be 
highly fruitful. These generalizations include: 
I. the recognition that it is possible to construct topology on a non-atomistic, 

merec:ilogical basis which works in tem1s of wlwles (regions) as well as parts-where 
London, a defender of the analytic method at the heart of physical science, holds that 
for scientific purposes 'all experience must be dealt with in bits' (p. 279); 

2. the systematic employment of the notion of asymmetric boundary, a notion which 
turns out to be crucial in many cognitive spheres; 

3. the employment of topological ideas and methods also in relation to finite domains of 
objects. London argues (pp. 288f.) that topology makes sense only in infinite 
domains; as Hammer, Latecki, and others have shown, however, it is possible to 
construct in rigorous fashion finitistic systems in which analogues of topological 
notions can be defined; 

4. the recognition that topology can serve as a theoretical basis for a unification of 
diverse types of psychological facts (Cf. Back 1992, p. 52). 

Much in London's critique has in addition been rendered nugatory by more recent 
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developments such as those referred to above, which have demonstrated that it is possible 
to go beyond the merely metaphorical employment of topological concepts in cognitive 
science and to exploit the logico-mathematical properties of these concepts for the 
theoretical purposes of cognitive science in genuinely fruitful way. Thus many of 
Lewin's ideas recall principles of "force dynamics" worked out in greater sophistication 
in the linguistic sphere by Talmy ( 1988). 

7. Husserl's Mereotopology 
Prior to Lewin, there is the example of the philosopher Husserl, whose Logical 
Investigations (1900/01) contain a formal theory of part, whole and dependence that is 
used by Husserl to provide a framework for the analysis of mind and language of just the 
sort that is presupposed in the idea of a topological foundation for cognitive science. The 
title of the third of Husserl's Logical Investigations is "On the Theory of Wholes and 

I 

Parts" and it divides into two chapters: "The Difference between Independent and 
Dependent Objects" and "Thoughts Towards a Theory of the Pure Forms of Wholes and 
Parts". Unlike more familiar theories of wholes and parts, Husserl's theory concerns 
itself not merely with what we might think of as the vertical relations between parts and 
the wholes which comprehend them, but also with the horizontal relations of dependence 
and fusion between the different parts within a single whole. The theory of such part-part 
relations he then uses as a basis for an account of unity or integrity in a manner which 
anticipates later such accounts developed in explicitly topological terms. To put the matter 
simply and crudely: some of a whole exist merely side by side, they can be destroyed or 
removed from the whole without detriment to the residue. A whole all of whose parts 
manifest exclusively such side-by-sideness relations with each other is called a heap or 
aggregate or, more technically, a purely summative whole (an Und-Verbindung). In 
many wholes, however, and one might say in all wholes manifesting any kind of unity, 
certain parts stand to each other in relations of what Husserl called necessary dependence 
(which is sometimes, but not always, necessary interdependence). Such· parts, for 
example the surface and interior of a sphere, the individual instances of hue, saturation 
and brightness involved in a given instance of colour, cannot, as a matter of necessity, 
exist, except in association with their complementary parts in a whole of the given type. 
There is a huge variety of such lateral dependence relations giving rise to correspondingly 
huge variety of different types of whole which more standard approaches of 'extensional 
mereology' (Simons 1987, Ch. 1) are simply unable to distinguish. 

The connection between part and whole on the one hand and dependence on the 
other may be seen already in the fact that every whole can be regarded as being dependent 
on its own constituent parts. This thesis may amount to no more than the trivial claim that 
every object is such that it cannot exist unless all the objects which are, at different times, 
its parts, also exist at those times. Or it may consist in a non-trivial thesis to the effect that 
certain special sorts of objects are such as to contain 'integral parts' which must exist at 
all the times when these objects exist: their loss (for example the loss of brain or heart in a 
mammal) is sufficient to bring about the destruction of the whole. Or, finally, it may be 
transformed into the metaphysical thesis of mereological essentialism, i.e. into the 
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assenion that every spatio-temporal object is dependent in the non-trivial sense upon all 
its pans, so that the ship ceases to exist (becomes another thing) with the removal of the 
·first splinter of wood. It is. one not inconsiderable advantage of Husserl's theory that it 
allows a precise fomrnlation of these and a range of related theses within a single 
framework that is rooted on ideas concerning part, whole and dependence which are 
consistent with our common intuitions. Both Stanislaw Lesniewski, the founder of 
mereology, and the linguist Roman Jakobson applied Husserl's ideas on parts._ wholes 
and categories from the Logical Investigations in different areas of linguistics, in the early 
development of categorial grammar and of phonology, respectively. Thus Jakobson' s 
account of distinctive features is as he himself admits an application of Husserl's idea of 
dependent moments from the third Investigation. 

The underlying topological character of Husserl's thinking on dependence has been 
demonstrated by Fine (1995). The topological background of Husserl's work makes 
itself felt also in his treatment of the notion of phenomenal fusion (Casati 1991). After 
distinguishing dependent and independent contents (for example, in the visual field, 
between a colour- or brightness-content on the one hand, and a content corresponding to 
the image of a moving projectile, on the other), Husserl goes on to note that there is in the 
field of intuitive data an additional distinction, between intuitively separated contents, 
contents set in relief from or separated off from adjoining contents, on the one hand, and 
contents which are fused with adjoining contents, or whichflow over into them without 
separation, on the other (Investigation III, §8, 449). 

He points out that independent contents which are what they are no matter what 
goes on in their neighbourhood, need not have this quite different independence of 
separateness. The pans of an intuitive surface of a uniform or continuously shaded white 
are independent, but not separated. (Loe. cit.) Such content Husserl calls 'fused'; they 
form an 'undifferentiated whole' in the sense that the moments of the one pass 
'continuously' f 'stetig'] into corresponding moments of the other. (§9, 450) 

That Husserl was at least implicitly aware of the topological aspect of his ideas, 
even if not under this name, is unsurprising given that he was after all a student of the 
mathematician Weierstrass in Berlin, and that it was Cantor, Husserl's friend and 
colleague in Halle during the period when the Logical Investigations were being written, 
who first defined the fundamental topological notions of open, closed, dense, perfect set, 
boundary of a set, accumulation point, etc., and Husserl consciously employed Cantor's 
topological ideas, not least in writings on the general theory of (extensive and intensive) 
magnitudes which make up one preliminary stage on the road to the third Investigation 
(see Husserl 1983, pp. 83f, 95, 413, etc. and compare §§22 and 70 of the Prol~gomena 
to the Logical Investigations). 

More generally, it is worth pointing out that the early development of topology on 
the part of Cantor and others was part of a wider project on the part of both 
mathematicians and philosophers in the 19th century to produce a general theory of 
space-to find ways of constructing fruitful generalisations of such notions as extension, 
dimension, separation, neighbourhood, boundary, distance, proximity, continuity, 
boundary, etc.-and Husserl, with Stumpf and other students of Brentano such as 
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Meinong, participated in this project. (See Husserl 1983, pp. 275-300, 402-4lo; Stumpf 
1873; Meinong 1903, esp. §2: "Farbengeometrie Und Farbenpsychologie", and §5: "Der 
Farbenraum Und seine Dimensionen".) Significantly, the 1906 paper on "The Origins of 
the Concept of Space", in which Riesz first fommlated the closure axioms at the heart of 
topology is in fact a contribution to formal phenomenology, a study of the structures of 
spatial presentations, in which the attempt is made to specify the additional topological 
properties which must be possessed by a mathematical continuum if it is adequately to 
characterise the continuity and order properties of our experience of space. 
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This essay is an attempt at philosophical f{ulturkritik - that is, at the critique of 
philosophical culture; the essay itself is only in a rather modest sense philosophical. 
The problem addressed is this. There is a certain genre of philosophical literature 
which consists in the construction or description of axiom systems. Here, it seems 
to be presumed, is a suitable role for philosophy: the indication of first prindples, 
leaving the detailed work for other more specialised investigators. Is there anything 
to this? 

The picture seems, at first sight, attractive. Axioms might be taken to ~.e the 
basic elements out of which mathematical thought is constructed: the traditional role 
of philosophy is the investigation of just such basic elements: so, we could think, 
the philosophers might at last find a practical application for their work as they 
happily produce axiom systems to be used by the artificial intelligence community. 
Philosophers could also work critically, showing that certain areas of thought were 
based on the wrong axioms, and suggesting more appropriate foundations for them. 
However, there are several questionable elements in the above argument, namely: 

Axioms as Basic Elements The idea that axioms are basic elements can be 
interpreted in several ways. This might be supposed to be a description of math
ematical practice - i.e. one might suppose that mathematicians spend their time 
setting out axioms and drawing consequences from them. Or one might suppose 
that it is a description of mathematical ontology: that is, that axioms in some way 
refer to, or otherwise give one access to, items which are somehow ontologically 
basic. Or one might take a more normative stance, and say that axioms provide a 
foundation for ma.thematics, so that, regardless of actual mathematical practice, it 
would be important that mathematics could in principle be reconstructed axiomat
ically. All of these interpretations are to some extent questionable, and furthermore 
they rarely agree with one another. But more of this later. 
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The Traditional Role of Philosophy We are hardly on safer ground here. Con
ceptions of philosophy are (of course) historically variable. In particular, they have 
oscillated between t.hC' idea. of philosophy as prior to other knowledge and the idea of 
philosophy as reflcct.ing on and synthesising the rC'sults of the other sciences. Only 
the first would be consistent. with the picture of axioms which we have sketched 
above. However, even if one a.t.t.empt.s t.o enlist the aid of those philosophers who 
have conceived as philosophy as prior, one should be rather sobered by the following 
group of circumst.a.nces. Firstly, most. of t.he philosophers who have done this have 
adhered to the idea.I of demonstrative science set out in Aristotle's Second Ana
lytics. Secondly, most of these philosophers have also thought of mathematics as a 
paradigm science. Thirdly, Aristotle's ideal of demonstrative science cannot possibly 
be an adequate description of mathematical practice, because it uses syllogisms and 
syllogisms are, aft.er all, a. decidable theory. Fourthly, hardly anyone seems to have 
noticed. Now one might. argue that. this does not. matt.er, because Aristotle's theory 
of demonstrative science was perfectly good for what the philosophers wanted to do 
with it, that is, to use it for meta.theoretical reflection. This may well be the case, 
but if so it is hardly a.n advertisement for philosophy as a useful art: in retrospect, 
it seems fortunate that scientific and mathematical practitioners have, by and large, 
ignored what philosophers have to say, and have thus been saved from the technical 
deficiencies of the philosophers' picture of science. 

From the Consumers' Point of View The third element in the above argument 
is that axiom systems are useful: that is, that artificial intelligence specialists use 
them, so that after a.II there is some need for them. This might give us a pragmatic 
argument for the philosophical interest in axiomatisation, analogous to a famous 
criminal's reply to the question of why he robbed banks. ("That's where the money 
is.") Even though this ma.y be true (in the sense that some philosophers have been 
paid money for doing this), it ma.y distract attention from what is philosophically 
interesting. Neither may it be so interesting for the consumers. Axioms are, after 
all, only one of many possible formal descriptions of reality, or of mathematical 
practice, and others may be - and, I would argue, are - more interesting. 

My position is as follows. I would argue in general that a group of techniques 
derived from category theory are more suitable for the purposes of both philosophy 
and of computer science than a.re axiomatic systems. From the point of view of 
computer science, one does not need much argument: one can simply point to 
the substantial body of work already achieved. 1 And from the point of view of 
philosophy, I would argue that these techniques give one an illuminating picture 
of mathematical pra.ctice, as well as a plausible model for computation, and that 
furthermore they are appropriate for the formalisation of a great deal of "naive 
physics" and other forms of common sense knowledge.2 

So why axioms? That is, why do they have the prominence that they do? Proba
bly the answer is simply conservatism; the idea of an axiomatic system was used for 
foundational purposes by Hilbert and others of that period, and a great deal of the 

1 [2] is a good place to st.art .. 
2See [5]. 
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philosophical discussion even now st.ill refers to that group of ideas. The ideas used 
in such cross-disciplinary enterprises have an extraordinary permanence, because the 
basic translations - that. this mathematical idea stands for that philosophical idea. -
are the way that both parties deal with the other subject. Philosophers, for exam
ple, may not. be too familiar with such and such a mathematical concept, but if they 
know that, in philosophical terms, it "means" so and so, then they can deal with 
it. So these basic dictionaries between philosophy and mathematics are extremely 
difficult to change; it is even very difficult to try to examine them rationally. 

1 Building Blocks of Mathematics 

The idea of foundations of mathematics is almost entirely misleading. The late 
nineteenth century interest in foundations - the work of Kronecker and Frege and 
others - was motivated by a great deal of real disagreement among mathematicians 
about quite concrete matters: the validity or otherwise of mathematical proofs. 
This disagreement. was not confined to philosophers' favourite examples, such as 
the paradoxes of the infinite, but also extended to whole areas, in particular to the 
algebraic geometry of Severi and his school. Now the answer to a concrete crisis of 
this sort can also be very concrete: one can simply find a way in which ma.thematics 
can be done rigorously. The answer can even be very practical; one can learn how 
to do mathematics better, without the help of very much philosophy. 

Similarly, Hilbert's programme was a very concrete answer to a certain problem 
- the role of the infinite in mathematical thought - and the programme attempted 
to answer this by, firstly, providing a. mathematical anal.ysis of the concept of math
ematical proof, and secondly by attempting to eliminate reference to the infinite. 
Now although all of this work - both the foundational work, Hilbert's programme, 
and Godel's critique of it - is important, it should not be taken to say more than 
it does. It is standardly taken to be a description of mathematical practice, and it 
is not that; it is also standardly ta.ken to be a description (or at least an attempted 
description) of ontologically basic mathematical entities, and it is not that. 

To start with the question of basic entities. This is something that philosophers 
can hardly restrain themselves for looking for (it fits, after all, the philosophers' 
favourite role of ontological customs officers, sniffing around the baggage of more 
normal people in search of ontological contraband, otherwise known as "queer en
tities"). But, even though the progressive reductions of the turn of the century 
foundations of ma.thematics certainly look like a decomposition of entities into more 
basic constituents, I think this appearance is deceptive. For one thing, the identities 
which these reductions establish can hardly be taken literally, as Benaceraff points 
out.3 Secondly, the direction in which reduction is taken to go often seems quite 
arbitrary: in mathematics, one can frequently reduce entities of type A to those of 
type B, but also vice versa. Such reductions may be convenient for mathematical 
purposes, but it is hard to argue that they show that one class of entities is ontologi
cally more basic than the other. Here, is A more basic than B, or vice versa? In the 
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case of physical reduction, one should remember, one has t.he idea. of physical con
stituency, which indicate which direction reduction should go in, a.nd force it. to have 
an unambigous direction. Concepts like constituency are la.eking in mathematics. 
Many analogous concepts, which give a sense of direction to physical explanation, 
are also problematic in the mathematical case. Thus, in many physical cases, one 
has a classification of objects into sorts, a.nd t.he idea of each sort is simpler than the 
idea of the members of that sort. (The idea. of a. mammal is simpler than the idea. of 
a tapir.) However, this is not a.lwa.ys the case in ma.thematics; categories are most 
helpfully regarded as the inha.bita.nts of a cert.a.in two-category (the two-category 
of all categories), and the idea. of a two-ca.t.egory is more complicated than that of 
a category. So the very idea of ontologically basic entities seems to be difficult to 
apply to mathematical ontology, without. at lea.st a. good deal of analytical work on 
what it is to be a basic entity. 

The critical investigation of axioms is a.lso very questionable. What one would 
have to establish is tha.t certain results a.re wrong because they are based on axioms, 
or foundational elements, of the wrong sort (set theory rather than mereology, for 
example). But this is, in the nature of things, hard to a.rgue for, because most 
foundational setups for ma.thematics a.re intertranslatable, so it is a little. difficult to 
see what harm ensues by using one rather than the other if the results are the same. 

1.1 Mathematical Practice 

I shall base a good deal of the positive argument of this paper on the concept of 
mathematical practice. This is important, for a variety of reasons. Firstly there 
is the sine qua non argument; whatever mathematical ontology might be, we have 
no other access to it than by way of mathematical practice, so that mathematical 
practice is implicitly involved in our philosophy of mathematics anyway. Now ar
guments like this are not altogether reliable - one can give a similar argument f~r 
the reduction of philosophy to epistemology, for example. However, when they fail, 
they generally fail because the domain they are applied to (epistemology, let us say) 
is more difficult to investigate, or more contentious, than is some other domain (let 
us say ontology). However, this is not the case for mathematical practice; its formal 
investigation is a flourishing branch of mathematics, namely category theory. 

Secondly, the investigation of mathematical practice could well demystify con
cepts such as tha.t of mathematical intuition, by showing how such concepts are 
linked to certain features of practice. (This would be similar to Husserl's introduc
tion of eidetic intuition in connection with a practice, namely the practice of free 
imaginative variation.) 

Thirdly, the consideration of mathematical practice might have a chance of bring
ing the philosophy of mathematics back into contact with mathematics and end the 
continuous recirculation among philosophers of the same tiny stock of mathematical 
examples; as McCarty puts it, "the presumptive foundations of mathematics turn 
out, at the hands of the philosophers, to issue in terms which would be utterly in
sufficient to explain in detail the manufacture of a pa.per clip." 4 (Or, as a graduate 

4 (3, p. 326] 
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student at a prominent university said to me, "The philosophy of mathematics has 
got really interesting; you hardly have to know any mathematics at all to do it.") 

Let us look at an example; the concept. of dimension. This is a concept which is 
governed by one or two basic intuitions - that the dimension of a certain space is 
somehow a measure of the number of independent free variations that are possible 
within it, that the dimension of a subspace should be less than or equal to that of 
the containing space, that the dimension of a space should be an intrinsic property, 
and that the dimension of a space should be related to its behaviour under sea.ling. 
These intuitions are not laid down precisely, but seem, in mathematical practice, 
to be viewed as rough desiderata which a candidate notion of dimension ought to 
satisfy. This is significant, because there hardly seems to be any one concept of 
dimension which i~ clearly the right one. 5 Thus, one common definition - that of 
Hausdorff dimension - is only definable for metric spaces, and is not as intrinsic a.s 
maybe it should be, since it is only preserved by maps of metric spaces which satisfy 
a Holder condition. Furthermore, the counterexamples which one finds in this area. 
do not seem to be merely pathological; many of them exhibit geometrical beha.viour 
which is interesting in its own right (they a.re fractals, for example). 

As an example, consider Baire space; it can be defined as the space of functions 
from the natural numbers to the natural numbers, and given a topology ih which 
the basic opens a.re the subsets consisting of those functions which ha.ve given fixed 
values for the first k natural numbers, where k is arbitrary but fixed for each open set. 
Then it is easy to see that Baire space is isomorphic to the product of two copies of 
itself (one simply interleaves pairs of functions). Because the dimension of a product 
is the sum of the dimensions of its components (this is because dimension should 
measure the number of independent free variations), the only plausible dimens}ons to 
give to Haire space a.re zero and infinity. Both are problematic (infinity particularly 
so, since one can embed Ba.ire space in the real line). But Baire space is not by 
any means simply pathological; it is used extensively in descriptive set theory and 
measure theory, and is an interesting object of study in its own right. 

Furthermore, let us consider the family of concepts of dimension which are given 
by what are cohomology theories. Such theories a.re basically ways of systematically 
comparing the local and the global behaviour of topological spaces;-the concept of 
a cohomology theory is very well defined (there are axioms called the Eilenberg
Steenrod axioms6 which such theories must satisfy). Each cohomology theory is 
appropriate for spaces of a. certain sort, but here 'sort' is not defined axiomatically 
but by saying tha.t such spaces are locally isomorphic to a given model: thus, man
ifolds are locally isomorphic to Euclidean space, CW complexes are isomorphic to 
polyhdra, schemes are locally isomorphic to the sets of solutions of algebraic equa
tions. Each of these kinds of space has an associated cohomology theory - de Rham 
cohomology for manifolds, singular cohomology for CW complexes, and so on -
which is defined by means of the appropriate comparisons between local and global 

5See [4, Chapter 4]. 
6 Notice that here is a case of axiomatisation which explicitly has nothing to do with basic 

entities of any sort, but. rather with the standardisation of processes of reasoning which recur in 
many different concepts. Most occurrences of axiomatisation in mathematical practice seem to be 
of this sort rather than the foundational sort. 
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which are appropriate for that kind of space. One should notice that this procedure 
is essentially open end<>d; one simply bas 110 grasp of the f.ol<tlily of theories satis
fying the Eilenberg-St.eenrod axioms. Th<' list might, in principle, be extended at 
any time; the appropriate cohomology t.h<'ory for schemes, namely etale cohomol
ogy, is an invent.ion of the 60's. And ea.ch cohomology theory will carry with it an 
appropriate not.ion of dimension. 

1.2' The Role of Axioms 

This example shows that the role of a.xionrn.t.ics, and of exact definitions, in ma.the
matics is perhaps rat.her other than it is commonly taken to be. According to the 
naive picture (mathematical objects a.re ma.de out of basic mathematical entities, 
and the axioms of ma.thematics give us access to these), the axioms of a given the
ory ought to apply to the basic, simple objects out of which others are constructed, 

, and furthermore the axioms aJ1d definitions ought to be epistemica.lly the most en
trenched parts of ma.the1i1a.tical reasoning. Both of these fa.ii to be the case here; 
the axioms we deal with (the Eilenberg-Steenrod axioms) a.re certainly not a.bout 
basic entities, and the definitions a.nd axioms are certainly not the most entrenched 
parts of this area. of ma.thematics. What is most entrenched, and most resistent to 
change, are the rough desiderata. which a. theory of dimension ought to satisfy - that 
it should measure the number of independent possibilities of variation, and so on. It 
is these rough and open ended criteria. which mathematicians appeal to when they 
are evaluating more formal mathematical work. 

2 Conclusion 

How does one evaluate this? Philosophically, there is clearly work to do; a critique 
of the role of basic entities in mathematical ontology, an investigation of the links 
between mathematical ontology and mathematical practice, and ·so on. This are 
clearly problems worth philosophical examination. However, from the point of view 
of Kulturkritik, other things are perhaps more important. 

One is this: that the original hope was to find entities which would play a funda
mental role in mathematical ontology, in mathematical practice, in our commonsense 
grasp of the world, and also be suitable for application in artificial intelligence. This 
is clearly an overdetermined problem; one would be very lucky to find a single group 
of entities which do all of this simultaneously. And, in fact, one can't; there are 
many senses of 'basic' a.t issue here. and this leads to tensions between the mathe
matical and the philosophical sides of the problem. These tensions are, of course, 
what makes the ontology of mathematics an interesting and difficult problem. But 
it is difficult not to see the original hope as somehow the result of a belief in magic, 
and similarly it is difficult. not to see the critical investigation of axioms a.s somehow 
a belief in infection. 

The second phenomenon is this. The problem that philosophers and artificial 
intelligence specialists a.re addressing with these efforts at axiomatisation is the prob
lem of qualitative geometry: how can one investigate the geometrical properties of 
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entities in abstract.ion from their metric properties'? It is a perfectly good problem 
(and, like many problems i11 computc•r science, it is a. problem of attaining an ap
propriate level of abstract.ion). It. is also a problem that has been, on the whole, 
solved; it was solved in the 60's by algC'braic geometers and algebraic topologists. 
It is difficult and sophisticated work, but maybe necessarily so; qualitative mathe
matics is generally more difficult than quantitative mathematics, and it is hard to 
see that this should be any exception. i\fa.ny of the themes which have surfaced 
in the philosophy /artificial intelligence community have been already discovered by 
the algebraic geometers (for example, the view of regions, rather than points, as 
primary). Furthermore, it is natmally presented in terms of category theory, and 
category theory has far better and simpler connections with theoretical computer 
science than does t,he theory of axiomatic systems. This is not magic, but perhaps a 
constellation of circumstances which works better than things normally do; it should 
certainly be investigated. 

The third thing is this. There has been a. great deal of polemical fuss made 
over the question of this or that axiom system. This is pointless: mathematicians 
don't, on the whole, use axiom systems, so the question of whether they a.re using the 
right one is a non-question (especially since normal mathematics seems to have been 
remarkably successful in <lea.ling with the problems the philosophers are raising). But 
there are many genuine problems to be faced, which a.re both genuine philosophical 
problems and, a.t this juncture, important in a wider context. There are the claims 
of cognitive science to be evaluated, and there is also the problem of a growing 
anti-intellectualism, which seems to· take the qualitative as a symbol for the non
theoretical. There is a great deal of work to be done here, work which will take 
philosophical acumen and also genuine meta.theoretical insights. And it is important 
not to let a belief in magic distract one from more urgent tasks. 
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Abstract 

In this paper, I offer a re-examination of the idea that general topology 
could be a new basis, or an essential part of a new basis, for ontology con
ceived, in the traditional sense, as a "science of being." I analyse a number 
of difficulties and I do not offer a way out, except, perhaps, that of giving up 
the name of "topology" for whatever could be a new basis for ontology. 

I. Ontology and Topology 
It is occasionally claimed-and in this volume you will find more than one example 
for it-that topology might not only be useful for knowledge representation research 
(in particular with regard to knowledge of spatial relations) but also serve as a new 
foundation for ontology, the science of being. 

This article is a contribution to a critical appraisal of this claim. Such an appraisal 
is not possible without saying what one's concept of ontology is. Let me, therefore, 
start out with this. 

Ontology is an old philosophical discipline-though its name was coined only in 
the 17th century-and for many centuries it was, under the name of metaphysics, 
the central one. 

It started, like almost everything in philosophy, with Plato and Aristotle, was 
continued by Plotinus, revived in the mediaeval Islamic and Jewish philosophy and 
the Christian Scholasticism, reaching its heights in the work of Thomas Aquinas 
and Duns Scotus, it was handed down to the modern times by original thinkers like 
Francisco Sua.rez, underwent a transformation in the work of the great Continental 
philosophers of the 17th century: Descartes, Malebranche, Spinoza and Leibniz, 
went through a period of decline in the 18th century, but resurrected in the early 
19th century, first in the strange form of the late German Idealism (Schelling, Hegel), 
and in the work of solitary thinkers like Kierkegaard and Schopenhauer. 

A major turn occurred when two parallel currents started to ft.ow in the second half 
of the 19th century. (They have continued to flow-albeit in wide, and ever wider
growing, deltas-to this very day.) One of them-known as Neoscholasticism-

*Work supported by a grant from the Austrian Fonds zur Forderung der Wissenschaftlichen 
Forschung, grant. number: P8661-HIS. 
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was a revival of the mediaeval Scholast.icism which began as an attempt to re-read 
the mediaeval Scholastics i11 the search for what could make them relevant for the 
modern mind, but produced, and goes on producing, original work. The other cur
rent was a tradition inaugurated by Franz Brentano, a German-Austrian thinkei· 
of the late 19th and early 20th century, who was himself an offspring of the first 
current. He was, however, dissatisfied by what. appeared to him, in Neoscholas
ticism, as too much traditionalism and too less interest in empirical data and in 
the discoveries of modern natural science. He developed, therefore, a family of 
highly original-though recognizably Arist.ot.elian in their basic tenets-doctrines 
on various ontological, though not only ont.ologica.l, topics. Brentano found numer
ous brilliant students and followers who, in their turn, had their own bright and 
enthusiastic students and followers, ma.inly in countl'ies of Central Eur~pe (which 
used to be a part of the then Austro-Hunga.ria.n Empire), and among whom Alexius 
Meinong, Stanislaw Lesniewski, Edmund Husserl, and Roman Ingarden may be the 
best known. 

The family of these Brentanians, grand-Brenta.nians and gra.nd-gra.nd-Brenta
nians, in the meantime partly· transplanted to the United States, has been growing 
ever since, and expanding all over the world. This living (and lively) tradition has, 
in the meantime, become mature enough to afford to publish an authoritative work, 
with the title "Handbook of Metaphysics and Ontology," 1 at which the reader will 
be well-advised to have a look, if she or he wants more technical information. But 
the British philosophy has not been intact from the ontological resurgence, either. 
Suffice it to mention the British Idealism, with T. H. Green and F.H. Bradley, a sui 
generis continuation of the German Idealism, and Moore and Russell's revolt against 
it, which did not fail to produce a good deal of ontological doctrines and arguments, 
within the framework of a philosophical system known. as "Logical Atomism." In 
Russell's case, the influence of the above-mentioned Brentano student Meinong was 
significant, if only because Russell formed his views in opposition to Meinong's. 
In today's Anglo-American analytic philosophy, even some heirs of the tradition of 

I . 

the Vienna ,Circle, like David ~ewis, have taken interest in ontological issues, and 
managed to produce valuable work in this area. 

So much by way of a historical introduction. Let me now say a few words a.bout the 
substance ontology. There are hardly any general theses to which ontologists of all 
these various traditions, schools a.nd persuasions would subscribe. What they share, 
is rather a class of basis presuppositions, more often tacitly held than expressed. 
One of them is the presupposition that a.ll existing things form a unity which is not 
like that of an agglomerate, or a heap, but which is governed by certain general 
principles. What these principles are, is, consequently, a major problem, or rather, 
a set of problems, shared by all ontologists. In fact, ontology, which is nothing like a 
mere catalogue of various existing things, can be defined as a "science of the general 
principles of being." 2 

The belief that there is a unity of everything tha.t exists may seem, to the unini-

1 H. Burkhardt and B.Smit.h (eds.) Handbook of Metaphysics and Ontology, 2 vols., Mu
nich/Hamden/Vienna: Philosophia, 1991. 

20r, in the famous formulation by Arist.~t.le Metaphysics r, 1003a, 20-21, a science of being as 
being and the attributes belonging to it in virtue of its own nature. 
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tia.ted, utterly strange, and that for two reasons. Firstly, bee.a.use most of the in
tellectual as well as practical work of humanity is devoted to questions pertaining 
to special domains of reality. We ar<' interested in planting a tree, baking a loaf 
of bread, building a house, constructing a machine, splitting the atom, subduing a 
nation, cracking t.he jackpot, as well as in the various particular truths which may 
be helpful in doing all those various things. Seldom, if ever, are we interested in 
"everything that exists." Yet still, as ontologists believe, compartmentalized be
tween various domains of practical and theoretical interest as reality is, it does form 
a unity, not only in virtue of common principles which govern it, but also in virtue 
of relations among those various domains. The second reason why the idea that 
"everything that exists" ma.y not seem to be a respectable subject matter of a dis
ciplined intellectu~l activity, is that this seemingly restrictive phrase "that exists" 
does not make sense. Are there things that do not exist? Which ones are they? 
Centaurs or golden mountains, perhaps? But ontologists are not easily daunted by 
queer entities like these; they think that if the existence of centaurs or golden moun
tains is a dubious case, then it must be cleared up, or at least, it must be explained 
why it is a. dubious case. 

Now, in the recent decades, ontologists of certain persuasions have become very 
much preoccupied with the latter sort of difficulty; their work has become, to a 
large extent, a search for, and an analysis of, "tricky examples." But nonetheless, 
the first problem, that of the general principles governing reality in its whole, has not 
been lost sight of, though few people today have the stamina to address that major 
problem of ontology directly. I should even venture to say that the popularity of 
topology and other mathematical applications in ontology is due mostly to the hope 
that advanced modern mathematics may be of decisive importance for ontology, in 
that it will help it to achieve firm results more quickly than it has been pos~·ible so 
far. For 6ntologists, despite their over two millennia. of ha.rd work, have produced 
only few firm results. 

In what follows, I shall, therefore, concentrate ma.inly on the presupposition that 
there are some general principles of governing everything that exists. ~ · , 

Now, if there a.re such general principles, where are they to be sought? In other 
words, what kind of principles are they? In other words still, what is their nature? 
Ancient Pythagoreans thought they the principles at issue a.re mathematical in na
ture. Plato shared this view, to a certain extent, while Aristotle opposed it. The 
idea recurred, in various subtle versions later, prominently in the era of large meta
physical systems in the 17th century. It re- emerged with great vigour in early 20th 
century, when a mathematical theory of classes was developed. It began to look as 
if the theory of classes, later known, purged of its initial difficulties, a.s the theory 
of sets, could be a new basis for ontology, or indeed be itself a fundamental part of 
ontology.3 But today, after so many decades of only partly, at best, successful at
tempts actually to erect a solid edifice of ontology on the set-theoretical fundament, 
it is no longer certain if set theory alone would do. One of its most obvious flaws 
is that it is too abstract and unable to deal with qualitative richness and diversity 

3 Recall that Lesniewski called one of his three systems of what could have become an alternative 
theory of sets "ontology." 
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of reality. However, it. is not. only qunliln/i1J( ft'.'a.t.ures of reality t.ha.t set theory does 
not seem to be able to ca.pt.me, at lea.st in no natural way, hut also some merely 
formal features of reality, e.g. the rclat.ions of dependence, or of boundedness, or of 
being inside or outside. It is such features that topology seems to be called upon to 
provide an theory of, a. t.heory which, with suitable modifications, would become a 
fundament of ontology. 

While I agree, however, that topology is conceptually richer than set theory-how 
could it not be. given that topological structures a.re usually defined on a family of 
sets-it is my content.ion that possible applications of topology to ontology a.re 
rather limited, and stretching them ca.n be even dangerous in that it can intro- duce 
into ontology certain unexamined and possibly false assumptions. 

II. Methodological problems 
In what follows, I should concent.ra.t.e on methodological problems troubling appli
cations of topology to ontology, for there a.re quite of few of them, some of which 
can be summarily expressed in the question: how do we link topology to ontology? 
How do we find, identify, or impose topological structures in what constitutes the 
subject matter of ontology? And does the study of such structures afford us any 
new insights into the subject n;att.er of ontology, i.e. insights which would not, or 
not easily, have been possible without the introduction of a topological structure? Is 
it not much ra.ther, as with everything fashionable, the case that topological struc
tures are imposed upon the subject matter of ontology in an artificial and arbitrary 
manner, so that the results of this work are simply things which \Ve have always 
known, but in a new packaging? 

We all, I think, agree that topology a.lone a.nd as it stands, is not ontology, even 
if it can disguised as one. We could make the convention of, say, referring to sets 
as to "entities," to spaces a.s to "universes," to closures as to "closures" (in some 
mysteriously changed "ontological" sense) etc. This is not ontology, however, or 
perhaps it is just. a.n ontology of those abstra.ct mathematical objects with which 
topology deals. One could retort that this is a common problem of all disciplines 
to which ma.thematics is applied. This is true. But it is also true that not to 
every discipline ma.thema.tics is applied equally successfully. Mathematics gives more 
precision and rigour than we should otherwise have had. But it does this at a certain 
price: that of disregarding various aspects of that to which it is applied. In the 
case of ontology, we should ask ourselves the following questions: is the price not 
too high? Does the topological language and method as applied to ontology yield 
important ontological truths which we should not otherwise have learnt? Are these 
new truths-if any-so important as to justify putting up with the loss of other 
important truths which escape the topological methodology? 

In any case, we need, at the very outset of the enterprise of introducing ontological 
methods to ontology, some link between the subject matter of ontology, as we know 
it from the hitherto existing ontological tradition, and topology. In other words, we 
need ontological models for topological structures. 

This postulate is so obvious that it. might seem superfluous to mention it. But 
how, exactly, a.re such desired models found? 
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1. Closure and dependence 
We seem to have a number of ways at. om disposal. We can note, for instance, that if 
we read ''cl( :r )" (closure of :r, C\ fundamental topological expression) in a particular 
ontologically interesting fashion, e.g. as "~· plus everything on which x depends" 
or "x plus everything which depends on :r," cl(:r) might. satisfy, so interpreted, 
the Riesz-Kura.towski axioms of the operation of closure. And these axioms define 
"a topology" (as mathematicians soy), a basic topological structure with reference 
to which most otlwr structures can be defined. This is very interesting, and a 
resulting ontology could look very neat, elegant, and economical. But there are 
several problems with it. 

First of all, the relation of dependence is itself very difficult to understand. There 
is, strictly speaki1~g, not one such rel at.ion, but several (as lngarden has shown in 
his Strife on the E:ristence of the Wodd): for instance, dependence with respect to 
coming into existence, dependence in the sense in which a pa.rt is dependent on its 
whole, and in the sense in which a universal is dependent on its instantiations, de
pendence with respect to stoying in existence, finally, dependence of the determinate 
on the determinable, as e.g. the dependence of red on colour.4 And also (something 
skew to mathematical interest, because pure ma.thematics does not busy itself with 
particular objects): dependence as an individual, and dependence as a specimen of 
a natural kind, or as a. token of a type. For instance, this performance of a piano 
sonata is dependent upon this particular pianist, and a number of other factors, 
though the type "performance of the piano sonata" is not so dependent, although 
some subtypes of this type might be dependent on this particular player and other 
circumstances on which the present item of the performance is dependent. 

Note that we cannot say that on the absti-act level of topology this is all the 
same, because this would be either begging the question (have we really checked 
that it is the same?) or it would involve substituting the well known topological 
closure for ontological dependence, while keeping the name of the latter. And this 
would amount to doing good old topology under an "ontological" guise (with new 
fashionable words, like "dependence" for ''closure," for instance). 

2. Inside, open sets, and what? 
Another problem is that in topology, once we have defined a topological structure in 
terms of closure, we can define other operations, or other structures equivalent to the 
former. For instance, we can define the opera.ti on of ta.king the interior of x: Int( x). 
But under the "ontological" interpretations like the afore-mentioned, interior in the 
topological sense does not have any natural ontological counterpart. Because, if the 
interior of x is defined either as the complement of the closure of the complement 
of x, or as the maxima.I open subset of x, the problem is that we do not seem to 
have, at first blush, natural ontological counterparts of either complement, or of 
open set. Saying that the interior of an entity is the sum of everything that is inside 

4The reader will find a systematic classification of these types of dependence and their recipro
cal relations in: Roman Ingarden, Der Streit um die Existen:; der Welt, vol. I (Existenzontologie), 
Tiibingen: Niemeyer, 1964, pp. 74-130. Int.erestingly, in one footnot.e (nr. 49, p. 115) lngar
den reproaches Husserl with disregarding these distinctions in the 3rd Logical foiiestigations and 
labelling all types of relations of dependence as formal. 
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the entity does not. really help, for the problem is exactly what is inside an entity. 
What criteria. shall we use i11 deciding wlwdier this or that is inside of an entity? 
Such criteria. will vary from one> ·ent.it.y t.o another, and they must be found before 
the mathematical machinery is set in motion, so that one should wonder of what 
avail the latter should be, aft.er a.II. Besides, is the inside of an entity really a natural 
ontological item? But if it. is not, and t.hc topological concept of an interior does 
not have any natural ontological counterparts, neither does boundary (stanqardly 
~efined as the result. of the su btra.ction of t.he interior of a. set from its closure) ha.ve 
any natural ontological counterparts. 

It is also difficult. to see what "open sets," another important topological animal, 
might be, ontologically speaking (though we have a. name for them handy, namely 
"open entities"). 'vVe can ask ourselves, as a matter of a simple thought-experiment, 
if Socrates is his own closure, tha.t is to sa.y, he is everything he depends upon (though 
he may not be, under some readings of ''dependence"), what, then, could be an open 

' part of Socrates'? His bra.in, perhaps. or his ugliness? But this would mean that 
the Universe minus Socrates' brain or minus his ugliness is its own closure, which 
is a matter we must investigate int.o separately, as it were, without any help to be 
derived from our topological presuppositions. And it is not a.t all clear on what 
criteria we should decide whether the Universe minus Socrates' brain or minus his 
ugliness is its own closure: the very formulation of this problem sounds strange. So 
perhaps the ease with which "dependence" (conceived in a most general fashion) 
can be fitted into the K uratowskia.n axiomatics of closure, does not point to any 
deep affinity of topology and ontology, but, rather, is merely accidental. 

3. Boundaries 
But somebody might sa.y that the source of trouble is that we starte~ introducing 
topology to ontology on too high a level of abstraction. We should have started 
with the observation that things do have boundaries, and we should have made the 
concept of boundary the ma.in link between topology and ontology. 

Maybe. But we should examine the observation, if indeed an observation it be, 
that things ha.ve boundaries. Is there not a multiplicity of senses in which we 
can speak of boundaries of things, analogous to the multiplicity of the rela.tions of 
dependence in which they can sta.nd to one another? 

Now, an enthusiast. of the topological approach in ontology might respond tha.t 
there is one major, privileged, standard-setting, sense in which we can speak of 
boundaries of things, and that is: spatial, and temporal, boundaries of things. 

This is certainly true. But then there a.re a.t least three objections that spring to 
one's mind almost. immediately. 

Firstly, if we a.re interested in spatial a.nd temporal boundaries of things, this is 
a perfectly legitimate interest, and hardly a. recent one, but why should we expect 
anything of ontology, and why should we think tha.t this subject-matter would be 
relevant for ontology? There are many sciences, starting with applied mathematics, 
various sorts of engineering, and including psychology a.nd cognitive science, which 
deal with spatial a.nd temporal boundaries of things rather successfully. Even the old 
Eleatic paradoxes, which doubtlessly were a. pa.rt of ontology at that time, have been 
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successfully solved by the t.h<'ory of com'<'rgent infinite series, a mathematical theory 
invented in the 18th century. And topology can, and perhaps even does, contribute 
greatly to the progress of those sciences, th<' t.opologica.l structures themselves being 
neatly defined in terms of tll<' Euclidean metrics, f~r instance. Ontology, properly 
conceived, does not arrogate to itself anything of the domain of those respectable 
branches of science. 

Rather, ontology examines. as Aristotle once put it, being as such and its essential 
attributes. But a cumbersome fact in this connection, and a second difficulty, is that 
for a good many categories of beings, being spatial or "in space" is not really an 
essential predicate. This is true particularly of various categories of things that a.re 
elements of our common-sense world, and of our everyday-experience. Things of 
vital interest to us ,a.s animals, humans, and academics. 

For instance, a.s animals, rational or otherwise, we are interested in food. But 
please note that neither bread nor wine are food solely in virtue of what they are as 
"chunks of stuff" occupying space. They a.re food also in virtue of how our digestive 
systems are constructed and equipped, and of how they-our digestive systems
react to bread and wine. Being food, like being a. colour, is not an inherent. property 
of a chunk of matter; it is, rather, a rela.tional property straddling-not literally, 
because no spatial straddling is involved here-two chunks of matter, or rather 
species of such chunks. It is only because our digestive systems change very slowly 
over millennia and are therefore a. stable factor, that we can incorrectly think that. 
bread and wine are food simply as "chunks of stuff." 

As humans, we a.re interested in communication with other humans. But commu
nication involves various types of objects which do not have a.ny spatial structure, 
either. For what is the spatial structure of signs? Signs are types of object~ with 
meaning attached to them, and it is those objects, not the signs themselves, that 
have spatial, or more often, temporal structure. 

As academics we are, I believe, primarily interested in tenured posts, but these, 
though they have a. rather complex structure of their own, are not spatial objects, 
either, nor is their overall structure a. spatial one. 

Are states, and other political units, spatial objects (as is sometimes pretended)? 
They seem to be bound up with a certain spaJ,ial object, namely an area on the 
surface of the Earth, but they depend, for their existence upon many other entities 

/ 

that do not, at lea.st at first look, a.ppea.r to be spa.tial: structures of power, for 
instance. 

We could multiply indefinitely examples of types of objects which are important to 
us, and without familiarity with which survival, let alone anything more demanding 
than mere survival, would be impossible, and which, nonetheless, a.re not constituted 
by any spatial properties. 

What all such examples have in common, is, I believe, the fact that even though 
the objects in question do have some spatial component to them, it is not that 
component which makes them what they are, or not that spatial component alone. 
When we impose a topological structure on such objects, we usually anchor it in 
that spatial component, and we pretend that something important and fundamental 
can be learnt about those objects by studying that structure, and we thereby make 
out that spatial component to be itself important and fundamental. In this way, 
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reality begins to appear to us a.s basically mat.hematical, or-to be more specific
geometrical, as consisting of "chunks of stuff" (in the nowadays fashionable parlance) 
which are more or less neatly divided from each other. In this wa.y, we have come 
back to where Pythagoreans were, though our ontology mathematicised is fascinated 
less by number and more by topological structures. 

One of the sources of this error is, ti)(' rnodern reverence for mathematics and 
the natural sciences, impregnated by mathematics, and fascination with relatively 
new branches of ma.thematics, such as topology. Another source is, I think, the old 
confusion ca.used by the fa.ct that two different sorts of mental activity distinguished 
by Aristotle as "aphairesis" a.nd "khori::ein'' ca.me to be translated into Latin by 
means of the same term "abstraction." Very roughly speaking, the first activity 
abstracts from t.he physical bulk of things, and their qualitative properties bound 
up with it, and extracts their ma.t.hematica.l form, their shape, or, as we might say, 
their topological structure. The latter activity captures t.he "form" of a thing (in 

1 the specifically Aristotelian sense of the term "form"), its essence, or that which 
makes a given thing to what it is. These two different sorts of abstraction came to 
be distinguished in different ways from about the time of Avicenna at the latest, 
be it by means of different terms (Aquinas ca.lied the la.tter sort of abstraction 
"sepa- ration"), or by means of the concept of "degrees of abstraction." Rudolph us 
Goclenius, one of the first, if not the first, philosopher to the term "ontology," 
introduces ontology (science of being) as the discipline for which the third degree 
of abstraction is the proper method: ontology abstracts of matter "tam secundum 
rem quam secundum. rationem '' (with respect both to things themselves a.nd to 
their concepts)-he tells us in his monumental Lexicon Philosophicum5-whereas 
mathematics employs abstraction of the second degree, where particularities due 
to-as we should· say today-chemical properties of matter are disregarded, but 
conceptually, matter, a.s something that fills up space, is still taken into account.6 

The identification of the mathematical form and the form in the sense of "that 
which makes the thing to what it is'' has persistently recurred in major philosophical 
systems (cf. Cartesian res extensa" ), and has flown together in our modern usage 
of the word "form" in which these two senses are often present undistinguished. 
Ancient as this confusion is, there is no reason, I believe, to persist in it, let alone 
to aggravate it by extending mathematical techniques beyond the limits of their 
applicability. 

And, as it happens, the distinction is not very difficult to observe. When we note 
that an object has some spatial component to it, we should ask ourselves if it is also 
constituted by that component, or if the existence of this component is a sufficient 
condition of the existence of the object in question. In most cases we shall see that 
it is not even a necessary condition of the existence of the object in question, though 
some spatial component (not necessarily the one which the object actually has, and 
not necessarily a.ny specific one) might well be a necessary requirement. 

5Frankfurt, 1613, p. 16. 
6This is very much in line wit.h the way in which Aristotle characterises the subject-matter of 

mathematics: shapes (schemata) of t.hings, but. t.aken in abstraction from the particular properties 
of the things they are shapes of. The mat.hemat.ician concern himself with the curved, not with a 
snub nose (Physics I, 2. 193b30-194all). 
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But could we not invent. a. <l<'via.nt topology, tailor-ma.de for non-spatial relations? 
Perhaps. But why should we st.ill ca.II it. "t.opology"? 

The third difficulty is that. we should not. uncritically assume that we know what 
the spatial and temporal boundaries of things are. Ontology is concerned with 
w_hat is real, but consider how unequal, even 7n·ima Jacie, the degree of reality of 
boundaries of the following sorts of objects appears to be: 

- planets, stars 
- animals and humans 
- continents, islands, peninsulas 
- climatic zones 
- states and other political units. 
While it seems certain that entities of these categories are bounded,. it is far 

from clear where, ~xa.ctly, their boundaries a.re, and how they can be traced out. 
Sometimes, the boundary of an entity ca.n be safely identified with one of its parts, 
e.g. with its skin, in the case of an animal. In other cases, the boundary is, not 
so much discovered in an entity, as a.scribed to it, although non-arbitrarily; this 
is the case of continents. In still other cases, the boundary is ascribed completely 
arbitrarily. There appears, therefore, to be pretty little that an ontologist qua 
ontologist can say about. boundaries in all generality, and little is won by adopting 
for this purpose a formal a.ppa.ra.tus of ma.thematics: the real job has to be done 
on the level of various material ontologies: those of celestial bodies, of animals, of 
continents etc. That is to sa.y: we can, of course, keep doing topology and pretend 
that we are doing ontology by inserting occasional references to "entities" or some 
other pieces of the ontological inventory, and if we find doing topology with such 
references more attractive than without them, all the better. But for it to be real 
ontology, we must supply evidence to the effect that references that we make'·are to 
objects that satisfy, and this not in a strained, far-fetched way, axioms of topology, 
deviant or not. In other words, we must show, or rather constantly be showing, that 
those objects do, qua objects of ontology, have some topological structure. And I 
predict that this will be the most difficult part of the job, far more difficult than the 
relatively simple topology that we shall he doing, We shall have to do a good deal 
9f non-elementary material ontologies of different object-domains. 

III. Prospects of the future 
Doing material ontologies with a view for making topologies-deviant or not.
applicable to them will a very unrewarding job, as I should also venture to predict, 
for the following reason. I showed earlier that defining a topology by recourse to 
the relation(s) of dependence is somewhat. far-fetched because many natural topo
logical concepts do not have equally natural counterparts in the domain of whatever 
is definable with recourse to those relations. Now, something analogous holds true 
for topologies definable with recourse to boundaries. Even if we knew very well 
what boundaries of various sorts of objects exactly are, we should still have the 
problem of finding natural applications of other topological concepts in the domain 
of boundaries and bounded objects themselves. The concept of boundary is not, as 
we should not forget, a. central concept of topology. It can be, certainly, used as a 
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primitive in terms of which a.II the I\uratowski-Riesz axioms can he formulated, but 
the mathematician's point. of view this would be rather unnatural, which explains 
why it is done so seldom, if ever. Topology as a branch of ma.thematics is not, in any 
of its various subbranches, interested primarily in objects, or in their boundaries (or 
their closures or interiors, for that. matt.er). It. is, rather, interested in whole domains 
of objects (called "t.opological spaces"), in special types of functions (ca.lied "home
omorphisms") and in the invariants of thc>s<' functions. Now, in the domain of the 
subject-matter of ontology, it would be difficult. to find anything like "ontologico
topologica.l spaces" or "ontologically generalized homeomorphisms." And without 
them, the topology in ontology is hound to remain very elementary and inchoative. 

But, as I said before, productive applications of topology to ontology will be 
possible no sooner t.han natural ontological models for at least one, be it even a 
non-central, topological concept have been found, for instance for the concept of 
boundary. Let it be st.ressed: no sooner than such models have really been found. 

' rather than just assumed to be already there, simply because we have a word, 
like "boundary," which we ca.n make ourselves guilty of a merely analogous use of 
(without its being clear what the basis of the analogy is). 

And, to make a sort of compromise with those of us philosophers who are inter
ested in the topological approach to ontology, we might propose that there should 
be something which could be called ''pre-topological ontology," tha.t is, a branch of 
ontology devoted to investigating objects of various sorts and types from the point 
of view of the applicability of different topological concepts to them. As I suggested 
above, there is a great deal of interesting truths that can be discovered in the process 
of investigating what it is for objects of different sorts to have boundaries, (which 
we can preliminarily construe as qualitative differentiations, or, in the mode of Kurt 
Lewin 7 , as "zones of resistance," or in some other fashion). 

But even here, at this pre-topological stage, doubts might arise if it will be followed 
by some fully-fledged topological stage, since boundaries a.s we really find them in 
objects, display characteristics obviously deviant from those of boundaries in the 
topological sense. For instance, they a.re often not "thin": they are _zones _rather 
than skins. Yet, if it is the fashionableness of topology which would help us to reach 
a result like this, then we could sa.y that topology has had a reason to be fashionable 
among philosophers. 

7The Gestalt-psychologist defined barrier as a boundary zone which offers resistance to loco
motion. He noted, however. t.hat this resistance can "be different for different kinds of locomotion, 
for locomotion in different direct.ions and at. different. points of the barrier. See his Principles of 
Topological Psychology New York/London: 1\-IcGraw-Hill, 1936, p. 217. Very much in accordance 
with my above diagnosis, his "topology" r-emained very inchoate, at best, and he eventually gave 
up the name of "ontology," railing it. "hodology'' - science of paths, inst.ead. 
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INTRODUCTION 

Contemporary research concerning the cognitive links between perception, 
language, and action - see for instance Talmy's works - have revolutionized the 
dominating traditions of formal semantics. They have led to what Husserl already called 
in Erfahrung und Urteil a genealogy of logic, a perceptive genealogy of cognitive 
symbolic structures. Such a Gestalt-like perspective on symbolic structures raises a lot of 
new problems. It makes traditional simple - and even trivial - problems appear as 
complex, non trivial, ones. 

It is one of these problems I want to address here, namely that of the most 
elementary and primitive forms of predication in perceptive judgement: "the snow is 
white", "the sky is blue", "the ball is red", etc. 

For classical elementary logic these atomic formulae "S is p" stay at the lowest 
level of complexity. Both their syntax and their semantic are trivial. But it is no longer the 
case if one takes into account the perceptive situations to which these statements refer. 
Indeed, these situations compel to introduce in the formalization of symbolic logical 
structures, topological and morphological structures of a completely different kind. If one 
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wants to do semantics that way, one is therefore committed to elaborate a mathematically 
integrated theory of topology and logic. 

Let us see briefly why the problem of taking into account the perceptive roots of 
predication is a non trivial one. On the perceptive side we find a geometrical descriptive 
eidetics of the morphological (gestaltic) organization of perception. I use here the term 
"morphology" in the sense of Thom: a morphology is a set of qualitative discontinuities 
on a substrate space. But on the logical side we find a logical eidetics of judgement: a 
formal syntax and a formal semantics (e.g. a vericonditional theory of denotation). But 
between these two eidetics there exists a dramatic gap, what Thom (1988) called an 
"insuperable break" (Esquisse de Semiophysique, p. 248). Our challenge here is to fill· 
this gap using some sort of synthesis between logic and topology. 

The gap is linked with deep traditional philosophical questions, for instance that 
of the relations existing between analytic and synthetic rules. Morphological eidetics 
depends on synthetic laws of perception. On the contrary, logical eidetics depends on 
analytic laws. 

I. THE MORPHODYNAMICAL SCHEMATIZATION OF PREDICATION 

Let us consider how Rene Thom has morphologically schematized a perceptual 
attributive judgement "S is p" such as "the sky is blue". The truth conditions of such a 
statement depend on the way, as Husserl would say, the "intentions of signification" are 
intuitively filled (in the sense of an Erfii.llung) at the ante-predicative and prejudicative 
level. Without an adequate description of this intuitive filling-in, one can't elaborate a 
correct theory of predication. 

Let W be the spatial extension of S. Wis filled by a quality p belonging to a genus 
G (e.g. colours). The filling-in is then described by a map 

f: W ~ G, w ~f(w). 

Husserl has given a deep analysis - but lacking of mathematical modeling - of this fact 
in his third Logical Investigation. I have shown that to model adequately the unilateral 
dependence relation linking the extension W with its dependent part - its moment -p, 
one has to interpret the map/as a section of the (trivial)fibration 

1t : E = W x G ~ W. 

It is exactly the point of view mathematized by Thom. 
Let me recall briefly what are fibrations and sections of fibrations. 
Mathematically, a fibration is a differentiable manifold E endowed with a 

canonical projection (a differentiable map) 1t: E~M over another manifold M. Mis 
called the base of the fibration, and E its total space. The inverse images Ex= 7t-1(x) of 
the points xe W by 7t are called the fibers of the fibration. They are the subspaces of E 

which are projected to points. 
In general a fibration is required to be locally trivial, that is to satisfy the two 

following axioms: 
(F1) All the fibers Ex are diffeomorphic with a typical fiber F. 
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(F2) Vxe M, 3U a neighborhood of x such that the inverse image Eu= 7t-l(U) of U 

is diffeomorphic with the direct product UxF endowed with the canonical projection 

UxF->U, (x,q)->x. (See figures l, 2). 

E 

7t 

M 

x 

Figure 1 

Eu= UxF 

E 

7t 

M 
x 

Figure 2 
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In our case, we have M =Wand F = G. 

Let 7t: E-?M be a fibration and let UcM be an open subset~f•M; ~·~~C:tibn$ of 

7t over U is a lift of U to E which is compatible with n. More pr~cfa~1y/itj~ ~ map 

s: U-7£, XE U-?s(x)e Ex' i.e. such that 1toS = Idu. In general s is supposed to be 

continuous, differentiable, analytic. It can present discontinuities albllg a':sirigU!fu: locus. 
(See figures 3, 4). .· · · ·· ·· 

E 

1t s 

M 

x=7t(s(x)) 

Figure 3 

It is conventional to write r(U) for the set of sections of 7t over U. If there exists 

a local trivialization of 7t over U (i.e. Eu-4U === UxF-?U), it transforms every section 

s: U-7£ in a map X-?s(x)=(x/(x)), that is in a map/: U-?F. Therefore, the concept 

of section generalizes the classical concept of map. 
The main reason why it is of interest to conceive of the qualitative filling-in of 

spatial regions as sections of fibrations is that one can easily retreive that way the 
dependence relations (i.e. the ontological hierarchy) between "essences". The fact that 
spatial extensions are ontologically prior to qualities such as colours is modeled by the 
fact that the extensions Ware the base spaces of the fibrations, and can therefore exist in 
an independent way, while the qualitative genera Gare the fibers of the fibrations, and 
can therefore only exist in a dependent way. 
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E 

Discontinuity 

7t s 

M 

K 

Figure 4 

In general the genus G will be categorized and decomposed in sorts. Letp be such 
a category (e.g. "blue") and let ()p be its boundary in G. The perceptive statement "Sis p" 
is morphologically interpreted by the following geometrical/act: 

the ima~e ffW) of the section t W -? W x G is encapsulated in the cylinder W xi)p. 
These morphological descriptions can be generalized. If for instance there exists an order 
relation < on G (e.g. p is lighter than p' ), the statement S(W) < S' (W') means that 
p(f(w)) < p(f'(w')) where pis the second projection p: W x G-? G (that is p(f(w)) is 
the codomain of values off). 

The problem I want to address is very simple. In the framework of a semantic 
theory, what can be the link between two definitions of truth (for atomic formulae): 
(i) the tautological Tarskian one : "S is p" is true iff Sis p; 
(ii) the morphological Thomian one : "S is p" is true iff f(w) is encapsulated in the 

cylinder w x ap ? 

II. THE INDEXICAL AND MODAL STATUS OF SPATIAL EXTENSION 

In the categorial syntactic structure of a statement such as "S is p" , the specificity 
of the spatial extension W of S is in some way bracketed, "implicitated". Of course, one 
can focus on the extension W itself and consider its regions, its points, etc. But in doing 
so one changes the level of description. At the level at which S is processed as an 
individual entity sharing some properties - that is at the level at which the symbolic 
description "S is p" is relevant - the specificity of W is bracketed. This strange sort of 
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"epoche" concerns also the relations between qualities, as when we say"Sis lighter than 
R". . .. 

This problem has been well pointed out by Wittgenstein inhisRemarks on Colour 
(see Mulligan 1992). · 

"A language-game: Report whether a cenain body is lighter ofdarker 
than another. But now there's a related one: State the. relaliohship 
between the lightnesses of certain shades of colour; The fotm. of the 
propositions in both language games is the same "X is lightefthanY''. 
But in the first it is an external relation and the proposition is temporaL 
In the second it is an internal relarion and the proposition is timeless". 

The tautological aspecr of Tarski's definition of truth is a symptom of this 
"epoche". It is what remains when syntax and semantics uncouple themselves from their 
perceptive rooting. 

As a matter of fact, one can say that every perceptive statement is in some sense 
analog to an indexical one. It refers to its perceptive situation in much the same way as an 
indexical statement refers to its pragmatic context. The intuitive Er/ii/lung of the 
intentions of signification operates in a counterfactual fashion and one needs therefore 
somme son of Kripke's semantics to take account of this fact. 

If one wants to understand how classical logical structures can have a non 
classical space-semantics, one has to understand how classical variables can semantically 
denote sections offibrations in such a way that extensions can condition truth. 

Ill. COMPUTATIONAL VISION AND RECEPTIVE FIELD JET CALCULUS 

Before tackling this point, I want to emphasize the neuro-physiological relevance 
of the geometrical concept of fibration. 

The most influential specialists applying differential geometry to computational 
vision have hypothesized that cortical columns implement a multi-scale jet calculus and 
that it is essentially that way the brain does geometry. Let us consider for instance Jan 
Koenderink 's perspective. 

David Marr already showed at the end of the seventies that the retinal ganglion 
cells perform what is now called a wavelet analysis of the signal l(x,y ), that is a multi
scale and spatially localized analysis. They act as filters, that is they convolute the signal 
by the receptive profile of their receptive fields. Now, these receptive profiles are 

approximatively Laplacians of Gaussians !lG. According to the fact that 

!lG =I = !l( G =I) 

one can conclude that such cells smooth locally the signal at a certain scale and compute 
its second panial derivatives. 

Using such smoothed partial derivatives one can for instance detect qualitative 
salient discontinuities: it is Marr's celebrated zero-crossing criterium. 
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Now, zero-crossings are differential geometrical invariants which belongs to what 
is called the 2-jet of the smoothed signal. Jets constitute an intrinsic version of the old 
idea of Taylor expansions. Let us take for instance the Taylor expansion of an R valued 

differentiable map I: R2 ~ R up to order 2 at a point (xo, yo). 

()/ ()/ 
T2l(x,y) = /(X0 ,)'0 ) + (x -X0 )-(X0 ,y0 ) + (y- y0)-(x0 ,y0 ) + ax iJy 

(X-X0 )
2 d2

/ d21 (y-y0 )
2 d21 

2 
dX 2 (Xc,,Yo)+(X-Xo)(y-yo) dxdy (Xo,Yo)+ 

2 
()y2 (Xo,Yo) 

It is constructed via simple algebraic operations from the 8-uple 

{<x.y); I(x,y); (dJ,iJ/); <a:21.a!1,a:21)} 
Now we introduce a space .fl.= R8 with coordinates 

{ (x,y); z; (a,~); (A.,µ,y)} 

and we define the 2-jet of I as the map j2I: R2--+ fl given by 

j2J(x, y) = {<x.y); I(x,y); (iJJ,d/); <a:21.a!1.a:2n}. 
This map can be defined in a coordinate-free (geometrically intrinsic) manner. Actually fl 
is afibration of base R ~x.yland fiber R ~z;ca,p);(A.,µ,rlland the 2-jet/l-I is a section of fl. 

Jets are therefore spatial fields of differential data, and using them one can 
compute geometrically relevant differential invariants and morphological features (fold 
points, cusps, end points, curvature, etc.) using only arrays of point-processors. 

If one introduces the hypothesis that the receptive fields of certain classes of 
cortical cells approximate partial derivatives of Gaussians of order > 2 (up to or~er 3 or 
4) then one can give a multi-scale version of this jet calculus. Koenderink has strongly 
advocated the thesis that such a receptive field jet calculus is implemented in retinotopic 
arrays of cortical columns. 

Let us recall briefly the columnar structure of the primary visual cortex (area 17 or 
area Vl) extensively investigated since the pioneering works of Hubel, Wiesel and 
Mountcastle. 

The basic functional module is a "cube" organized in a retinotopic, columnar and 
layered manner. 
(i) The retinotopic structure preserves the topographic connexions of the retinian 
ganglion cells (the signal processing of which is transmitted and amplified by the lateral 
geniculate body). We get that way a retinotopic fibration, the base-space of which is 
constituted by glued local receptive fields. 
(ii) The columnar structure (which is orthogonal to the cortex surface) is essentially 
constituted by orientation columns, columns of ocular dominance, and colour plugs. 

Orientation columns (the diameter of which is about 50µ) are set out orthogonally to the 

columns of ocular dominance. Their preferential orientation varies from 0° to 180° by 10° 

steps. They constitute hypercolumns the size of which is about 800µ-1 mm. 

(iii) The layered structure is composed of six layers. Its depth is about 1,8mm. The 
geniculate fibers project on layer IV. Layer YI is a feedback one. Layer V projects on the 
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colliculus. Layers II and III receive the axons of layer IV and project their efferent fibers 
in other cortical regions where different attributes (shape, colour, movement, stereopsis, 
etc.) are further processed in a non retinotopic way. 

The orientation columns yield a beautiful exemple of a neurally implemented 

fib ration. Actually, they implement the fibration 7t: E ~ W the base of which is the visual 
field and the fiber of which is the projective line F = pl of plane directions. William 
Hoffman ( 1989) has explained how the cortex implements what is called the contact 
structure of E. 

Let M be a n-manifold. A contacr element c = (x, H) of M is constituted by a 
point xe Mand by a (n-1 )-hyperplane Hof the tangent space TxM of Mat x. (See figure 
5). 

Figure 5 

The contact bundle CM of M is the (2n-1 )-manifold of these contact elements. CM 

is a fibration - a fiber bundle - 7t : CM ~ M, the fiber over x being the projective 

space CxM = P(TxM) of hyperplanes of the vector space TxM. Here we haven= 2, the 

Hs are the directions and therefore CxM =Pl. (See figure 6: Mis represented as one

dimensional and in the second figure the directions are represented as points of Pl). 
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JP' 

H H 

M M 
t 

x x 

Figure 6 

The contact bundle CM is isomorphic to the projectivized bundle of the cotangent 
bundle T*M. Indeed a contact element (x, H) can be defined by a 1-form (a linear form) 
a.x on TxM satisfying Ker(a.x) = H. But A.ax (A :F: 0) defines the same H and therefore 

CM :P(T*M). 

There exists on the (2n-1 )-contact bundle CM what is called a canonical contact 
structure. It reflects the canonical symplectic structure of T*M. In general a contact 
structure on an N-manifold mis defined by a non degenerate field of (N-1)-hyperplanes 
he which are called contact hyperplanes (non degeneracy forces N to be odd). Let c = (x, 

H) e m = CM. A tangent vector 

(~,9) E T,rn = T(:c,H)CM 

belongs to the contact (2n-2)-hyperplane he iff its projection ~on TxM belongs to H (i.e. 

c = (x, H) moves in such a way that the x-velocity ~ belongs to H). (See figure 7). 
Let r be a sub-manifold of Mand let cMr be the manifold of the c E CM tangent 

tor. CMr is always of dimension n-l and is tangent to the field he. CMr is therefore an 

( n-1 )-integral manifold of the canonical contact structure of CM. In the visual case n = 2. 
m =CM is of dim= 3 (coordinates x, y, <p =direction of H). If c = (x, H) e CM and(~, 

9) e T(x. HJCM, we have: 

(~, 9) E he <=> ~ E H. 

If r is a curve in M and if we consider the contact elements c = (x, H) which are tangent 

tor (i.e. Txr = H) we get a curve CI'(a (n-1)-submanifold) in CM which is an integral 

curve of the canonical contact structure. Indeed, when x moves along r, (~,9) is such 

that~ e Txr and Txr = H. Therefore~ e H and therefore (~,9) e he. This shows that a 
boundary curve (a contour curve) is a section of a fibration and that it can therefore be 
processed by arrays of points processors. 
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W. Hoffman explains very well how: 
(i) the concept of receptive field corresponds to the cqncept of local chart in 
differential geometry; 
(ii) the neuraUy implemented canonical contact structure explains the processing of 
visual contours as integral curves; 
(iii) the perceptual constancies are invariant structures describable by means of actions 
of symmetry Lie groups on the contact structure of the projective bundle of directions. 
He concludes claiming that 

"fibrations ( ... ) are certainly present and operative in the posterior 
perceptual system if one takes account of the presence of "orientation" 
micro-response fields and the columnar arrangement of cortex"(p. 
645). 

For colours, the situation is a little bit more complex. There exist parvocellular 
layers in the lateral geniculate body constituted of ganglion cells sharing a spectral 
antagonism : (R+/G-), (G+/R-), (Y +/B-), (B+. Y-); there exist cortical plugs specialized 
in colour processing; their exist colour blobs in the area V 1; and, according to Semir 
Zeki, the area V 4 is specialized in colour processing. But it seems nevertheless plausible 
to hypothesize that colour is also processed through fibrations (with a dynamical 
antagonist spectral structure in the fibers). 

This shed some light on the morplwlogical aspects of perceptive statements. 
Quid, now, of the logical ones ?. How the morphological eidetics can be unified 

with a logic of judgement. 

IV. HUSSERL'S ERFAHRUNG UNO URTEIL 

In Erjahrung und Urteil, Untersuchungen zur Genealogie der Logik, Husserl 
tries to clarify phenomenologically the origin of predication. He elaborates a theory of 
predicative statements such as "S is p", in the framework of formal apophantics (a 
syntactic theory) and formal ontology (a semantic theory such as set theory). But his 
perspective is "genealogic". According to him, classical logic conceals the fundamental 
problem of evidence in the logical concept of truth. By "evidence", Husserl means here 
perceptive presentation as immediate acquaintance with the world. Predicative statements 
such as "S is p" are rooted in ante-predicative and pre-judicative experience and it is the 
nature of such a founding relation which constitutes for Husserl the main problem. His 
"basic theme" is "categorical judgement founded in perception" (p. 70). Now, according 
to him, formal logic neglects perceptual evidence. 

"The formal character of logical Analytics consists in the fact that it 
does not consider the material quality of what is given prior to 
statements, and that it looks to substrates only in what concerns the 
categorial form they take in the statement" (p. 18). 
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He wants therefore to show that logic is originally based on the experience of the world, 
that the foundation of logic in perception has a universal scope and concerns its essence. 

In Erfahrung und Urreil Husserl summarizes his analysis of perception previously 
done in the third Logical Investigation, Ding und Rawn and ldeen I. 

(i) The morphological analysis of the filling-in of spatial regions by qualities and 
the constitutive role of qualitative discontinuities in segmenting visual scenes (see the 
opposition between Versclzmelzwzg and Sonderung). 

(ii) The essentially adumhrative status of perception (Abschattungslehre). The 
object is a noematic pole unifying in a coherent way a continuous flux of adumbrations. 
Its noematic content expresses the synthetic relations of foundation between spatial 
extensions and their dependent moments such as contours or colours. It rule governs 
perceptive anticipations which, being filled-in by a "fluent variability" of adumbrations, 
are "indeterminated and general", but which are nevertheless also prescriptively ruled by 
typed relations. For instance, there exists a "typical genericity" of the filling-in relations 
between extensions and qualities. 

He analyzes then very precisely the origin of the "primitive logical categories" 
from the ante-predicative synthesis. The main problem is to understand the "categorial 
genesis" of the substrate/determination categories which transforms the perceptive 
synthesis, where a substrate S possesses a dependent moment p, in the predication "Sis 
p". Husserl's main thesis is that this categorial transformation arises from a reflective 
thematization which enables consciousness to grasp the dependent moments and typifies 
the s~bstrates in "subjects" and the dependent moments in "predicates". According to 
him: 

"We find there the origin of the first "logical" categories" (p. 127). 

Husserl points out therefore a fundamental conversion from the synthetic 
perceptive unity u'nifying an extension S with its dependent moments p to the analytic 
syntactic unity of the statement "S is p". 

"In the most simple predicative judgement a double information is 
processed" (p. 247). 

Indeed, underlying the syntactic "subject I predicate" information concerning the 
"functional forms" of the tem1s of the proposition, there exists another information 
concerning the "kernel forms" "substrate=independence" and "adjectivity=dependence". 
This underlying information is presupposed by the syntactic one. Predication is a process 
based on 

"the covering of the kernel forms as syntactic material by the functional 
forms" (p. 248). 

It is this logical typification of the synthetic dependance relations in syntactic 
categories I want now to model. As far as the dependence relations between extensions 
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and filling-in qualities can be schematized by sections of fibr~tions,.we see that, if we 
want to model Husserl's "genealogical" analysis of logic, we need to understand how 
variables which denote sections of fibrarions can be syntactically typified in such a way 
that the resulting semantics coud he that sort of Kripkean semantics we need to explain 
the "indexical" status of perceptive statements. Moreover this must be done in the 
framework of formal apophantics and formal ontology. 

Now, we will see that it is possible to achieve this goal using the tools of the 
geometrical logic yielded by Topos theory. 

V.. SHEAVES, TOPOI AND LOGIC 

I 

Some remarks to begin with. 
1. Topos theory has been invented by Grothendieck for solving very sophisticated 
problems of algebraic geometry (he wanted to construct generalized cohomological 
theories). It can therefore seem strange to use it for solving elementary and non 
mathematical problems. But actually, when they are treated as neuro-cognitive ones, 
these "nai've" problems are not at all elementary and require sophisticated tools to be 
modeled adequately. 

2. Category theory is certainly the best formal ontology we have now at disposal. 

3. Some specialists of topos theory have already applied these tools to clarify some 
basic semantic problems. For instance Gonzalo Reyes (who works, with Eduardo 
Dubuc, Anders Koch, Ieke Moerdijk and Marta Bunge on the applications oftopos 
theory to Synthetic Differential Geometry) has recently used these techniques to fonnalize 
the Kripkean theory of proper names as rigid designators. 

4. In general, topos theory is used in formal logic as a tool for typed A-calculus (see 
e.g. the works of John Mitchell, Philip Scott, Giuseppe Longo, etc.). As we will see, 
when variables are typed by objects in a topos, the categorical properties of the topos (to 
be a cartesian closed category, to possess a subobject classifier, etc.) leads to an 

intuitionistic "internal logic" which is a typed A-calculus. As far as the Curry-Howard 

correspondance shows that (in intuitionistic logic) formulae can be treated as types, 

proofs as A-terms, and the reduction of a proof by cut-elimination as the reduction of a A.
term to its nomial form, topos theory has become fundamental for understanding the 
semantic of formal - and in particular of programming - languages. 

In these applications, the geometrical origin of the sheaf and topos concepts is 
concealed. Here, we· aim at a completely different sort of application. We want to use this 
geometrical origin to explain the symbolic ascent of logical forms from morphological 
ones. 

As we already saw, in the "receptive field" perspective one needs to.conceive of 
sections of fibrations as resulting from a glueing of local sections. This leads naturally to 
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the concept of sheaf which, even if it can seem a very abstract one, is actually very deeply 
rooted in spatial intuition. 

5.1. The concept of sheaf. 
For the concept of sheaf, the primitive topological concept is no longer that of a 

point but that of an open set (what Peter Johnstone calls "pointless topology"). 

At an abstract level, a fibration is characterized by the sets of its sections f(U) 

over the open sets UcM. If SE f(U) is a section over U and if VcU, we can consider the 

restriction slv of s to V. The restriction is a map f(U)~f(V). It is clear that if V=U, then 

slv=s and that if WcVcU and sE f(U), then (slv)lw = slw (transitivity of the 

restriction). We get therefore what is called a contravariantfunctor r: o*(M)4Sets 

· from the category o(M) of the open sets of M in the category Sets of sets. (The objects 
of o(M) are the open sets of M, and its morphisms are the inclusions of open sets.) 

Conversely, let r be such a functor-. what is called apresheajon M. To have a 

chance of being the functor of the sections of a fibration, r must clearly satisfy the two 
following axioms. 
(S1) Two sections which are locally equal must be globally equal. Let u = (Ui)iel be 

an open covering of M. Let s,s'E f(M). If slui = s'lui T;/iEl, then s=s'. 

(S2) Compatible local sections can be collated in a global one. Let SiE f(U;) be a family 

over u = (Ui)iel· If the Si are compatible, that is if Si1U/1Uj = Sj1U/1Uj when 

UinUj :;t: 0, then they can be glued together: 3se f(M) such that slui = s; 'ef iel. 
(S1) and (S2) can be expressed in a purely categorical manner. For instance (S2) 

says that the arrow 
e : s ~ {s luJ;e / 

is the equalizer 
p 

f(U) ~ IJrcu;) ~IJrcui nU;) 
. ~" 
I q l,j 

of the two projections p, q corresponding to the inclusions U in U j c U i and 

U;nUjCUj. 

In fact these axioms characterize a more general structure - and even more 
pervasive in contemporary mathematics - than the structure of fibration, namely the 
structure of sheaf. It can be shown that if the axioms (S1) and (S2) are satisfied, then one 

can represent the functor r by a general fibered structure 7t: E~M (called un "etale" 

space and which is not necessarily a locally trivial fibration) in such a way that r(U) 

becomes the set of sections of rr over U. In a nutshell, the fiber Ex- called in that case 

the stalk of the sheaf rat x - is the inductive limit (the colimit) : 

Ex= limvcue uxl (f(U), f(VcU)) 

(where Ux is the filter of the open neighborhoods of x). The stalk Ex is the set of germs sx 

of sections at x. E is the sum of the Ex. If se f(U), it can be interpreted as the map 
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xe U~s(x)e Ex. The topology of E is then defined as the finest one making all these 

sections continuous. 

5.2. Generalizations. 
There are many generalizations of this basic situation. The best known is that of 

Grothendieck 's topologies : open coverings are defined in terms of "sieves'~ and the 
concept of sheaf is generalized to this structure of "site". 

Another generalization is that of frames and locales. One consider frames, that is 
lattices which share the properties of the lattices of open sets o(X). They are complete 
distributive lattices with finite meets and general joins. Locales are the objects of the dual 
category (in the case of topological spaces the correspondance is 

,f: X ~ Y continuous :::} .r : o(Y) ~ o(X)). 

Points are then defined as morphisms p : A ~ 2 = o(l) (in the case of topological spaces, 

if A = o(X) points correspond to true points p : I ~X). Let Pt( A) be the set of points of 

A. A topology is defined on Pt( A) by the subsets cp(a) = (p e Pt( A) I p(a) = I}. o(Pt(A)) 

is the 'best approximation of A by a "spatial" locale. 

5.3. The concept of topos. 
Now, the main point, is that the category of sheaves on a space M shares the 

categorical properties of a topos and that (intuitionistic) logical languages can therefore be 
interpreted in it. According to Lawvere's perspective, such a topos t can therefore be 
conceived of as a universe of discourse the objects of which are variable entities 
depending on the elements U of o(M). o(M) operates therefore as a set of "possible 
worlds". The "possible worlds" are here spatial extensions. This dependence on spatial 
extensions shares the two main properties we need: 

(i) it is constitutive of the concept of logical truth and therefore of semantic 
relevance; 

(ii) but it is not directly "visible" in the syntax of the internal logic oft and it is 
therefore syntactically irrelevant. 
Actually, as long as the formal constructions in such a universe are constructive (in the 
intuitionistic sense) one can completely bracket and forget the spatial dependence at the 
syntactic level. We get therefore a very elegant explanation of the puzzling fact that spatial 
extension operates in perceptive statements in a rather "indexical" and "pragmatic" 
manner. 

I eke Moerdijk and Gonzalo Reyes ( 1991) have proposed an interesting 
philosophical commentary to Lawvere's main ideas. 

"Topos theory has brought to light and given the means to exploit a 
complementarity (or duality) principle between logic and structure" (p. 
10). 

In the framework of classical model theory, a theory T is of the general form T = S + I 
where S is the axiomatics of a type of structures and I a set-theoretical interpretation 
satisfying the "trivial" and "tautological" Tarskian semantics. But one can also interpret S 
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in a topos t = Sh(c) by means of a sheaf semantics. One can then work in t as one 
would work in a standard universe of sets provided one does it with a non classical 
(intuitionistic) logic reflecting the new interpretation. 

Let us now recall breafly the structure of a topos. If A is a sheaf on M, A(U) will 

denote the set r A ( U) of sections of A over U. It is easy to show that the sheaves on a 
base space M constitute a category Sh(M). 

5.3.J. Exponentials 
Sh(M) is a cartesian closed category. This means that it has products and fibered 

products or pullbacks, a terminal object - classically denoted by I - and exponentials 
BA. An exponential object is an object which "internalizes" in the objects of Sh(M) the 

morphisms f: A 4 B. Such "internalization" of functorial structures are called 

representable functors. Technically, the functor ( • r4 is the right adjoint of the functor A x 
( • ). This means that we have for every object C of Sh (M) a functorial isomorphism 
Hom(C,BA) = Hom(AxC,B). E.g. for C=l, we get Hom(J,BA)::: Hom (A,B). But an 

arrow f: I 4 BA is like an "element" of BA. In fact, if A is a sheaf, an arrow s : I 4 

A is a global section of A, that is an element se A(M). 
If we take C=BA and IdsA, the right adjunction defines what is called a counit 

E: AxBA 4 B such that for every f: C 4 BA the associated h: AxC 4 B is given 

by h = Eo(l xf). The counit generalizes the map (xj) 4 f(x) in set theory and is 

therefore called the evaluation map. 
The sheaf BA is defined using the evident restrictions Alu and Bluto open sets: 

BA(U) = Hom(Alu, Blu). It is called the "internal Hom" or the sheaf of germs of 
morphisms from A to B. 

5.3.2. Subobject classifier 

Sh(M) possesses also what is called a subobject classifier Q, that is an object 

which "internalizes" the sets of subobjects, making the subobject functor representable. A 
subobject m : S 0. A is a monomorphism (an injective map in the case of the category 
of sets). This means that if f and g are two morphisms from an object R to S, then 

mof=mog implies/=g. It is equivalent to say that the fibered product SxAS defined by m 

is isomorphic with S. A subobject classifier is a monomorphism True: I 4 Q such that 

every subobject m : S 0. A ,can be retrieved from True by a pull-back : 

S 4 I 
J, J, True 
A 4 Q 

<Ps 

We get therefore a functorial isomorphism Sub(A) = Hom(A ,Q). q>s is called the 

characteristic map of the subobject S. 
In the category Sets of sets, .Q = { 0, I ) is the classical set of boolean truth

values. Here - and it is perhaps _the main difference between a topos like Sh(M) and 
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the classical topos Sets-, Q(U) depends essentially on the topological structure. It 

expresses the localization of truth in a sheaf topos. 

By definition Q( U) : = { WcU}. It is trivial to verify that Q is a sheaf. The True 

map True : I --? Q is defined by True(U): I --? U e Q(U) that is by the maximal 

element of Q(U): to be true over U is to be true "everywhere" over U. The glo~al section 

Te Q(M) selected by True is nothing else than the whole base space M itself and 

Irl!k(U) is its localization to U. If S is a subsheaf of the sheaf A, its characteristic map 

q>s: A --? n is given by the maps q>s(U): A(U) --? Q(U) which map SE A(U) to the 

largest WcU s.t. slwe S. It is easy to verify that the monic map S 0. A is effectively the 

pull-back of True by q>s. As Mac Lane says: q>s gives "the shortest path to truth" WcU 
for S 0. A. 

5.3.3. Elements. pronerties and narts 

In a topos, the morphisms a: B--? A are called generalized elements of A, or 
elements defined on B (this denomination comes from algebraic geometric and, more 
precisely, from Grothendieck 's theory of schemes). Among the elements, the most 

important are those defined on open sets U, that is precisely the sections se A (U). If 

Ue o(M), we can consider the Yoneda sheaf y(U) = {VcU} and verify that A(U) -

Hom(y(U),A). The elements defined on the terminal object 1 are "global". We will see 

that an arrow 0: A-?Q is a "predicate" for A, that is a "property" of its generalized 

elements. Among all predicates, there is the predicate~: A-?1--?0. It is easy to 

verify that an element a : B-?A factorizes through a subobject SO.A iff charS(a) = 

q>soa = TrueB.q>s is therefore the predicate of A which is true exactly for those elements 

of A which.are in S. The unicity of <ps expresses the extensionality principle. 

Using the exponentials and the subobject classifier we can define the parts of an 
object A as another object P(A) =QA. We get the functorial isomorphisms: 

Sub(A) - Hom(A,Q) - Hom(Axl,Q) - Hom(J,QA) = Hom(l,P(A)). 

We have therefore Q = P(l). 

This shows that there are 3 equivalent descriptions of a subobject m : SO.A. 
(i) its "extension" S: we will see that it can be symbolized as in Sets by { al<ps(a)}; 

(ii) its characteristic map <ps : A-?Q which is a "predicate" of A; 

(iii) the global section s : 1--?P(A) which is its "name". 

The evaluation map EA : AxQA = AxP(A)--? Q is a "membership" predicate: if 

a : B-?A is an element of A, and ifs : I ~P(A) is (the name of) a subobject of A, then 

EAo(axs)=TrueBxJ iff <psoA=TrueB, that is iff a is an element of S. 

5.3.4. Towards logic 
The existence of an intuitionistic "internal logic" in a topos depends essentially on 

the fact that, being the set of the open sets W of the topological space U, Q(U) is 

(fonctorially) an Heyting algebra. Q is therefore a sheaf of Heyting algebras (an Heyting 
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algebra object in Sh(M)). The consequence is that the "external" set of subobjects 
Sub(A) and the "internal" one P(A) are also Heyting algebras, the canonical isomorphism 
Sub(A)- Hom(l, P(A)) being an isomorphism of Heyting algebras. 

5. 4. Topoi and logic 
Now, the central fact is that a topos is exactly the categorical structure which is 

needed for doing logic. But this logic is spatially localized. For details see e.g. Saunders 
Mac Lane, Ieke Moerdijk 1992. 

5.4. I. Tmes and localization 
We can associate with each topos Sh(M) a formal language lM called its Mitchell

Benabou language, and a forcing semantics called its Kripke-Joyal semantics. The crucial 
point is that a sheaf X can be considered as a type for variables x which are interpreted as 

, sections seX(U) of X. We get therefore at the same time a typification and a localization 
of the variables. This achievement fits perfectly well with Husserl's description and 
explains Wittgenstein's remark. It provides them with a correct mathematical status. 
(i) Sections are tokens denoted by variables belonging to types (species, essences). 
They are "concretely" particularized by the specification of their localization U and by 
their specific values. But as an element of type X, s particularizes an abstract unilateral 

relation of dependence, the relation "quality~extension" which is constitutive of X. 

(ii) The relations between particular sections se X(U), re Y(V) are external. The 

relations between X and Y are internal. Nevertheless the linguistic expressions which 
express them are formulas in the formal language lM associated to Sh(M), and are the 
same. 

5 .4 .2. Syntax 
How are the terms and the formulas of IM syntactically constructed? Here is a 

summary of their inductive construction. 
A term cr of type X constructed using variables y, z of respective types Y, Z has a 

source YXZ and is interpreted by a morphism cr : YXZ~X which expresses its structure. 

(i) To each X e Sh(M) considered as a type are associated variables x, x', ... They 

are interpreted by the identity map Ix : X ~x. 
(ii) Terms cr : U ~ X, t : \I~ Y of respective types X and Y yield a term <cr, 't> 

interpreted by <cr,'t>: W = UxV~XxY of type XxY. 

(iii) Terms cr: u~x. t: v~x of the same type X yield the term cr='t of type .Q 

interpreted by 
ox 

(er= -r) : W= Ux\I ~x xx~ .Q 

where Bx is the characteristic function of the diagonal subobject !:l.: X~XxX. 

(iv) A term cr : U ~x of type X and a morphism f: X ~ Y yield by composition a 

termfocr of type Y. 
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(v) Terms 0: V~YX and a: U~X of respective types yX and X yield a tenn 0(cr) 
of type Y interpreted by 

8( CJ) : w = v x u ~ y x xx ~ y 

where e is the evaluation map. '--
(vi) In particular, terms a : U ~ X and 't : V ~ QX yield a tenn cre t of type Q 

interpreted by 

cre r: W= VxU ~x x!Y ~n. 
(vii) A variable x of type X and a term a: XxU~Z of type Z and of source XxU 

yield a tenn of type zX interpreted by A.xcr: U~zX. 

(viii) Q is the type of the formulae of IM. As it is an Heyting algebra, we get the logical 

operations of propositional calculus : <f>/\\j/, <pv\jl, <p=>\jl, -i<p. It is easy to verify that if 

<p(x,y): XxY~Q is a formula, we can write the subobject of XxY classified by its 

interpretation in the "set theoretic" manner : { (x,y)e XxYl<p(x,y)}. 

(ix) One of the most remarkable facts of topoi theory is that it is possible to define 

quantification in a purely categorical manner. Let/: A~B be a morphism of Sh(M) and 

consider the "inverse image" functor f* : Sub(B)~Sub(A) defined by composition with 

f. Its internal version is the morphism Pif> : P(B)~P(A). The fact is that P(/) has two 

adjoint functors : a left adjoint one 3/: P(A )~ P(B) and a right adjoint one 'v' f: 

P(A)~P(B). They generalize the two adjunctions in Sets. If/: A~B. ScA and TcB, 

3r(S) = {be B 13a e S (j(a) = b)} = /(S), 

'v'r(S) = {b E B l'v'a E A (j(a) = b => a E s )} 
{ b e B lf-1 (b) c S } , 

d{f*(T)cS ~ Tc'v'1 (S) 
an . 

S cf*(T) ~ 31(S) c T 

We have: 
Se 31 (S)(U) iff {V 13t e S(V)f(t) =sw} covers U, 

S e 'ef / (S )(U) iff 'v'V ~ U 1-1 (sw) c S (V). 

Now, let <p(x,y): XxY~Q be a formula of two variables in Sh(M). Let 

p: X~l the canonical projection and P(p): P(I)~P(X). We get the adjunctions: 
'V p 

--7 
P(p) 

~ = P(X)f-P(l)=Q. 
3p 
~ 

We consider A.x<p(x,y): Y~QX=P(X) and we get the formula of source Y: 

'v'x<p(x,y) = 'v'poAx<p(x,y): Y ~n. 
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These categorical constructs show that the formal language IM is, at the 
"linguistic" level, exactly of the same nature as the classical formal language of sets 
theory. The main difference is that we have introduced a subtle dialectics between the 
type of the variables and their localization. 

5 .4 .3. Semantics 
The Kripke-Joyal semantics of topoi is aforcing semantics generalizing Cohen's 

one. A variable x of type X denotes a section se X(U), that is a morphisms: U-+X 

where U is now the sheaf defined by U. The.semantic rules are rules UIO<p(s) (U forces 

cp(s)). Lets: U-+X and let lm(s)e Sub(X) be the image of s. One defines 

UIOcp(s) := Im(s)c{xlcp(x)}, 

that is UIOcp(s) iff U ~ X ~ .0 factorizes through {x/cp(x)} : 
True 

U => { x I <p(x)} -+ l -+ Q . 

The semantic rules are: 

(i) U IO<p(s)/\'lf(s) iff U IQcp(s) and U IO\jl(s). 

(ii) U IO<p(s)v'lf(s) iff there exists an open covering (U;)iel of U s.t. for every i, U; 
IO<p(slu;) or U; 10\jl(slu;) (intuitionistic rule for disjonction) 

(iii) U IQcp(s)=>'!f(s) iff, for all V~U, V 10cp(slv) implies V IO'lf(sly). 

(iv) U 10...,<p(s) iff there does not exist V~U. V:;e0 s.t. V IOcp(slv) (the negation is 

intuitionistic because .0 is a Heyting algebra and not a Boolean one). 

(v) U 103ycp(s,y) (y being of type Y) iff there exist an open covering (U;);e/ of U and 

sections l3ie Y(U;) s.t. for every ie I Ui 10cp(slui,l3i). 

(vi) U IOV'y<p(s,y) iff for every V~U and 13e Y(V) we have V IO<p(slv.~). 
The subtilities of this form of semantics result from the following problem. ln a 

topos, one can interpret set-like expressions such as 

{ (xi )ie/ E TI F; I <p(X; )} 
1e/ 

defined by (a;)e{Cx;) I <p(x;)}CU) iff UIOcp(a;). But one has to be sure that such 

expressions define subsheaves. For this, one has to "sheafify" the sub-functors 
appearing in the set-like constructions. 

5.5. Sheaf mereology and boundaries. 
Two last points to conclude. 

1. There is a natural mereology applying to sections of fibrations and sheaves. It 
satisfies all the axioms of mereo-topology (Smith 1993) except the one asserting the 
unicity of the universe of objects under consideration. Actually, the union of sections is a 
merging, a fusion, a glueing of compatible sections. The union of the sections s 
satisfying a predicate cp is therefore in general not a single section but only a set of 

maximal ones. (See Petitot 1994) 
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2. In perceptive statements, boundaries play a fundamental role. And one knows 
since _Brentano that boundaries are somehow paradoxical entities. To tackle this point, we 
can use Lawvere's idea of co-Heyting algebras. In a Heyting algebra of open sets, the 

negation -.U of U is the interior of its complementary set, that is the largest open set V 
'-

such that Un V = 0. In a co-Heyting algebra of closed sets, the negation -..,F of Fis 

dually the smallest element H such that F u H = 1 (that is the closure of its 

complementary open set). One has 
-.(FriH)=-.Fu-.H, but only ..,(FuH)c-..,Fri-.G. 

One defines then the boundary 'dF of Fas the intersection Fri-..,F=oF. 'dF is therefore 

defined by logical "contradiction". The boundary operator satisfies the Leibniz rule : 
<J(F riH)=(oF riH)u(FrioH). 

Boundaries are characterized by "dB = B that is by -.8=1 or -..,-..,8=0. In general, the 

double negation -..,..,FcF is the "regular core" of F (the closure of its interior). One has of 

course F =(-.-.F)uoF. 

CONCLUSION 

1. There exists a topological geometrical eidetics of the morphological structures of 
perception. This eidetics is neurologically relevant. 

2. There exists an indexical status of spatial extensions in perceptive statements. This 
fact requires some sort of Kripkean modal semantics. 

3. It is relevant to try to model Husserl's ante-predicative "genealogy" oflogic. 

4. The geometric logic yielded by topos theory can do the job. It has therefore a deep 
cognitive meaning. 
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Abstract 

Usually, topology is formalised on the basis of set-theoretic notions. But 
mereology, the formal theory of 'pa.rt-of' and related concepts, is a suitable 
alternative to set theory for this purpose. Thus, formal approaches interrelat
ing mereologica.l and topological notions ('mereotopological approaches') also 
have a long tradition. 

In this pa.per, a mereotopologica.I definition of 'point' is introduced, based 
on the topological primitive of 'region'. It is shown that this definition is 
general enough, such that it allows definitions of all the usual separation 
properties. In contra.st to other proposals in similar frameworks, the relation 
between points and regions is assumed to be the mereological relation of part· 
of. In this framework a topological treatment of granularity is possible, in 
which points at a coarser level of granularity are topologically structured, 
when analysed on a finer level. 

Thus, mereotopology turns out not to be a mere terminological variant of 
point-set topology but to contribu~e to the foundations of theories of several 
domains of interest in cognitive science which exhibit topological structure. 

1 Introduction 

'•. 

Motivated by the interest. in basically spatial concepts such as 'self-connectedness', 
'separation', 'boundary'~ 'exterior' a.nd 'interior', point-set topology investigates the 
properties of sets of points, functions between sets of points, their properties and 
relations etc. This leads to questions such as whether space is a (structured) set 
of points or whether its structure can be adequately represented in terms of sets 
of points. Since there are a.t lea.st epistemological reasons to give a negative an
swer to the former question, one might search for an alternative framework for 
studying topological concepts. The framework should both allow the definition of 

*Thanks to Christopher Habel. Barry Srnit.h. Laure Vieu, and the participants at the workshop 
on 'Topological Foundations of Cognitive Science' for comrnent.s on earlier versions of this paper. 
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topologica.l structures without points a11d not require topological entities to be sets. 
Classical Mereology. the formal theory of 'part.-of' a.nd related concepts, is a sound 
and suitable basis for this (cf. Tarski UJ.JG, Smith 1993, Varzi 1993, Eschenbach 
and Heydrich (to appear)). w, .. will call approaches interrelating mereological and 
topological notions 'mereotopological' aml those interrelating mereological and geo
metrical notions 'mereogeomet.rirnl approaches'. The family of such approaches has 
a long tra.dition in discussions of the foundations of mathematics (cf. Huntington 
1913, de Laguna 1922, Whitehead 1929, lVIenger HMO, Clarke 1981, 198.5). 

Although point-set topology is based on the assumption of the existence of points 
it is not able to contribute t.o t.he elucidation oft.he notion of 'point'. Ta.king points 
for granted, it allows for the study of the structure of families of sets of points built 
up on higher levels. In contrast to this, mereotopological approaches are able to 
study both the notion of 'point' and topological structures not based on points. 
Table 1 gives a classification of rnereotopological and mereogeometrical approaches 
with respect to the definition of the notion of 'point'. 

Points a.re individua.ls classes of sequences of classes of sets 
Definition is individuals individuals of individuals 

mereological Euclid 
Smith 1993 

topological Eschen badl de Laguna. 1922 Menger 1940 Whitehead 1929 
Clarke 1985 

geometrical Huntington 1913 Tarski 1956 

Table 1: Classification of mereotopological definitions of 'point'. 

The outline of the paper is as follows: The next two sections will give a brief 
introduction to Classical Mereology and to the region-based approach of mereotopol
ogy. After this, a short discussion concerning the nature of points will prepare the 
region-based definition of 'point' proposed in section 4. Two sorts of consequence 
of this definition will be discussed. First, it will be shown that the definition does 
not restrict the topological structure to topological spaces enjoying certain separa
tion properties only. 1 Second, the discussion of topological structure is related to 
the discussion of distinguishing different levels of granularity (Hobbs 1985, Habel 
1991, 1993) for the representation of space. It will be argued that the approach pre
sented here allows for modelling space in a. \\·a.y, such that an object-on one level 
of granularity-can be modelled a.s a. point (without any internal topological struc
ture) and-on another level of granularity-as a region with an internal topological 
structure. Finally, this definition will be contra.steel with region-set definitions of 
'point' to be found in the literature. 

lThus, based on t.his definition it. is possible t.o differentiate between topological structures 
without points and topological structures in which points are not separated from each other. 
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2 Clas~ical Mereology 

As a.rgued by Eschenbach a.ud H('ydrich (t.o appea.r), Classic.al Mereology (CM) is 
a. forma.l theory of the relation of 'pa.rt.-of' and it.s conceptual relatives 'overlap', 
'discreteness' and 'sum', and docs not give rise to any concept of integrity or being 
a whole. CM as introduced by'Le8niewski (1916, 1927'-30, 1983) is applicable i~ 
each and every domain, while concepts of integrity are dependent on the particular 
features of the structure exhibited by a specific domain. The enrichment of CM by 
topological notions is an elementary possibility of introducing means for establishing 
notions of integrity. The concept. of self-connectedness, e.g., is a fundamental concept 
of integrity specifiable on the basis of topological notions. The interrelation of 
mereological a.nd topological concepts will thus allow for approaching a genuine 
theory of 'part-whole-relations'. 

There have been several a.pproa.ches to topological or geometrical structures 
which are not formulated in the framework of point-set topology. Although most 
of them involve some notion of 'parthood', 'containment' or 'inclusion', most of 
them are not based on CM. The interrelation of mereological and topological no
tions can be accomplished in different ways (see Varzi 1993). In several cases, the 
mereological apparatus needed is gained on the basis of a. topological primitive (see 
de Laguna. 1922, Whitehead 1929. Clarke 1981). Consequently, the mereological 
structure involved in these formalisms need not obey the laws of CM. 

Here we will proceed by introducing ClVl first and using its notion as a basis for 
defining topological notions (cf. Tarski 1956, Smith 1993, Eschenbach and Heydrich 
(to appear)). The mereological primitive employed is the binary relation of 'dis
creteness'. The axioma.tisation is close to the one given by Leonard and Goodman 
(1940). 2 ' 

Primitive notion: discreteness (I) 

Definitions: 

[Dl) x is part of y iff x is discrete from everything y is discrete from. 
( x < y =dr V z [ z I y :J z I :r]) 

[D2) :r is a. proper part of y iff a: is pa.rt of y and y ·is not pa.rt of x. 
(x ~ y =de x < y /\ -i(y < :r)) 

[D3) x and y ovedap iff they ha.ve a. common part. (x o y. df 3z [z < x /\ z < y]) 
[D4) x is the sum of some entities iff a: is discrete from exactly those entities 

which are discrete from ea.ch of them. 
(uz [<I>(z)] =dr tx [Vy [y Ix= Vz [<I>(z) :J y I z]]], x + y =de uz [z = x V z = y]) 

[D5) x is the product of some entities iff :r is the sum of all their common parts. 
(11'z [<I>(z)] =dr <JY [V.:: [<I>(.::) :J y <.::)],a·· y =de <JZ [z < x /\ z < y]) 

[D6) x is an atom iff it ha.s no proper pa.rt. (At(:r) =dr -i3y [y ~ x]) 
[D7) The (rnereological) compfrment of :r is the sum of all entities discrete from 

x. (x- 1 =dr<Jy[yl:r]) 
2The logical framework needed for this axiomtisation is that of second order l~gic with de

scriptions and identity, including some means for treating non-referring expressions. Plural 
quantification-as discused by Lewis (1991) .with respect. to its ontological advantages-is a usefull 
alternative to quantification over predicat.es. 

<(' 
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[DS] A mereological st.ructur<:> is n/0111-fl'n iff there is no atom. 
(Atom-free =dr -,:J.r [:\t(.r)]) 

Axioms: 

[Al] x and y are discrete iff ;r and y do not overlap. (:r / y:: -ix o y) 
[ A2] If x is part of y and y is part of .r, then x and y are identical. 

(x < y /\ y < :r :) :r = y) 
[A3] For any entities, their sum exists. (3:r [<I>(:r)]:) 3y [y = ux [cf>(x)]]) 

Since the topic of this paper is not. CM, details of the structure defined by [Al-
3] are here left. aside.3 For tlw sake of the discussion of points, four lemmata on 
properties of atoms should however be mentioned. 

Lemma 1: Atom :r is part of y iff .r overlaps y. (\l:r, y [At(:r) :) (x < y = x o y)]) 

Lem,ma 2: :r is an atom iff ;r is the product of all entities it overlaps. 
(Vx[At(:i:) = x = r.y[:i:oy]]) 

Lemma 3: Atoms are equal ifft.heyoverlap. (\lx,y[At.(:r) /\ At(y):) (x = y:: xoy)]) .. 
Lemma 4: A mereological structure is atom-free iff every entity overlaps two discrete 
entites. 
(Atom-free= Vx [3y, z [:i: o y /\ ;r oz/\ y / z]]) 

3 Region-based topology 

Based on the primitive notion of 'region', fundamental topological notions such as 
'boundary', 'open region', 'closed region', 'closure', 'interior', 'exterior', 'separation', 
'self-connectedness' etc. can be defined. 'Region' is a unary predicate, not to be 
understood as implying any specific dimensionality. Thus, it can be true of entities 
of the highest dimension of the topological structure under consideration. E.g., in 
studying the topological structure of space, 'region' ca.n be true of three-dimensional 
entities, and in the case of time, it can be true of one-dimensional ones. Notice that 
point-set topology has no notion of region. 4 As shall become clear by the following 
definitions, region-based topology deals with regions and their parts only. 5 

3The structure is a Boolean algebra which is complete with the exception that there is not 
anything discrete from everything, nothing which is the sum of no entities, and no product of 
discrete entities, in short: there is no empty individual. Those who are not familiar with CM 
might, for the time being, imagine the st.ruct.ure defined to be the power-set of some set deprived 
of the empty set; sum corresponding to union, product to intersection, part-of to subset, overlap to 
having a non-empty intersection, discreteness to having no common non-empty subset, and atoms 
to singleton sets. But be aware that. CM is more general than this, since it allows for structures 
without atoms (cf. e.g. Simons 1987), while the interpretation offered here brings atoms with it. 
Lewis (1991) presents an elaborate discussion of the int.errelation between CM and set-theory. 

4Theorem 19 shows that. regions correspond to point.-set.s which are subsets of the closure of 
their interior. The union of an open set and a subset of its boundary can therefore be considered a 
region. Based on the interpretation offered in footnote 3, standard topology can thus be thought 
of as a specific case of mereot.opology. 

5 Parts of regions are called topological entit.i'es here. As will be obvious. region-based topology is 
rest.ricted to that. part oft.he ur1iverse which consist.s of topological entities only. When necessary, 
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Primitive not.ion: region ('R.) 

Definitions: 

[D9] 
[DlO] 
[Dll] 

[D12] 

[D13] 

[D14] 

[D15] 

[Dl6] 

[Dl 7] 

[Dl8] 

[Dl9] 

[D20] 

[D21] 

[D22] 

[D23] 

[D24] 

:r is a topological fnlily iff ;r is pa.rt of a. region. (T(:r) =dr 3y [R(y) /\ x < y]) 
The topological unil'<TSf is thC' sum of all regions. (Un =dr uy [R(y)]) 
Regions :r and y are iulc1'1wlly com1fcled iff they have a common part whl'ch 
is a region. (x*y =dr'R(a·) /\ R(y) /\ 3z[R(z) /\ z < x /\ z < yJ) 
Regions :r and y are f;rfernally co11nected iff they overlap but are not inter- . 
nally connected. (~r x y =c1r'R(;r) /\ R(y) /\ xoy /\ •(X*Y)) 
Region ;r is open iff it. is not externally connected t.o any region. 
(op( ;r) =dr 'R.( ;r) /\ •3y [;r x y]) 
The interior oLr is the sum of t.he open regions which are part ·of x. 
(:r 0 =dr uy [op(y) /\ y < ;r]) 
y is adh<::rfnl to .r iff every op<'n region which overlaps y overlaps x. 
(y <J x =dr Vz [op(z) /\ z o y :J z o ;r]) 
The closure of :r is the sum of a.JI topological entities adherent tQ x. 
(xe =dr uy [T(y) /\ y <J ;r]) :i·,· 
The topological entity :r is closed iff it is identical to its closure. 
(cl( x) =c1r ( x = Xe)) 
The topological complement of :r is the sum of all topological entities discrete 
from x: (x-t =dray [T(y) /\ y I :r]) 
The boundary of :i: is the product of its closure and the closure of its topo
logical complement. (xb =dr :re· (x-t)e) 
The topological entities :r and y a.re separated iff x is discrete from the 
closure of y and y is discrete from the closure of :r. 
(x II Y =de T(x) /\ T(y) /\Xe I y /\ x I ye) 

'•. 

The topological entity :r is sel;f-connected iff it is not the sum of two separated 
topological entities. ( con(x) =dr T(x) /\ 0 3z, y [z + y = x /\ z 11 y]) 
y is an inner part of the topological entity x iff y is part of an open region 
z which is part of a:. (y <i :i.: =dr T(x) /\ 3z [op(z) /\ y < z /\ z < x]) 
If x is a. topological entity, then y is a dangling pad of x iff y is a proper 
part of ;r, ;r ha.s a topological complement z, and y is an inner part of the 
closure of z. (y <d9 .r =c1r T(;r) /\ y «a:/\ 3z [z = ;r-1 

/\ y <i ze]) 
A topological space is grounded on closed entities iff every region is the sum 
of the closed entities which are part of it. 
(GoCE =dr Vx [R(a:) :J a·= ay [cl(y) /\ y < x]]) 

Different restrictions on the primitive of 'region' lead to different topologies just 
as different restrictions on 'open set', 'neighbourhood' or 'closure' in classical topol
ogy do. The axioms [A4-6] seem to be essential if the structure is to be called 
'topological' a.t a.II. 

Axioms: 

[A4] Every region has an open region a.s a. pa.rt. (Vi~ [R(a:) :J 3y [op(y) /\ y < x]]) 

quantification is restricted explicitly t.o allow for an easy embedding of topology into an more 
comprehensive ontological framework. 
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[A5] For any regions their sum is a regio11. (V.1· [:r = uy ['R(y) /\ y < x] :J 'R(x)]) 
[A6] The product. of any t.wo m·erlappi11g open regions is an open region. 

( V :l', y [op( ;r) /\ op( !J ) /\ .r o y :J op( ;I' • y)]) 

Example 1: Let. a, b, c be t.hn·c· mutually disnet.e entities and a, b, a +b, a+c, b+c, a+ 
b+c the regions. According t.o t.h<> dc>finit.ions given above, a+ b+ c is the topological 
universe and any part of it. is a. topological entity. a + c and b + c are externally 
connected, while a+ c and a+ b a.re internally connected. a, b, a+ b, a+ b+ care open 
regions, and c, a+ c, b+ c, a+ b+ ca.re closed entities. a, b, a+ b+c are the interiors of 
a+ c, b+c and a+ b+c, respc>ct.ively. c is adherent. to a, b, c, a+ b, a+c, b+c, a+ b+c, 
but has nothing but itself adherent to it. a+ c, b + c, a+ b + c are the closures of 
a, band a+ b, respectively. c is the boundary of a, b, c, a+ c, b + c and a+ b, but not · 
of a + b + c. a + b is not self-connected, since a and b are separated. But neither 
a and b + c. nor band a+ r. nor c and a+ h a.re separated. Therefore a+ b + c is 
self-connected. 

r - - , r - - -, 

I 

a--+-- --rb 
L - - -

_____ ..J 

c 

Figure 1: Example 1. 

r - - , r - - , --rb 
L - - -

Figure 2: Example 2. 

Example 2: Let a, b, c, d be four mutually discrete entities and a, b, a+b, a+c, b+c, b+ 
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d,a+b+c,b+c+d,a+b+c+d bet.he regions; a+b+c+d is the topological universe 
and any part of it. is a topological ent.it.y. a. b. a+ b, b+d, a+ b+d, a+b+c, a+ b+c+d 
are open regions and c, d, a +c. b+c+d. a+b+c+d a.re closed entities. a, b, b+d, a+b+c 
a.re the interiors of a + c. b + c. b + d + c and a + b + c. respectively. c is adherent 
to a, b, c, a+ b, a+ c, b + c. a+ b + c. but has nothing but itself adherent to it. dis, 
e.g., adherent. t.o b. d, a+ b. b + c, a+ b + c. but. has nothing but itself adherent to Jt. 
a + c, b + c + d. a + b + c + d are the closures of a, b and a + b, respectively. c is the 
boundary of a, b + d, c, a + c, b + c + d and a + b + d. d is the boundary of d and 
a + b + c. c + d is the boundary of b, a + b and b + c. a and b are separated and, -
thus, a+ b is not self-connect.ed. But neither a and b + c, nor b a.nd a+ c, nor c and 
a + b are separated. Therefore a + b + c is self-connected. b and d are inner parts of 
b + d and dis a. dangling part. of a + d. . 

The structure defined by th<'se axioms is in many respects similar to classical 
point-set topology, a.It.hough. as standardly in approaches based on Classical Mere
ology, there is nothing like an empty t.opologica.l entity (the mereological structure 
does not include an empty object). The mereotopologica.l counterparts of well known 
topological properties and interrelations are otherwise valid. 

Theorem 5: The topological universe is open and closed. ( op(U'R.) /\ cl(Un)) 

Theorem 6: The sum of open regions is open. (:h [<T>(x)] /\ 'v'x [<I>(x) :J op(x)] :J 
op( O'X [ <J> ( X)])) 

Theorem 7: xis an open region iff :r is identical to its interior. ('v'x [op(x) = x = x0
]) 

Theorem 8: The sum of two closed entities is closed. ('v'x, y [cl(x) /\ cl(y) :J cl(x+y)J) 

Theorem 9: If a: is the product. of closed entities, then x is closed. 
(:ly [<T>(y)] /\ 'v'y [<T>(y) :J cl(y)] :J Va: [a·= r.y [<l>(y)] :J cl(x)]) 

Theorem 10: The closure of ;1' is the product of all closed topological entities x is 
part of. ('v'x [xc = 7ry [cl(y) /\ :z: < y]]) 

Theorem 11: The interior of xis pa.rt of x. ('v'x,y[y = x0 :J y < x]) 

Theorem 12: If :z: is pa.rt of the topological entity y, then x is adherent to y. 
('v'x, y [T(y) Ax< y ::> :z: <l y]) 

Theorem 13: If :i: is a. topological entity, then x is pa.rt of the closure of x. 
('v'x [T(x) ::> x < xc]) 

Theorem 14: If :z· is a topological entity and y the topological complement of x, then 
x is open iff y is closed, a.nd :z· is closed iff y is open. 
('v'x,y [T(x) /\ y = x-t :J (op(:z:) = cl(y)) /\ (cl(:z:) = op(y))]) 

Theorem 15: If the topological space is grounded on closed entities, then y is adher
ent to x iff no pa.rt of y is separated from :z:. 
(GoCE ::> 'v'x, y [y <3 :r = -.:lz [.: < Y /\.: II :i:]]) 

Notice that regions need not be self-connected. The following theorems are meant 
to shed some light on what can be conceived of a.s a. region. In essence, a region is 
an entity whose boundary is (entirely) adherent to its interior a.nd is not too thick 
(i.e. has no region as a pa.rt). 
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Lemma 16: If there is a region. t.h<'n t.11<' topological universe is a region. 
( 3x ['R( x )] :::> R(Un)) 

Lemma 17: x is a. topological e11t.it.y iff .1· is pa.rt of the topological universe. 
(Vx [T(x) = x <Un]) · 

Lemma 18: Every region is a topological c•ntit.y. (V:r ['R(x) :::> T(x)]) 

The01·em. 19: If :r is a region. then it. has no dangling parts. 
(Vx['R(x) :::> -i3y[y <dg :r}]) 

Theorem 20: If x is a region and y the boundary of :z:, then y has no region as a 
part. (Vx,y['R(.1·) A y = :z~b :::> -,3z['R(z) A z < y]]) 

4 Points 

i Euclid's definition (a point. is that which has no (proper) part) is what first comes 
to mind when we a.re asked wha.t. is a point .. G This definition is a. purely mereological 
one, and there already is a. place for this kind of entity in the above: they are atoms. 
But although 'point' should be defined in a wa.y that is based on topological notions, 
it is worth comparing a.toms and their properties to points. 

Atom are those entities \vhich do not exhibit any structure at all: They do not 
have any proper pa.rt and do not overlap another atom nor any entity they are not 
a part of. Points are entities which do not exhibit any topological structure: They 
do not have a proper part which is a region or a point, they do not overlap another 
point nor overlap any region they a.re not in. 

An alternative definition of 'point' is a. (geo)metrica.l one: A point is what is not 
extended. This definition is based on a. metrical-and not a purely topological
concept. Since geometrical and metrica.l structures are richer than topological ones 
in the sense that topological concepts can be defined in (geo )metrical terms, it is 
worth looking for a. basically topological definition.7 

A definition of 'point' is appropriate if it is in accordance with the intuitive 
notion we have. An intuitively clear mereotopological definition of 'point' is one 
which takes points to be regions which have no region as proper part. Such regions 
do not exhibit any topological structure. A corresponding idea is expressed· by 
Huntington in the context of mereogeometry.8 But there are topologiCal structures 
which do not involve such regions, and therefore it seems worth search for a more 
general definition. 

The relation between points and i·egions is often specified by the preposition 
in. This relation can be understood as being the mereological relation of part-of, 
which makes points topological entities. In addition, it seems to be sensible to 

6Cf. Smith (1993), a recent. approach in mereot.opology along this line. 
7 Although at this st.age of discussion it. is not. possible to show that. the definition presented here 

fulfils this requirement, it. should be not.ed that. an appropriate definition of 'point' should lead to 
the validity of: If x is a point. wit.h respect. to the topological structure arisen by a metrical space 
(or induced by the metric), t.hen J.' is not. ext.ended wit.h respect. t.o t.he underlying metric. 

8Taking sphere and co11iai11mrnl as primit.i\'e notions, Huntington ( 1913) defines points to be 
spheres which do not. contain a( 1101.ht>r) sphere. 
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assume tha.t every point. is i11 at. IC'ast one rC'gion. This makes points ontologically 
dependent on regions. An iclent.it.y criterion for points can also be based on regfon: 
Points which a.re in exactly tlH' same regions are equal. As said before, although 
points are topolog.ica.I ent.it.if:'s, t.hey do not. exhibit a.ny topological structure. These 
requirements a.re met by definition [025]. 1-

Definitions: 

[D25] x is a. point iff ;r is a. t.opologirnl ent.it.y, a· is part of every region it overlaps, 
and every topological entity which is pa.rt of any region x overlaps is part 
of x. 
(PT(x) =dr T(x) /\ V:: [T(z) :::> (z <a·= Vy ['R(y) /\ x o y :::> z < y])]) 

[D26] x is fo. y iff x is a. point, y a. region, and a: is pa.rt of y. 
(IN(x,y) =<lr PT(;r) /\ 'R.(y) /\ ;r < y) 

[D27] z is a neighbourhood of point. ;!' iff :: is a. topological entity and x is in an 
open region y which is pa.rt. of::. 
(N(z, :r) =dr PT(;r) /\ T(::) /\ 3y [ op(y) /\ /N(:r, y) /\ y < z]) 

[D28] A topological space is poinl-frff iff there is no point in the topological uni
verse. (Pfr =dr •:l:r [PT(:r) /\ IN(.r,UR)]) 

[D29] A topological space is grounded on points iff every region is the sum of the 
points in it. (GoP =dr'Vy['R.(y) :::> y =o-x[PT(:i:) /\ IN(x,y)]]) 

The topological structure defined by [A4-6] is not restricted in any way with 
respect to the existence of points. The structure may allow for topological differ
entiation without limit. Point-free topology is possible9 , as well as topology which 
includes points but is not grounded on them. 

That points can have parts is shown in the following example. 

r - -

~1~-~--~b 
1-~ I· 
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llL _ -1 I 
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J~~e 
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c d 

Figure 3: Example 3. 

Kwmple 3: Let a, b, c, d, e be five mutually discrete entities, a, b + e, a+ b + e, a+ c + 
d,b+c+d+e,a.+b+c+d+e the regions. a,b+e,a+b+e,a+b+c+d+e are open 

9 A simple case of point.-free topology is an atom-free mereological structure in which every 
entity is a region. 
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regions and a + c + d, b + c + d + <." + b + c + d + e the closures of a, b + e, a+ b + e 
respectively. c + d is the closure• of c. d and itself and c + d is the boundary of 
a, b + e, a+ c + d, b + c + d + c, a+ b + c. In this struct.mc, there are three points: 
a, b + e, c + d, and b, c, d, t are proper parts of points. 

Theorems 21 and 22 show that. Huntington's (1913) definition of 'point' captures a 
special case of the definition prese!lt.<>d lwre. 

The01·em 21: If ;r is a r<.>gio11 which has 110 rc·gio11 as proper part, then x is a point. 
(Vx [R(x) /\ -,:Jy [R(y) /\ y ~ ;r] :J PT(;r)]) 

Theorem 22: If x is a regioll which does not. overlap any region it is not part of, then 
xis a point. (Va.: [R(x) /\ -i3y [R(y) /\ x o y /\-ix< y] :J PT(x)]) 

The la.ck of topological structure of points is expressed in theorems 23, 24, 28 
a.nd 29. The following theorems show t.he similarity of points and atoms and that 
,the definition meets the analysis oft.he intuitive notion of 'point'. 

Theorem 23: Point a: is in region y iff :r overlaps y. 
(Vx,y[PT(x) /\ R(y) :J (IN(.r.y):: ;r oy)]) 

Theorem 24: The topological entity :r is a point iff :i: is the product of all regions it 
overlaps. (V:i.: [PT(:r) = (:r = 7ry ['R.(y) /\ .i: o y])]) 

Theorem 25: Points are equal iff they overlap. 
(Vx,y[PT(x) /\ PT(y) :J (:i: = y = :i:oy)]) 

Theorem 26: A topological space is point-free iff every topological entity overlaps 
two discrete regions. (Pfr = V:i: [T(:i·) :J 3y, z [x o y /\ x oz/\ y l z]J) 

Theorem 27: Points a.re equal iff they a.re in exactly the same regions. 
(Vx,y[PT(x) /\ PT(y) :J (:i~ = y = Vz['R.(z) :J (JN(:i:,z) = IN(y,z))])]) 

Theorem 28: If :i· is a point and y pa.rt of :i·, then :i.: is part of the closure of y. 
(\ix,y[PT(x) /\ y < :i.: :J :i~ <ye]) 

Theorem 29: Every point is self-connected. (\ix [PT(x) :::> con(:z:)]) 

That no a.toms a.re pa.rt of the topological universe does not mean that there 
are no points in it. Just take any example given and assume that the basic, non
analysed objects a.re infinitely dividable. On the other hand, that there a.re no points 
in the topological universe means that there a.re no atoms which are part of it. The 
validity of theorem 31 poses a. serious restriction on the possibility of presenting 
examples of point-free topological structures. First. topologies derived from finitely 
many entities (a.toms) a.re grounded on points. Second, if you think of the domain of 
Classical Mereology as sket.ched in footnote :J. sta.nda.rd topology can be thought of 
as mereotopology. But since singlet.on sets are a.toms with respect to this structure, 
in this domain one will a.lways get. atomic structures and, accordingly, topological 
structures ba.sed on points. 

Theorem 30: If the topological entity ;r is pa.rt of every region it overlaps, then x is 
part of a. point. (\ii: [T(x) /\ \:/::, [R(z) /\ ;r o::, :J :i: < z] :J 3y [PT(y) /\ x < y]J) 

Theorem 31: Every atom which is a topological entity is part of a point. 
(Vx [T(x) /\ At.(;r) :J 3y [PT(y) /\ :r < y]]) 



A Mereotopological Definit.ion of 'Poi111 · 73 

Theorems 32 t.o 35.show t.hat t.h<' rc•lation bet.we<'n points and their neighbour
hoods corresponds to the classical topological one. 

The01·em 32: A point is in11cr part of every one of its neighbourhoods. 
(Va.:,y [PT(a.:) /\ JV(y,a:) :::> .r <i y]) \_ 

Theorem 33: Every topological entity which has a neighbourhood of point x as a 
part is a neighbourhood of ;r. (V;r,y [PT(;r) /\ 3z [JV(z,x) /\ z < y] :::> N(y,x)]) 

Theorem 34: The product. of two 1wighbourhoocls of a point. :r exists and is a neigh
bourhood of a·. (Va·, y,.: [ PT(.r) /\ /1/(y, :r) /\JV(.:, :r) :::> 3w [w = y · z /\JV( w, x)]]) 

Theorem 35: Every neighbourhood .: of a point a· has a neighbourhood y of x as a 
part, such that z is neighbourhood of every point which is part of y. 
(Vx,:: [PT(x) /\.A'(.:, x) :::> 3y [.i\/(y, a·)/\ y < z /\ Vw [PT(w) /\. w < y :::> N(z, w)]]]) 

In the approach presented, the relation bet.ween points an,d regions or boundaries 
is the mereological relation of pa.rt-of. But the definition of 'point' does not imply 
that every point is, e.g., a pa.rt. of at. least one boundary. In addition, the question 
whether every region or boundary is exclusively built up from points (i.e. is the sum 
of the points which are pa.rt. of it) might be discussed. Therefore, it is possible to 
study whether a topological structure allows for something other than points (i.e. for 
something not having any point as part or, even stronger, something not overlapping 
any point). 

5 Points and Separation 

Theorem 27 suggests that points are always separated in a sense analogous,.to the 
condition on T0-spaces in point-set topology. 10 From the definition of 'point' it might 
be suspected that points are even separated according to the demands of T1 -spaces. 11 

To show th~t this is not the case, first the definitions of the separation properties 
have to be transferred to region-based topology. It is important to notice that 
the mereotopological analogue of the condition on normal spaces in region-based 
topology is independent from what points a.re and whether any exist. 

Definitions: 

[D30] A topological space is a T0 -space iff for every two (distinct) points there is 
an open region z such that exactly one of them is in ::. 
(To =dr Va.:, y [PT( a·) /\ PT(y) /\ a: =I y :::> 3z [ op(z) /\ (IN(x, z) '¥. IN(y, z ))]]) 

[D31] A topological space is a T1 -space iff for every two (distinct) points x, y there 
is an open region z such that a: is in z and y is not in z. 
(T1 =dcV:z:,y[PT(a~) /\ PT(y) /\ :r =I y :::> 3z[op(z) /\ IN(x,z) /\ •lN(y,z)]]) 

10 A point-set topological space is a T0-space iff for every two (distinct) points there is an open 
set z such that exactly one of them is in :: . 

11 A point set topological space is a T1 -space iff for every two (distinct) points x, y there is an 
open set z such that x is in :: and y is not. in :: . 
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[D32) A topological sp<H'<' is a Tr (or l/a11:;;t/orff-)sp"cf iff for every two (distinct) 
points :i·, y there ar<' two d iscrC't<· op<'ll regions u, :: such that x is in z and y 
IS lil U. 

(T2 =dr\l:r,y[PT(;r) /\ PT(y) /\ ;r -::J y ~ 
3u,z [op(z) /\ op(u) /\ u l:: /\ IN(.r.::) /\ JN(y,u)]]) 

(D33) A topological space is ngular iff for every closed entity y and point ;r not in 
y there are two discrete open regions u, z such that x is in z and y is part 
of u. . 

(Regular =drV:r,y(PT(;r) /\ cl(y) /\ -,JN(x,y) ~ 
3u, z [op(::)/\ op(u) /\ 11 l:: /\ l.'V(.r, .:) /\ y < u]]) 

[D34) A topological spa.cc• is a. T3 -sparc iff it. is a. T1-spa.ce and regular. 
( T3 =dr To /\ Regular) 

(D35) A topological spa.cc is 11or111al iff for any two discrete closed entities y, x 
there a.re two discret.<' ope11 regions u,.: such that :i· is pa.rt of z and y is part 
of u. 
(Normal =dr \fa:,y (cl(:r) /\ cl(y) /\ ;r I y ~ 
:Ju, z (op( z) /\ op( u) /\ u l :: /\ ;r < :: /\ y < u]]) 

(D36) A topological space is a. T 1-spaCf iff it. is a T1-space and normal. 
(T4 =dr To/\ Norma.I) 

Points need not be separated since they might be in exactly the same open regions 
while there is a non-open region only one of them is in. Whether a topological 
structure is a. T0- or T1-space depends on whether or not we add the condition that 
points are closed entities. 

Theorem 36: There are mereotopological spaces which a.re not T0-spaces. 

Proof of 36: Let a, b, c, d be four mutually discrete entities, a, b, a+ b, a+ c, a+ d, a+ 
c + d, b + c + d, a + b + c + d the regions. In this structure, there are four points: 
a, b, c, d. a + b + c + d is the only open region c or d a.re in. Thus, c and d are in 
exactly the same open regions a.nd therefore not sepa.ra.tecl. Q.E.D. 

r - -

I 

a---+--
L 

c 

l---~b 

]~_ ~ 
d 

Figure 4: Proof of theorem 36.12 

l:!The figure might. be misleading, sinre it suggest.s that. t.he relation bet.ween a and c and d is 
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Theorem :17: If f:'Very point of a topologi('(il span' is closed, then it is a T1-space. 
('v'x [PT(:r) :::> c/(a·)] :::> 1'i) 

Theorem 38: If.a. T1-spa.c<' is grounded on points, then f:'Very point is closed. 
(T1 /\ GoP :::> V':r [PT(:r) :::> c/(;r)]) 

Theorem 39: If every point of a topological space is closed, then the topological 
space is a T3-space iff it is regular. (VJ· [P7\:r) :::> cl(x)] :::> (T3 =Regular))' · 

Theorem 40: If every point of a topological space is closed, then the topological 
space is a. T4 -space iff it is normal. ('i/.r [P7\.r) :::> cl(a·)] :::> (T4 =Normal)) 

6 Topological levels 

In several areas of cognit.i\·e science it. has been noted that there is a. need to take 
different levels of granularity or refinement into account (Hobbs 1985, Habel 1991, 
1993). Knowledge and belief a.bout several domains can be organised according 
to which level of detail is needed for expressing it. To give an example from the 
area of knowledge about. space: Maps of countries present (smaller) cities as points 
(without internal structure), while maps of these cities show a. lot of structure, and, 
in turn, present houses, blocks and (smaller) parks as unstructured. The question 
addressed in this para.graph is. how mereotopological structures on different levels 
of granularity can be interrelated. The introduction of different levels of granularity 
should allow for topological entities which a.re points on the coarser level, while 
exhibiting topological structure on the finer level. 

Th~ comparison of different topological structures of one domain can also be 
done in the framework of point-set topology.13 Although there might be immense 
differences between different structures of one domain, all structures have the same 
notion of point. This holds because what is a point in classical topology is only 
dependent on what the domain is. In contra.st to this, mereotopology allows for 
topological entities which are points on the coarser level and structured regions on 
a finer level of granularity. 

The mereologica.1 structure assumed a.s basis for defining the topological structure 
is domain independent and also independent of levels of granularity. If an entity 
has parts, than it has these parts, independently of whether they are of interest on 
the level of granularity under consideration or not. Different levels of granularity in 
topologically structured domains must therefore be differentiated on the basis of the 
topological notions. In the region-based approach to mereotopology proposed here, 
one may get different sets of points by introducing different notions of 'region'. (In 
what follows, the subscripts c and f are used to refer to the topological structures 
imposed by Re and R1.) 

There are different ways in which systems of regions can be interrelated. The 
interrelation between different topological levels in one system of granularity should 

the same as that between b and c and d. That t.his is not. the case should be clear from the explicit 
definition. 

13A topological structure is called ·coarser' t.han another, if every set which is open wrt. the 
former is open wrt. the latter st.ruct.ure. 

\_ 
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obey axiom [Ai], which forc<'s the topological universe of the different levels of 
granularity to be invariant, a11d axiom [A~]. wliicli motivates the terms 'finer' and 
'coarser' level of granularity. 

Axioms: 

[A 7] The topological uni\'C'rse is th<' same 011 a.II levels of granularity. (Un1 = Unc, 
uy [R 1(Y )] = uy ['R.c(Y)]) 

[A8J Any region a.t. the coarser ]p\·el is a region at the finer level. 
(Vx ['R.c(:t)::) 'R1(;r)j) 

As a, consequenn· of t.lwse axioms. the following theorems are provable. 

Theorem 41: Any topological <'nt.it.y 011 t.lie finer level is a. topological entity on the 
coarser level and vice versa. (V.r [T1( ;r) = ·r..( .I')]) 
Theorem 42: If :r is the topological complement of y on one level, then x is the 
topological compl<."ment of y on t.he ot.her level of granularity. 
(Vx, y [x = y-11 :::; :l' = y-tr]) 

Theorem 43: If a: a.nd y a.re internally connected on the coarser level, then they are 
internally connected on the finer level. (Va·, y [:r *c y :::> x *J y]) 

Theorem 44: If :i: is a point on the finer level, then a: is pa.rt of a point at the coarser 
level. (V.7: [PT1(;r)::) 3y [PTc(l/) /\ ;r < y]J) 

The topological gra.nula.rit.y system allows for many different kinds of structures. 
It is, e.g., not provable, that boundaries on the finer level are less (or 'thinner') than 
those on the coarser level. It is also possible that an open region on the coarser level 
is not open on the finer level. Tlrns, the relation between topological structures as 
defined by [A 7) and [AS] differs from the relation 'finer-coarser' as standardly defined 
on the basis of classical topology. The relation corresponding to the classical one is 
gained by the addition of one of the following statements, which are equivalent to 
each other in the given context, a.s an axiom. 

• Every open region on the coarser le\·el is open on the finer level. 
(Va: [opc(:r)::) op1(;r)]) 

• Every closed entity on the coarser level is closed on the finer level. 
(Vx [clc(:i:)::) cl1(;r))) 

• If y is the interior of :!' at the coarser leveL then y is part of the interior of 
x at the finer level. (Va-, y,::: [y = x0

c /\ z = x 0
J ::) y < z]) 

• If y is adherent to ;r a.t the finer level, then y is adherent to x at the coarser 
level. (Vx, y [y <lJ x "J y <le :i:]) 

• If y is the closure of :i· at the finer level, then y is part of the closure of x at 
the coarser level. ( V;r, y, :: [y = :re J /\ ::: = :rec ::) y < z]) 

• If y is the boundary of ;r at th<." finer level, then y is part of the boundary 
of a· a.t. the coarser le\'el. (V;r,y,z[y = ;rb1 /\:::=:!'.be::) y < z]) 

As a consequence, one also g<."t.s t.be rnlidit.y of the following sta.tements: 14 

141[ the topological st.ruct.ure at. t.he coarser level is grounded on closed entity, these statements 
are also equivalent to the preceding ones. 
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• If :r and y a.re sepa.rat.<•d Oil t.11<' rnanwr level. tlie11 .r and y are separated on 
the finer level. ('v'.r.y[.r lie !I:) .r 111 yj) 

• If ;r is self-co11nectc·d Oil I lie fi11c•r lc·,·c·I. I.hen :r is self-comwctecl on the coarser 
level. ('v':r [ co111( :r) :) con,.( :r)]) 

The region-based approach t.o m<>rcotopology thus allows for a more general re
lation of comparison of topological st.ruct.mes t.ha.n point-set topology. This relation 
can be interpreted in terms of distinguishing bet.ween different level of granular
ity. Since the definition of point proposPcl here is relative to the mereotopologica~ 
structure, points on one levd of gra.nularit.y need not to be points on another one. 

7 Region'.'"set approaches to 'point' 

Several approaches to t.he defi11itio11 of the not.ion of 'point' assume points to be 
sequences or sets of regions or e\·en set.s of sets of regions (cf. de Laguna 1922, 
Menger 1940, \i\Thitehea.d rnw, Tarski HJ5G, Clarke 198.5) and thereby introduce an 
additional level into the ont.ologica.I structure. We will ca.II such definitions, which 
are motivated by the idea. that points a.re more abstract than regions, 'region-set' 
definitions. In contra.st to this, the definition of 'point' given in section 4 leads 
to points being as concrete a.s regions a.re. This allows assumptions such as cities 
or other concrete objects to be points. A translation of Menger's (1940, pp. 91) 
definition to the nomencla.t.ure of region-based topology is presented here as an 
example of region-set approaches to point definitions. 

Definitions: 

[D37] 

[D38] 

[D39] 

[D40] 

[D41] 

[D42] 

Region x is completely contained in region y iff the closure of x is an inner 
part of y. (x ~i y =dr 'R.(:r) /\ R(y) /\ xc <i y) 
Region x is disjoint from. region y iff there is no region completely contained 
in both of them. (x t y =dr R(:r) /\ R(y) /\ -i3z [z ~i :r /\ z ~i y]) 
A sequence of regions .. r 1 • ;r2 ••• ., is strictly decreasing iff Xk+t is completely 
contained in J.:k for ea.ch /..:. (st.r-clecr((;ri)) =df V/.~ [;rk+l ~i Xk]) 

An M-point is a strictly decreasing sequence of open regions, xi, x 2 , ••• , 

such that for any open region y which does not completely contain any of 
the ::rk. and any open region :: completely contained in y, z is disjoint from 
almost a.II 1:k. (M-PT((;ri)) =drstr-decr((1:i)) /\ 'v'l.~[op(xk)] /\ Vy,z[op(y) /\ 
-i3k [1:k «i y]/\ op(z) /\:: ~i y :J 31.: [:: t 1:k]]) 

An M-point, :i:i, ;r2 , .•• , is said to lie in region y iffy contains completely a 
x~ (and consequently almost a.II :rk). 
( M-IN( (a\), y) =<lr Af-PT( (;rd) /\ 'R.(y) /\ 31.~ [1:k ~i y]) 
The M-points ;r1 , .r2 .... and y1, !J2, ..• are called equal iff each Xi contains 
a YJ (and consequently almost all YJ) completely a.nd each Yi contains a Xk 

(a.nd consequently almost. a.II ;rk) completely. 
((1:i) =AJ (y;) =dr J\/-PT((;r;)) /\ M-PT((yi)) /\ Vi[3j,k[YJ ~i Xi/\ Xk ~i 
Yi]]) 

As Menger explicitly states. the main motivation for giving this definition is to 
build up a.n analogy between topology and arithmetic. This definition parallels a 
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well known way of defi11i11g real numbers as sequences of rational intervals. But 
the parallelism is only superficial. 111 additio11 to the acceptance of set-theory, the 
ontological basis of defining r<'als iu arit.l111wt.ic is the existence of rationals. As a 
consequence, therC' is a rn11011ical embeddi11g of the rationals in the set of reals. But 
in the case M-points there seem to lw 110 correlates for the rationals, and no idea of 
how such correlates might. look. 

One problem facing MC'11g<'r's approach is that of identity of M-points. Menger 
defines identity of M-points difff'rent.ly from identity of sequences ((D42]). In addi
tion, if th.ere are two different. M-points, then there a.re two discrete open regions 
such that exactly one of thC' points lies in either. This means that M-points are 
separated according to the conditions of Trspa.ces (see definition (D32]). Therefore 
definition (D40] restricts the range of structures which can be studied. 

It seems to be more fruitful to dist.inguish between, on the one hand, points and 
other topological entities and. on the ot.her hand, sequences of topological entities 
and their properties with respect. to co11vergence. The definition proposed in section 
4 allows for a. rejection of the existence of points without denying the existence of 
M-points. The distinction bet.ween t.hese t.wo levels corresponds to the distinction 
between rational and real numbers. 

In genera.I, region-set approaches a.void the use of set theory for the discussion 
of regions, but introduce set theory for the definition of 'point'. The basic character 
of points-they do not exhibit any structure-is not reflected by these definitions. 
And finally, consequences of claims such as 'there are (no) points with such and such 
property' a.re in combination with this kind of definition not easy to understand.15 

8, Conclusion 

The region-based approach to mereotopology is one of the approaches interrelat
ing topological and mereological notions in theories about regions, boundaries and 
connection. As we have seen, it allows for a. treatment of points as entities of the 
same ontological level a.s regions. Thus, this approach gives rise to a pure topologi
cal notion of 'concrete points' without requiring regions or boundaries to consist of 
points (only). The definition does not restrict the range of possibilities concerning 
the separation properties of points, since it allows for the existence of non-separated 
points. Like other mereotopological approaches, this calculus can be enriched by a 
definition of 'abstract points·. which might be sets or sequences of regions, such that 
the interrelation of concrete and abstract points can be studied. 

Assuming points and boundaries to be parts of regions permits the formalization 
of structural interrelations between different perspectives on a domain as discussed· 
here with respect to the possibility of different levels of granularity or refinement. As 
we saw, the mereotopological approach presented generalizes the standard approach 
in two respects. On the one hand, an object can be a point on the coarser level 
while being a structured region on the finer level, which is excluded in the standard 

15Jn Eschenbach (in preparnt ion) t.he approach of Clarke ( 1985) is discussed. The main problem 
of this approach (reduction of topology. to Classical i\lereology) can be claimed to result from the 
difficulty of underst.anding such assumpt.ions. 
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approach by assuming points t.o hf' on another ontological level than open sets etc. 
On the other hand, defi11i11g t.he relation of coarser and finer on the basis of the 
new primitive 'region· yields a more gc··1wral rC'lation than is defined in the standard 
approach on the basis of the primitive• '<>pC'll set.'. 

As this discussion has sho\\'11, lllC'r<'ot.opology is not a mere terminological variant 
of classical topology but. may cont.ribut.e t.o the foundatio11s of the theory of space, . 
time and other domains of interest in coguit.ive science which exhibit mereological 
and topological structures. 

References 

[1] Clarke, B.L. ('1981): 'A calculus of individuals based on "connection"'. Notre 
Dame Journal of Formal J,09ic :22. :W-1-218. 

[2] Clarke, B.L. (1985): ·Iudividua.ls and points'. Notre Dame Journal of Form.al 
Logic 26, 61-7.5. 

[3] Eschenbach, C. (in preparation): 'A note on Clarke's points'. Ms., Hamburg. 

[4] Eschenbach, C. & W. Heydrich (to appear}: 'Classical mereology and restricted 
domains'. To appear in: N. Guarino & R.. Poli (eds.): Form.al Ontology in Con
ceptual Analysis and knowledge Representation, Kluwer. (Sorter versions in: 
N. Guarino & R.. Poli (eds., 199:3): Proceedings of the International Workshop 
on Formal Ontology i11 Co11ctphrnl Analysis and Knowledge Representation. 
Ladseb-CNR Report 01/93, Pa.dova., Italy. 20.5-217; a.nd in: R. Casati & G. 
White (eds., 1993): Philosophy and thf Cognitive Sciences. The AustrianLud
wig Wittgenstein Society, Kirchberg am Wechsel. 219-223.) 

[5] Habel, Ch. ( 1991 ): 'Hierarchical representations of spatial knowledge: Aspects 
of embedding and granularity'. Paper presented at the Second International 
Colloquium on Cognitive Science (ICCS-91 ). 

[6] Habel, Ch. (1993): 'Representing Space and Time: Discrete, Dense or Con
tinuous? - Is that the Quest.ion?' Zentrum fiir Interdisziplinare Forschung, 
Universita.t Bielefeld, Forschergruppe Mental Models in Discourse Processing. 
Report 6/93. 

[7] Hobbs, J.R. (198.5): ·Granularity'. Proc. 9th IJCAJ. 432-43.5. 

[8] Huntington, E.V. (191:3): 'Postulates for abstract geometry'. Mathematische 
Annalen 73. 522-.559. 

[9] Laguna, T. de (1922): ·Point, line and surface as sets of solids'. The Journal of 
Philosophy 19. 449-461. 

[10] Leonard, H.S. & N. Goodman ( 1940): ·The calculus of indi.viduals and its uses'. 
Journal of Symbolic Logic .j, 45-.55. 



II 'I I I 
I I I I 

,/ I 
I I 

11 i ' I I , 

1:' 
I . 

80 Carola Eschenbach 

[11] Lefoiewski, S. (1916) 'Podst.awy ogolncj teoryi mnogosci I'. [Foundations of a 
General Theory of l'vla11ifolds.J PraC( Polskfrgo /\'ola Naukowego w Moskwie, 
Sekcya malcmalyc::no-pr::ymdnic::a, ::J. 1\foscow. 

[12] Le8niewski, S. (192i-:30) ·o Podst.aw<1ch Matematyki'. Pr::eglad Filozoficzny 30 
(192i) 164-206; 31(rn28)2G1-91; .:/.':!{IHW) 60-101; 38(1930) 75-10.S, 142-70. 

[13] Le8niewski. S. { 1983) 'On the foundations of mathematics'. [Abridged English 
translation of '0 Podst.awach MatC'matyki'J Topoi 2. 7-52. 

[14] Lewis, D. ( 1991 ): Paris of Classes. Basil Blackwell: Oxford. 

[15] Menger, K. ( 1940): 'Topology wit.bout points'. Rice Institute Pamphlets 27. 
80-107. 

[16] Simons, P. ( 1987): Paris. A Study in Ontology. Clarendon Press: Oxford. 

[li] Smith, B. (199:3): ·Ontology and tlw logistic analysis of reality'. In: G. Hafiiger 
& P.M. Simons (eds.): Analytic Pltcnomtnology. Kluwer: Dordrecht, Boston, 
London. 223-24.S. (Preliminary version in: N. Guarino & R. Poli (eds., 1993): 
Proceedings of the International li'"orkshop on F01·mal Ontology in Conceptual 
Analysis and /{now/edge Representation, Ladseb-CNR Report 01/93, Padova, 
Italy. 51-68.) 

[18] Tarski, A. (19.56): Logic, Semantics, Metamathematics. Oxford University 
Press. (trans. by J.H. Woodger.) 

[19] Varzi, A.C. (1993): 'On the boundary between mereology and topology'. To 
appear in: R. Casati, B. Smith & G. White (eds.): Philosophy and Cogni
tive Science. Proceedings of the 16th International \Vittgenstein Symposium, 
Vienna: Hoelder-Pichler-Tempsky (preprinted as IRST Technical Report 9308-
04, Trento.) 

[20] \Vhitehead, A.N. (1929 ): Process and Reality. The Macmillan Co.: New York. 
Cited after: Process and Reality: Corrected Edition ( 1978): The Free Press, 
Macmillan Pub. Co.: New York. 



C. Eschenbach, Ch. Habel, B. Smith (eds.): Topological Foundations of Cognitive Science. 
Papers from the Workshop at the FISI-CS, Buffalo, NY. July 9-10, 1994. 
Graduiertenkolleg K ognilion.m•issenschajt Hamburg, Report 37, November 1994. pp. 81-90. 

Discreteness, Finiteness, and 
the Structure of Topological Spaces 

Christopher Habel 
University of Hamburg, Computer Science Department 

Doctoral Program in Cognitive Science 
Vogt-KOlln-Str. 30, D-22527 Hamburg, Germany 

babel @informatik.uni-hamburg.de 

1. The Concept of Representation 
One of the fundamental assumptions of Cognitive Science is that the concept of represen
tation is central for investigating and explaining cognition. 

"According to the representational theory of the mind,[ ... ] mental states are 
representational states, and mental activity is the acquisition, transformation 
and use of information [ ... ]. " (Sterelny 1990, p. 19) 

In agreement with the Physical Symbol System Hypothesis (Newell & Simon 1976), "A 
physical symbol system has the necessary and sufficient means for general intelligent 
action.", cognition can be seen as computation (Pylyshyn 1984), whereas the behavior of 
these cognitive, computational systems depends on the internal representations which it, 
in turns, effects. Since the properties of the representation influence the computation, and 
the demands of the processes determine the resulting representations, in studying cogni
tive processes the system of mutual constraints between representations and processes 
has to be taken into account. 

In the present paper I will address properties of representational systems concerning 
the question of "finite vs. infinite nature of representations". To start, let us have a look at 
formal, i.e. mathematical, symbol systems, such as Turing Machines. The behavior of a 
Turing Machine is determined by two types of representations: The current states and the 
current inscription on the tape; both are finite in the sense that they can be coded by finite 
means: only a finite part of the Turing tape contains symbols distinct from the "blank" .1 

As Chomsky argues, the mathematical concepts of grammars and automata are fundamen
tal for understanding "competence as a system of generative processes", i.e. 'how a lan
guage can (in Humboldt's words) "make infinite use of finite means'" Chomsky (1965, 
p. 4ff.). 

Questions of finiteness are discussed in Cognitive Science not only from a formal 

I would like to thank Carola Eschenbach for her helpful comments on earlier drafts of the manuscript. 
1 Similar finiteness conditions hold for other types of symbol. systems investigated in the mathematical 
theory of fonnal grammars and automata. 
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mathematical point of view but also from an empirical perspective. Johnson-Laird postu
lates with respect to "mental models", a specific type of internal representations: 

"The principle of finitism: A mental model must be finite in size and cannot 
directly represent an infinite domain." (Johnson-Laird 1983, p.398)2 

Evidence from cognitive psychology and neuropsychology suggests that mental images 
are restricted with respect to size and resolution: The visual buffer, the medium for the 
realization of mental images, has limited spatial extent and limited resolution (Kosslyn 
1980, p. 139). The visual buffer can represent objects in multiple - but limited- scales; 
by the multiscaled property it is possible to resolve the conflict between scope and resolu
tion (Kosslyn 1994, pp. 95-104). 

Since "mental models" (Johnson-Laird 1983) as well as "depictive representations" 
or "quasi-pictorial representations" (Kosslyn 1984, 1994) are non-propositional, often 
characterized as "analog", it is important to mention that finiteness constraints are not re
stricted to non-propositional representations but also concern propositional representa
tions. Johnson-Laird and Kosslyn motivate and justify the finiteness assumptions on the 
limitations of the underlying mental machinery, the brain in general or, more specifically, 
the visual buffer in the case of mental images. 

The topic of the present paper is a question emerging from the finiteness assump
tions: "How can the non-finite space-time reality be represented in a finite medium?" To 
get a better grasp of this problem, which I called the continuity - finiteness dilemma in 
Habel (1993), we need to examine the concept of representation. Following Palmer 
(1978, pp. 263ff.), "representation situations" can be characterized by the represented 
('W1) and the representing world ('W2), their internal structures, which can be seen as 
relational systems in the sense of formal model theory, and a partial mapping, p from 
'W1 to 'W2, which is called the representational mapping. 

p: 'W1 -+ 'W2 
representational 

mapping 
represented 

world 

Fig. 1: A representation situation 

representing 
world 

Applying this general representation scheme (Fig. 1) to mental representations leads to a 
more complex representation situation (Fig. 2), in which four worlds and three represen
tational mappings are involved. According to the representational theory of mind, an es
sential module of any cognitive system is a mental model ('W2) of the real world ('Wo). 
The finiteness constraints hold on this representation, 'W2. Cognitive Science investi
gates also second-level representations, namely representations ('W3) of mental represen
tations ('W2 ); the finiteness of 'W3 is inherited from 'W2. Note that 'W2 is representation 
as well as representandum. On the other hand, in sciences (partial) mathematical models 
of the real world ( 'W1 ) are investigated, such as formal models of space-time in physics. 

2 Furthermore, there exist a constraint of quantity isomorphism. which can informally be described by: 
There is a one-to-one correspondence between the entities of the world (real or fictional) and the entities in 
the mental model. This constraint is the consequence of Johnson-Laird's (1983) principles of structural 
identity (p. 419) and that of set formation (p. 429). 
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Mathematical 
Model 

of Worlds 

Representandum 

Representation of 
Mental -----IP! 

Representations 

Representation 
of the Real 

World 

Fig. 2: The representation situation for "mental representations"3 
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The continuity - finiteness dilemma concerns the relation given by P2 between 'Wo and 

'W2 as well as the correspondence p* between 'Wt and 'W3 , which is induced by the rep

resentational mappings pi, P2 and p3 in the "representation diagram" (Fig. 2). 

2. Towards a Cognitive Representation of Time and Events 
Since the domains of time and of events are strongly connected4 - especially via a canoni
cal function from events to time entities, which assigns to each event e its "running time" 
rt(e)- I will discuss the two domains in parallel: As empirical data for human common
sen.se understanding of time, I will use natural language discourse on events. 

2.1. Basics of Temporal Ontology 
I will start with a short survey on the most relevant options for time structures, which 
have been discussed in philosophy of science, logics and linguistics, namely discrete, 
dense and continuos time.5 The difference between these types concerns the size as well 
as the neighborhood and separation properties of the time structure, i.e. it is a genuine 
topological differentiation. 

The common axiomatic basis of time structures is given by a set of conditions, 
which characterize the order of time. They are independent of the choice between dis
creteness, density or continuity. 

3 Paivio's (1986, pp. 18ff.) discussion of Palmer's (1978) analysis of cognitive representations contains 
three levels of representation, namely 'W0, 'W2 and 'W3 of Fig. 2; "non-cognitive" representations, 'W1, 
(e.g. those of physics) are not discussed by Paivio. 
4 In the present paper "events" is used in a wide sense that is synonymous to Bach's (1986) eventuality. 
Thus, this notion includes events (in a narrow 8ense), processes and states. 
On detailed discussions of the connection between time and events see Kamp (1979), who constructs time 
from events, and Krifka (1987), who presupposes the independent existence of the two domains, which are 
connected by the running-time function."rt". 
5 In the following, I take the perspective of point structures, in contrast to interval or period structures. 
This opposition is neutral with respect to the main topic discussed here. In the description of time 
structures and in the formulation of the axioms, I follow - with minor revisions - van Benthem (1991). 
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[TRANS] 

[IRREFL] 

[LIN] 

\;/ x, y' z: ( x < y & y < z ~ x < z ) 

\;/ x: -. x < x 
\;/ . x, y: ( x = y v x < y v y < x ) 

Christopher Habel 

Now it is possible to differentiate between types of time structure concerning size and 
topological structure, by further axioms: 

Discrete time, with '7L as a distinguished model, is characterized by the discreteness 
axioms, which also characterizes the property of step-wise succession: each element has 
an unique immediate successor and precessor.6 

[D.SUCC] succ (x, y) =def x < y & -. 3 u: (x < u & u < y) 

[DISCR] \;/ x, y: (x < y ~ 3 z: succ (x, z) & 3 z: succ (z, y) ) 

Dense time, with ~as a distinguished model, is characterized by the density axiom: 

[DENS] \;/ x y: (x < y ~ 3 z: x < z < y). 

For each pair of elements there is a further one in between them. The density axiom pre
vents the existence of an immediate successor or precessor. 

Continuous time, with Ras a distinguished model, is characterized by the conti
nuity axiom: 7 

[CONT] 'V <I>: [ [ \:/ x, y: (( <l>x & -. <l>y) ~ x < y) & 3 x: <l>x & 3 x:-. <l>x ] 

~ 3 z: ( 'V u (z < u ~ -. <l>u) & \;/ u: (u < z ~ <l>u))] 

The conceptual complexity of the three different types of time structure is reflected by 
their formal properties with respect to their definability (in first-order or higher-order 
logic) and cardinality: 

distinguished model cardinality definable in 
non-finite discrete time '7L No first-order logic 

dense (non-continuous) time ~ No first-order logic 

continuous time 1R 2NO higher-order logic 
Despite the "complexity leap" from density to continuity, it is standard practice in physics 
to see time as a structure isomorphic to the real numbers, R (cp. Griinbaum, 1973). 
Newton-Smith, an advocate of continuous time, describes the situation in physics as 
follows: 

"While time can coherently be supposed to be discrete we have no good rea
sons for talcing seriously the hypothesis that it is so. For no one has been able 
to produce viable physical theories that treat time as discrete. Indeed, all 
mainline physical theories represent time by a parameter ranging over the real 
numbers and in so doing treat time as continuous. Interestingly, ... we can 

6 Note that the condition "x < y" is needed for the specific cases of the beginning or end of time in finite 
temporal structures. 
7 cl> is a variable over first-order predicates; in the axiom of continuity- via quantification of predicates -
the Dedekind-cut property of real number is postulated for time, too. For details, see van Benthem (1991, 
pp. 29ff.) Further, note that continuity implies density. 
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construct equally viable alternatives to these physical theories in which time is 
treated as merely dense and not continuous." Newton-Smith (1980, p. 121) 
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Since there are physically adequate alternatives to continuous time structures, an interest- · 
ing question is, why there is a common preference to "real valued time" in the sciences. A 
preliminary answer is: The mathematics of the real numbers, the classical calculus, is 
"easier" than its rational number alternatives. The continuity axiom guarantees the exis
tence of Dedekind-cut elements within the set in question, e.g. in R. Consider the predi
cate Cl>x =def x2 < 2 on IR+, then [CONT] gives rise to the existence of an entity z with: 

"\/ u (z < u ~ 2 ~ u2 ) & "\/ u (u < z ~ u2 < 2); the conventionalized description of z is 

"-.J2". This Dedekind-cut property is the cause for convergence in the basic set, i.e. that 
the limit of a sequence if it exists, is element of the same set as the members of the 
sequence. (This exactly distinguishes<Q from R.) The existence of limits is essential for 
the real valued calculus: the Classical theories of differential and integral equations, which 
are the core of the mathematical inventory of physics, depend on the existence of limits. 
Often, the non-continuous analog of a solvable differential equations, the difference 
equations, do not have a solution. From this point of view, giving preference to R over 
<Q can be seen as a primarily technical decision which is not justified by theoretical reasons 
or empirical evidence. 

This prejudice to a continuous time structure, which is common in the sciences, has 
widely been adopted in linguistics (and cognitive science in general). As an example of 
such an adoption, I refer to Kamp & Reyle (1993): Although in the beginning of the 
chapter on "Tense and Aspect" they shortly discuss the different options of time struc
tures, they follow the real-numbers path after the following 'justification": 

"What counts as a natural property of time is a matter that cannot be easily 
decided. However, we regard it as uncontroversial that the natural properties 
of time, whatever they may be, do not exclude the structure or the real 
numbers." Kamp & Reyle (1993, p. 491, footnote 2.) 

In contrast to common practice in semantics, which widely neglects the discussion on the 
structure of time or sees this topic as a peripheric problem, I consider the question of 
"finite vs. infinite" or "discrete vs. dense/continuous" time structures to be central for a 
cognitive approach to mental representations, namely to determine adequate "topological 
structures" of representational systems. 

2.2. Systems of Discrete Time Structures 
It is common to use phrases as "(and) next" or "immediately after" in English or 
"direkt/unmittelbar (da)nach" in Genrian, by which one event is connected to its succes
sor,8 see the following examples from Collins COBUILD (1987): 

Next, we did the Merchant of Venice ... 
Immediately I finish the show I get changed and go home. 
She finished her cigarette, then lit another one immediately. 

A first analysis of sentences of this type leads to the following structure on the represen-

8 Motivated by such phenomena von Wright (1965) developed a time logic based on a modal connective 
T, which is be read as and next. 
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tation level: succ (e1, e2) = "e2 succeeds immediately e1". By the propenies of immedi
ate succession the time and event structure are constrained to be discrete (see sect. 2.1, 
especially [DISC]). 

On the other hand, it is possible to have a discourse structure explicitly mentioning 
an event and its immediate successor in the first sentence, and referring to a third event 
between the two immediately succeeding events in the second sentence, as in: 

( 1) i. Immediately after graduation she staned university education. 
Before she staned university education, she worked N weeks in a factory. 

ii. Immediately after graduation she was climbing in the Alps. 
Before she went to the Alps, she worked N weeks in a factory. 

In an informal preexperiment these sentences were presented to subjects (students of 
computer science); especially the parameter N was varied. I will briefly summarize the 
results: the subjects valuated the discourse as fully acceptable, if N was small enough.9 

1 
To sum up, examples from natural language seem to lead to the following unsatisfiable 
pair of propenies for the structure of cognitive time: the time structure holds the propenies 
of step-wise succession and of density, which are incompatible. IO 

The conflict between immediate succession I discreteness on the one hand, and 
density on the other hand, vanishes, when a cognitive, process-oriented point of view is 
taken. According to the idea of - what I call - "proxy-semantics", an internal representa
tion of proxies for the entities spoken about is constructed during the process of discourse 
comprehension. I I The most important break with traditional semantics, such as 
Montague semantics, is that the introduction of discourse entities into the representations 
and the "maintenance" of these proxies is an essential pan of semantics. From this point 
of view, the situation of example (1) can be schematized by Figure 3: 

time-structure1 e ~ e granularity level 1 

mt
1 
re~ +~d 

time-structurez e .... 
1 

granularity level 2 

Fig. 3: Development of time-structure: change into a finer granularity-level 
(" .._ " = " _ is precessor of_") 

The development of time-structures, namely from TS 1 to TS2, can be seen as a change 
from a coarser level of detail to a finer one; these levels I call - in the spirit of Hobbs' 
(1985) seminal paper - granularity levels: But, saying that a finer granularity level was 
introduced does not imply a withdrawal of the coarser one. Instead of assuming a pro
cess, in which at any time one and only one time-structure exist, namely the structure 

9 "Small enough" is a gap of 8-10 weeks between the reference event and its immediate successor in the 
university case and approximately of 3-4 weeks in the climbing example. 
IO Similar observations and analyses can be found at several places in the literature, see for instance 
Kamp (1979, p. 408f.) and Link (1987, p. 248f.). 
I I Representative for proxy-semantics in the logico-linguistic tradition is Discourse Representation 
Theory (see Kamp & Reyle 1993), for the .artificial intelligence I cognitive science type compare 
Referential Nets (Habel 1986). 
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refined as far as possible by the infonnation given by the discourse, I propose the simul
taneous existence of several time-structures organized in a hierarchy of granularity 
levels.12 As usual in embedding structures there are "identification links" (id), which 
describe the "trans-level identities'', and "refinement links" (refine), which describe the 
"immediate precessor constellations" (IPC), which are refined to "chains of IPCs". 

According to the finiteness assumptions postulated in section l, I assume a time
structure hierarchy, in which each granularity level is discrete and finite. The embedding 
or refinement faculty of the cognitive system induces a property on the hierarchical time 
structure which I call density in intensio. This notion is motivated by Church's ( 1941) 
terminology describing the fundamental dichotomy of perspectives on functions: 
• function in intension, where a function is seen as a rule of correspondence, which 

specifies for a given entity (the argument) another entity (the value). 
• function in extension, where a function is seen as set of pairs consisting of an 

argument and the corresponding value. 
From a computational point of view: Functions in extension correspond to fixed struc
tures, e.g., tables; thus, to compute a function-in-extension means to look up the table. In 
contrast to this, the computation of a function-in-intension is real computation, namely the 
application of the rule of correspondence mentioned above. 

With respect to mental representations there are also different ways to specify or 
characterize time-structures: (a) by listing all the time entities, (~)by stating a property 
which an entity must have to be qualified as entity in the structure, and ("() by defining 
rules of construction which generate the entities in the structure. (a) corresponds to func
tions in extension, (~) and ("() to functions in intension. In this sense the "density of the 
time structure" is not extensional; The process of repeatable application of the construc
tion rules (of embedding and refinement) leads to an intensional characterization of the 
time-structure following the density principle [DENS]. 

The.perspective emphasizing the process of constructing time-structures does not 
require the prior existence of a time-structure. This contrast corresponds to the opposition 
- see Fig. 2 - between the real world, 'Wo, and the models of physics, 'W1, on the one 
hand, and internal models of cognitive systems, 'W2, and their representations, 'W3 , on 
the other hand. The "incompatibility" between the time-theories from physics and those 
needed for cognitive science vanishes if considering the just mentioned opposition. But it 
is not enough to understand the reason of incompatibility: cognitive science in general, 
and linguistics in particular, should look for alternatives to explicitly, extensionally given 
dense and continuous time-structures.13 

12 The assumption of a hierarchy of time-structures - instead of one maximally fine structure - is 
motivated as an instance of a general principle of mental representations, namely the simultaneous 
accessibility to information of different degrees of detail. For the domain of discourse comprehension and 
production this principle is empirically well supported; see as an example Kintsch & van Dijk (1978), 
especially on levels of details in summarizing. 
13 Landman (1991, pp. 136ff.) discusses refinement problems similar to those presented in the present 
paper. He argues in the opposite direction: against finite structures and in favor of dense models of time. 
Since Landman•s argumentation in not focused on phenomena of cognitive processes, his orientation to 
extensional presupposed dense time structures is not suprising. 
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3. Topology and Granularity Systems of Time 
The topology of a time-structure is the system of temporal entities and neighborhoods of 
such entities meeting the constraints given by the axioms of ordering.14 If a system of 
granularity levels is taken into account - as proposed in sect. 2 - it is necessary to deter
mine the properties of "proper refinement". Note that the examples given above have been 
concerned with "nearly ideal situations"; now, I will indicate how some more complex, 
but more realistic examples, have to be dealt with. 

Given two time-structures (TS1, <1) and (TS2, <2), seen as time-graphs TGi, i.e. TSi 
is the set of of nodes of TGi and the edges of TGi are given by SUCCi(e1, e2) instances, a 
refinement is a pair of relations (Pc· p0), where: 15 

• Pe c TS1x TS2 is a left-total relation, describing the embedding constellation of the 
time entities, i.e. the nodes of the time-graphes, 

• Po c (TS1x TS1) x (TS2x TS2) is a left-total relation, describing the embedding 

constellation of the ordering constellations, i.e. the SUCC instances represented by the 
vertices of the time-graphes. 

(From the perspective of graph refinement, the reJations Pe and p0 can be seen as 

refinement operations; therefore I use an assignment notation symbolized with "-+".) 
The situations verbally introduced by (1) and depicted in Fig. 3. are of the most basic 
refinement type, that of splitting a succession, by introducing a new event. It can be 
described as follows: 

TSt= {e1, e2}, TS2= {e1, e2, e3} 

Pe : e I -+ e1, e2 -+ e2 

Po: SUCC1(e1, e2) -+ SUCC2(e1, e3), SUCC2(e3, e2) 
In contrast to this we have splitting of entities,16 for example verbally described by: 

(2) Immediately after graduation she started university education. 
She enrolled at the MIT and moved to Boston. 

I will only mention the relevant parts of the refinement here: 
TS1= {e1, e2}, TS2= {e1, e2, e3, e4} 

Pe: e1-+ e1, e2 -+{e3, e4} 

Po: SUCC1(e1, e2) -+ SUCC2(e1, e3), SUCC2(e3, e4) 

The splitting of entities by Pe· i.e. the decomposition of events or time entities, induces 

14 The notion "system of neighborhoods" is an abbreviation for the axiomatic system with respect to the 
basic topological concepts of a time-structure, which I can not discuss in detail here. See van Benthem 
(1991) on "points and periods" in time-structures, and Eschenbach (1994) on a mereotopological 
definition of "point", which is appropriate to handle granularity structures. 
15 Since time-structures and eventuality-structures are canonically connected, I will discuss in the 
following only one type of structures, namely those of time. 
The use of set-theoretic notions for describing the approach does not imply that time- or event-structures 
are seen here as set-theoretic entities. A mereotopological analysis of the phenomena in question - based 
on Eschenbach (1994)- is in preparation. 
16 Splitting entities in the way I describe here presupposes an ontology of time and events in which it is 
possible to analyze points at different levels of granularity. Or, in other words, points of one level can be 
refined to structured entities on a finer level. 'See Eschenbach (1994) for an mereotopological approac;h, 
which satisfies this demand. 
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for the refinement of ordering p0 that the newly introduced entities have to be integrated 

into the temporal ordering, as depicted in Fig. 4. 

time-structure1 granularity level 1 e2 

re~ 
e ........ _____ e.... e 

1 3 4 
granularity level 2 time-structurei 

Fig. 4: Splitting of entities 

Now I come back to conditions of proper refinement; the splitting-of-events example (2) 
gives rise to refinement constraints as 

[PROPREFINE-1] "ii e1' e2 ( e I <1 e2 ~ "ii e3, e4 : 

(Pe(e1, e3) & Pe(e2, e4) ~ e3 <2 e4) ) 

There is an analog constraint for time-graphs fonnulated with respect to graph refinement; 
i.e. considering the replacement of nodes and vertices of TG1 by graphs leading to TG2. 
These constraints serve to guarantee that in time- or event-splitting the ordering of time is 
maintained. 

4. Conclusion 
From a cognitive point of view, internal representations are finite, and therefore time (and 
eventualities) as part of the internal representations of a cognitive system have a discrete 
structure. On the other hand, repeatable refinement, which can be seen as lea~ng to 
density in intensio, is a central faculty in cognition. · 

Refinement processes operate on hierarchical systems of time-structures, which can 
be interpreted as granularity systems. From a formal point of view, these granularity 
systems are a non-trivial extension of standard topology.17 
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Mass reference and the geometry or solids* 

Almerindo E. Ojeda 
University of California at Davis 

To account for the semantics of mass nouns, models have been proposed which. provide 
atomless mereologies. The class of atomless mereologies is, however, prodigiously rich and 
varied. For indeed, if k is an infinite cardinal, then there are exactly 22k atomless mereologies of 
cardinality 2k no two of which are isomorphic. The purpose of this paper is to claim that natural 
reference to masses calls for only one of these structures-that ofTarski's mereology of solids. 
It follows from this proposal that (i) the mass domain has the power of the continuum, that (ii) 
the intuitive analyses of space and time can be unified, that (iii) we can account for the fact that 
natural languages routinely locate all masses in space, that (iv) all mass nouns have the same 
semantic structure, that (v) mass noun denotations indeed have the same structure as the entire 
mass domain, and that (vi) every partition of a mass is denumerable. 

1. Introduction 

To account for the semantic properties of mass tenns, semanticists have generally 
assumed sets of infinitely divisible masses which are related as parts are related to 
wholes.1 To be more precise, they have proposed models which provide a set Mand a 
binary relation s which jointly verify the conditions in (1). 

(1) TRANSITIVITY: For all x, y, z e M: x s y and y s z jointly imply that x s z. 
COMPLETENESS: For all N ~ M: If N is nonempty, then N constitutes exactly one 

element of M. 
ATO:MLF.SSNESS: For all x e M: there exists some ye M such that bothy s x and 

y-:1:-x. 

The notion of constitution involved in the condition of completeness is defined in (2), 
while the notion of overlap involved in the notion of constitution is defined in (3). 

* I am indebted to Donald Monk, Carlos Borges, Steven Lapointe, Alexandre Turull, Joel Friedman, 

Edward Keenan, Fred Landman, and Melven Krom for useful exchanges about the contents of this paper. 

I am also grateful to Barry Smith and the participants at the Symposium on the Topological 

Foundations of Cognitive Science (State University of New York at Buffalo, July 9-10, 1994), where 

this paper was first presented. 
1 See for example Wald (1977), Link (1983), Krifka (1987), and Ojeda (1993). Similar assumptions 

can be found in Sharvy (1983), Bunt (1985), and l..f.:jnning (1987). 
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(2) Some N t: M constitutes some m e M if and only if 
(i) For all x e N: x s m. 

(ii) For all x s m: there exists some n e N such that x overlaps n. 

(3) . Some x e M overlaps some y e M if and only if there is some z e M such that 
both z s x and z s y. 

In short, semanticists have proposed models which provide atom/.ess mereologies <M, 
S>.2 We will say that Mis a set of masses, thats is a relation of mass inclusion, and 
that <M, ~is a mereology of masses. 

Having availed themselves of models with mereologies of masses, semanticists 
. proceed to interpret a mass noun relative to a model as a principal ideal of the mereology 
J 

of masses provided by the model (a principal idea~ of a mereology of masses can be 
defined as the set of masses included in a particular mass). To illustrate, the mass noun 
water would denote, relative to a suitable model, the set of masses included in a 
particular mass -the mass of water provided by.the model 

The proposal that the masses of natural linguistic discourse form an atomless 
mereology is hardly a trivial one. Yet, the class of atomless mereological structures is 
truly enormous. For indeed, if k is any nondenumerable cardinal, then the number of 
structurally distinct atomless mereological structures with k elements is an exponential 
function of k (Section 2). The question thus arises as to whether natural language 
semantics in fact needs the entire class of atomless mereological structures. The purpose 
of this paper is to answer this question in the negative and to argue that natural reference 
to masses calls for only one such structure -the structure of the mereology of solids 
developed by Tarski in his work on the foundations of geometry. Section 3 describes 
this mereology from several points of view. 

The claim that the mass domain has the structure of the mereology of solids 
provides a complete structural characterization of the mereology of masses. It thus 
allows us to infer a number of important facts about mass reference. We may infer, for 
example, that the mass domain has the power of the continuum, so a universe of dis
course will have exactly as many masses as there are points in space. Since mass nouns 
denote principal ideals and every mass in a model generates one, a model can provide no 
more than 2Ko distinct mass noun interpretations (Section 4). 

We may also infer that the mass domain is 'homogeneous', which is to say that 
every principal ideal of the mass domain constitutes a mereology with the same structure 
as the mass domain as a whole. Since mass nouns denote principal ideals, every mass 
noun will have the same structure as the entire mass domain, and ail mass nouns will 
have the same semantic structure. The structure of Tarski's mereology of solids will 
thus be reproduced inside each and every mass noun denotation (Section 5). 

The claim that the mass domain has the structure of the mereology of solids 
furthermore implies that the mereology of masses satisfies the 'countable chain 

2 See Simons (1987) for a comprehensive study of mereologies. 
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condition'. This means that no mass may have a nondenumerable set of mutually 
disjoint and jointly exhaustive parts. If the taxonomic uses of mass nouns (cf. sentences 
like this store carries all three wines) involve sets generated by partitions of masses,3 
then a denumerable bound exists on the cardinalities of these sets (Section 6). 

We conclude this introduction by describing the close connection that exists 
between mereologies and complete Boolean algebras. This connection will be crucial for 
the sequel, as it will justify the application of the theory of Boolean algebras to our study 
of the mereology of masses. The connection between mereologies and complete Boolean 
algebras can be readily described by the following procedures (Tarski 1956b, 333f). 

( 4) a. If we take a mereology <M, S>, add to Man element not already in M, and re
define s so the added element bears the redefined relation to all the elements of 
M, then we have a complete Boolean algebra. 

b. Conversely, if we take a complete Boolean algebra <A, S>, remove from A its 
null element (i.e. the element which bears s to all the elements of A), and re
define s; so that it does not relate the deleted element to any element of the dim
inished A, then we have a mereology.4 

Now, if <A, S> is a complete Boolean algebra, it is customary to use A+ to refer to the 
set of nonnull elements of A. We may therefore use <A+, S> for the mereology derived 
from <A, S> by (4). 

2. The variety of atomless mereologies 

Our goal in this section is to give a precise idea of the variety atomless s~ctures 
exhibit To do so we will need a definition of mereological isomorphism and a lower 
bound on the cardinality of atomless mereologies. The definition is as follows. 

(5) A mereology <M, SM> and a mereology <N, SN> are said to be isomorphic if 
and only if there exists a bijection '1>: M-+ N such that for all x, y e M, 

x SM y if and only if tl>(x) SN tl>(y). 

To indicate in writing that a mereology <M, SM> is isomorphic to a mereology 
<.N, SN> we will use <M, SM>= <N, SN>. 

3 See Ojeda (1993, Chapter 5). 
4 To simplify exposition we will here and henceforth identify a Boolean algebra with its canonical 

partial order. Nothing of substance is lost in doing so, since Boolean algebras and their canonical partial 
orders are interdefmable (Monk 1989, 15). Notice that mereologies are free structures in the sense that 
they may contain no elements. Naturally, a mereology will contain no elements if and only if it corres
ponds, by (4), to the trivial Boolean algebra of one element (Monk 1989, 9). 
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Two mereologies are thus isomorphic if and only if their elements can be placed in a one 
to one correspondence which preserves their mereological relations. Since a mereolog
ical structure is completely detennined by its relation, the notion of mereological isomor
phism in (5) adequately fonnalizes our intuitive notion of identity with respect to 
mereological structure. 

We now need a lower bound on the cardinality of an atomless mereology. To 
provide one, let <.M, S> be any atomless mereology. If M contains any elements 
whatsoever, then it will contain infinitely many of them. For indeed, suppose M con
tains some element m. It follows from the atomlessness of <.M, S> that m will contain, 
as parts, an infinitely descending chain of masses, each different from the others. 
Hence; Mwill be infinite if it contains any element whatsoever(= if it is not empty). But 
then we can show that if Mis not empty, then it will even have a nondenumerable 
infinity of elements. In other words, we can prove the following facts 

(6) Every nonempty atomless mereology has at least 2 No elements. 

We are finally in a position to evaluate structural diversity in the class of atomless 
mereologies. It is given by (7). 

(7) If k is an infinite cardinal, then there are exactly 221r. atomless mereologies of car
dinality 2k no two of which are isomorphic. 

Thus, since N0 is an infinite cardinal, there will be 22Ko structurally distinct atomless 
mereologies of cardinality 2No. But 2No is, as we have seen, only the smallest possible 

cardinality for a nonempty atomless mereology. In addition, there will be 222K0 

structurally distinct atomless mereologies of cardinality 22Ko; 2222K
0 structurally distinct 

atomless mereologies of cardinality 222K0 -and so on through the endless hierarchy of 
infinite cardinalities. 6 

S For, given (4), the proposition follows from (i) the infinite cardinality of atomless mereologies, (ii) 

the fact that complete Boolean algebras of infinite cardinality have at least 2 Ko eleqients (Monk 1989, 

40), and (iii) the fact that 2K o - 1 = 2K o (so the removal of the null element will have no effect 

whatsoever on cardinality). 
6 As for proof of (7), consider the following. There are only three kinds of Boolean algebras: the 

atomless, the atomistic, and the Cartesian products of the two. Furthermore, for each cardinal k, there 
can only be one complete atomistic Boolean stnicture of cardinality ik, namely the atomistic structure 

with k atoms. Hence there is just one complete atomistic Boolean structure of cardinality 21r., where k is 

an infinite cardinal. Next, let a be the number of complete atomless Boolean structures of cardinality 2k. 

It follows that there can only be ak complete product structures of cardinality i' (they are the products 
of the atomistic structures with 1, 2, ••• , k atoms times each of the a atomless structures). Now comes 
the crucial step: for each infmite cardinal k there are exactly 221: complete Boolean structures of 

cardinality 2k (Monk 1989, 482). Hence, by the previous calculations, 1 +a+ ak = 2ik. This means 
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It should be clear that the prodigious variety of atomless mereologies reported in 
(7) reckons only differences in structure, while altogether ignoring differences in 
content In other words, (7) recognizes only the different ways in which the binary 
relation s of a mereology <M, S> can be defined, setting aside the differences M proper 
may bring about Such differences cannot begin to be assessed, however, unless and 
until a theory is developed concerning the kinds of sets M can be -that is in addition to 
being able to serve as the domain of an atomless mereology. The proposals to be made 
in this paper will do nothing to restrict the diversity in content such an important theory 
would presumably provide. 

3. The mereology of solids 

In an address delivered at the First Polish Mathematical Congress of 1927, Tarski 
proposed a new foundation for the geometry of solids -one which inverted the logical 
structure of geometrical concepts by taking solids as primitive while defining points, 
lines, and surfaces, in terms of solids.7 To do so he began by developing a mereology 
as follows. Suppose we were given the set of solids of three dimensional Euclidean 
space and the relation of solid inclusion. Say that two solids overlap if and only if there 
is a solid which they both include. Say also that some set of solids constitutes a 
particular solid if an~ only if (i) every solid in the set is included in the particular solid 
and (ii) every solid included in the particular solid overlaps at least one of the solids in 
the set Suppose, fmally, that the relation of solid inclusion is transitive, and that every 
nonempty set of solids, even if spatially disconnected, constitutes one and only one 
solid. It follows from these assumptions and definitions that the set of solids of three 
dimensional Euclidean space forms a mereology when taken in conjunction With the 
relation of solid inclusion. Call this the mereology of solids. 8 

Notice that the mereology of solids is atomless, as every solid will include solids 
other than itself. To develop an intuition for this fact, imagine a sphere of unit radius. It 
will include a concentric sphere with radius 112. This sphere will in turn include a 
concentric sphere of radius 1/4, which will in tum include a sphere of radius 1/8, and so 
on without end (the point lying at the center of all these spheres is not itself a sphere or 
even a solid, but only a point).9 

Now, if we are willing to forgo of intuition, then the mereology of solids can be 
formulated in ordinary, noninverted, geometry -one where points, not solids, are 
primitive (Tarski 1956a). When it is thus formulated, the mereology of solids becomes 
the mereology of regular open sets (of three dimensional Euclidean. space). Here we 

that a = 2t, so there are 2t complete atomless Boolean structures of cardinality 2k. The proposition in 

(7) now follows from (4). 
7 Such geometries were also investigated by Whitehead (1919; 1920), De Laguna (1922), and Nicod 

(1924). The idea of taking solids as the primitives of geometry can be traced back to Leibniz (cf. Mach 

1906, 50). 
8 See Tarski (1956a). 
9 Formally, points are sets of solids in Tarski's system. Hence they cannot be solids. 
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suppose we are given the set of points of three dimensional Euclidean space. Call this 
set R3. The mereology of regular open sets can now be constructed as follows. Let 
RO(R3) be the family of regular open sets of R3 and let 1:: continue to be the relation of 
set inclusion.to Since R3 is a topological space, the pair <.RO(R3), I::> is a complete 
Boolean algebra (Monk 1989, 260. But the null element of this algebra turns out to be 
the empty set Hence, by (4), the pair <.RO(R3)+, 1::> is a mereology in which RO(R3)+ 
is the family of nonempty regular open sets of R3. 

The notions of overlap and constitution in the mereology of regular open sets 
come out as follows. Two elements of RO(R3 )+ overlap if and only if they have a 
nonempty intersection. A given element of RO(R3)+ constitutes a given set of elements 
of RO(R3 )+ if and only if the given element is the regularized union of the given set.11 
Finally, it should be clear that <.RO(R3)+, 1::> is atomless, as any element of RO(R3)+ 
will always conJain another within it -say an open sphere.12 

But let us return now to the algebra <.RO(R3 ), I::> of regular open sets of R3. 
Notice that it can be reconstructed as follows. We may assume that R3 can be placed in a 
one to one correspondence with triples of real numbers. Place R3 in any such 
correspondence. Consider then the set of sphe~es of R3 whose centers and radii are 
completely described by rational numbers. Suppose we were now to "peel off' the sur
faces of these spheres. Suppose', that is, that we were interested only in the interiors of 
our "rational spheres". Collect all these sphere interiors in a set Call this set B. Since 
the rational numbers are denumerable, so will B. Consider now the subalgebra of 
<RO(R3), I::> generated by B. It turns out to be a Boolean algebra which is both 
atomless and denumerable, but not complete. It will be atomless because every sphere 
interior will contain nonempty sphere interiors other than itself. It will be denumerable 
because the subalgebra of <.RO(R3), 1::> generated by B happens to be the closure of 
denumerably many sphere interiors under finite regularized union. It is not complete 
because it is not closed under infinite regularii.ed unions. Suppose, then, that we were to 
make our algebra complete. Suppose, that is, that we were to add to our subalgebra the 
infinite regularized unions of the rational sphere interiors. It turns out that we would 
obtain <.RO(R3), I::> itself! This reconstruction of <.RO(R3 ), I::> from a denumerable 

10 An open sphere is a set of points of R3 whose distance from a given point of R3 is less than some 

positive real number. A subset of R3 is open if and only if each one of its points is contained in an 

open sphere which is in tum contained in the subset. A subset of R3 is closed if and only if it is not 

open. The closure of a subset of R3 is the intersection of all the supersets thereof which are closed. The 

interior of a subset of R3 is the union of all the subsets thereof which are open. Fmally, a regular open 
set of R3 is a subset of R3 which coincides with the interior of its own closure (Monk 1989, 1242). 

The regular open sets have been intuitively described as those open sets which have no "cracks" or 

"pinholes" (Bell 1985, 3). 

11 Here the regularization of a set of points is simply the interior of its closure (see preceding 

fooUlote). Thus, the regularized intersection of a family of regular open sets is the interior of the closure 

of their intersection, while the regularized union of a family of regular open sets is the interior of the 

closure of their union. 

12 Open spheres have been defmed in foouiote 10 above. 
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base will play a crucial role in the arguments for the central thesis of this paper, as we 
will now see. 

4. The mereology or masses 

We are finally in a position to state precisely the main claim of this paper. It is 
that the mereology of masses that semanticists have invoked in their interpretation of the 
mass nouns of natural language is isomorphic to the mereology of solids, and hence to 
its correlate in ordinary geometry -the mereology of regular open sets of three 
dimensional Euclidean space. More succinctly, our hypothesis is (8), where <M, SM> is 
the mereology of masses and <.S, SS> is the mereology of solids. 

(8) <M, SM> :: <.S, SS> 

Since isomorphic mereologies are structurally indistinguishable, the mereology of solids 
(or the mereology of regular open sets, if you prefer) will provide us with a complete 
characterization of the mereological structure which articulates the masses of any 
Universe of discourse which has them. 

To begin with, (8) will provide us with a precise measure of the sire of the mere
ology of masses. For, notice that the mereology of solids has exactly 2No elements.13 
Hence by (8), 

(9) The mereology of masses has exactly 2No elements. 

It should be noted that (6) and (9) imply that the mereology of masses has the smallest 
cardinality an atomless mereology may have. The claim in (8) thus places the mereology 
of masses among the simplest atomless mereologies -at least as far as cardinality is 
concerned. 

Furthermore, if grammars are finitary formalisms, then the result in (9) implies 
that no grammar can provide individual names for all the masses of a universe of natural 
discourse. It should be clear that finitary grammars, even the ones which have recursive 
procedures at their disposal, can provide at most N 0 individual constants. 

13 Let <A, S> be a Boolean algebra. Some subset B of A+ is dense in <A, :S> if and only if for every 
a e A+ there is some b e B such that b Sa (Monk 1989, 54). Now, notice that the set of rational 

spheres is both denumerably infinite and dense in the algebra of regular open sets of R3. (or in the 
algebra of solids). But if some set B is dense in some Boolean algebra <A, S>, then A has at most 2IBI 

elements (Monk 1989, 55). The algebra of regular open sets of R3 (or the algebra of solids) thus has at 
most 2Ko elements. Hence, by (4), so does the mereology of solids. But (6) stated that every atomless 

mereology has at least 2Ko elements. The mereology of solids must therefore have exactly 2Ko 

elements. 
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S. The interpretation of mass nouns 

The claim.in (8) allows us to provide intuitive interpretations for the individual 
mass nouns of language. Consider first the mass noun space. It seems natural to claim 
that the noun space denotes the set of regions of space. But the regions of space are the 
solids of space. The particular noun space would thus denote a mereology which is 
isomorphic to the entire mereofogy of masses. 

Let us suppose next that we were to suppress from the world everything but the 
water it contained. We would obtain a vast region of space filled with the contents of 
oceans, lakes, rivers, pipes, pitchers, glasses, drops, and so on. Notice now that this 
region may be regarded as a solid. If, as is generally assumed, the noun water denotes 
the set of portions of water in the world, then this noun will be interpreted as the set of 
portions of water occupying this solid. This set of portions clearly fonns a mereology 
when taken in conjunction with the relation of inclusion (on the set of portions of 
water). In fact, this mereology would be isomorphic to the mereology of solids which 
are occupied by water. The common noun water thus denotes a mereology which is 
isomorphic to a particular mereology of solids -the mereology of solids occupied by 
water. 

But it might be objected that the mereology of solids is atomless while the 
mereology of water is atomistic, its atoms being the H20 molecules. Such an objection 

. would miss, however, the essential nature of mass nouns -the fact that they fail to 
provide a criterion for the individuation of their reference (Quine 1960, 91). For indeed, 
it is the atomlessness of mass nouns that distinguishes them from their count counter
parts and accounts for the fact that only the latter can withstand pluralization, and 
modification in tenns of number, size, and shape: 14 

(10) a. There are kings here~ 
b. I saw a/one king. 
c. This is a big/tall king. 

(11) a. ?There are waters here. 
b. ?I saw a/one water. 
c. ?This is a big/tall water. 

In fact, natural languages treat (their nouns for) water the same way they treat (their 
nouns for) space and time, where we would be hard put to find atoms. We conclude that 
the objection that solids and portions of water differ with respect to atomicity is not 
based on the semantic analysis of the noun water in ordinary English. Rather, it is based 
on the chemical analysis of water. Since the fonner yields the result that the denotation 

14 The sentences in (11) are of course well formed if reference to natural kinds or standard units of water 

is intended. It is arguable, however, that when used in this way, water is not a mass noun anymore. 

Here water is individuated or atomized into kinds or units. We shall return below to the 'taxonomic' 

readings of reinterpreted mass nouns. 
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of the noun water is atomless, semanticists must interpret this noun in terms of an 
atomless mereology (while remaining neutral as to whether water, the chemical subs
tance, is atomistic or atomless). 

In any event, what has been said for water can be said for earth, air, fire, and 
indeed all mass nouns whose extensions are localized in space. Every mass noun whose 
extension is localized in space denotes a mereology which is isomorphic to a mereology 
of solids -the mereology of solids occupied by this extension.ts But then, as far as 
natural languages are concerned, all mass nouns can be localfaed in space. For, notice 
that we can in fact speak of the love in my heart, the anger in the inner city, the beauty in 
a canvas, the power in a motor, the weather in the tropics, and the time in the classroom. 
If every mass noun can be interpreted as a set of situated parts, then every mass noun 
denotation is isomorphic to the mereology of solids occupied by its extension. 

Now, I am sure it could be argued that love is not located in my heart in the same 
way that a portion of water is contained in a bowl. This fact, however, seems to be 
irrelevant to actual linguistic usage, which uses the same grammatical devices to locate 
water in a bowl and love in my heart -for example a locative prepositional phrase 
headed by the preposition in. And this is certainly not an idiosyncrasy of English. In 
fact, I would be surprised if a natural language were found which used systematically 
different grammatical means to describe the location of material and immaterial entities. 

But it is possible to provide further support for the claim that all mass nouns, 
even immaterial ones, are isomorphic to a mereology of solids. Consider the noun time. 
Intuitively, it denotes not the solids of a space, but rather the (series oO intervals of a 
line, namely the-linear and continuous series of moments of time.16 So let us take this 
intuition about the semantics of time seriously and assume that the noun time, indeed 
denotes the set of series of open intervals of a line R. This set forms a mereology with 

, the relation of inclusion on the interval series of R -the mereology of series of time 
intervals. But this mereology is the intuitive counterpart of <RO(R)+, i=>, the mereology 
of the regular open sets of R under subset inclusion. By (4), we may turn this 
mereology into a complete Boolean algebra by adding to it the empty interval. If we do 
so we would obtain <.RO(R), t:>, the algebra of the regular open sets of R. Interesting
ly, this algebra can be reconstructed as follows. 

We may assume that R can be placed in a one to one, order preserving, 
correspondence with the line of real numbers. Pl~ce R in any such correspondence. 
Consider then the set of open intervals of R whose endpoints correspond to rational 
numbers. Call this set B. Since the rational numbers are denumerable, so is B. 
Construct now the set of finite, regularized, unions of the intervals of B. This set forms 

15 If solids correspond to open sets, then no mass would contain its boundaries. This surprising 
conclusion seems to be supported by linguistic fact, as it is possible to say of two masses that they 
touch without overlapping. H masses were to contain their boundaries, the density of space would render 
true mass contact(= contact without overlap) impossible. 
16 It should be clear that a tinle is a series of intervals rather than a single interval (cf. my time at the 
piano, your time in bed, and so on). This of course does not force times to be scattered individuals, as a 
series may contain just one term. It only allows a time, like a solid, to be scattered. 



, I 
I 

'. i 
I 

; I 
i I I 
11 

: ! 
I ' 

: I 
i I 
! 

: i I 
I , 
I!\ 
I 

100 Almerindo E. Ojeda 

a Boolean algebra when taken in conjunction with the relation of subset inclusion of 
interval series. In fact, it fonns a Boolean algebra which is both atomless and 
denumerable, but not complete. The algebra is atomless because every open interval will 
contain nonempty open intervals other than itself. It is denumerable because it has been 
designed to contain only the finite regularized unions of denumerably many open 
intervals. It is not complete, however, as it does not contain the infinite regularized 
unions of the intervals in B. Suppose, then, that we were to complete this algebra. We 
would obtain <RO(R), ~>. 

The preceding reconstruction of <RO(R), ~is interesting because it allows us 
to show that this algebra is isomorphic to algebra <RO(R3 ), ~> of regular open sets of 
R3. For, notice first that any two Boolean algebras which are atomless and denumerable 
are isomorphic (Monk 1989, 74). Notice further that all the completions of any given 
Boolean algebra are isomorphic as well (Monk 1989, 60). Now, since <RO(R), ~> is 
the completion of the atomless denumerable algebra of rational intervals of R and 
<RO(R3 ), ~> is the completion of the atomless denumerable algebra of rational spheres 
of R3, then <RO(R), !::>and <RO(R3), !::>must be isomorphic to each other. 

Let us delete now the null elements from <RO(R), !::>and <RO(R3), !::>.By (4) 
we obtain two mereologies, namely the mereology <RO(R)+, !::>of regular open sets of 
R, and the mereology <RO(R3)+, !::>of regular open sets of R3. Naturally, these two 
mereologies will be isomorphic. Hence, so will their intuitive counterparts, namely the 
mereology of series of time intervals and the mereology of solids. 

It follows that the intuitive interpretation of space as the mereology of solids is 
isomorphic to the intuitive interpretation of time as the mereology of series of time inter
vals. Two seemingly disparate linguistic intuitions can thus be unified by the claim in 
(8). 

It should go without saying that this does not mean that series of time intervals 
are solids or that solids are series of time intervals. It just means that solids and series of 
time intervals have the same mereological structure. The claim in (8) thus provides a 
frame in which the semantics of space and time can be unified; it supports a unified 
account of the semantics of space and time. 

The isomorphism between <RO(R), ~ and <RO(R3 ), ~ is interesting also be
cause Bunt (1985, 66ft) used <RO(R), !::>as a model for his continuous ensembles 
-the structures he proposed to interpret mass nouns. The mereologies of masses we 
have proposed are, therefore, (the nonnull portions of) some continuous ensembles. It 
should be added, however, that Bunt attached no importance to the particular structure 
of <RO(R), !::>. For him <RO(R), !::> was just an example of a continuous ensemble 
-and thus a means for establishing the consistency of his theory of continuous 
ensembles. But any other of the myriad atomless and complete Boolean algebras could 
have served the same end. 
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6. The homogeneity of mass reference 

The claim in (8) has allowed us to interpret every mass noun, material or 
otherwise, as a mereology which is isomorphic to a mereology of solids -namely the 
mereology formed by all the solids contained in a particular solid (and the relation of 
solid inclusion). The question thus arises as to whether we can characterize the 
structures of these mereologies. It is to this question that we will now turn. 

First, let us point out that the mereology formed by all the solids contained in 
some solid s is a rather natural object It may be called the relativiz.ation of the mereology 
of solids to s. Next, let us say that a mereology is homogeneous if and only if it is 
isomorphic to each one of its relativizations. It should be clear that homogeneity is 
hardly a trivial property of mereologies. No mereology with more than one atom can, 
for example, be homogeneous (Monk 1989, 681).17 Yet, the mereology of solids is 
demonstrably homogeneous.18 It is therefore isomorphic to each one of its relativiza
tions. It follows that the mereology formed by all the solids contained in a particular 
solid is isomorphic to the mereology of solids as a whole. 

Now, since we have argued that every mass noun denotes a mereology of masses 
which is isomorphic to the mereology of solids occupied by these masses, every mass 
noun denotes a mereology which is isomorphic to the entire mereology of solids. Since 
the latter is by (8) isomorphic to the mereology of masses, a further application of the 
transitivity of isomorphy entails that 

(12) Every mass noun denotes a mereology which is isomorphic to the mereology of 
masses as a whole. 

But the relation of isomorphism is symmetric as well as transitive. Hence, 

(13) All mass denotations will be isomorphic to each other. 

And as corollary of the claim in (8) and the homogeneity of the mereology of solids we 
have that 

(14) The mereology of masses is homogeneous. 

Finally, since every element of the denotation of a mass noun determines a relativization 
ofits own, the mereology of any portion of a mass will be isomorphic to the entire 

17 An atom of a mereology <.M, S> is any me M such that, for all n e M, n Sm implies that m ~ 
n. 
18 Given the connections between <.S, S>, <.RO(R3)+, S>, and <.RO(R3), S>, the claim follows 

given that (i) every Boolean algebra which is atomless and denumerable is homogeneous (Monk 1989, 

682), that (ii) the completion of every homogeneous Boolean algebra is homogeneous (Monk 1989, 

682), and (iii) that <.RO(R3), S> is the completion of a Boolean algebra which is atomless and 

denumerable (see Section 3). 
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mereology of masses. All masses therefore have the same mereological structure. Mass 
is 'self-similar' with respect to mereological structure. In a rather precise sense, then, 
mass nouns refer homogeneously. 

7. The denumerability or mass partitions 

The corollary in (14) and the result on the cardinality of the mereology of masses 
presented in (9) imply that every mass in the mereology of masses will contain 2 No 

masses. It is therefore interesting to show that the main claim of this paper entails that no 
mass in the mereology of masses may have more than N0 noiloverlapping parts. 

To make this point, let us say that a subset of a mereology is pairwise disjoint if 
no two elements thereof overlap. Let us furtbennore say that a mereology satisfies the 
countable chain condition if and only if all its pairwise disjoint subsets are countable. 
Now, it is easy to show that the mereology of solids satisfies the countable chain 
condition.19 This means that, if the claim in (8) holds, then 

(15) The mereology of masses satisfies the countable chain condition. 

In addition to its intrinsic interest for a theory of the mereology of masses, (15) 
imposes interesting bounds on the taxonomic reinterpretations of mass nouns. Consider 
for example a sentence like (16). 

(16) This store carries all three wines: red, white, and rose. 

As can be readily seen, the typically mass noun wine, seems to have been pluralized in 
this sentence. Interestingly, however, what has been pluralized in this sentence is not 
'wine', but rather 'kind or variety of wine'. One way to account for this fact is to 
observe that the mereology of wine contains a subset which partitions the wine in the 
world in three: the portion of wine containing all the red wine, the portion of wine 
containing all white wine, and the portion of wine containing all rose wine. But the 
mereology of wine also contains all the combinations of these three kinds. In other 
words, it contains the substructure in (17). 

19 Since R3 bas a countable base, the algebra of regular open sets of R3 satisfies the countable chain 

condition (cf. Halmos 1963, 61). Hence so does the algebra of solids and its positive counterpart, the 

mereology of solids. 
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(17) rws 

rw rs ws 

r w s 

We may now claim that th.is substructure is what wines denotes in (16). 20 

In light of the preceding discussion, the relevance of (15) for an account of the 
taxonomic reinterpretations of mass nouns should be clear. If a taxonomic reinterpreta
tion denotes a structure based on the partition of a mass, then (15) imposes an upper 
bound on the cardinality of such a partition; it has to be denumerable. Furthermore, 
since the substructure denoted by a reinterpreted mass plural is generated by closing a 
basic partition under the operation of constitution defined in (2), the postulate of 
completeness in (1) imposes an upper bound on the size of this substructure; it cannot 
exceed the power of the continuum. 
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Defining A 'Doughnut' Made Difficult 
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Abstract 

Qualitative descriptions of spatial properties and relationships, and qual
itative spatial reasoning, are of fundamental importance in human problem
solving: even where we use quantitative approaches, these depend on an ac
companying qualitative representation. The work described is aimed at for
malising some topological aspects of qualitative spatial description and reason
ing. The paper continues the work of Randell, Cohn and Cui on region-based 
qualitative representations of spatial properties and relations, built on the 
'logic of connection' developed by Clarke. 

It is shown how taxonomies of the topological properties and relation
ships of spatial regions can be developed, using the single primitive 'C', where 
'C(x, y)' indicates that regions x and y are 'connected', meaning that their 
closures share at least one point. This is done by considering a specific task: 
deciding whether or not a region has the topology of a 'doughnut', or solid 
torus. A range of 'near misses' and doubtful cases is discussed, and ways of 
distinguishing these from the 'target', the solid torus, are considered. It is 
shown how the task could be performed given certain assumptions about the 
target region and about regions in general. These assumptions are then pro
gressively relaxed; as this is done, the task requires the definition of successive 
layers of terminology, all derived ultimately from 'C', and providing a basis for 
successively broader taxonomies of topological properties and relationships. 

Introduction 

The title of this paper may call for a brief explanation. The 'doughnut' of the title is 
the topological entity also known as a 'solid torus', illustrated in figure 1. The paper 
investigates the task of defining this topological object, or distinguishing it from all 
topologically distinct objects, in terms of a particular formal system for qualitative 
representation of spatial properties and relations developed at the University of 
Leeds over the past few years and known as 'RCC-theory' (Randell, Cui and Cohn 
1992, Cohn, Gotts, Randell, Cui, Bennett and Gooday 1993, Cohn, Randell and Cui 
1994). How difficult this task is, of course, depends upon the range of possibilities 
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that must be excluded. The approach taken is to investigate the task at first within 
a fairly restricted set of possibilities, and then to make the task increasingly difficult 
by successive expansions of the set of alternatives to be excluded. 

Figure 1: The Target: a 'Doughnut', or Solid Torus 

It is the topology of the object shown in figure 1 that is of interest, not its other 
spatial properties, nor what it is made of: the doughnut pictured there is rectilinear 
simply because this was the easiest way to draw it with the graphics package used, 
and the internal partitions shown by dotted lines are included for clarity only. Many 
everyday objects (including rings and bracelets, sewing needles, pipes and tubes, 
nuts and washers, and links in chains) are 'doughnuts' ·in the topological sense used 
here, and in many cases their functionality depends on this topology. As figure 2 
shows, topological doughnuts can be of widely varying shapes (the object shown 
at the far right is intended to be 3-dimensional, and could be a doughnut in the 
everyday sense). 

Figure 2: Doughnut Variations 

This paper deals with the same set of issues as (Gotts 1994), but includes sig
nificant revisions of the line of argument developed there, and is intended to clarify 
some aspects of the approach taken, in part 'by the use of a larger number of fig
ures. Following this introduction, section 2 deals with questions of motivation and 
background: in brief, why the problem tackled is of interest. Section 3 is essentially 
a description of the problem, explaining why it is diffi.cult. Section 4 explains RCC
theory, as far as is required for the pmposes of this paper, while section 5 is the 
core of the paper, systematically exploring the problem of defining a doughnut in 
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terms of RCC-theory, using what can be called the 'mystery region' approach. This 
is a kin9 of thought experiment: imagine that a computational system is asked to 
determine whether a 'mystery region' of space has the topology of a doughnut, by 
asking questions couched solely in terms of the 'C' primitive of RCC-theory. Sec
tion 6, ending the paper, briefly summarizes what has been said, and describes the 
intended direction of future work 

2 Motivation and Background 

RCC-theory is so named after the investigators who developed it (D. Randell, A.G. 
Cohn and Z. Cui), but 'RCC' can also stand for 'Region-Connection Calculus': 
it takes extended regions rather than points as fundamental, and builds on the 
primitive relation of 'connection', symbolised C, between a pair of regions. C(x,y) 
is read 'x is connected with y'. RCC's work is based on Bowman Clarke's (Clarke 
1981, Clarke 1985) 'calculus of individuals based on connection', but considerations 
of computational efficiency and plausibility discussed below, and in more detail in 
(Randell et al. 1992) have led them to modify Clarke's calculus. 

The importance of finding good ways to represent qualitative spatial properties 
and relations can be better appreciated by noticing that even spatial representations 
with high quantitative content, such as engineers' or architects' drawings, require 
the identification of distinct objects or regions, to whic;h particular pieces of quan
titative spatial information (lengths, widths, volumes, angles) are attached; such 
drawings must successfully depict a spatial structure, based on relations of 'inclu
sion, adjacency, linkage and so forth, if the measurements they also include are to 
be any use. Topology, with which this paper is concerned, is a fundamental aspect 
of spatial structure, but not the whole of it. The four doughnuts of figure 2 are 
topologically identical, but differ in their structure (the ways they can be divided 
into parts and how those parts inter-relate). 

In recent papers (Cohn, Randell, Cui and Bennett 1993, Cohn et al. 1994), RCC's 
main concerns have moved toward computational issues, and the exploitation of an 
additional primitive concerning convexity introduced in (Randell and Cohn 1989). 
The purpose of this paper, by contrast, is to investigate the expressive power of 
the C predicate: how much can be expressed using this single predicate? This is 
most easily done in terms of specific tasks, and that of specifying the topological 
properties of a solid torus in terms of C alone was chosen as non-trivial but possibly 
achievable (as will be seen, it is not quite achieved here). 

The. work reported is related to that of Casati and Varzi on holes ( Casati and 
Varzi 1994), but shows that two of their three types of holes (tunnels and internal 
voids) can be described in terms of C - these authors use C, but introduce the 
relationship between a hole and its 'host' as an additional primitive. Vieu (Vieu 
1993) and her colleagues have also used Clarke's work as a basis for spatial reasoning. 

In representing either spatial or temporal relations, a decision arises: whether to 
treat points, extended regions, or both as primitives (in the temporal case, points 
and regions are often called instants and intervals respectively). In a point-based 
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approach, regions are defined as sets of points; in a region-based approach, points 
may be defined in terms of sets of regions, or omitted altogether. An advantage of 
point-based representations is that they can use the extensive work of mathemati
cians on point-set topology. Three countervailing advantages have been suggested 
for a region-based ontology: that regions are somehow 'closer to perception' and 
therefore psychologically primitive; that expressing spatial relations in terms of re
gions is a useful form of abstraction, paralleling the abstraction from the real-number 
line to landmark values and intervening intervals exploited in work on qualitative 
physics (Weld and De I<leer 1990); and that the point-based approach gives rise to 
counterintuitive distinctions such as that between closed and open regions (those 
that do and do not include their own boundaries), and weird constructions such as 
space-filling curves that cross themselves at every point. The first of these claims 
is dubious, taking into account the constructive nature of perception: regions, as 
much as points, are commonsense-theoretical entities in terms of which we interpret 
information from the senses. However, the second and third give sufficient reason 
to investigate the region-based alternative. 

So far as the second is concerned, the descriptions of spatial configurations we use 
in everyday life, and even in technical contexts, are frequently expressed in terms 
of relations between extended regions, whose extension in terms of points is left 
unspecified, and may indeed be unspecifiable. Work in progress at Leeds, reported 
in the paper by Cohn and Gotts in this volume, indicates that spatial indeterminacy 
and vagueness may be better represented using· regions rather than points as a basis, 
and develops a representation of regions with indeterminate boundaries based on 
RCC-theory. 

Turning to the claim that point-based approaches have counter-intuitive conse
quences, it seems odd - as noted in (Randell et al. 1992) - that two regions can 
be distinct, yet take up exactly the same part of space, as an open region and its 
closure do if we allow regions to be either open or closed sets of points. Also, if we 
take point-sets as fundamental we mu13t allow for those that are neither closed nor 
open, including some but not all of their boundary points, and for oddities such as 
2-dimensional point-sets including all those points within an area except those with 
rational coordinates. Furthermore, if we consider a physical object as occupying a 
region, is that region closed or open? In the case of a solid object it might seem in
tuitive to regard the occupied region as containing its boundary, and thus as closed. 
However, if two such objects touch, this suggests either that one is open and one 
closed (at least at their common boundary), or that both are closed and share their 
boundary points. Neither solution is obviously wrong, but both give rise to unease. 
In RCC-theory's region-based approach, this problem is avioded by dropping the 
open/closed distinction (which Clarke's system retained). 

Advocacy of region-based rather than point-based spatial and temporal repre
sentation has connections with a broader opposition to the view that set theory 
and predicate logic provide an adequate basis for the formal representation of the 
world. Those logicians and philosophers who have worked on the alternative or sup
plementary approaches ('mereology' or 'calculus of individuals') include Whitehead 
CWhitehead 1929), Lefoiewski (originator of the term 'mereology'), Tarski (Tarski 
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1956), Leonard and Goodman (Leonard and Goodman 1940), Clarke (referred to 
above), and recently Simons (Simons 1987), Varzi (Varzi 1993), and Smith (Smith 
1994). Simons reviews much of the earlier work in this area. 

'Individuals' in the sense used in 'calculus of individuals', are whatever singular 
things we take the world to contain. In this wide context it has been argued (Varzi 
1993) that we should allow entities to have the same spatio-temporal extent without 
being identical or having any parts in common. In the current context, where we 
are concerned with relations between spatial regions, we shall assume an extensional 
approach: if exactly the same spatial relations apply to region x as to region y, then 
x and y are the same region. 

3 Description of the Problem 

In this section, we look at the problem of 'defining a doughnut' in more detail. 
We adapt an approach pioneered by Winston (Winston 1975, Ch.5), that of the 
'near miss'. Winston advocated the use of both examples and counterexamples of 
concepts such as 'arch' to teach a vision program to interpret a blocks-world picture 
correctly: the counterexamples used, however, were intended to be 'near misses': 
objects that have most of the properties of an arch, but not all. Similarly, since we 
want our imaginary computational system to decide whether a 'mystery region' is 
or is not a doughnut, we need to think about the types of region that might confuse 
it, and indeed, to decide for ourselves exactly what we do and do not want tq count 
as a doughnut. (Note that we are not - at least at present - thinking of a system 
that can distinguish doughnuts from non-doughnuts visually; rather, we want the 
system to find out whether or not we have a doughnut in mind by asking appropriate 
questions.) 

Each of the next six figures shows a set of 'near misses'. Finally, we have a figure 
showing a selection of doubtful cases, where it is less clear that we want to exclude 
the regions pictured from our concept of a doughnut. 

/.......................................... ..···················• ... \ 

\, "··:.<_....... \ 
\. . ·········... j 

................................................ . ............... .... 

NMla: Loop NMlc: Cylinder-surface 

1!31 . . ...................... , 
.-:: .. ····· ·· ... 

NMlb: Annulus NMld: Torus 

Figure 3: Near Misses: 1 

All the examples of figure 3 fail to be doughnuts because they are of the wrong 
dimensionality. The top left figure (NMla) is intended to be a simple closed curve 
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embedded in 3-dimensional space: imagine a loop of string or wire made thinner and 
. thinner until it reaches zero thickness. The annulus (NMl b) and cylinder surface 

(NM le) are topologically identical. The torus (NMld) is of course the surface of the 
solid doughnut which we want to be able to identify. All these near misses (the set 
will be referred to collectively as 'NMl ')share the doughnut's property of having a 
single hole through them, allowing two opposite directions of travel around the hole 
to be defined, and in some cases permitting them to be linked to others of their kind. 
This is important: the doughnut, annulus and loop could be successive idealizations 
or simplified models of an object or region such as a road circuit, a moat, or a link 
in a chain. 

NM2a: Doughnut-with-gap 
(topologically, a solid block) 

NM2b: Block-minus-block 

Figure 4: Near Misses 2 

The three regions depicted in figure 4, and the four shown in figure 5 (NM2 and 
NM3) are all homogeneously 3-dimensional regions (unlike some of those in later 
figures) that differ from the doughnut itself in quite straightforward ways. Never
theless, they do raise some points of interest. The 'doughnut with gap' may, if the 
gap is narrow enough, be functionally equivalent to a doughnut in .some contexts 
(think of current jumping a small gap in a metal doughnut, or of a link in a heavy 
metal chain). Topologically, however, it is equivalent to a solid block (normally the 
term 'solid ball' would be used for this simplest of finite-diameter 3-dimensional 
topological objects; 'solid block' is used here simply because all objects or regions 
are shown as rectilinear). The 'double doughnut' shares the potential to link with 
others of its kind, and other functional properties, with the doughnut itself. The 
'block-minus-block' provides an opportunity to explain the convention used for rep
resenting hollow objects: the internal void is shaded in dark grey and shown as 
opaque, the solid volume remaining is shaded in light grey and shown as trans
parent. It also points up an interesting relationship between 2- and 3-dimensional 
regions. Frequently, one can identify 3-dimensional 'counterparts' of 2-dimensional 
entities: a solid ball or block is in this sense the counterpart of a disc, and (moving 
beyond topology to metric aspects of geometry), a cube the ..:ounterpart of a square. 
Both the doughnut and the block-minus-block, however, have a reasonable claim to 
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be the 3-dimensional counterpart of the annulus: both can be described as a block 
that 'hosts' a single hole (c.f. (Casati and Varzi 1994)), just as an annulus can be 
described as a disc that hosts a single hole; but in three dimensions, a topologically 
sigI].ificant hole (as opposed to a mere surface depression) can be either a hole right 
through the object (the doughnut), or an internal void (the block-minus-block). In 
one important respect, the block-minus-block has a better claim to be the coun
terpart of the annulus than the doughnut: like the annulus, it has two separate 
boundaries. In terms of connectivity, however, the opposite is true: in both the 
annulus and the doughnut, one can embed a simple closed curve that cannot be 
shrunk to a point while remaining in the embedding figure - which is not the case 
for the block-minus-block. 

NM3a: Doughnut-minus-doughnut-I NM3c:Doughnut-minus-block 

NM3b: Hollow-doughnut (doughnut-minus-doughnut-2) NM3d: Block-minus-doughnut 

Figure 5: Near Misses 3 

All the NM3 near misses have at least one toroidal boundary surface, like that of 
the doughnut - but all have two boundaries, outer and inner, like the annulus and 
block-minus-block. Note the two different ways shown of 'subtracting' one doughnut 
from another, making a doughnut with a 'doughnutiform' internal void. There are 
in fact infinitely many different ways of doing this: the internal void may go more 
than once round the hole through the containing doughnut, and may be knotted in 
an infinite number of different ways. 

In figures 6 and 7, we see objects or regions which are 3-dimensional, but not 
homogeneously so (we will go into this distinction in more detail in section 5; for 
now, we just note that all of the regions shown in these figures have anomalous points 
on their surfaces, where the surface does not simply divide the shaded region from 
the rest of space). All the regions in figure 6 (NM4) in some sense 'approach' the 
doughnut-with-gap of NM2a. Those on the right seem in some way more 'deviant' 
than those on the left (having lower-dimensional parts rather than just 1-dimensional 
or 0-dimensional - pointlike - connections between parts), and in fact will turn out 
not to be 'regions' at all in the intended interpretation of RCC-theory (see section 
5). All the NM4 near misses, like the NMl objects, can host 'unshrinkable' loops, if 
we allow these to include surface as well as interior points. Notice that attaching one 
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NM4c 

Four doughnuts with degenerate hole-surrounds 

Figure 6: Near Misses 4 

NMSa Three doughnuts with degenerate ho1W
5
c 

NM5b 

Figure 7: Near Misses 5 

of these entities to a genuine doughnut (in the way that two doughnuts are attached 
to produce the double doughnut of NM2) gives another range of near misses, while 
attaching the doughnut-with gap to a doughnut in this way produces a doughnut. 

Turning to figure 7 (NM5), NM5a seems more 'deviant' than the others, and 
again will turn out not to be an RCC-theory region at all in our chosen interpreta
tion. Attaching NM5b to the middle of a larger fl.at block produces (topologically 
speaking) a block minus a block, with the two blocks having one cominon surface 
point: a problem region mentioned in section 5 of the paper. When embedded in 
Euclidean 3-space (E3 ), all NM5 objects share the property that there are interior 
loops that cannot be continuously shrunk to a point while keeping the shrinking 
loop within the interior throughout the shrinking process. 

The final near miss, shown in figure 8 (NM6), is E3 minus a doughnut: all of an 
infinite 3-D space other than the opaque doughnut. Like the doughnut itself, it has 
just one surface, which is toroidal. 
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... 

3 
NM6: E minus doughnut 

Figure 8: Near Misses 6 

Finally in this section, we come to a set of 4 doubtful cases. We will see that of the 
four, all but the 'doughnut with knotted hole' are in fact topologically equivalent to 
the doughnut. However, the complements of the other three objects, when they are 
embedded in E3

, do differ topologically from the corresponding complement of the 
ordinary doughnut. This illustrates the distinctionbetween intrinsic and extrinsic 
topological properties of a region: the latter, but not the former, are dependent on 
how the entity is embedded in a containing space. 

4 'Connection' Between Regions as a Basis for 
Spatial Representation and Reasoning 

RCC's basic theory, as presented in (Randell et al. 1992, section 4) uses two axioms 
establishing that C is reflexive and symmetric: 

VxC(x,x) 
Vx, y[C(x, y)-+ C(y, x)], 

plus metalinguistic definitions of quasi-Boolean functions 1 guaranteeing the exis
'tence of complements of regions, and of the sum, product and difference of ordered 
pairs of regions (within restrictions explained below). Additional relations are de
fined in terms of C: DC(x, y) (x is disconnected from y), P(x, y) (x is part of y), 
PP(x, y) (x is a proper part of y), EQ(x, y) (x coincides with y), O(x, y) (x over
laps with y), PO(x, y) (x partially overlaps with y),. DR(x, y) (xis discrete from y), 
EC(x, y) (xis externally connected with y), TPP(x, y) (x is a tangential proper part 
of y), and NTPP(x,y) (xis a non-tangential proper part of y). Pis nonsymmetric, 
and PP, TPP and NTPP are asymmetric; their inverses will be symbolised here as 
Pl, PPI, TPPI and NTPPI. The eight relations DC, EC, PO, TPP, NTPP, TPPI, 

lQuasi-Boolean rather than Boolean because there is no null region. 
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Doughnut with infinite extension 

Knotted doughnut ('Doughknot') 

Doughnut with knotted hole 

Figure 9: Doughnut Or Not? 

NTPPI and EQ constitute a pairwise exclusive and jointly exhaustive set or''base 
relations': exactly one of the eight must hold between an ordered pair of regions. 

The definitions of the additional relations used in this paper are given below; the 
remainder can be found in (Randell et al. 1992). 

DC(x, y) =def •C(x, y) 
P(x, y) =def Vz[C(z, x) -+ C(z, y)] 
PP(x, y) =def P(x, y) /\ ·P(y, x) 
EQ(x,y) =def P(x,y) /\ P(y,x) 
O(x,y) =def :lz[P(z,x) /\ P(z,y)] 
EC(x, y) =def C(x, y) /\ •O(x, y) 
TPP(x,y) =def PP(x,y) /\ :lz[EC(z,x) /\ EC(z,y)] 
NTPP(x, y) =def PP(x, y) /\ •:lz[EC(z, x) /\ EC(z, y)] 

The universal region (Us), and the quasi-Boolean functions, introduced via ex
plicit metalinguistic definitions ~n (Randell et al. 1992), are here defined implicitly 
using additional object-language axioms, which have the same effect: asserting the 
existence of a region (given that of one or more others, except in the case of the 
Us axiom). The functions concerned are compl(x) (the region-complement of x, de-
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fined as a region only when xis not Us); sum(x,y) (the regio -sum of x and y); 
prod(x, y) (the region-product or intersection of x and y, defin d as a region only 
when O(x,y)); and diff(x, y) (the region-difference of x and y, defi ed as a region only 
when -.P(x,y)). The complications arising because applying on of these functions 
to certain arguments does not produce a region are dealt with u ing a. sorted logic, 
LLAMA (Cohn 1992). The functions compl(x), diff(x,y) and pr d(x,y) are partial 
over the domain of regions, but are rendered total within LLA~A by introducing 
a sort NULL, disjoint from the sort REGION, and specifying sottal restrictions on 
the functions' arguments. The axioms below depend on the assumption that these 
restrictions are applied. 

Vx[C(x, Us)] 
Vx,y[[C(y,corripl(x)) = -.NTPP(y,x)] /\ [O(y,compl(x)) = -.P(y,x)]] 
Vx, y, z[C(z, sum(x, y)) = C(z, x) V C(z, y)] 
Vx, y, z[C(z, prod(x, y)) = 3w[P(w, x) /\ P(w, y) /\ C(z, w)]] 
Vx, y[NULL(prod(x, y)) = DR(x, y)] 
Vx, y, z[C(z, diff(x, y)) = C(z, prod(x, compl(y)))] 

Finally, the following axiom is added, to establish that all regions have an NTPP, 
ruling out 'atomic' regions: 

Vx3y[NTPP(y, x )]. 

This suffices to prove that all regions have an infinite number of NTPPs. 

5 Defining a 'doughnut' in terms of connection 

Given a 'mystery region' r, what questions could a system that knows about nothing 
other than C a~k to determine whether r is a doughnut, distinguishing it from the 
near misses illustrated, and from any others? This depends, as already noted, on the 
range of possibilities from which it must be picked out. We can exclude a near miss 
in 3 ways: by adding more axioms; by specifying conditions, expressed in terms of 
C, that a doughnut must meet but other regions need not; or by placing limitations 
on the permitted range of interpretations of the axioms. 

Throughout this paper, the universal region Us is assumed to be an N-dimensional 
manifold (i.e., every point in it has a neighbourhood topologically equivalent to an 
N-dimensional disc, N being the same for all points), and each region is assumed 
to be an open set of points within Us, equal to the interior of its closure (a 'regular 
set ')2 •. We also assume that the closure of the open set of points (the region-closure) 
is .triangulable. Two regions are connected - C( x, y) - iff their region-closures 
share at least one point. We will call this restriction on the intended interpetation 

2There are slightly different interpretations of 'region' which give an isomorphic set of regions 
- e.g. identify a region with the set of point-sets giving the same result when interior and then 
closure are taken. 
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of RCC-theory assumption 0. All the near misses of NMl, NM4c, NM4d, and NM5a 
are thereby excluded, as they do not correspond to regular open sets. 

In addition to the fundamental assumption above, we initially adopt the following 
set of assumptions: · 

• 1. Us, the universal region, is an infinite 3-dimensional Euclidean space (E3
). 

• ? The region-closure of each region is a locally Euclidean space: one in 
which each point has a neighbourhood topologically equivalent either to an. 
N-dimensional disc, or to half of an N-dimensional disc, with N being the 
same for all points3 • 

• 3. The 'mystery region', region r, is of finite diameter. 

These assumptions will be progressively weakened in the course of this section. 
NM4c, NM4d, NM5a, and all those in NMl, would be excluded from the set 

of regions by the comb~nation of the non-atomic axiom and assumption 1, even if 
they were not already excluded by assumption 0. NM4a's and NM4b's interiors are 
manifolds, but their closures are not locally Euclidean spaces; and the same is true 
of NM5b and c. NM6 and two of the doubtfuls are excluded by condition 3. This 
leaves just those near misses in NM2 and NM3, and the doughknot and doughnut
with-knotted-hole in figure 9. How, if at all, can we distinguish the doughnut from 
each of these by using C? 

So far as the NM2 cases are concerned, in conventional topological terms these all 
differ from the doughnut in connectivity. Using Casa starting point, we can define 
a similar concept, 'finger-connectivity', which will serve to distinguish all three NM2 
near misses from the doughnut. 

The first step is to define a self-connected (CON) region, one which cannot be 
divided into two DC parts. We can define the predicate CON thus: 

CON(x) =def 'v'y'v'z[EQ(x,sum(y;z)) --t C(y,z)]. 

(In te 'ms of point-set topology, with the interpretation of 'region' used here, this 
means the region-closure is self-connected.) We can also define the 'separation
numb r' of a region: the 'minimum number of CON parts into which it can be 
divide (upper-case letters are used to stand for variables ranging over the natural 
numb rs, and '+' has its normal arithmetical meaning when applied to these num-

bers): 

SE NUM(r, 1) =def CON(r) . . 
SE NUM(r, N+l) =def 3s, t[EQ(r,sum(s, t))/\DC(s, t)/\CON(s)/\SEPNUM(t, N)] 4

• 

3 A -dimensional disc is an open line-segment; a 3-dimensional disc is an open solid ball or 

block. 
4Being recursive, this does not have the form of a normal definition, and, strictly speaking, 

requires an axiomatisation of the natural numbers to be added to RCC-theory. However, wherever 
SEPNUM is used in this paper, it could if required be 'unpacked' to a form using only C, and 
variables ranging over regions: we could define SEPNUMl, SEPNUM2 and so forth, as far as we 
required. The same is true for other terms defined using SEPNUM. 
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Finger-connectivity is then defined, using SEPNUM, in terms of the possible dis
sections of a CON region (for convenience, we here define the finger-connectivity of 
a non-CON region as O; in (Gotts 1994) it was left undefined). A dissection is a 
division of a region into a finite number of CON parts, which are non-overlapping, 
and jointly exhaustive of the .region. The dissection-graph corresponding to a dis-· 
section is defined as follows: a node of the graph corresponds to each piece of the 
dissection, and two nodes are joined (by a single link) iff the corresponding parts are 
connected. The finger-connectivity of a CON region identifies the largest of a specific 
family of dissection-graphs which it can host. This family is of graphs with N + 2 
nodes ( N 2:: 1), with two of the nodes distinguished from the rest. These two are 
not linked, while each of the other N nodes has a link to each of them, but none to 
each other. The dissection-graph can be drawn like two N-fingered hands with pairs 
of corresponding fingertips touching (figure 2). A line-segment, disc or solid ball has 
finger-connectivity 1, a circle, annulus, torus or doughnut finger-connectivity 2, a 
2-hole torus or doughnut 3, and so forth. Formally, FCON is defined thus: 

FCON(r, 0) =def ·CON(r) 
FCON(r, N) =def CON(r)/\ 

3a, x, b[EQ(r, sum( a, sum(x, b)) )/\DC( a, b)/\EC( a, x )/\EC(x, b)/\SEPN UM(x, N)]/\ 
•3a,y,b[EQ(r,sum(a,sum(y,b))) /\ DC(a,b) /\ EC(a,y) /\ EC(y,b)/\ 

SEPNUM(y, N + l)]]. 

.: ............. ··'··· ........... .. 
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"·· ................ ... 

.. .......... ··r ........... .. 
~ . " .............. J ............. . 

Figure 10: Dissection-Graphs And Dissections: Finger-Connectivities 1, 2 and 3 

Of the near misses in NM2, the block-minus-block and doughnut-with-gap will 
not host the second of the three dissection-graphs (they are of FCON 1), and the 
double doughnut is of FCON 3). In NM3, the block-minus-doughnut, doughnut
minus-block, and hollow doughnut are all FCON 2 - like the doughnut - but 
doughnut-minus-doughnut-I is of FCON 3. All the doubtful cases of figure 9 are of 
FCON 2. So how can we eliminate the remaining three near misses from NM3? Can 
we eliminate the doubtful cases? 

Under assumptions 1-3 above, we can do so by defining a predicate that specifies 
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how many separate boundaries two EC regions share5
: 

SBNUM(r, s, N) =.def EC(r, s )/\ 
3x[PP(x,r) /\ DC(diff(r,x),s) /\ SEPNUM(x,N)]/\ 
-.3y[PP(y, r) /\ DC( diff(r, y), s) /\ SEPN UM (y, N + 1 )]. 

N.M. Gotts 

As a special case, we can define the number of boundaries a region (other than 
Us) shares with its complement: 

CBNUM(r, N) =def SBNUM(r, compl(r), N). 

' All the objects pictured in NM3, if embedded in E3
, have CBNUM 2; we can define 

a doughnut as a region with FCON 2 and CBNUM 1. 
Weakening assumptions 1-3 will show how the doughnut can be distinguished 

among successively larger classes of possibilities. The process is not completed 
within this paper. To start with, replace assumption l with assumption la: 

la. Us is EN for some natural number N. 

In terms of the near misses, this means we have to find ways of excluding the 
loop, cylinder-surface, annulus and torus of NMl. Because the axioms ensure that 
every region has an NTPP, all regions must have the same dimensionality as Us, 
given that the latter is a manifold; but how could we discover the dimensionality of 
Us if not told it? In (Gotts 1994), distinctions between regions of different dimen
sionality were made by specifying the properties of boundaries between EC parts of 
a region: this approach turned out to be a complicated one, partly but not wholly 
because RCC-theory does not allow direct reference to boundaries, or other entities 
of lower dimensionality than the regions in any given model of the theory. Here, an 
alternative approach is taken, but it is admitted that further investigation is still 
required: the approach has not been proved correct. 

This approach is based on one of the conventional topological definitions of di
mension (see for example (Armstrong 1979, section 9.5)), which uses the ideas of a 
finite open cover of a space, and of one such cover being a refinement of another. 
Roughly speaking, a finite open cover of a space is a finite set of subspaces whose 
union is the whole space, and one such cover is a refinement of another if each 
member of the first is part of a member of the second. A Hausdorff space (any 
Euclidean space is a Hausdorff space) is N-dimensional if any finite open cover has 
a refinement consisting of N + 2 subspaces which do not all share a common point, 
and this is not so for any smaller N. 

The RCC-based adaptation of this definition proposed here uses a specialisa
tion of the PO relation: layered partial overlap (LPO), in which the 'pure' (non
overlapping) parts of the two regions are DC from each other: 

5 We leave it undefined for pairs of regions that are not EC. 
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LPO(x,y) =def PO(x,y) /\ DC(diff(x,y),diff(y,x)). 

We define an 'LPO cover' of a region as a finite set of subregions that together 
include the whole of the region, such that any two members of the set are related 
either by DC, or by LPO. The upper and lower halves of figure 11 show two ways 
a square can be given an LPO cover. The left part of each half of the fig-qre shows 
the disassembled pieces of an LPO cover, the right the fully assembled square (with 
overlaps of two, three or four components shown in successively darker shades), and 
the centre the way in which the lower left component relates to the upper right and 
upper left when the square is assembled. 

OD 
OD 

! 

I I ...___ _ _. 

·---------------------1--~~:-~~-'?~~~· For ~-~.P!arc Region ------ ------· ........................... ______________ .. __ ~,---------------------------------------------t··---------------------
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' ' 

! 

I 

I 
i 

Figure 11: Two 'LPO Covers' For A Square Region 

It is conjectured that, in general, for an N-dimensional region, any LPO cover 
with N + 2 members will have a 'one-to-one refinement' (one set of regions is a 'one
to-one refinement' of another if a one-to-one correspondence between the two sets 
can be established such that each of the first set is a P of the corresponding member 
of the second), such that there is no region that is a common part of all regions in 
the refinement; and that this will not be the case for any smaller N. In figure 11, 
the lower LPO cover is a refinement of the upper, and it can be seen that, unlike 
the upper, the four regions in the lower LPO cover have no common part. If this 
conjecture is correct, we could define a predicate DI Ml ('is I-dimensional') as follows: 

DIMl(r) =def 
[Vx, y, z[EQ(r, sum(sum(x, y), z))/\ 
[DC(x,y) v LPO(x,y)] /\ [DC(x,z) v LPO(x,z)] /\ [DC(y,z) V LPO(y,z)]]-+ 

3x1, y1, z1 [EQ( r, sum( sum( x1, yi), z1) )/\ 
P(x1,x) /\ P(y1,y) /\ P(z1,z)/\ 
[DC( x1, y1 )VLPO( Xi, y1)]A[DC( xi, z1)VLPO( X1, z1 )]A[DC{yi, z1)VLPO(y1, z1 )]/\ 
[-i3q[P(q,x1) /\ P(q,y1) /\ P(q,z1)]]]. 
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Definitions of DIM2, DIM3, and so forth could be constructed analogously6
. Our 

doughnut;.testing system could therefore begin investigating whether the mystery 
region is a doughnut by asking 'whether it is 3-dimensional. If not, it is not a 
doughnut; if so, the 'FCON 2, CBNUM 1' criterion can be used as before. 

We can take the weakening of condition 1 a step further, substituting for la: 

lb. Us is an JV-dimensional orientable manifold. 

We insist that Us be orientable because, so far, orientability has not been char
' acterised in terms of C, nor is it known whether this is possible. 

If 1 b replaces la, r may not be identifiable via the same set of questions as when 
Us was assumed to be some EN. For example, assume that Us itself is a doughnut, 
and that r is Us. The criterion given above will not work correctly, because r has 
CBNUM 0. Nor is this the only .case where such problems would arise. Supposer 
and Us are both doughnuts, topologically speaking, but the relationship of r to Us 
is equivalent to that of one doughnut in the middle of a stack of doughnuts: r will 
have CBNUM 2, and so will fail the test. In considering the near misses of section 
3, we can no longer rely on eliminating the three in NM3 that are of FCON 1 by 
looking at the CBNUM property: in each case, Us might be precisely E3 minus that 
region's internal void. 

The problem is that the CBNUM is an extrinsic property of a region: that is, it is 
dependent on the way the region is embedded in Us. We need an intrinsic definition 
of boundary-number - one expressed solely in terms of the way parts of a region 
relate to each other. No intrinsic (-based definition of boundary-number (IBNUM) 
known to apply whatever the dimensionality of r has yet been found. However, a 
(-based definition that works at least for regions with three or fewer dimensions can 
be presented; it depends on the prior definition of two other relations: FTPP(x, y) 
(read 'xis a firmly-tangential proper part of y'), and ITPP(x,y) ('xis an intrinsically 
tangential proper part of y'). 

Intuitively, 'ITPP(x, y)' means that xis a proper part of y, and is not completely 
surrounded by diff(y, x) - the part of y that is not also part of x. If Us is E3

, then 
a region x consisting of an infinitely long solid cylinder stretching (for example) the 
entire length of the x-axis is an NTPP of Us - there are no regions EC to Us, so 
there cannot exist a region that is EC to both Us and x - but x is also an ITPP of 
Us, because there are two directions (along the x-axis in either direction) in which 
x extends as far as Us (i.e., infinitely far). A TPP is always an ITPP, and an INTPP 
(intrinsically non-tangential proper part - a PP that is not an ITPP) is always an 
NTPP, but the converses of these statements do not hold. If x is of finite diameter, 
and y is EN, then TPP(x, y) = ITPP(x, y) will always be true, but as we have just 
seen, this equivalence will not always hold if x and y are both of infinite diameter; 
nor need it do so if Us itself is of-finite diameter. 

The best definition of ITPP yet found relies on the prior definition of the FTPP 

6 A general DIM predicate, with two arguments, a region and a natural number, would be much 
more difficult to define. 
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relation. Intuitively, if x and y are both of finite diameter, then an N-dimensional x 
is an FTPP of y iff it is an PP of y and shares an N-1-dimensional patch of boundary 
with y, but we need, and can produce, a definition that extends to regions of infinite 
diameter (at least, for regions of 3 or fewer dimensions). Figure 12 illustrates the 
relationship between the TPP /NTPP distinction of basic RCC-theory on the one 
hand, and the ITPP /INTPP distinction (top) and the FTPP relation (bottom) on 
the other. 

TPP& ITI'P NTPP&INTPP NTPP& ITI'P 

NTPP TPP but not FTPP FTPP 

Figure 12: TPPs and ITPPs (top); TPPs and FTPPs (bottom) 

The formal definition of FTPP is as follows: 

FTPP(x, y) -def PP(x, y)/\ 
3u, v, w[P( w, x) /\ [EQ(sum( u, v ), w )] /\ EC( u, v )/\ 

DC(v,diff(y,w)) /\ FCON(w,1) /\ FCON(v,1) /\ FCON(u,1)/\ 
•3r, s, t[EQ(sum(s, t), u)] /\ PP(r, s) /\ EC(s, t)/\ 

DC(t, diff(s, r)) /\ FCON(r, 2) /\ FCON(s, 1) /\ FCON(t, 1)/\ 
-i3q[PP(q, r) /\ DC(t, diff(s, q)) /\ FCON(q, 1)])]. 

What this says is that x is an FTPP of y iff it is a PP of y, and has a part, w, 
which has FCON 1, and can itself be dissected into two smaller FCON 1 regions, one 
of which (v) is DC from diff(y,w), while the other (u), which does touch diff(y,w), 
meets a somewhat complicated condition, asserting that a particular type of 3-
piece dissection of u (into t, r, and diff(s, r)) cannot exist. Any 1-dimensional or 
2-dimensional region of FCON 1 meets this condition, but some 3-dimensional FCON 
1 regions - those which would have one or more internal voids if embedded in E3 

- do not. The block-minus-block of NM2 is precisely such an FCON 1 region. If 
we consider 'subtracting' one block from another in such a way that the residue is 
also FCON 1, this residue may itself be a solid block (if we simply cut the original 
in half, for example), or it may be a block-minus-block. If the original block is 
itself a PP of some larger region, and we want to cut it into two FCON 1 parts so 
that one of them is DC from the rest of the larger region, the other must have an 
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internal void (be a block-minus-block) if the original block is not an FTPP of the 
larger region. It is thought that the definition of an FTPP could be extended to four 
or more dimensions in a similar fashion, but the details have not been worked out. 

With the FTPP definition in hand, we can define an ITPP as follows: 

ITPP(x, y) -def PP(x, y)J\ · 
'v'w[PP(x, w) A PP(w, y) A DC(x, diff(y, w)) -t FTPP(w, y)] 

- that is, any PP of y that 'envelopes' x, shielding it from the rest of y, must 
be an FTPP of y. 

Before we achieve our goal of defining intrinsic boundary number for regions of 
three or fewer dimensions, we will need one more intermediate definition, of the 
predicate MAX-P (Cohn et al. 1994). MAX-P(x,y) means that x is a CON P of y, 
while any PPI of x which is a P of y is not CON: 

MAX-P(x,y) =def CON(x) A P(x,y) A -,3z[PP(x,z) A P(z,y) A CON(z)]. 

The IBNUM of a region r of three or fewer dimensions can now be defined as the 
greatest SEPNUM of any s such that PP(s, r), each MAX-P of sis an ITPP of r, and 
any ITPP of r connects with s (each MAX-P will 'cover' one of the boundaries): 

IBNUM(r, N) =def [N = 0 A -i3s[ITPP(s, r)]]V 
[3s[ITPP( s, r )]A 

3x[SEPNUM(x, N)J\ 
'v'z[MAX-P(z, x)--+ ITPP(z, r)] A 'v't[ITPP(t, r) -t C(t, x)]]J\ 

-i3y[SEPNUM(y, N + l)A 
'v'z[MAX-P(z,y) -t ITPP(z,r)] A 'v't[ITPP(t,r) -t C(t,y)]]] 

A doughnut can then be defined as a 3-dimensional region with FCON 2 and 
IBNUM 1. 

We now turn to the possibility of weakening assumption 2: that the region
closure of any region forms a locally Euclidean space. This means that we have to 
find (-based criteria for eliminating those near misses in NM4 and NM5 that are 
not excluded by assumption 0 (that Us is a manifold, and all regions correspond 
to regular open sets of points): that is, we must exclude NM4a, NM4b, NM5b and 
NM5c. These near misses do correspond to regular open sets of points, but the 
closures of these open sets are not locally Euclidean spaces: some of their boundary 
points do not have a neighbourhood topologically equivalent to half a 3-dimensional 
disc. (Another way of expressing this is to say that the boundaries of these regions 
are not locally disclike everywhere.) NM5b and c, in fact, have FCON 1, but putting 
another hole right through either of them would produce an FCON 2 region with 
IBNUM l; NM4a and bare of FCON 2 and IBNUM 1 already. How can our doughnut
testing system eliminate these anomalous regions, and all others of similar type? 

It is not difficult to define a predicate, ICON (for interior-connected), such that 
ICON(r) means that r does not divide into two or more parts which are only con-
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nected because their closures share a point: 

ICON(x) :def Vy,z[INTPP(y,x) /\ INTPP(z,x) -t 
3w[CON(w) /\ INTPP(y,w) /\ INTPP(z,w) /\ INTPP(w,x)]). 

However, ICON(r) does not rule out all regions with anomalous boundaries, and 
in particular does not exclude any of the cases illustrated in figures 6 and 7. 

We can define a more restrictive predicate, which we call WCON (for 'well
connected'), which appears to deal with all poorly-connected regions - that is, 
it is believed a 2- or 3-dimensional WCON region will always have a boundary with 
a locally linear or disclike topology respectively. Given this definition, we can remove 
assumption 2, and then have the choice of incorporating the conditions ensuring that 
a region is WCON as an additional axiom, or allowing both WCON and non-WCON 
regions while being able to distinguish the two. In order to define a WCON region 
formally, an intermediate definition will be necessary, but figure 13 should make 
it easy to remember the differences that are intended to exist between the three 
predicates CON, ICON, and WCON. 

CON, ICON and WCON CON, not ICON or WCON CON and ICON, not WCON 

Figure 13: Types of CON Region 

An FCON 1, IBNUM 1 regions will be called a 'superficial proper part' of another 
region r - SPP(s,r) - iff sis an ITPP of r, and for any INTPP of r, say t, there 
is another INTPP of r, u, such that diff(s,sum(t,u)) is also an FCON 1 region with 
IBNUM 1. Intuitively, what this means is that if we remove any part of an SPP 
that does not touch the boundary of the containing region, we can always remove 
more of the SPP, again without touching the containing region's boundary, in such 
a way as to leave a remainder which is again FCON 1 and IBNUM 1. Examples 
and counterexamples of SPPs of a 2-dimensional region are illustrated in figure 14. 
Formally: 

SPP(s, r) =def FCON(s, 1) /\ IBNUM(s, 1)/\ 
ITPP(s,r) /\ Vt[INTPP(t,r) -t 3u[INTPP(u,r)/\ 
FCON(diff(s,sum(t,u)), 1) /\ IBNUM(diff(s,sum(t,u)), l)]] 

It is thought that this same class of FCON 1, IBNUM 1 ITPPs could also be 
picked out by specifying that s and r share only one patch of intrinsic boundary, 
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INTPP ITPPand SPP ITPP but not SPP 

Figure 14: SPPs and ITPPs 

and ifs and r are N-dimensional, this patch is a point, or an M-dimensional disc 
where M < N. However, this condition on the form of the patch is redundant if 
N :::; 2. Also, this alternative means of specifying the class of SPPs is more difficult 
to express in terms of C. 

Degenerate Doughnut An SPP Of The Degenerale Doughnut After Removal Of The SPP 

Figure 15: Removing An SPP From A Degenerate Doughnut 

Removing an SPP from an ordinary doughnut cannot leave a remainder with 
a different FCON. For the examples of NM4 and NM5, however, there are SPPs, 
the removal of which would leave a remainder with a different FCON, as shown in 
figure 15 for NM5b. At one stage it was thought that this could be used as a way 
to exclude all poorly-connected regions. However, there are regions which do not 
have such an SPP, but which are poorly-connected. One such is a solid block with a 
smaller solid block removed from it in such a way that the surfaces of the two share 
a single point. Topologically, such a region could be created by attaching the region 
at the left of figure 15 to the top of a cuboid, so that the indentation in the bottom 
becomes an interior hole, meeting the outside at a single point. Such a region has 
FCON 1 and IBNUM 1, like a solid block, and removing an SPP cannot change this. 

However, a WCON region can be defined as one with no SPPs of a certain sort. 
Specifically, a WCON region r has no SPP s which itself has an SPP t such that 
DC(t,diff(r,s)) and such that diff(s,t) is not an FCON 1 region: 

WCON(r) =def Vs, t[SPP(s, r) A SPP(t, s) A DC(t, diff(r, s)) -t FCON(diff(t, s), 1)]. 

Now let us briefly consider what happens if we drop assumption 3: that the mystery 
region r is of finite diameter. Both the 'infinite doughnut' and the 'doughnut with 
infinite protruberance' of figure 9 are of FCON 2 and IBNUM 1, like the doughnut 
itself. Indeed, both these regions are topologically equivalent to a finite doughnut: 
they can be transformed into the doughnut by a one-to-one continuous mapping with 
a continuous inverse, just as (for example), a finite line segment can be transformed 
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into an infinite line: the distinction between spaces of finite and infinite diameter is 
not a topological one, and our (-based system is like conventional point-set topology 
in failing to distinguish them. Any dissection of the doughnut could be replicated 
for either of these infinite-diameter regions, simply by 'stretching' some or all of 
the regions in the dissection by an infinite factor. If we know that Us is E 3

, we can 
distinguish the 'true' doughnut from either of these 'imposters', because they will be 
ITPPs of Us and the true doughnut will not; and if we know that Us is itself of finite 
diameter, the imposters cannot fit inside it; but if Us is itself finite in some directions 
and infinite in others (e.g., an infinite cylinder), or if the doughnut-testing system 
is not given this piece of information (which cannot itself be expressed in terms of 
C), the system can only ask whether region r is an ITPP of Us. If the answer is 'no', 
it can rule out the two imposters; but if it is 'yes', no further progress can be made. 
Since the two regions are topologically equivalent to a doughnut, however, we may 
decide to allow them to be doughnuts. 

The same approach could be taken with regard to the 'doughknot', also shown 
in figure 9. Again, this region is topologically equivalent to the ordinary doughnut; 
it differs only in the way it is embedded in its containing 3-dimensional space. Ex
pressing this extrinsic difference in terms of C would, it is thought, be by no means 
easy; and the general problem of determining whether two knots (embeddings of a 
closed curve in E3 ) are equivalent remains an unsolved question in topology. Since 
the doughknot is not intrinsically different from the ordinary doughnut, we might 
simply accept it (and all more complex knottings of the doughnut) as doug4nuts; 
but the last region shown in figure 9, the 'doughnut-with-knotted-hole', is not topo
logically equivalent to the ordinary doughnut. I am indebted to Achille Varzi for 
pointing out that I had not shown how to distinguish this from the ordinary dough
nut using C; whether this can be done remains an open question, but at present 
the doughnut-testing system will be 'fooled' by such a region, which will pass all 
the tests for doughnuthood it can apply. What is more, the knot in the hole need 
not be the trefoil knot shown in figure 9: any one of the infinite number of dis
tinct knots known to exist could take its place, and generate another topologically 
non-equivalent region. 

6 Discussion: how far can C take us? 

It has been shown that C can be the basis of rich topological classifications of regions 
and the spatial relations between them. The search for a definition of the doughnut 
has led to the exploration of a wide range of possibilities; and brought out the 
distinction between the intrinsic and extrinsic topological properties of a region, 
and the need to examine the range of possible models of RCC-theory. 

Which of the informally-stated assumptions considered could reasonably be made 
under which circumstances deserves a brief comment. If the regions we wish to 
consider correspond to the space occupied by solid or liquid bodies, then we can 
assume that they are of finite diameter, and that they are triangulable. It might 
also seem that we could assume each region's closure to be 3-dimensional, but this is 
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to ignore the role of idealization in spatial reasoning: for many purposes it is useful 
to regard a. piece of paper as 2-dimensional, or a rope as I-dimensional. Similarly, if 
we wish to consider something with a cellular structure, such as a piece of plant or 
animal tissue, or a foam, we may need to consider regions which are best idealized as 
consisting of one or more 3-dimensional 'lobes' joined at points or along lines rather 
than at surfaces - contrary to the assumption that regions have closures which are 
locally-Euclidean spaces. 

The exploration of taxonomies of spatial properties and relations based on C is 
far from complete. Separation-number, finger-connectivity and intrinsic-boundary
number do not distinguish all non-homeomorphic regions, even among manifolds 
}Vhose closures are locally-Euclidean spaces. In general, this problem is unsolvable (it 
is known that there is no general method for determining whether two N-dimensional 
manifolds are homeomorphic for n > 3) (Stillwell 1980, p.5). Even for finite-diameter 
manifolds embeddable in E3

, much work on (-based classification remains - as the 
example of the doughnut with knotted hole demonstrates. In the 2-dimensional 
case, a way of expressing orientability will be sought. In the 3-dimensional case, 
there are several levels of complexity to consider. First, there may be any number 
of separate maximal CON parts. A CON region can have any number of surfaces, 
and each such surface may be a sphere or N-hole torus. So the number and nature 
of the region's surfaces give a first layer of classification for CON regions, and we 
can classify non-CON regions by the 'bag'7 of such CON regions they comprise. 

However, this is not the end of the matter, as we have already seen from the 
case of the knotted hole: if a surface of a 3-dimensional region is an N-hole torus, 
it may be embedded in 3-space in an infinite number of different ways. What is 
more, if there are two or more such surfaces, they may be linked (i.e., so arranged 
in space that a sphere cannot be placed so that one of them is on one side of it and 
the rest on the other) in an infinite number of ways. Consider the case, illustrated 
in figure 5, of a CON region with two surfaces, each a 1-hole torus (i.e. a doughnut 
minus a doughnut). The inner surface may be configured relative to the outer so 
that a sphere could be interposed between the two, or it may be wrapped one or 
more times round the hole 'through' the doughnut. This example shows that the 
FCON of a CON region cannot be calculated simply from those of its boundaries: if 
a sphere can be interposed between the two surfaces (as in NM3a) the FCON of the 
solid is 3; if not, it is 2 (at least in the simplest case, shown in NM3b, where the 
inner torus wraps around the hole through the doughnut once, producing a 'hollow 
doughnut'; more complex cases have still to be checked). 

If a solid has two or more toroidal inner surfaces (whether these are simple -
FCON 2 - tori, or are of higher connectivity), a new type of complexity arises, as 
two or more of these inner surfaces can be linked in a further infinite variety of ways, 
not possible when one of the surfaces is the outer surface of the region. Finally, two 
or more of the components of a non-CON region can also be linked - in the same 
set of possible ways, although in this case the topological distinctions between the 

7 A 'bag' in this sense is like a set, but elements can be repeated any number of times - just 
as a real bag may contain a number of objects, of which some may be indistinguishable from each 
other. 
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resulting regions are extrinsic, not intrinsic. 
In the immediate future, investigation of the relationship between RCC's ap

proach and point-set topology will continue, and formal proofs of the assertions 
made in this paper will be sought. Further work may be done on ways of classi
fying such multi-surface 3-dimensional regions, drawing on mathematicians' work 
on algebraic or combinatorial topology - e.g. (Stillwell 1980, Fuks and Rokhlin 
1984) - and exploring further the notion of a dissection-graph: if two CON regions 
have the same finger-connectivity but are not topologically equivalent, can other 
dissection-graphs be used to distinguish them? 

Beyond this, integrating topological and other qualitative aspects of spatial prop
erties and relations is a major task. The work described in this paper needs to be 
integrated with that on convexity and inside/outside relations done by RCC, and 
with the work on conceptual neighbourhoods done by Freksa (Freksa 1992), RCC 
(Cohn et al. 1994) and others. 

In conclusion, what are the advantages (!.nd disadvantages of the general ap
proach to spatial representation and reasoning developed by RCC and continued 
here: that of working from a minimal set of primitives and axioms, exploiting their 
potential as far as possible before adopting any more? The advantages are several: 
such an approach has a mathematical and philosophical elegance absent from more 
complex systems of representation, discourages ad hoc additions to the system to 
meet unconsidered problems, and should ensure thorough familiarity with its prop
erties and implications. It should be relatively simple to interface a system of spatial 
representation using a small number of primitives and axioms with another system 
- such as a vision module or geographical database. Similarly, it should be easier 
to investigate in depth the relationship of RCC's approach to point-set topology 
than would be the case for a more complex system. On the other hand, the work 
reported has made clear to the author that expressing what are intuitively quite 
simple concepts - such as the topological properties of a doughnut - in terms of 
a single primitive and a few axioms is neither easy nor free of pitfalls. In particular, 
inability to refer directly to dimensionality, to boundaries, and to the conceptual 
links between these concepts, has given rise to considerable difficulties. Only by 
trying to do as much as we can with as little as possible, however, are we likely to 
discover what representational primitives are likely to be most useful in spatial and 
qualitative reasoning. 
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Abstract 

The paper proposes considers the problem of representing and reasoning 
about spatial regions with undetermined boundaries. First we build a first 
order theory of such regions and then propose a possible translation this theory 
into an adaptation of 'RCC-theory', a region-based system for representing 
qualitative spatial relations developed over the last few years (Randell, Cui 
and Cohn 1992, Cohn, Randell and Cui 1994). The proposed translation 
is referred to as the 'egg-yolk' representation: a region with undetermined 
boundaries (a 'vague region') is represented by a pair of concentric regions wi~h 
determinate boundaries ('crisp regions'), which provide limits (not necessariiy 
the tightest limits possible) on the range of indeterminacy. 

1 Introduction 

The topic of this paper1 is how best to deal with vagueness in spatial representation 
and reasoning, particularly within the framework of 'RCC-theory', (Randell, Cui 
and Cohn 1992, Cohn et al. 1994), which provides a representation of topological 
properties and relations in which regions rather than points are taken as primitive. 
We are concerned here with regions having vague or indeterminate boundaries but 
witha known location:, not ~Ith vaguely locate[entltfos~--·- · ······· ·· ······· ··· -- ~--······· 

.. . Many of the spatiai regions we consider in everyday contexts do not have precise 1) 
boundaries: consider urban areas, clouds of gas, galaxies, and habit~t~ ~fpa~ticular· 
plants. Such 'regions' will be called 'vague' or 'N~~-~ri~p'. here, in contrast to '~risp'_ 2.) 
regions: those ~..nr~~i§~Y~-cl~fip,~ciJ>9-ll:1!~.i:l-~ies. __ RCC-theory as originally devised 
has no means of representing and ·reasoning about Non Crisp regions. 

What properties do we require of a treatment of spatial vagueness? First, it 
should be logically consistent. Second, it should so far as possible respect our in
tuitions: the more we are able to express the kinds of things we want to say about 
vague regions, the better. Third, it should be computationally tractable, both in 

1This paper is a revised version of (Cohn and Gotts 1994). 
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itself, and when combined with spatial information expressed in precise terms. Fi
nally, if it can be linked to an existing treatment of precise spatial information in a 
straightforward fashion, so much the better. 

In the first part of this paper we briefly review a first order theory of regions with 
crisp, well defined, boundaries. Then we present an axiomatisation of regions with 
undetermined boundaries. Finally, we attempt to build a system for representing 
and reasoning about vague regions on the basis of an existing representation for Crisp 
ones and show how it can be related to the above axiomatisation. This approach 
is referred to as the 'egg-yolk' representation, for reasons which will become clear. 
We do not claim to have produced a complete solution to the problems of represent
ing regions with undetermined boundaries, but believe we have made considerable 
progress toward one. 

2 The RCC-theory of Spatial Regions 

The focus of research on spatial representation and reasoning at Leeds has been to 
evaluate, extend and implement a theory 2 of space and time based upon Clarke's 
(Clarke 1981, Clarke 1985) 'calculus of individuals based on connection', and ex
pressed in the many-sorted logic LLAMA (Cohn 1987) 3 • Our revised and extended 
theory, now known as 'RCC-theory' has been developed in a series of papers, includ
ing (Randell and Cohn 1989), (Randell 1991), (Randell and Cohn 1992), (Randell, 
Cohn and Cui 1992), (Cohn et al. 1994), (Bennett 1994), and (Gotts 1994). The 
most distinctive feature of Clarke's 'calculus of individuals', and of our work, is that 
extended regions rather than points are taken as fundamental, and it is partly this 
feature which makes RCC-theory a promising basis for a treatment of vague regions. 
Our formal theory supports regions having either a spatial or a temporal interpre
tation (temporal 'regions' are periods of time). Informally, these regions may be 
thought of as infinite in number, and 'connection' may be any relation from exter
nal contact (touching without overlapping) to spatial or temporal identity. Spatial 
regions may have one, two, three, or even more than.three dimensions, but in any 
particular model of the formal theory, all regions are of the same dimensionality. 

, {l
1 

Thus, if we are concerned with a two-dimensional model, such as one in which re-
;yi:/ gions are areas of land, the boundary lines and points at which these regions meet 

are not th~elves consider~~i;~eed, they cannot be referred to directly 
~ithin RCC-theory, in which they are all ss1gn~, which is disjoint 
fr~ However, as (Gotts 1 shows, a great deal can be s_peci
fied about the properties and relations of such low~r-dimensional boundary entities 
while referring explicitly only to relations between the higher-dimensional regions 
they bound. 

2we use the word 'theory' in its logical/mathematical sense, meaning a set of formal axioms 
which specify the properties and relations of a collection of entities, not in the natural scientist's 
sense of an empirically testable explanation of observed regularities. 

3In a many-sorted logic, the universe of discourse is divided into subsets called 'sorts', and 
quantifiers may be restricted to these sorts. Function and predicate symbols are defined only on 
particular combinations of argument sorts. 
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The basic part of the formal theory assumes a primitive dyadic relation: C( x, y ), 
read a.s 'x connects with y' (where x and y are regions). Two axioms are used to 
specify that C is reflexive and symmetric. Ccan be given a topological interpretation 
in terms of points incident in regions. In this interpretation, C(x, y) holds when the 
topological closures of regions x and y share at least one point. 

Using the relation C, further dyadic relations are defined. In particular a set of 
eight 'base relations' can be defined, of which one and only one will hold between 
a given pair of regions (these relations thus form a jointly exhaustive and pairwise 
disjoint or JEPD set). These are illustrated in the upper part of figure 1. The 
eight are: DC (DisConnected), EC (Externally Connected), PO (Partially Overlap-

. ping), TPP (Tangential Proper Part), NTPP(Non-Tangential Proper Part), EQ or 
= (Equal), TPPl(Tangential Proper Part Inverse), NTPPI (Non-Tangential Proper 
Part Inverse). 

This set of eight base relations, referred to as the 'RCC-8' relations, is used in 
much of our work on qualitative spatial relations. In this paper, a smaller JEPD set 
of. relations will be used: RCC-5, whose relation to RCC-8 is illustrated in figure 14

• 

RCC-5 consists of the relations {PO,PP,EQ,PPl,DR} (Partially Overlapping, Proper 
Part, Equal, Proper Part Inverse, and Distinct Regions). Considered relative to 
RCC-8, RCC-5 lumps together TPP and NTPP as PP, TPPI and NTPPI as PPI, and 
EC and DC as DR. Within RCC-5, C need no longer be available as a primitive: we 
can use PP (among other possibilities) as a primitive from which to define all the 
other RCC-5 relations. 

RCC-8: PO(a,b) TPP(a,b) NTPP{a,b) EQ{a,b) NTPPI{a,b) TPPI{a,b) EC(a,b) DC(a,b) 

® @ @) G @ ® 00'·~~ 

\ I l \ I 
RCC-5: PO(a.b) PP(a.b) EQ(a,b) PPI(a,b) 

....___.,_./ 

Figure 1: The RCC-8 and RCC-5 sets of JEPD relations between region-pairs 

3 Describing and Reasoning about Vague Regions 

We attempt in this paper to extend our connection-based approach to qualita
tive spatial representation and reasoning to regions with indeterminate boundaries: 
vague or 'NonCrisp' regions. What kinds of things do we want to be able to say 
about vague regions? !Jow do we want vague r~gl.<?Il:~ to relate to 'Crisp' reg~cms, 
and to each other? Wh~tlo;maITSin-wiICmost efficiently and. inteflfgibly-express
th;~~-~~lation~~ 

4 Although it is planned to extend the work, using the RCC-8 relations as a basis, in the near 
future. 
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We want to be able to say at least some of the same sorts of things about vague 
regions as about Crisp ones: that one contains another (southern England contains 
London, even if both are thought of as vague regions), that two overlap (the Sahara 
desert and West Africa), or that two are disjoint (the Sahara and Gobi deserts). In 
these cases, the two vague regions represent the space occupied by distinct entities, 
and we are interested in defining a vague area corresponding to the space occupied 
by either of the two, by both at once, or by one but not the other. 

We may also want to say that one vague region is a 'crisper' version of another. 
For example, we might have an initial (vague) idea of the area inundated in a flood, 
and then receive information from a systematic survey, reducing the imprecision 
in our knowledge. In this case, the vagueness of the vague regions is a matter of 
our ignorance; in others, it appears intrinsic: consider an informal geographical 
term like 'southern England'. Here, the uncertainty about whether particular places 
('somewhere to tqe north of London but to the south of Birmingham) are included 
cannot be resolved by evidence, unless we simply decide to take the majority view 
across a particular sample of opinion as decisive. There is a degree of arbitrariness 
about any particular choice of an exact boundary, and for most purposes, none is 
required. But if we decide to define a more precise version of such an informal 
term for some purpose, the choice of a precise definition is by no means wholly 
arbitrary: generally, we can distinguish between more and less 'reasonable' choices 
of more precise description. We need to keep the distinction between ignorance-based 
and intrinsic vagueness in mind, but many of the problems of representation and 
reasoning are the same in both situations, and the two are often found together: 
consider the area inhabited by a particular bird species or subspecies. Here, our 
knowledge may indeed be limited, but in addition, just where the limits lie may 
depend on whether we count areas sometimes strayed into on the fringes of the 
bird's range, or where we decide to say that one species or subspecies ends and 
another begins. 

We can begin by considering what we may want to say, .and what we want to 
hold true, when we consider relations between alternative vague-region versions of an 
entity's spatial extent. We will need a name for the relation between two estimates of 
which one is a refinement or 'crisping' of the other, which we could express X-< Y, 
read: '~-~~.-~crisping_~~' (we will use up2er-case ~tters for 
variables ranging over both Crisp and NonCrisp regions, in contrast to the l~-case 
~used for variables ranging only over the n~~risp_~~gi9J!s of RCC-theory ). 

What sort of properties do we want -<to have? First, -< should be ·~~Y~In:~tric 
(if one NonCrisp region is a crisper version of a second, then the s~cond cannot 
simultaneously be a crisper version of the first), ~(a NonCrisp region is not 
a crisping of itself) and transitive (if NonCrisp region A is a crisping of NonCrisp 
region B, and B of C, then A is a crisping of C): 

(Al)'v'X, Y[X-< Y-+ -.Y-< X] 
(A2)'v'X, Y, Z[[X-< YA Y-< Z] -+ X-< Z] 

Al ensures that -< is asymmetric and hence irreflexive, A2 that it is transitive. 
It will be convenient to define also a relation :5, read as 'either X is a crisping 

of Y, or X and Y are equal'. 
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(Dl)X ~ Y =.def X-< Y V X = Y 
This raises the question of how best to deal with identity of non crisp regions: should 
it be presupposed, or it could be defined in terms of -< thus: 

X = Y =def 'v'Z[X-< Z = Y-< Z]. 
(X and Y are equal iff X is a crisping of any Ziff Y is a crisping of that Z.) Note that 
this assumes that there is at most one distinct Non Crisp regions with no decrispings. 5 

Further relations can also be defined in terms of -<, including X >- Y ('X is a 
vaguer version of Y') and MA(X, Y) ('X and Y are mutual approximations'): 

(D3)X >- Y =def Y -< X , 
(D4)MA(X, Y) =def 3Z[Z ~ X /\ Z ~ Y]. 

The first of these simply defines >- as the inverse of-<. The definition of MA means 
that two (noncrisp) regions are 'mutually approximate' if they are equal, or share 
a common crisping, which is intuitively reasonable. We can also define a predicate 
Crisp: 

(D5)Crisp(X) =def -.3Y[Y-< X] 
and, correspondingly, NonCrisp: 

(D6)NonCrisp(X) =def 3Y[Y-< X]. 
This definition of a Crisp NonCrisp region simply specifies that it is one with no crisp
ings. Using -< and Crisp, we can define the relation -+< ('Xis a complete crisping of 
Y'): 

(D7)X -+< Y =def X -< Y /\ Crisp(X). 

If one NonCrisp region is a crisping of another, we would surely like there to be 
an alternative crisping, incompatible with the first: what else could it mean to sub
stitute a crisper version of a vague region, if no alternative possibilities were thereby 
excluded? One way of ensuring this is to add the axiom: 

(A3)\7'X, Y[X-< Y-+ 3Z[Z-< Y /\ -.MA(X, Z)]. 

There is an interesting and largely unexplored set of parallels between the rela
tions of crisping and decrisping as described here on the one hand, and part/whole 
relations (such as we find in RCC-5) on the other. We can draw a correspondence 
between -< and the relation PP (Proper Part), and hence between the pairs ~ and 
P and>- and PPI. MA corresponds to 0 ('Overlap', meaning that any relation other 
than DR holds between two REGIONs: they have some REGION as common part). 
Axioms Al and A2 correspond to fundamental axioms establishing the properties 
of the proper part relation, while A3 corresponds to the 'Weak Supplementation 
Principle' (Simons 1987)6 , which in the terms used here can be expressed: 

(WSP)'v'x,y[PP(x,y)-+ 3Z[PP(z,y) /\ DR(x,z)]. 
Can we carry this parallel further? We could add, to the axioms we have so 

far, a requirement that the existence of at least one common crisping of a pair of 

5If we had defined equality as: X = Y =.def \IZ[Z -< X =. Z -< Y] instead, then note that this 
would require that there would be at most one NonCrisp region with no crispings, which seems 
intuitively unreasonable. 

6 A version of this theorem also applies to RCC-8 and hence RCC-5, see (Randell, Cui and Cohn 
1992). 
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NonCrisp regions implies the existence of a 'vaguest common crisping' (VCC), such 
that if Z is the VCC of X and Y, any other common crisping of X and Y will also 
be a crisping of Z. 

(A4)VX, Y[3Z[Z ~ X AZ~ YJ -7 3ZVH'[W :::5 Z::: JV :::5 X AW :::5 Y]J. 
This corresponds to a mereological axiom guaranteeing the existence of a 'maximal 
common part' (or 'product') for any two overlapping entities7

• Axioms correspond
ing to the four specified so far define what Simons calls a 'Minimal Extensional 
Mereology' (a mereology being a system of part/whole or part-of relations). 
"'Theexistence of the analogue to the idea of a binary product described above 

suggests we might look for a parallel to the concept of a binary sum as well; however 
we will not pursue this further here. 

We might also find it useful to be able to describe relations between a vague 
region and a completely crisp one (i.e., a normal region of the type dealt with in 

1 RCC-theory); in particular, the relation between a crisp and a vague region where 
.the former can be regarded as a 'complete crisping' (-+<) of the latter. In fact, 
we can use the possible relations between complete crispings of two vague regions 
representing different spatial entities in classifying the possible relations between 
such pairs of vague regions, as we will now demonstrate. 

Obviously, depending on the initial configuration of the two vague regions, vari
ous possibilities might arise. For example if the two Non Crisp regions are sufficiently 
far apart - for example if we consider both Leeds (England) and Buffalo (New 
York State) to be NonCrisp - then it seems reasonable to insist that for such a 
configuration the relationship between any complete crisping of both regions would 
be DR (see figure 2(a)). Similarly, it would seem reasonable that however we made 
Buffalo and the USA crisp, then Buffalo would always be a proper part of the USA 
(figure 2(b )). In other cases things might not be so clear cut: consider two species 
with core habitats close to but distinct from each other but which may encounter 
each other in an intermediate zone marginal for both ~ Here, the relationship ,., ?. 

between a pair of complete crispings of the two regions might be either DR or PO. In P· .~ './/:;; 
.________________ ( t?J 

general, there will be some set of (one or more) RCC-5 relations each of which may !F1 v --hold between complete crispings of a pair of vague regions~a..set-of_p~~-
tions can 1 self be regarde as a relation holdin betwe the two NonCris re ions. 

'w"'bkh sets~lfCC5ba:sererafiOns can 'hold' in this way? It seems reasonable to 
assume that each such set will be a conceptual neighbourhood (Freksa 1992, Cohn et 
al. 1994) of the RCC-5 set of relations. Given a set of JEPD binary relations, such 
as RCC-5 or RCC-8, we can call any pair of them immediate conceptual neighbours 
if each can be transformed into the other by a process of gradual, continuous change 
which does not involve passage through any third relation .. In the case of RCC-5 
(~), all the other four relations are immediate conceptual neighbours of PO; 

. and PP and PPI are immediate conceptual neighbours of EQ; but there. are no other 
pairs of immediate conceptual neighbours. 
, Any subset of such a set of JEPD relations is a conceptual neighbourhood if any 
pair belonging to the subset are themselves immediate conceptual neighbours, or 

7 A different kind of 'product' between pairs of NonCrisp regions will be defined in the next 
section 
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All complete crispings yield: 

(a) DR(Buffalo,Leeds) 

(b) PP(Buffalo,USA) (c) PO(species_ 1,species_2) 
or DR(species_ 1,species_2) 

13i 

Figure 2: What relationships are there between complete crispings of these regions? 

,..···~·~·~·· ... PP(A,B) ..... '~-r>~ 
".,,,. - --..... , ... 

I I: 
\ " .. '- - - _,. 

•·••••• ',: ~/ -::--·.:~··· : E ;. 0 
.. ............. · \..... ',.. / 

- - - ~-·PO("YAB) 
DR(A,B) ~ EQ(A,B) 

,,,,,,. -- -, 
I" '• .•.• ·, \ 

' · ...... · / PPI(A,B) 
..... ---..,, 

Figure 3: Immediate conceptual neighbours among the RCC-5 relations 

can form the ends of a 'chain' of relations in which each adjacent pair are immediate 
conceptual neighbours. There are exactly 23 possible conceptual neighbourhoods in 
the RCC-5 set of relations: 5 of rank 1 6 of rank 2, 7 of rank 3, 4 of rank 4 and 1 of 
rank 5: 
{{DR}, {PO}, {PP}, {PPI}, {EQ}, 
{DR,PO}, {EQ,PP}, {EQ,PPI}, {PO,PP}, {PO,PPI}, {EQ,PO}, 
{DR, PO, PP}, {DR,PO,PPI}, {PO,PP,EQ}, {PO,PPl,EQ}, {PP ,PPl,EQ}, 
{DR,PO,EQ}, {PO,PPl,PP}, 
{DR,PO,PP,PPI}, {EQ,PO,PP,PPI}, {DR,PO,PPl,EQ}, {DR,PO,PP,EQ}, 
{DR,EQ,PO,PP,PPI} }. 

Can all of these arise as sets of possible relations between the complete crispings 
of pairs of Non Crisp regions? We will argue the contrary. First consider {EQ}: if this 
were the only possible relationship between complete crispings of two regions, the 
regions must surely have been crisp (and EQ) in the first place. We believe all the 
other rank 1 conceptual neighbourhoods are possible: we have already effectively 
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argued for DR above when discussing Leeds and Buffalo (figure 2a); for PP, and PPI 
just imagine one very small NonCrisp region right in the centre of a very much larger 
one (figure 2b) while for PO consider two large regions each considerably overlapping 
the other but still with a significant subregion not part of the other (like the Sahara 
and West Africa). 

Now consider rank 2 conceptual neighbourhoods; the only one we would want to 
argue is not possible is {EQ,PO}: given that the two regions are similar enough to 
crisp to EQ and dissimilar enough to crisp to POthen why should they not crisp to 
PP or PPI? Consider a pair of NonCrisp regions X and Y, which have at least one 
pair of complete crispings of that are EQ, and another pair that are PO. Consider 
a pair of these complete crispings of X and Y that are EQ. To reach a pair of 
crispings that are PO, either both of the members of the EQ pair must be enlarged 
(with their areas of enlargement not completely coinciding), or both must be shrunk 
(with their areas of shrinkage not completely coinciding). In the first case, enlarging 
only the complete crisping of X will give a PPI pair, enlarging only the complete 
crisping of Y will give a PP pair. If the POpair is reached by shrinking the members 
of the EQ pair, shrinking only the complete crisping of X will give a PP pair, and 
shrinking only the complete crisping of Y a PPI pair. So if complete crispings can 
be chosen independently for any two NonCrisp regions, {EQ,PO} is not among those 
sets of possible relations that can occur between regions8 . All the other rank 2 
conceptual neighbourhoods seem reasonable: {DR,PO} is possible if two NonCrisp 
regions slightly overlap each other as in figure 2c - the crisping might retain the 
overlap or result in discrete regions; for {EQ,PP}, consider an island, with vague 
boundaries owing to tides or erosion, and some part of the island where a particular 
plant could live - the latter region might sometimes be equal and sometimes a 
proper part of the former but could never be in a PPI or PO relation to it. The 
duality of PP and PPI means that {EQ,PPI} is also reasonable. We want to allow 
{PO,PP} in order to cope with a small region which is somewhere around the edge 
of a very much larger region - the former region might be a part or might partially 
overlap once the two regions are completely crisped; again duality forces us to allow 
{PO,PPI} as well. 

Similar arguments lead us to accept just two rank 3 conceptual neighbourhoods: 
{DR,PO,PP} and {DR,PO,PPI}; one rank 4 neighbourhood: {EQ,PO,PP,PPI} and 
the sole rank 5 neighbourhood {DR,EQ,PO,PP,PPI} (it seems clear that this should 
be allowed since if we had two very vague regions superimposed then surely any 
relationship might result depending on the crisping of each region). 

This gives 13 out of the 23 possible conceptual neighbourhoods of RCC-5 rela
tions as possible sets of relations between the complete crispings of a pair of Non Crisp 
reg10ns. 
{{DR}, {PO}, {PP}, {PPI}, 

sThere may be applications where this independence assumption would be unjustified: for 
example, if we wanted to permit vague regions to have a precise, fixed size, with only their position 
being vague. Here, {EQ,PO} might.be the full set of alternatives for complete crispings of some 
pairs of vague regions. However at the beginning of this paper we decided to not to consider 
locational vagueness. 
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{DR,PO}, {EQ,PP}, {EQ,PPI}, {PO,PP}, {PO,PPI}, 
{DR,P-0,PP}, {DR,PO,PPI}, 
{EQ,PO,PP,PPI}, 
{DR,EQ,PO,PP,PPI} }. 
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This constitutes a set of 13 JEPD possible relations between vague regions (com
pared to five in RCC-5). Can we refine this classification any further? We believe so. 
The crucial observation is that if one of a pair of vague regions is made completely 
crisp, then, in general, not all of the relationships that were originally possible will 
still remain so. However rather than explore this in detail now, we will return to this 
analysis after presenting the 'egg-yolk' interpretation of vague regions, and perform 
the analysis within that interpretation9• 

4 The Egg-Yolk Theory 

Lehmann and Cohn (Lehmann and Cohn 1994) suggest using two (or possibly more) 
concentric subregions, indicating degrees of 'membership' in a vague region. (In the 
simplest, two-subregion case, the inner subregion is referred to as the 'yolk', the 
outer as the 'white', and the inner and outer subregions together as the 'egg'.) 
This ~__gg-yolk approach is proposed in the context of the Broblem of integrating 
heterogen~ databases, where the notions of 'regions' and 'spatial relations' are 
used metaphorically to represent sets of domain entities, and relations between these 
~ets. Is it a satisfactory approach to spatial vagueness in a literal sense? How does 
it relate to the crisp/vague distinction outlined above? 

The egg-yolk formalism developed in (Lehmann and Cohn 1994) allows for just 
5 base relations (corresponding to the RCC-5 set discussed in section 2: DR, PO, 
PP, PPI and EQ) between any egg-egg or yolk-yolk pair, or any egg and the yolk 
belonging to another egg (a yolk is always a PP of its own egg). This choice of 
a set of base relations is not an intrinsic feature of the approach, but corresponds • 
to the demands of the database interpretation, where the concept of two sets of 

-----=-----
e~ '. ternall connected' EC), and the_ distinction:_}~~-~~! 
~12er }2art_~~!I~· T e RC~ produces 46 possible 
relations between a pair of egg-yolk pairs 10, as shown in figure 4. Can these 46 -------------- ·--~ possibilities be identified with the possible relations between complete crispings of 
two NonCrisp regions? We believe they can. 

At first glance, there is one apparent problem with the egg-yolk approach: the 
most obvious interpretation is that it simply replaces the precise dichotomous divi
sion of space into 'in the region' and 'outside the region' of the basic RCC theory by 
an equally precise trichotomous division into 'yolk', 'white' and 'outside' - and this 
appears contrary to our intuitions about how vagueness 'works'. What we appear 
to need if we want to reflect the way people represe~ and reason with vague region~ 

9We hope also to perform the complete analysis independently of the egg-yolk interpretation, 
but we have not done so yet. 

10There are 42 in (Lehmann and Cohn 1994), but this is because the database application 
considered there makes it unnecessary to distinguish different yolk-yolk relations if the eggs are 
EQ_ 
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t7 ~something different: not only is there_~ul' o~rd_~~i~~-'-~~~~--~~()~I1_9_~h~. 
o }dge~ of a vague region, but th?-~_~on.~_}.!~~L9.<?.~~-.!!-2Lh~Y£ ... R~~-~.i-~~--.bQ:ugg_~ri~~· Ts 

there a way of using the egg-yolk formalism that is consistent with this? What is 
the relationship between the intuitive idea of a vague region, and an egg-yolk pair 
of nested crisp regions? 

We are currently working on a self-contained axiomatisation of reasoning about 
relations between vague regions, which can then be modelled or interpreted within 
the egg-yolk formalism. Here, we can only give an informal characterisation of what 
this approach involves. The 'egg' and 'yolk' of an egg-yolk pair are taken to represent 
conservatively-defined limits on the possible 'complete crispings' or precise versions 
of a vague region: any acceptable complete crisping must lie between the inner and 
outer limits defined by yolk and egg, but we do not assert that any crisp region 
meeting this constraint should be considered an acceptable complete crisping of the 
vague region. We leave undefined what additional conditions, if any, must be met 
by such a complete crisping. .Thus, in this use of the egg-yolk formalism we do 
not claim that the borders of egg and yolk represent precise limits of a NonCrisp 
region's penumbra or vagueness,out ratlier tliatTJ:le-~~tire penumbra (and perhaps 
more) lies between these limits. This gives us the kind of indefinitene~ the __ ~xkn.t 
of vagueness, or 'higher-order vagueness', that intuition demands. Consider the 
----·---~_,..;....-------- __ .... -... -~,,,_ ........ ~ .. ,,.,. 
vague region 'beside my desf'. There are'some .precisely defined regions, such as a 
cube lOcm on a side, 5cm from the right-hand end of my desk, and 50cm from the 
floor, that are undoubtedly contained within any reasonable complete crisping of 
this NonCrisp region. There are others, such as a cube 50m on a side centred at the 
front, top right-hand corner of the desk, that contain any such reasonable complete 
crisping. These two could correspond to the 'yolk' and 'egg' of an egg-yolk pair 
corresponding to the vague region 'beside my desk'; but there are precisely defined 
regions including the smaller and lying within the larger of the pair that would 
not be reasonable complete crispings of 'beside my desk'. We do not and need not 
specify exactly where the limits of acceptability lie. 

The set of possible egg/yolk configurations is shown in figure 411 • Configuration 
1, given our interpretation of vague regions in terms of egg-yolk pairs of RCC re
gions, shows a pair of NonCrisp regions such that any pair of complete crispings 
of the two are DR (as in figure 2a). Configuration 2 (compare figure· 2c) can be 
interpreted as a pair of No'!_~!~~-F~g!9!iiXJAA:~.b.~<;lJ ... ~!!,<i ... Y .. E!<:>Jt~4}, ____ such.J.~~~ 
it may be possibletc; ch;o·;e complete crisJ?!_~g-~ __ QLth.e ___ t:w,Q __ t.o_.be ___ Q_R_QI_PO~~ 
rorany·completecrTspTng·or-X-or·Y;-·a:·-~bff complete crisping of the other may_ be 
available, b~-tb:ereare-some"complet-;·~ispings of each for which no PO complete 
~f the other can be found. Similarly, although configuration 9 has the same 
set of possible RCC-5 relations between any complete crispings of the vague regions 
involved, only PO is always reachable. These two configurations are illustrated in 

11 Note that although the eggs and yolks are shown as one piece regions, there is of course nothing 
to stop them being multipiece, which might be useful in modelling some situations - e.g. one 
might want to consider that the Tower of London, Buckingham Palace and Westminster Palace and 
Abbey were always part of London whatever else was, and could thus form a trio of disconnected 
yolks for the London egg. 
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figure 5. A complete analysis of the possible sets of alternative complete crispings 

·········· .,, (·:)~ .,, 
·············.) 

· .. ············· 

PO 

DR 

DR 

DR 

PO 

DR 

PO 

PO 

} Only DR always 
reachable 

} 

}Only PO always 

}reachable 

Figure 5: The reachable RCC-5 relations from configurations 2 and 9. 

of egg-yolk pairs yields the result that the set of possibilities for a given pair of egg
yolk pairs always coincides with one of the 13 conceptual neighbourhoods referred 
to in the previous section. Depending on how it is done, as noted above, completely 
crisping one region may reduce the range of possibilities that can then be created 
by completely crisping the other. 

An analysis taking account of the sets of possibilities that remain however either 
the dotted or the dashed egg-yolk~~ as well as on the full set of possi
billtie~1t~affaole before either is crisped, distinguishes all 46 region pairs except for 
the pair 39-43. We are still investigating how this pair can best be distinguished. 
One approach is to list, not just those RCC-5 relations that can always be reached 
however X is completely crisped, or however Y is completely crisped, but all min
imal sets of RCC-5 relations of which at least one can always be reached under 
the same circumstances. In the case of configurations 39 and 43, no single RCC-5 
relation between complete crispings always remains possible, once either the dotted 
or the dashed vague region is completely crisped. In configuration 39, however, any 
complete crisping of the dashed region will leave at least one from each of the fol
lowing sets of relations reachable: {EQ,PO}, {EQ,PPI}, {PP ,PO}, {PP ,PPI}. In the 
case of configuration 43, the corresponding sets ofrelations are: {EQ,PO}, {EQ,PP}, 
{PPl,PO}, {PP ,PPI} (the second and third sets differ, with PP replacing PPI and 
vice versa). If we consider crisping the dotted region first, we find that the list of 
minimal sets of relations for configuration 39 is the same as that found for configu
ration 43 when crisping the dashed region first; and conversely, the list of minimal 
sets of relations for configuration 43 is the same as that found for configuration 39 
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when crisping the dashed region first 12 • The situation is illustrated in figure 6. 

Figure 6: Distinguishing between configurations 39 and 43. The differences in the 
reachability sets (which list all the minimal sets of RCC-5 relations such that at 
least one relation is always reachable) are highlighted in grey. 

With as many as 46 separate configurations or relations, it may often be helpful 
to cluster them. There are two conceptually different, but as it turns out, effectively 
identical ways of structuring the data. The first is to use the idea of possible RCC-5 
relations between complete crispings of the configurations, as outlined earlier. This 
clusters the relations into 13 groups (see figure 7). The arrows between the groups 
represent the fact that one set of complete crispings is a subset of another (thus 
the singleton sets have no outward arrows). Alternatively, one can compute the 
sets of configurations which are mutual partial crispings of each other, i.e. for any 
two elements in such a set, each configuration can be partially crisped into any of 
the others, by expanding one or both yolks and/or shrinking one or both egg, but 
leaving each egg with a distinct yolk and white. It turns out that one obtains exactly 
the same set of 13 sets of configurations; in this case one can interpret the arrows of 
figure 7 as indicating that each configuration in the set the arrow stems from can be 
crisped to any relation in the set it points to. It is also fairly easy to find linguistic 
labels for the 13 clusters of configurations, based on the set of possible complete 
crispings. For example, the set {DR,PO,PPI}, as it applies to two egg-yolk regions 
X and Y, could be summed up by asserting that X is not a part of Y, and the set 
{DR,PO} as 'Neither region is part of the other'. 

12Jt is interesting to note that these sets are essentially the minimal hitting sets of Reiter (Reiter 
1987). 
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DR,PO,PPI 

PO,PPI 

EQ,PPI 

EQ,PO,PP,PPI 

Figure 7: Clustering the 46 relations. Each group represents either a set of mutually. 
crispable relations, or configurations whose complete crispings have the same RCC-5 
relations. The arrows represent the crisping relationships or a subset relationship 
between the sets of complete crispings. 
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5 Related Work 

Probably the closest piece of work to ours is that of Clementini and Di Felice 
(Clementini and Di Felice 1994) which was written simultaneously and entirely in
dependently in response to the call for contributions to the GISDATA workshop on 
regions with undetermined boundaries which prompted our work. However, whereas 
our work is based on our previous logical formulation of spatial representation and 
reasoning, theirs is based on the point set theoretic approach inspired by Egen
hofer and various co-workers (Egenhofer and Franzosa 1991, Egenhofer 1991, Egen
hofer and Herring 1991, Egenhofer and Al-Taha 1992). They have generalised the 
'9-intersection' approach of Egenhofer and Herring (Egenhofer and Herring 1991). 
This classifies relations between pairs of 2D regions according to whether or not 
each of the interior, boundary and exterior of one region intersect (share any points 
with) each of the interior, boundary and exterior of the other - giving 9 possible 
intersections to consider in all. 

If a pair of 2D regions with normal ID boundaries are considered within this 
approach, then just 8 relations are obtained (Egenhofer 1991), corresponding pre
cisely to those of RCC-8. However if we consider two 2D regions, each with a 2D 
boundary-zone around its edge, 44 possible relations are obtained. These corre
spond to our 46 egg-yolk relations: there are two less because the 9-intersection 
model as employed by Clementini and Di Felice cannot distinguish between 30 and 
31, or between 37 and 38. In both these cases, the 9-intersection gives the same 
result for the two configurations. In particular, the boundary-zones of each pair of 
regions considered intersect, and no attempt is made to use the dimensiona_lity of 
the intersection in their paper. 

Clementini and Di Felice also eliminate 19, 28, 34 and 42 because they assume 
that the region of indeterminacy is very small in relation to the entire region. Figure 
8 illustrates these four configurations: in each case each region's 'yolk' lies within 
the other's white. 

Notice that these 4 regions form a cluster in our analysis, which seems a nice 
result: leaving out a set of regions which form such a cluster appears more reasonable 
than leaving out part of such a cluster. The set of complete crispings associated with 
this cluster is the entire RCC-5 set: for this set of configurations, nothing can be 
determined about the possible complete crispings. 

19 
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Figure 8: The four relations not included by Clementini and Di Felice. 

Clementini and Di Felice do not use any notion similar to that of one region 
being a crisper version of another. Indeed, one can imagine they might not want to 
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use such a notion, since it appears that they are principally interested in modelling 
relations between pairs of regions, each representing a geographic· entity with a 
(relatively narrow) 'transitional zone' around its edge. They group their relations 
into clusters, but this is done in a relatively adhoc manner, by an informal analysis of 
the relations and the assignment of intuitively reasonable names to the clusters they 
identify thereby. Their clustering (our numbering scheme is retained for consistency) 
is displayed in figure 9. Notice that the links in their diagram are 'closest topological 
distance' (ie minimum difference in the 9-intersections) rather than our 'is crisper 
than'. It is not certain what intuitive basis there is for the 'closest topological 
distance' relation. The two approaches produce similar but not identical clusterings. 

6 Work In Progress 

This paper reports work that is still in progress as we write. This section sketches 
some of the directions in which we are developing the ideas discussed. 

The axiomatisation presented earlier makes relatively few commitments. There 
are however stronger versions which might be desirable in particular circumstances. 
For example, we might want to insist that crisping was 'dense', i.e. that: 

\IX, Y[X -< Y -t 3Z[X -< Z /\ Z -< Y]] 
or that any vague region could be made crisper: 

\/X[NonCrisp(X) -t 3Y[NonCrisp(Y) /\ Y-< X] 
Notice that this would entail that any region had an infinite number of crispings. 
Or we might want insist that every vague region could be made completely crisp: 

\/X[NonCrisp(X) -t 3Y[Y-+< X] 
Analogously to axiom (A3) which ensured alternative crispings, we might want to 
insist that there exist alternative decrispings: 

\IX, Y[X-< Y /\ 3W[Y-< W] -t 3Z[-< Z /\ _,y-< Z /\ _,z-< Y]] 
However the analogue of the existence of complete crispings, would be the existence 
of a 'complete decrisping' which would presumably entail the existence of a single 

· very vague region which every other region would be crisper than. 
3Z\IW[W 'f:. Z -t W -< Z] 

Other axioms are of course possible, for example ones describing the notion of a 
crispest common decrisping analogous to a 'binary sum' mentioned earlier. 

Another possibility not currently entertained by our current axiomatisation is 
whether the degree of vagueness about the boundaries of a region extend to the 
limiting case of the region having null extent (i.e. not in fact be a region after all). 
This would of course increase the number of possible egg-yolk relationships from 
46. We are currently considering exactly how such an extension might be corr~ctly 
effected. 

The interpretation of vague regions in terms of pairs of limiting RCC-regions, 
appears to have considerable promise in reconciling our intuitions about spatial 
vagueness with a consistent formal treatment. However, there is at least one aspect 
of vagueness which this approach, at first sight, may appear to ignore. Suppose 
we want to consider the relationship between a hill and the neighbouring valley, 
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Figure 9: The clusters of Clementini and Felice (our numbering system). There are 
only 40 nodes, since 19, 28, 34, 42, 30 and 37 are not considered in their theory. 
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or a galaxy and the surrounding intergalactic space. It may not be possible to 
specify precisely where the boundary lies, but surely the two regions in each case 
are most naturally considered to be EC (Externally Connected, or touching without 
overlapping) - in terms of RCC-theory. In such a case, the choice of a complete 
crisping for one NonCrisp region limits our range of choices for another NonCrisp 
region (the two are nonindependent). We need to distinguish between the 'within
model' relation -< - one region being a crisping of another - from the relation 
between more and less sharply-defined models of a real-world spatial configuration. 
Given a model of the hill-and-valley relationship in which the two are represented 
as NonCrisp regions, we need to be able to specify that in any more sharply-defined 
model in which the hill and valley are represented as Crisp regions, these will be 
EC to each other - that is, will meet along a common boundary but not overlap. 
We believe the axiomatisation of the relations between vague regions independent 
of the egg-yolk model we are developing will provide us with the necessary formal 
apparatus to express such constraints. This axiornatisation, together with other 
formal aspects of the work, is intended to appear in a forthcoming technical report. 

We may also investigate variant notions of crispness where for example, crisping 
would not be allowed to change topology (e.g. the number of maximal one-piece 
subregions) or shape (as measured by concavities - see (Cohn et al. 1994)). Another 
aspect to be considered is temporal versus atemporal crispings: the indefiniteness of 
a hill/valley might perhaps be considered essentially atemporal whilst a river might 
be considered essentially temporal (at any time the river is well defined, but it may 
change (though erosion or flooding) over time). 

7 Conclusions 

The analysis presented here provides an interesting and useful way of representing 
and reasoning about regions with indefinite boundaries. We have informally specified 
some properties which we believe such regions have, and then formally axiomatised 
them. We have also proposed a technique for representing such vague regions as pairs 
of traditional crisp regions - the advantage of this approach if it carries though fully 
is that reasoning about vague regions can be performed just by translating to RCC
theory and then using standard tools (e.g. composition tables) without having to 
build special purpose reasoning mechanisms for the calculus of regions with indefinite 
boundaries. 
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MEREOTOPOLOGICAL CONSTRUCTION 
OF TIME FROM EVENTS 

Fabio Pianesi and Achille C. V arzi 

Istituto per la Ricerca Scientifica e Tecnologica (IRST) 
I-38050 Povo (Trento), Italy 

ABSTRACT. Recent work in temporal reasoning tends to reduce events to mere 
time intervals, or intervals cum description. In this paper we follow the opposite 
strategy, arguing that the formal connection between the way events are perceived 
to be ordered and the underlying temporal dimension is essentially that of a con
struction of a linear ordering from the mereotopological properties of an orient
able structure including events as bona fide individuals. The account is expressed 
as a first-order theory using the primitives of parthood and boundary and can be 
extended-we venture to claim-to provide a similar treatment of spatial entities 
such as physical bodies and masses. 

1. INTRODUCTION 

We are used to regarding actions and other events, such as Brutus' stabbing of Caesar or 
the sinking of the Titanic, as occupying intervals of some underlying linearly ordered 
temporal dimension. This attitude is so natural and compelling that one tends to disregard 
the obvious difference between time intervals and actual happenings in favor of the for
mer. Much recent work in temporal reasoning can in fact be viewed as embodying this re
ductionist approach, focusing on the sort of interval algebra that seems to be required for 
an adequate representation of time structures while ignoring the realm of events as such. 
This applies, for instance,· to the systems developed under the impact of Allen's work 
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ful discussion. We are also indebted to Roberto Casati, Gennaro Chierchia, Carola Eschenbach, Alessan
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ing comments on earlier drafts. 
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[1981, 1984], where events become mere "intervals cum description". One good reason 
for doing so is of course that interval algebra is rather simple and yet rich enough to sup
port the modelling of a variety of temporal reasoning problems. However, even from the 
perspective of artificial intelligence the point of talking about time is to talk about what ac
tually happens or might happen at some time or another. And since different events over
lap in so many different ways, we eventually need to deal with the full picture whether 
our concern be with planning, natural language processing, common sense metaphysics, 
or what have you. 

This raises two questions. The first is whether we can actually go beyond time, as 
it were, i.e., whether we can take events as bona fide individuals and deal with them di
rectly, just as we can deal with spatial entities such as physical bodies or masses without 
confining ourselves to their spatial representations. Philosophically this is a rather contro
versial issue, and ties in with a number of unsettled problems concerning e.g. the defini
tion of adequate identity and individuation criteria for events (see Bennett [1988] and 
Pfeifer [1989] for an overview, and Casati & Varzi [1994b] for comprehensive bibliog
raphy). The second question is whether we can actually do without time, i.e., whether 
we can dispense with time intervals as an independent ontological category and focus 
only on actual happenings, in crude opposition to the standard form of reductionism 
mentioned above-in short, whether we can construe time from events. One suggestion 
in this direction is of course the classical account of Russell [1914, 1936], where time in
stants are construed as maximal sets of pairwise simultaneous (or partially simultaneous) 
events. This treatment is echoed in various later accounts, from Whitehead [ 1929] or 
Walker [1947] to Kamp [1979] and van Benthem [1983], where events are taken as pri
mary entities inducing periods as secondary (and instants as merely tertiary) entities. 
More recently, Thomason [1989] has argued that the mathematical connection between 
the way events are perceived to be ordered and the underlying temporal dimension is es
sentially that of a free construction (in the category-theoretic sense) of linear orderings 
from event orderings, induced by the binary relation "wholly precedes". In Pianesi & 
V arzi [ 1994] we put forward an alternative account based entirely on the mereological and 
topological characterization of event structures. The characterization was given on inde
pendent grounds-among other things to outline an answer to the first question above
and the possibility of reconstructing the temporal dimension directly from events was 
noted as an aside. In this paper we take on that result and develop it further with specific 
reference to both its formal ontological underpinnings and its relevance to the analysis of 
temporal discourse and reasoning. 

2. COMBINING MEREOLOGY AND TOPOLOGY 

A major role of our general formal ontological background is played by the relation of 
parthood. Thus we sympathize with the view that mereology-the theory of parts and 
wholes, as rooted in the work of Lesniewski [1916] and Leonard & Goodman [1940]
provides a resourceful alternative to set theory for the formal analysis of common-sense 
reality. Specifically with respect to events, this view goes back to Whitehead [ 1919] and 
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has been defended e.g. by Thomson [1977] and, more recently, by Moltmann [1991] and 
Franconi et al. [1993]. At the same time, reasoning about the common-sense world also 
shows that a purely mereological outlook is too tight unless integrated with concepts and 
principles of a topological nature (Tiles [1981], Simons [1987, 1991a], Boehman [1990], 
Smith [1994a, 1994b]). For instance, mereologically there is no way to distinguish be
tween a self-connected whole, such as a stone or a whistle, and a scattered entity made up 
of several disconnected parts, such as a broken glass, a soccer tournament, or Brutus' 
repeated stabbing of Caesar. Moreover, mereology alone cannot account for some very 
basic spatio-temporal relations among the entities of ordinary discourse, such as the rela
tionship between an object and its surface, or the relation of continuity between two suc
cessive events, or the relation of something being inside, abutting, or surrounding some
thing else. All of these are phenomena that run afoul of plain part-whole relations, and 
their systematic account requires a topological machinery of some sort. 

Figure 1. Left: pure mereological reasoning cannot do justice to the topological distinction 
between two discs x and y (on the one hand) and the scattered sum z of their facing halves (on 
the other). Right: the two patterns involve no mereological difference and topology is needed 
to keep track of the opposition in terms of inclusion of the square, x, inside the doughnut, y. 

There are actually various ways in which the two domains of mereology and topol
ogy can be combined together (see Eschenbach & Heydrich [1993] and Varzi [1994] for 
a first assessment). One can see them as two independent provinces (following in the 
footsteps of inter alia Tiles [1981], :{.,ejewski [1982], and Smith [1994a]); or one may 
grant priority to topology and characterize mereology derivatively, for instance defining 
parthood in terms of topological connection (as in Clarke [1981, 1985]). The latter ap
proach is apparently more popular in AI, and has been applied e.g. to spatio-temporal 
reasoning (Randell & Cohn [1989, 1992], Randell et al. [1992a, 1992b]) and to the anal
ysis of spatial prepositions in natural language (Vieu [1991], Aurnague & Vieu [1993]). 
Indeed this approach proves fit to account for a fair deal of mereotopological reasoning if 
we confine ourselves to an ontology of temporal intervals and/or spatial regions. If, how
ever, we are to take an open-faced attitude towards real world entities and actual happen
ings (without identifying them with their respective spatio-temporal co-ordinates), then 
the reduction of mereology to a distinguished chapter of topology seems hardly tenable, 
as different entities can occupy exactly the same spatio-temporal regions (see Doepke 
[1982] or Simons [1985, 1986]). An object can be wholly located inside a hole, hence 
totally connected with it, without bearing any mereological relation to the hole itself (Ca
sati & Varzi [1994a]). Or two events may have exactly the same topological connections 
and yet be mereologically distinct, as with the rotating and the becoming warm of a metal 
ball that is simultaneously rotating and becoming warm (example from Davidson [1969]). 
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In general, therefore, we are inclined to favor the first option mentioned above, 
treating mereology and topology as conceptually independent domains. Formally this is 
reflected in our use of two distinct primitives, viz. a pure mereological notion of part and 
a pure topological notion of boundary. Several other sets of primitives could of course do 
the job. However, our choice is not entirely arbitrary, at least for the topological part. In 
principle our favored strategy for combining mereology and topology can also be appre
ciated in some linguistics-oriented work on tense and aspect, such as Kamp's [1979), 
Bach's [1986), or Link's [1987) algebraic semantics for event structures, where a mereo
logical relation defined on temporal entities is typically matched with an independent or
dering of temporal precedence. For our present purposes, however, such a course would 
have a flavor of circularity. If the point is to provide a construction of time from the fun
damental mereotopological features of event structures, it is essential that we take these 
features to be of a most general, time-independent nature. And in this sense reference to 
parts and boundaries appears to be a natural option both ontologically (Chisholm [1984), 
Smith [1992]) and from a cognitive standpoint (Jackendoff [1991)). 

3. THE FORMALISM 

3.1 Preliminaries. The entire mereotopological machinery can be developed within a first
order language with identity and descriptions. We shall use'-,', 'A', 'v', ·~',and 'H' 

as connectives for negation, conjunction, disjunction, material implication, and material 
equivalence respectively; '';;/' and '3' for the universal and existential quantifiers; and 't' 
for the definite descriptor. To simplify readability, we shall rely on standard conventions 
minimizing the use·ofparentheses. In particular, we shall assume the five connectives to 
bind their arguments in decreasing order of strength as listed, so that negation binds the 
strongest and equivalence the weakest. 

Note that the description operator will not have any use per se. However, it will 
play a crucial role in the definition of the term-fonning operator of general sum by means 
of which several basic mereological and topological notions will be characterized. (Alter
natively one could use set variables along with a set fusion operator, as in Tarski [1937] 
or Leonard & Goodman [1940], but this method would i~troduce additional complica
tions and would be in contrast with the above-mentioned foundational outlook on mereol
ogy.) Since this sum operator may be undefined for some arguments, the underlying 
logical apparatus requires some means of accounting for the possibility of non-denoting 
expressions. 

This of course can be done in a number of different ways. A preferred option is a 
free quantification theory with a supervaluational semantics (as in Bencivenga [1980] or 
Varzi [1983)). This would have the advantage of entertaining the unconditional accep
tance of various "natural" principles that on a standard treatment a la Russell [1905], 
where descriptions are handled indirectly as improper symbols, would only be assertable 
under restriction. The following are some interesting cases in point (where 'Q' is any 

predicate and '<!>' an arbitrary formula): 
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(1) Q(t.xQ(x)) 
(2) y = t.x(x=y) 
(3) t.xQ(x) = t.xQ(x) 
(4) <l>(txQ(x)) H <!>(txQ(x)) 
(5) 3y(y=t.xcj>x) H 3y"i/x(<!>x H x=y) 
(6) 'Vy(y=t.xcj>x H (cj>y 11. 'Vx(cj>x ~ x=y)) 

Each of these principles has been taken seriously by most free logicians ever since the pi
oneering work of Hintikka [1959] (see Lambert [19$7] for an overview), and only a su
pervaluational semantics appears to be adequate to account for them in a systematic way. 
Unfortunately, however, this account is seriously defective from a computational per
spective, as the set of valid principles is known to be not recursively enumerable. 

In the face of this, among the several alternatives available (including Lesniewski's 
(1916] original approach) we find it convenient to rely instead on the minimal theory 
stemming from Lambert [ 1962], consisting in assuming ( 6) as the only specific principle 
for descriptive expressions. This theory is "minimal" insofar as it only captures the logic 
of 't' with respect to descriptions that are denotationally successful, leaving open the is
sue of what principles should continue to hold in the presence of referential gaps. It does, . 
however, allow us to treat descriptive terms as genuine singular terms, and this is all we 
need for our present purposes. In fact, with slight modifications of the original argument 
of Van Fraassen & Lambert [1967], it can be shown that a system obtained by addirig 
axiom (6) to a free quantification theory is complete with respect to a semantics using 
partial models with classically saturated bivalent valuations. For definiteness, in the fol
lowing we shall assume the underlying free quantification theory to be obtained from the 
classical predicate calculus by replacing the principle of Universal Instantiation with its 
universal closure: 

(7) "i/y("i/xcj>x ~ <j>y). 

Though too weak to validate (1), (2), or other specific principle for descriptions, this 
system is strong enough to secure the validity of (3), (4), and any other propositional or 
quantificational law for singular terms. 

This minimalistic strategy has already been exploited in the context of mereological 
theorizing by Simons [1991b], and will prove sufficient also for our purposes in spite of 
their failing to reveal the whole truth. In any case, to facilitate comparisons we shall try to 
highlight those points where the choice of a different strategy may affect the theory. 

3.2 Mereology. We symbolise the primitive mereological relation of parthood by 'P', so 
that 'P(x, y)' reads "xis (a) part of y". Derived notions, such as identity, overlapping, 
and the like, or the operations of sum, product, difference, etc. can be immediately de
fined: 

DPl 
DP2 
DP3 

x=y 
O(x, y) 
X(x, y) 

=df P(x, y) 11. P(y, x) 

=df 3z (P(z, x) 11. P(z, y)) 
=df O(x, y) 11. -.P(x, y) 

xis identical with y 

x overlaps y 

x crosses y 
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DP4 PO(x, y) =cif X(x, y) " X(y, x) x properly overlaps y 
DP5 PP(x, y) =cif P(x, y)" -.P(y, x) x is a proper part of y 
DP6 ax<j>x =df t.x'v'y (O(y, x) H 3z (<j>z" O(z, y))) sum of all cj>ers 
DP7 1tx<j>x =elf ax \tz (<j>z--? P(x, z))) product of all cpers 
DPS x+y =df az (P(z, x) v P(z, y)) sum of x and y 
DP9 xxy =df az (P(z, x) " P(z, y)) product of x and y 
DPlO x-y =cif az (P(z, x) "-.O(z, y)) difference of x and y 
DPll -x =df az (-.O(z, x)) complement of x 
DPl2 u =df az (z=z) universe 

(In DP6-DP7, '<j>x' stands for any fonnula and '<l>z' for the result of substituting each free 
occurrence of 'x' in <l> by occurrences of 'z' .) Note that the functors/tenns based on DP3 
may be partially defined (i.e., correspond to an improper description) unless we go with 
the fiction of a null individual that is part of everything (as in Martin [1965, 1978]). For 
instance, non-overlapping entities will have no product and the universe will have no 
complement. This of course introduces a significant deviation in the obvious correspon
dence between mereological operations and the standard set-theoretical operations of 
union, intersection, difference, etc. 

As purely mereological axioms we assume the following two, along with the stan
dard axioms for identity: 

APl P(x, y) H \tz (O(z, x)--? O(z, y)) 

AP2 3x<j>x--? 3x\ty (O(y, x) H 3z (<j>z A O(z, y))) 

AP 1 secures that parthood is an extensional partial ordering while AP2 guarantees that 
every satisfied condition <l> picks out an entity consisting of all <j>ers. This yields a classical 
mereology as usually understood, corresponding to a Boolean algebra with zero deleted 
(Tarski [1935]; cp. Eberle [1970] and Simons [1987]). A sample selection of theorems 
relevant to the following is listed below: 

TPl P(x, x) 
TP2 P(x, y) A P(y, z) --? P(x, z) 
TP3 x=y H \tz (P(z, x) H P(z, y)) 

TP4 x=y H \tz (P(x, z) H P(y, z)) 

TP5 x=y H \;/z (O(x, z) H O(y, z)) 

TP6 PP(x, y) --? 3z(P(z, y) " -.O(z, x)) 
TP7 -,P(x, y) --? 3z(P(z, x) "-.O(z, y)) 
TP8 3x<j>x --? 3y(y = ax<j>x) 

It may be worth recalling that none of these principles is uncontroversial. For in
stance, since Rescher [1955] several authors have had misgivings about such straight
forward consequences of APl as TP2, expressing the transitivity of 'P' (see e.g. Cruse 
[1979], Winston et al. [1987], Moltmann [1991]), or TP3-TP5, expressing its exten
sionality (Wiggins [1979], Simons [1987]). In both cases, however, the objections in
volve reasoning about the varie~y of part-whole relations that may be distinguished (e.g., 
between components and complex, or quantity and mass) and may therefore be disre-
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garded as long as we remain at a sufficiently general level of analysis. Even such an ap
parently innocent consequence of API as the reflexivity of 'P' (TPI) might on some 
conditions be objected to, particularly insofar as the logical background that we are as
suming allows for non-denoting terms. For instance, in this regard Simons [1991b] sug
gests applying the falsehood principle of Fine [1981] to deny that 'P(x, x)' can be true 
when x does not exist. However, such a stance would introduce a disturbing asymmetry 
between parthood and other basic predicates such as identity-of which parthood is a 
generalization-unless we are also ready to make a self-identity statement 'x=x' depend 
on the existence of x. This is in contrast with our general attitude towards free logic, 
which in fact follows the popular policy of assuming a standard identity theory. There
fore, also this type of objection will be disregarded in the following. 

The second axiom is not uncontroversial either. For one thing, in.the presence of 
APl it implies the so-called "supplementation" principles expressed by TP6-TP7, which 
some authors in the tradition of Brentano's Kategorienlehre [1933] found reason to deny 
(see e.g. Chisholm [1978]). There are actually cases where restrictions on the domain of 
interpretation might involve violating such principles (a disc with a disc removed is not a 
disc), but this is already a matter of material ontology and need not concern us for the 
moment. As a matter of generality, the existence of a remainder between a whole and a 
proper part can hardly be denied: otherwise it would be possible for an object or event to 
have a single proper part, and that goes against any intuitive understanding of the very 
meaning of 'part'. Likewise, APl has often been disputed for having counter-intuitive in
stances when <!> is true of scattered or otherwise ill assorted entities or events, such as the 
totality of red things, or Brutus' birth and his stabbing of Caesar (see e.g. the early criti
cisms of Lowe [1953]). From a purely mereological perspective, however, this criticism 
is also off target. If you already have some things, allowing for their sum is no further 
commitment: the sum is those things (Lewis [1991]; that the sum is always uniquely de
fined is guaranteed by TP8). In any case, one may feel uncomfortable with treating un
heard-of mixtures as individual wholes; but which wholes are more "natural" than others 
is not a mereological issue. As noted above, the question of what constitutes a natural, 
integral whole cannot even be formulated in mereological terms: it is precisely here that 
topology-the theory of boundaries-comes in. 

3.3 Topology. The primitive topological notion of boundary is symbolized by 'B', so 
that 'B(x, y)' reads "xis a boundary in y". (Following Chisholm [1984], we say 
"boundary in" (rather than of) to avoid a reductive interpretation of boundaries as maxi
mal boundaries. In general, any boundary in something is a boundary of some part 
thereof.) Some useful derived notions can be defined as follows: 

DBI b(x) =elf crz (B(z, x)) maximal boundary of x 

DB2 c(x) =elf x+b(x) closure of x 

DB3 i(x) =elf x-b(x) interior of x 

DB4 e(x) =df -x-b(x) exterior of x 

DB5 Cl(x) =elf x=c(x) xis closed 

DB6 Op(x) =elf x=i(x) xis open 
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T(x,y) =elf 3z (P(z, x) /\ B(z, y)) xis a tangential part of y 
l(x,y) =elf 3z (Op(z) /\ P(x, z) /\ P(z, y)) xis an interior part of y 
C(x,y) =elf O(c(x), y) v O(c(y), x) xis connected with y 

EC(x,y) =df C(x,y) /\ -,O(x,y) xexternallyconnectstoy 

ST(x,y) =elf 'v'z(l(x, z)-7 X(z, y)) xstraddlesy 

Cn(x) =elf 'v'y'v'z (x=y+z--? C(y, z)) xis self-connected 

CE(x,y) =elf Cn(x) /\ P(y, x)) xis a convex extension ofy 

CC(x,y) =elf CE(x,y)/\ 'v'z(PP(z, x)-7-,CE(x,y)) xis a convex closure ofy 

Again, these functors, predicates, and relations may not be defined for certain arguments, 
as they may involve improper (e.g., denotationless) definite descriptions. 

Note that nothing in these definitions implies that boundaries are always parts of the 
entities they bound. In fact we accept the standard topological distinction between open 
and closed entities, allowing for entities with external boundaries. For example, in Pi
anesi & V arzi [ 1994] we propose a characterization of the standard classification of event 
types (Vendler [1957]) by treating processes (such as climbing the mountain) as non
closed events, accomplishments (having climbed the mountain) as closed processes, and 
achievements (reaching/having reached the top) as parts or the corresponding boundaries. 

In this regard, our basic axiomatization is in line with the familiar Kuratowski ax-
ioms [1922], which we assume in the following form: 

ABl P(x, c(x)) 
AB2 c(c(x)) = c(x) 
AB3 c(x+y) = c(x)+c(y) 

This gives us a straightforward reformulation of much of standard topology based on 
mereology instead of set theory, provided only that we take care in handling undefined 
operators. In particular, it follows immediately that the relation of connection is reflexive 
and symmetric and that boundaries are always symmetrical, in the sense that every 
boundary of an entity is also a boundary of the entity's complement (see Chisholm 
[1992/93] and Smith [1994b] for a discussion of non-symmetric boundaries). Here is a 
list of further theorems that can be proved from AB 1-AB3 and that will be used in the 
following developments: 

TBl 
TB2 
TB3 
TB4 
TB5 
TB6 
TB7 

B(x, y) " B(y, z) --? B(x, z) 
P(x, y) " B(y, z) --? B(x, z) 
l(x, y) /\ P(y, z) --? l(x, z) 
P(x, y) /\ l(y, z) --? l(x, z) 
B(x, y) H 'v'z(P(z, y) --? ST(z, y) 

B(x, y) H 'v'z(P(z, y)--? T(z, y) 

\f x(<j>x--? B(x, y))--? B(crx<j>x, y) 

The last of these theorems is particularly important, as it shows that boundaries are 
closed under general sum and are therefore closed under all mereological properties. 
Following Smith [1994a], however, we also wish to capture some further common-sense 
intuitions that go beyond the repertoire of standard topology. In particular, we need at 
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least a rendering of the intuitive Aristotelian-Brentanian idea that boundaries are "para
sitic" entities, i.e., cannot exist independently of the larger entities they bound (Brentano 
[1976]; cp. also Chisholm [1989], Boehman [1990], Smith [1992], White [1993]). This 
stands in opposition to the standard set-theoretic conception of boundaries as sets of ordi
nary, ontologically independent points. More specifically, we assume that every self-con
nected boundary is a boundary part of some larger self-connected entity with a non-empty 
interior: 

AB4 Cn(x) I\ 3y B(x, y) -+ 3z 3w (Cn(z) I\ B(x, z) I\ P(x, z) I\ l(w, z)) 

. It is understood that further principles would be needed to obtain at least a rough 
approximation of the folk theory of spatio-temporal continua. Here, however, we shall 
content ourselves with AP1-AP2 and AB1-AB4, regarding this as a minimal theory for· 
general purposes. 

It is worth observing that, within these limits, the main connection between our 
mereological and topological notions is neatly expressed by the following theorem: 

TPC P(x, y)-+ Vz (C(z, x)-+ C(z, y)) 

As already hinted at above, systems in the tradition of Clarke [1981] also assume the 
converse of this principle, with the effect of reducing mereology to topology. By con
trast, the possibility that topologically connected entities bear no mereological relationship 
to one another leaves room for a much richer taxonomy of basic mereotopological rela
tions than usually recognized (cp. Varzi [1993] and Cohn et al. [1993]). For instance, the 
customary relations of connection, overlapping, parthood, and interior parthoqd intro
duced above, and common to most known systems, can be integrated by the following 
(Varzi [1993]): 

DB15 E(x, y) =elf 'V z (C(z, x) -+ C(z, y)) x is enclosed in y 

DB16 S(x,y) =elf 3z (E(z, x) I\ E(z, y)) x is superimposed on y 

DB17 A(x,y) =elf C(x, y) I\ -,S(x, y) x abuts y 

DB18 W(x, y) =elf' E(x, i(y)) xis within y 

Evidently Sis implied by 0, Eby P, and W by I. The resulting taxonomy of relations is 
depicted in the following picture. 

Figure 2. Some basic mereotopological relations exploiting the distinction between mereo
logical parthood (overlapping, etc.) and mere topological enclosure (superposition, etc.). 
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4.EVENTSTRUCTURES 

Let us now see how our general mereotopological framework can be specialized to a 
domain of events. As already pointed out, on a rather popular conception events are re
garded as intrinsic temporal entities, i.e., entities that stern, so to speak, from the tempo
ral dimension. In forms ranging from the strong reductionist view that events are nothing 
but temporal intervals to the weaker forms that take events as primitive entities endowed 
with some primitive temporal relation defined on them (the strict ordering of Kamp 
[1979] or Thomason [1989]), this view has been a predominant approach in AI, natural 
language semantics, and knowledge representation. By contrast, in the following we will 
show that events can be given an independent characterization that satisfies our intuitions 
about their mutual relations and derives the whole of time, temporal relations included, by 
imposing suitable restrictions on the underlying mereotopological apparatus. More pre
cisely, we will show that the formal connection between the way events are perceived to 
be ordered and the underlying temporal dimension is essentially that of a construction of a 

, linear ordering from the rnereotopological properties of an oriented domain structure in 
which events are included as bona fide individuals. In other words, time is a by-product 
of what we call an event structure. 

4.1 Divisors. Our characterization of event structures relies on the auxiliary concept of a 
divisor. Intuitively, a divisor is a somewhat complex event that separates the entire do
main into two disconnected parts, thus making it possible to choose one part as corre
sponding to the sum total of all events that temporally precede the divisor, and the other 
as the sum of those events that follow it. (Of course, the choice of precedence vs. follow
ing will be arbitrary, as long as successive choices for different divisors be done in a con
sistent way: if we think of an event domain as comprising the totality of all happenings
past and future-there is no a priori way to fix the temporal orientation.) Formally, this is 
obtained with the help of both mereological and topological notions by requiring every di
visor to split all of its neighbourhoods into disconnected parts: 

DEl D(x) =ctf 'r:/y (l(x, y) ~ -,Cn(y-x)) 

That this is essentially an analogue of the 1-codimensionality property that in standard set 
theory characterizes points with respect to the line, lines with respect to the plane, and so 
on (see White [1993]). 

Note that a divisor is itself an event, though not every event is a divisor. We may 
think of a divisor as a sort of cross event made up of all that happens during a certain 
"period". By contrast, an action such as Brutus' stabbing of Caesar, or an incident such 
as the sinking of the Titanic, are "local" events: many other actions and events occurred at 
the same time, but in different places. This is of course an enrichment arising from our 
rejection to identify events with the intervals that they occupy. Events are fully-fledged 
entities, though we need not for this reason see them as endowed with a multidimensional 
part structure distinguishing for instance between spatial and temporal rnereological rela
tions (see Moltmann [1991] for a proposal in this direction). 
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Note also that if we refer to divisors for the purpose of characterizing the notions of 
past and future, these latter will be deprived of any absolute meaning and become relative 
notions: given any divisor x, the suggestion is to interpret the events on one side of x as 
past events, and the ones on the other side as future events, relative to x. There is no past 
or future except with respect to some division of the whole of history. As will become 
clearer shortly, a major business that we need to face is therefore to guarantee that such a 
relativistic account be nevertheless suited to the task; that is, we must make sure that the 
all divisors partition the past from the future in a coherent may. (For instance, an event 
that lies in the past relative to a given divisor x must also lie in the past relative to any di
visor y that lies in the future of x.) 

We also want our construction to allow for a certain degree of control on its grain. 
Intuitively, the idea is that any two events that are part of the same divisor should count 
as simultaneous. However, for that purpose we need some means of associating each 
event in the domain with the "right" divisor, as it were, viz. the minimal one containing 
it. (Otherwise, for any two events x and y we could pick out a sufficiently large divisor z 
containing both.) Moreover, the predicate 'D' picks out the distinguishing property of a 
divisor relative to the full mereotopological structure of the given domain of events, but 
the fact remains that any domain admits of an indefinite, potentially infinite number of di
visors, only some of which can (or need) be collected in a temporally coherent structure. 
In other words, not all divisors can or need be considered together. Thus, every domain 
can be associated with various dividing devices o (including divisors that ignore some 
mereological distinctions, treating e.g. as atomic events which are in fact mereologically 
complex), giving rise to a variety of event structures. Furthermore, the possibility of 
varying the grain itself may be a welcome one. This can be helpful, for instance, to ac
count for the various degrees of precision that natural language permits when talking 
about events and time. 

4.2 Structures. Given all of this, we define an event structure quite generally as a triple 
( ~ o, f) made up of a domain of events, ~a dividing device o, and a function f of ori
entation. The conditions are as follows. First, we assume tl to be mereotopologically 
self-connected: 

AEl 'v'z(O(z, x) v O(z, y)) -7 C(x, y) 

We are here taldng tlas a domain closed under all mereological and topological principles 
set forth in the previous section, understanding individual variables to range over this 
domain. Thus, condition AEl could also be written as 

AEl' Cn(U) 

which effectively corresponds to the statement that the whole universe is self-connected. 
This is stipulative, but reflects the idea that there are no gaps in history: something is al
ways happening, whether remarkable or not. (Compare the discussion in Newton-Smith 
[1980]. As a matter of fact, if the universe consisted of two or more separate parts, one 
could still apply the reasoning below to each of them, ending up with a family of discon-
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nected worlds each having its own temporal ordering. However here we shall not pursue 
this possibility to keep things simple and intuitively straightforward.) 

Second, o is a divisor-specific condition incorporating the above-mentioned re
quirements of minimality and granularity. It satisfies the following axioms: 

AE2 o(x) -7 D(x) 
AE3 crxo(x) = crxD(x) 

AE4 Vx (<l>x -7 o(x)) -7 o(nx<j>x) 
AE5 Vx (<l>x -7 o(x)) -7 V'z(CC(z, crx<j>x) -7 o(z)) 

In other words, the events fulfilling o are all divisors (AE2), covering the entire domain 
of divisors (AE3) and such that the product or connected sums of every number of them 
is itself a divisor (AE4-5). These latter conditions are illustrated in Figure 3. In set-theo
retic terms, they have the effect of making divisors into a closure system. The corre
sponding closure operator associates each event x with the smallest divisor containing x. 
It can be defined as follows: 

DE2 d(x) =df1tz(o(z)" P(x, z)) 

That this is indeed a closure operator is guaranteed by the following theorems, which are 
the analogues of the usual increasing, idempotency, and monotonicity conditions: 

TEI P(x, d(x)) 
TE2 d(d(x)) = d(x) 
TE3 P(x, y) -7 P(d(x), d{y)) 

Finally, the last term in the definition of an event structure is a (possibly partial) 
map f: 8-7 8closed under the following mereological conditions: 

AE6 f(x) = f(d(x)) 
AE7 f (x)+f'(x) = -d(x) 
AE8 P(x, f(y)) -7 P(f(x), f(y))) 

AE9 o(x) " o(y) " O(y, f(x)) A O{y, f'(x))-7 P(x, y) 

where in general 

DE3 f'(x) =df O'Z (P(x, f(z))). 

As we shall see below, our approach will be to think off as a function of temporal orien
tation associating each event in the given domain with the totality of events that precede it. 
Correspondingly, f' will map each event to its future events, andthe above axioms will 
secure that these two mappings be coherent throughout the domain. (As already noted, 
this choice is purely conventional. We could as well tum things around, taking f and f' 
to indicate future and past events, respectively.) In particular, AE6-AE7 relate this 
intended reading off and f' to the intuitive interpretation of the divisor operator o; AE8 
relates it to the underlying mereological setting; and AE9 relates it to both, making sure 
that all divisors operate in a parallel fashion, i.e. have a uniform temporal orientation. The 
behavior of these functions is illustrated in figures 4 and 5 below. (Note that DE3 guaran-
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Figure 3. Divisors are closed under product (left) and connected sum (right). 
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Figure 4. Pictorial representation of the mereological relations expressed by axioms AE6 
(left), AE7 (middle), and AES (right). 
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Figure 5. The patterns on the left and in the middle violate, whereas the one on the right ful
fils, the requirement that a divisor y cannot overlap both "past" and "future" of another divi
sor x unless the former includes the latter (AE9). 
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tees perfect duality between f and j'; thus, just like AE7 and AE9 are symmetric with 
respect to these two functions, likewise we can immediately prove analogues of AE6 and 
AES with f' in place off: 
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TE4 f'(x) = f'(d(x)) 
TES P(x, f'(y)) ~ P(f'(x), f'(y))) 

Similar facts will always hold in the following, though we shall generally confine our
selves to spelling out facts and principles relative to f .) 

Further constraints on cf; o, or f can of course be added. For instance, one mav 
want to rule out the possibility that there be atomic events (i.e., events with no prope;· 
parts) that are open. Or one may want to impose stronger conditions on the granularity of 
o (such as the requirement that an event's divisor be never "thicker", i.e., of longer dura
tion than the event itself) or on the self-connectedness of e'(such as density or, alterna
tively, discreteness: the former asserts that between two successive events there is always 
a third one; the latter amounts to the opposite requirement that every event has some im
mediate successor and some immediate predecessor). In our formalism these condition::: 
would correspond to the following postulates respectively (the last two corresponding tc 
the two sides of discreteness): 

AElO 
AEll 
AE12 
AE13 
AE13' 

Op(x) ~ 3y PP(y, x) 

O(x, d(y)) H O(d(x), d(y)) 
P(x, f(y)) ~ 3z (P(x, f(z)) /\ P(z, f(y))) 
3y P(x, f(y)) ~ 3z (P(x, f(z)) /\ -,3w (P(x, f(w)) /\ P(w, f(z)))) 
3y P(x, f'(y)) ~ 3z (P(x, f'(z)) /\ -,3w (P(x, f'(w)) /\ P(w, f'(z)))) 

We shall not address these issues here. For our purposes, let us only stress once 
again that the operators and mappings introduced above may possibly be undefined for 
some arguments, and that different models may therefore be obtained according to the 
underlying logic. 

5. THE CONSTRUCTION OF TIME 

As mentioned above, our purpose is to consider f as a function of temporal orientation 
(relative to a given event structure ( ~ f, o)). To this end, note first of all that the follow
ing hold for all events x and y in the given domain 8: 

TE6 P(x, f(y)) ~ -,O(x, f'(y)) 

TE7 P(x, f(y)) H P(y, f'(x)) 
TE8 P(x, y) ~ P(f(y), f(x)) 
TE8' P(x, y) ~ P(f'(y), f'(x)) 

As illustrated in figure 6 below, the first of these conditions reflects the idea that past and 
future (relative to a given event x) do not overlap; the second principle reflects the idea 
that whatever happens before a certain event y must be such as to include y among its fu
ture events and, viceversa, whatever happens after an event x must include x among its 
past events; while the third and fourth principles express the idea that whenever an event 
is included in another, the past and future of the latter must be included in the past and 
future of the former, respectively. 
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Figure 6. Pictorial representation of the mereological relations expressed by TE6 (left), TE7 
(middle) and TE8-8' (right). 
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As we have it, of course, only events that have a (minimal) divisor can be fully 
matched for precedence, since f or f' may otherwise be undefined. This is an important 
consequence of AE7: 

TE9 3y (y=f(x)) A 3y (y=f'(x)) -7 3y (y=d(x)) 

In particular, it follows that f(f(x)) and f'(f'(x)) are always undefined. (For what would 
it mean to say that "the past" and "the future" have a past and future of their own?) Fur
thermore, note that f'(x) is not defined whenever f(x) is defined (unless d(x) is already 
defined) and vice versa. Accordingly, when considering properties such as those in TE6-
TE8', one should always keep in mind that they may come out undefined in the case of 
events infinitely reaching backwards or forwards. Alternatively, we can think of such 
events as having a degenerate future or a degenerate past, respectively. This is captured in 
the following equivalences: 

TElO f(x) = crz (P(x, f'(z))) = 1tZ (3y PP(y, x) "z=f(y)) 
TElO' f'(x) = crz (P(x, f(z))) = 1tZ (3y PP(y, x) A z=f'(y)) 

Thus, f yields the "limit" past of an event, which tends to nil in the case of events in
finitely reaching backwards-and likewise for f' (future). 

This provides grounds for the intended interpretation of the relative properties ex
pressed by TE6-TE8'. Two further interesting theorems are the following: 

TEll 
TEll' 

f'(f(x)) = - (f(x)) 
f(f'(x)) = -(f'(x)) 

These theorems, in a sense, generalize AE7 yielding the following corollaries: 

TE12 P(x, f'(f(x))) 
TE12' P(x, f(f'(x))) 

Together with TES and TES', these ensure that f and f' behave as a pair of Galois con
nection in & Moreover, it is worth observing that composing f and f' induces corre
sponding topological structures. For let g=ff'; then we can prove: 
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TE13 P(x, g(x)) 

TE14 g(g(x)) = g(x) 

TE15 g(x+y) = g(x)+g(y) 
TE16 P(x, y) ~·· P(g(x), g(y)) 

(likewise for g=f'f). Thus, the interaction off and f' yields a well-behaved topological 
closure operator. (This may corresponds to the topology of left (ff') or right (f'f) un
bounded temporal intervals.) Particularly, TE14 shows that their composition reaches a 
fixed point immediately after two applications. 

All these facts, then, allow us to think intuitively of & as a domain of events and f 
as a function of temporal orientation, as desired. In particular, we can say that an event x 
temporally precedes (wholly) an event y iff xis part of f(y), while x and y temporally 
overlap iff they have some parts whose minimal divisors overlap: 

DE6 TP(x, y) =df P(x, f(y)) 
DE? TO(x, y) =df 3z3w(P(z, x)" P(w, y)" O(d(z), d(w)) 

(In DE6, we can of course use the same definiens to introduce the converse relation of y 
temporally following x; by TE?, this will be tantamount to DES: 

DES TF(y, x) =df P(y, f'(x)) . 

As for DE?, reference to parts is necessary since x and y may not have a divisor.) Note 
that parthood excludes precedence (following) whereas overlap implies temporal overlap: 

TEI? P(x, y) ~..:., TP(x, y) 

TE18 O(x, y) ~ TO(x, y) . 

Note also that these relations allow one to introduce an entire family of additional notions, 
in analogy with the basic mereological setting. For instance, one can define relations of 
temporal inclusion, coincidence, straddling, etc. in an obvious way: 

DE9 Tl (x, y) =df 'Vz (TO(x, z) ~ TO(y, z)) 
DElO TC(x, y) =df Tl (x, y)" Tl(y, x) 
DE11 TS(x, y) =df TO(x, y) "...,Tl (x, y) . 

These can easily be seen to behave in analogy to the corresponding mereological relations 
of parthood, identity, crossing, etc. (for instance, Tl is a partial ordering and TC an 
equivalence relation). In fact, it is apparent that in the case of divisors, these temporal re
lations reduce to their basic mereological correlates: 

TE19 8(x) " 8(y) ~ TO(x, y) H O(x, y) 
TE20 o(x) " o(y) ~ TC(x, y) Hx=y 
TE21 8(x) " 8(y) ~ Tl (x, y) H P(x, y) 
TE22 8(x) " 8(y) ~ TS(x, y) H X(x, y) 

This should shed some. light on the temporal dimension implicit in our event structures, 
where non-dividing events ca!l be (partially) simultaneous without necessarily bearing 
mereological releations to one another. 
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Finally, and most importantly, using the above notions we are now ready to prove 
all of the following: 

TE23 
TE24 
TE25 
TE26 
TE27 
TE28 
TE29 

TO(x, x) 

TO(x, y) ~ TO(y, x) 

TP(x, y) ~-, TO(x, y) 
TP(x, y) ~ -, TP(y, x) 

TP(x, y) "TP(y, z) ~ TP(x, z) 
TP(x, y) "TO(y, z) " TP(z, t) ~ TP(x, t) 
TP(x, y) v TP(y, x) v TO(x, y) 

These are the mereological counterparts of the seven axioms for strict linear orders em
ployed by Kamp [ 1979] in his construction of time instants out of ordered events. Coun
terparts of the axioms for interval structures of van Benthem [1983] can be proved in a 
similar way (e.g. by taking divisors as the counterparts of intervals and then reasoning in 
terms of the relations of precedence and temporal overlapping as introduced above). 

Thus, although silent about time, event structures ultimately permit a full retrieval 
of the temporal dimension. Time is not a primary notion - be it a purely relational one or 
in the form of an independent ontological category (intervals or instants). It is a by
product of the possibility of orienting the domain of all happenings. 

APPENDIX. PUNCTUAL EVENTS 

Event structures are strongly dependent on the choice of a specific condition B: divisor.s 
are events that separate the past from the future; but what exactly is to count as a relevant 
divisor, i.e. what is the granularity of the temporal segmentation, is not fixed once and 
for all. Actually, one may observe that a structure's orientation function f-and, conse
quently, its correlate f'-is completely determined by B, free choice being limited to as
sociating it with the totality of preceding events or with the totality of events that follow. 
Thus, varying the conditions on the component B is the main formal instrument at our 
disposal to approach different issues within the uniform framework provided by event 
structures. 

One notion where this variability becomes crucial is that of punctuality. Intuitively, 
punctual events are instantaneous, i.e., do not extend over any time interval: they are lo
cated in time but do not take up time. As hinted at in Section 3.3, these include for in
stance boundary events traditionally classified as "culminations" or "achievements" 
(Vendler [1957]). Within the proposed setting. however, this does not amount to a re
quirement of atomicity: what counts as instantaneous, as opposed to extended in time, 
depends entirely on the temporal structure that is induced by the domain of events on 
which the discourse is being interpreted-that is, ultimately. on the choice of the divisor 
condition B in the relevant event structure. Thus, punctuality must also be accounted for 
in relative terms. Punctuality requires some sort of minimality, in the intuitive sense that a 
punctual event cannot accommodate more structured ones. However, we need not con
sider the distinction between istants and intervals, and more generally any distinction 
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based on some absolute notion as size or duration, to be the relevant parameters (contrary 
to a rather standard practice following Kamp [1979]). We also need not impose any spe
cific axioms for characterizing punctuality (also contrary to Kamp's approach). Rather, 
the distinguishing properties of punctual events and instant algebras will be derived from 

more basic aspects of our constructions. 
As a first step, let us introduce the notion of a minimal divisor (relative to a given 

event structure ( ~; o, f)): 

DAI MD(x) =df o(x) A 'v'y(P(y, x) ~ -,o(y)) 

Thus, a divisor xis minimal iff it does not contain other divisors (relative to the same 
structure). As a consequence, every event which is part of such an x has x as its divisor: 

TAI MD(x) A P(y, x) ~ d(y)=x 

In a sense, "temporal" differences are neglected inside a minimal divisor; any events that 

are parts of such a divisor are co-temporaneous: 

TA2 MD(x) A P(y, x) A P(z, x) ~ TC(y, z) 

More generally, we have 

TA3 MD(x) A TO(y, x) A TO(z, x) ~ TO(y, z) 
TA4 MD(x) A P(w, x) A TO(y, w) A TO(z, w)) ~ TO(y, z). 

Thus, if two events temporally overlap a minimal divisor (or a part thereof) they tempo

rally overlap each other. Vice versa, we have that: 

TA5 o(x) A 'v'y'v'z(TO(y, x) A TO(z, x) ~ TO(y, z)) ~ MD(x). 

Putting T A3 and T A5 together, the fundamental properties characterizing punctual 
events according to Kamp [1979] can be shown to hold of minimal-and only minimal
divisors. We can then propose the following definition for punctual events: 

DA2 PE(x) =df MD(d(x)). 

Thus, punctual events are not just-and not necessarily-atomic events, i.e. events with 
no proper parts (though of course every atomic event is punctual regardless of o). Rather, 
they are events whose internal structure is irrelevant for the purpose of temporal distinc-

tions. 
Moreover, a major advantage of this notion of punctuality (over Kamp's, for in-

stance) is that it is relativized with respect to the particular event structure at hand (and, 
ultimately, with respect to the particular divisor condition o), while retaining Kamp's ba
sic insights. By changing o, events previuosly treated as punctual may become non-punc
tual, in that their internal temporal structure is made available, and vice versa. On the 
other hand, once we declare a given event to be punctual, we place restrictions on the 
kind of structures it can be an element of and, eventually, on the specific o's that are 

available. 
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1. Introduction and Motivation 

1.1. Mereo/ogy and set theory 

It is interesting that Encyclopedia Britannica [I] classifies mereology under "Logic, 
Applied", and set theory under "Logic, Formal", although the motivations and origins 
of both theories are similar, and so is their subject matter. That is, both of them ap
peared as an answer to the Russell paradox in naive set theory (cf. Section 3.1, [20], 
or almost any introductory texbook in mathematical logic), and both of them address 
the problem of how an object can be decomposed or put together from smaller pieces. 
Roughly speaking, mereology is a theory of parts and wholes; i.e. it tries to axiomatize 
the properties of relation a is-a-part-of b. For example, one of its axioms postulates 
that a is-a-part-of b, e.g. between a wheel and a car, holds if and only if any item that 
is disjoint from b is also disjoint from a (disjointedness is assumed to be a primitive 
relation). 

Set theory tries to address the questions of when an element is a member of a class -
for instance, of all barbers that do not shave themselves, and how one can form new 
classes of objects. One of its axioms (comprehension) says that given a set one can 
form another set consisting of those elements of the set which have a certain property. 
For example, from the set of all people we can form a new set, consisting of those who 
are barbers. (Intuitively, a set is a "small" class whose existence will not result in a 
paradox). 

The formal apparatus of set theory seems to be better developed than that of 
mereology, due chiefly to the influence of Goedel and Cohen. But in Al neither of the 
two theories has had much of an impact, although certainly more people are familiar 
with.set theory, and some attempts have been made to make it useful ([18], [19] and 
[24]). For a discussion of set theory in the AI context see [16]; see also [11] for an 
introduction to set theory, and [14] and [7] for a coverage of more advanced topics; 
the latter should also give the reader an idea about the influence of Cohen and Goede! 
on mathematical logic. 

In this paper we argue that both set theory and mereology have specific roles to play 
in the theory and practice of multimedia. They both provide us with a language to talk 
about multimedia objects. Notice that, say, first-order logic would be too weak for that, 
because it does not provide an axiomatic description of the structure of objects; and 
any useful theory for multimedia applications must contain some specific axioms that 
deal with structural properties, e.g. of images. As we observe further in the paper, the 
two natural candidate languages play complementary roles: one is used to index (set 
theory), the other to describe knowledge about indexes (mereology). This observation 
leads to a simple, yet realistic, formal theory of storage and retrieval of multimedia 
material, e.g. video clips; the theory combines set theory with mereology, and is moti
vated by practical needs of multimedia authoring. (Clearly, its existence also challenges 
the above classification of set theory and mereology by the Britannica). 
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Abstract 

How to index or retrieve multimedia objects is by no means obvious, because the computer can 
retrieve right multi.media material only if it reasons about its content. We show that it is possible 
to write formal specifications of this reasoning process using set theory and mereology. 

We discuss the theoretical consequences of trying to use mereology and set theory for multimedia 
·indexing and retrieval. We reexamine the roles of mereology and set theory in knowledge repre
sentation. We conclude that both commonsense set theories and mereologies should play the role 
of constraining databases of arbitrary multimedia objects, e.g. video clips. But although both 
should be viewed as database constraints, we argue that part-of hierarchies should be used to en
code relatively permanent background knowledge, elsewhere named the referential level, while 
member-of hierarchies should describe arbitrary multimedia records. We also propose a language 
and a set of axioms, SetNM, for natural mereologies with sets. A multimedia indexing system can 
then be viewed as a particular SetNM theory.1 

I This paper has been accepted for publication in Annals of Mathematics and Artificial Intelligence. 

'•. 
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With regard to the practice, a subset of the indexing system described here has been 
implemented as part of the IBM and l'\ew England \1edical Center project for building 
a home health-care prototype system for children with leukemia (cf. [2], [ 15]). The 
home care system makes extensive use of multi-media objects such as video clips, au
dio clips, images, text to provide information and guidance. By using member-of re
lations extensively and lexical hierarchies, current system allows the users to find 
information without their giving exact descriptions of what they want to know. Adding 
part-of relations is being considered. 

1.2. Describing objects and pictures 

With emerging multimedia technologies, the problem of managing large amounts of 
data has become increasingly difficult. In addition to the traditional text-based data, 
a multimedia computer system has to store, and manipulate very large non-textual 
databases, such as image, video, and audio databases. Many approaches have been 
proposed in the past for representing and analyzing non-textual data; movement anal
ysis using a notation for dance (labanotation, cf.e.g. [l]) is one such example. When 
applied to multimedia information fragments (e.g. motion video segments) such ap
proaches may be useful capturing certain properties, but their utility is limited. 

We need a more general means of querying these multimedia databases. In particular 
a database scheme should allow users to search through databases by partial match 
rather than by exact match. Furthermore, it should be possible to search such data
bases by describing the desired records (e.g. video clips) in words. Since vision systems 
are far away from being able to describe pictures, automated analysis of content of 
such videos is out of the question. What remains as the only reasonable possibility is 
to have a human index multimedia objects, and in the process of retrieval try to match 
stored descriptions with queries. Such a matching must take into account several fac
tors which we describe in the following sections. But the first and obvious problem is 
that words cannot completely describe the content of a picture. For instance, anyone 
creating an index of a video clip containing the scene of a police car chasing a red 
Porsche would not include the information that you can see the wheels of the cars 
turning. Still, if you want to find videos containing wheels, you would like your system 
to know that cars have wheels, i.e. that a "wheel" is a "part-of' a "car". 

1.3. The role of reasoning in indexing and retrieval 

By the above arguments, reasoning is necessary for retrieval, because often it is neces
sary to change the original query, e.g. by adding a missing piece of information. As 
another example consider the fact that a "lake" might appear in a picture of a 
"sailboat", and getting to "lake" from "sailboat" via e.g. "boat" and "water" should be 
based on some form of reasoning. The same is true for storage. A picture depicting a 
"sailboat" does not have to be also indexed by "sail", "mast", and all possible details 
that can be easily found given a database of facts about how boats are built, for ex
ample based on a pictorial dictionary such as [9]. 
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These examples suggest that we have to take into account two basic factors: the con
tent of a picture, and background knowledge about the concepts used to describe the 
content. Regarding background knowledge, we can see two aspects of it. ~amely, the 
general world knowledge about relations between objects, which allows us for instance 
connect "lake" and "sailboat", and the knowledge of the structure of everyday objects 
which brings the connection between "sailboat", "sail", and "mast". In this paper we 
restrict our attention to the descriptions of content and structure of objects. The issue 
of describing knowledge about relations between objects has been discussed at length 
in [26] and [27], and the formal model developed there (and briefly described in Sec
tion 3) is applicable in the present context and can accommodate the new theory we 
are about to propose. 

Summarizing the above arguments, we can see that how to index or retrieve multimedia 
objects is by no means obvious, since the computer can retrieve right multimedia ma
terial only if it reasons about its content. What we want to show is that it is possible 
to write formal specifications of this reasoning process using set theory and mereology. 
As we shall see, this requires changing the shape of some axioms. But as a reward for 
this work, we get a well-motivated logical system in which both theories coexist and 
complement each other, a first system of this kind. Also, in the course of developing 
the axioms, in addition to illustrating the respective roles of both theories, we present 
a set of canonical and practical examples emphasizing the role of mereology. 

2. Defining part-of relations 

2.1. How to describe a picture 
Although the theory of part-of relations is interesting for its own sake, we will not try 
to create one that would be useful for all possible purposes. At this point, we need a 
part-of hierarchy that could be used for multimedia indexing and retrieval. This does 
not mean, however, that we do not hope to learn something interesting and more 
general about such hierarchies. Let us first consider the problem of encoding back
ground knowledge about the structure of everyday objects. As it turns out, trying to 
simply state information about parts of almost any objects introduces some interesting 
problems. For example, we may want to create a description of a first-aid kit, as in 
Figure 1. 
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First aid kit 

a o· 

Figure 1. A first-aid kit 

Now consider scissors, which are part of the the kit. The scissors in the kit could be 
coindexed with another picture of scissors which contains the information that "edge", 
"pivot", "blade", "shank" and "handle" are its parts (e.g. as on p. 487 of [9], which we 
can imagine having in a machine-usable form). Is now "blade" a part of "first-aid-kit"? 
In some circumstances "blade" might be considered a part of "first-aid-kit" (e.g. if a 
sharp edge is needed), but normally it would not be. We notice that we can have 
problems with the transitivity of the part-of relation. We solve it by assuming the 
transitivity of the part-of relation (hence "blade" becomes a part of "first-aid-kit"), al
though we can imagine systems where a part-of relation is not transitive. 

Yet, there are two other, slightly less noticeable, but important and novel, aspects of 
the problem of encoding the background knowledge about the structure of objects. 
They have to do with the difficulty of describing pictures by a simple part-of relation. 
First, despite it not being the case on the picture, we would like to say that "syringe" 
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can be part-of "first-aid-kit" (for instance when someone is allergic to bee stings). 
Secondly, even though on the picture "cotton-applicator" is visible, in reality, it will 
most likely be hidden in a box, and hence invisible. We propose a solution to these 
problems which consists of parameterizing the part-of relation. To this end, we intro
duce two kinds features that are important for multimedia applications: (I) The first 
attribute is iconic(Type,Value) with Type ranging over audible, visible, tactile, X-ray, 
smell(?). The intended meaning of iconic(visible,1) is that we have a "visible" instance 
of the part-of relation, such as "wheel" being a visible part-of "car", or "cotton
applicator" being an invisible part of "first-aid-kit" (with the value of the parameter 
changed from I to 0). By the same token, iconic(X - ray,O) would mean that an object 
is not visible on an X-ray. (2) The second attribute, necessary(J, describes whether an 
object is a necessary (essential) part of another object. Most likely, these are all default 
attributes, and can be overridden in particular cases. Obviously this list of possible 
features is not considered exhaustive, and we would like to state as an open problem 
giving some theoretically satisfying characterization of possible parameters of the 
part-of relation. 

Under this convention we obtain the following (partial) formalization of the structure 
of a first-aid kit and scissors:2 

/* first-aid-kit */ 
pof( syringe ,first-aid-kit 

pof( scissors ,first-aid-kit 
pof( bandage ,first-aid-kit 
pof( aspirin ,first-aid-kit 
pof( rubbing-alcohol ,first-aid-kit 
pof( cotton-swab ,first-aid-kit 
pof( needle ,first-aid-kit 
pof( cotton-applicator,first-aid-kit 

/* scissors; v stands for "visible" 
pof( edge , scissors 
pof( blade scissors 
pof( pivot , scissors 
pof( handle , scissors 

*/ 

,[iconic(v,1 ), necessary(e )]). 

,[iconic(v,1 ), necessary(l )]). 
,[iconic(v,1 ), necessary(l )]). 
,[iconic(v,1 ), necessary(l )]). 
,[iconic(v,1 ), necessary(l )]). 
,[iconic(v,1 ), necessary(l )]). 
,[iconic(v,e ), necessary(l )]). 
,[iconic(v,e ) , necessary(l )]) . 

, [iconic ( v, 1 ) , necessary(l )]). 
,[iconic(v,l ), necessary(l )]). 
,[iconic(v, 1 ) , necessary(l )]). 
,[iconic(v,l ), necessary(l )]). 

Now we can easily define the regular part-of relation as a two-argument predicate, re
presented here as an infix operator pof 

Argl pof Arg2 :-
pof(Argl,Arg2,[iconic(_,_), necessary(_)]). 

and the "visible" -part-of as 

Argl v-pof Arg2 :
pof(Argl,Arg2,[iconic(v,1), necessary(_)]). 

2 The word iconic -- refers to a simplified version of Peirce's classification of signs: icon, index, symbol 

([17] vol. VIII. pp.220-245). 
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where"_" is the "don't care" symbol in our version of Prolog (cf. [8] for an introduction 
to Prolog). Note that there is no possibility of confusing po/with poj(x,y,z) -- the first 
one has two arguments, the other three. 

2.2. From a part-of relation to a mereology 
What we have seen is a database of facts defining the part-of relations. But is it 
mereology? 

Mereology was introduced by Lesniewski (cf. [1] and [21]) as an answer to the Russell 
paradox. The simplest system of mereology is formulated in a first order language with 
the primitive =::; (is a part-of). Other relations such as I (is disjoint from) can be defined 
using =::;, e.g. as xlY - ..., (3z)[z=::; x & z==0i]. The relation =::; should satisfy three pos
tulates. 

• Anti-symmetry 

('v'x)('v'y)[ x =::;y &y =::; x -+ y = x] 

• Disjointedness of parts 

('v'x)('v'y)[x=::;y -('v'z)[zlx-+ zlYJJ 

• An axiom-scheme for sum 

(3x)[ P(x)] -+ (3y)('v' z) [..., (zlY) - 3z'[ P(z') & ..., (ziz') ]] 

We used symbol =::; to encode the part-of relation. In general, we would like to sepa
rate the discussion of formal properties of part-of relations from the discussion of a 
particular computer implementation. We do it, by using the symbols=::;,<,<; etc. for 
the former, and the symbols pof and poj; for the latter. 

Notice that according to these axioms an object is a part of itself, i.e. x=::;x. Moreover, 
the part-of relation =::; is transitive. The axioms of sum says that for any property P 
we can form a sum of all parts that have this property. In particular it follows that one 
can make finite sums taking P(x) = y 1=::;xv ... vyk=::;x. 

Obviously, the facts about first-aid kits together with the definition of pof by a Prolog 
clause do not form mereology as as described by the axioms above or by the various 
axiomatic systems .discussed in [21]; e.g. because the part-of relations poj( ... ) are not 
transitive or do not satisfy the axiom of sum. On the other hand, we have stated some 
facts about the pof relations, and implicitly described their model -- the minimal model 
of the above Prolog program. We could then rephrase the question as: is this a model 
of mereology? Can we make a mereology out of it? The answer depends on our ex
pectations. 

Models of mereologies are partial orderings. For a full classical mereology a model is 
a complete Boolean algebra without O; hence, in the finite case, it has 2n - 1 elements 
(e.g. [7] and [21], p.25). Clearly, given n "atomic" parts (i.e. parts without proper 
subparts) in any realistic scenario, we would not like to have to explicitly represent all 
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2" - 1 elements. At this point we should reexamine the pof relations of Section 2, with 
the view that we could be able to formulate a system of natural mereology in which it 
would be possible to adequately specify the behavior of a multimedia retrieval system. 
Thus, if we look at those examples, we can see that we should take as a model a col
lection of finite partial orders (which itself is a partial order). That way we get e.g. the 
transitivity. For convenience we can assume the existence of the top element 1, intu
itively corresponding to unspecified part containing any collection of objects as sub
parts (i.e. 1 is the answer if there is no real object that satisfies a query). 

The really important question is what to do with the sums. Classical mereology insists 
on the existence of arbitrary sums of parts: any sum of parts of an entity is a part of 
it. Clearly, this cannot be taken literally -- imagine representing the set of all parts of 
a jumbo-jet; we would be facing the combinatorial explosion of parts. On the other 
hand, there are good arguments for allowing (arbitrary?) sums; e.g. in the context of. 
retrieval. To see it, consider the following query: "find an object that has [a,b,c] as a 
subpart". What if a, b, c, and dare parts of A that are listed in the database, but there 
is no part consisting of a, b and c? Then, to retrieve the object A, the system would 
need a rule sanctioning that kind of deduction, i.e. a version of the axiom of sums. 

We return to the question of what does the database of pof relations represent? We 
believe it should be viewed as a model of a mereology. There is no reason to insist on 
one mereology; for instance for a very small database the axiom of sum can be valid, 
because the combinatorial explosion of parts can be contained. But is there a re
lationship between the axioms of a mereology and this model? Yes. The axioms should 
be viewed as database constraints. Hence mereology can be viewed as a theory of 
constraints for databases of the kind we have described above. Then, if the axioms of 
mereology are viewed that way, they should be reexamined in this new context, which 
we will do in Section 4. 

In [24] we have shown that it is possible to formulate various commonsense set theo
ries. We argued that the property of being a set could be relative to a theory; and we 
introduced the notion of "actually constructed" sets. This was done in order to show 
that certain common-sense intuitions about cardinalities and well-orderings can be ex
pressed in such a framework. Namely, we constructed models in which some sets were 
well-ordered without having a cardinality, and vice versa -- models in which there were 
sets with known number of elements, but which could not be well ordered. This paper 
can be viewed as complementing the arguments presented there. Namely, if axioms of 
set theory shape our view of elements in a member-of relations, the same is true about 
mereology defining possibilities and problems in our dealings with the part-of relations. 

3. The role of set t~eory 
In this paper we propose that mereology be used to describe (and constrain de
scriptions of) non-arbitrary collections of objects, while set-theory should be used for 
arbitrary collections of elements. In this section we first introduce the concepts of ax-
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iomatic set theory and then sketch how they can be applied to describe the content of 
multimedia objects. 

3.1. Axiomatic set theory 
Set theory describes sets, i.e. collections of abstract objects. But it does not allow all 
possible collections of objects to exist. It describes sets by dividing abstract collections 
into ''consistent" and "inconsistent" ones. Thus { X: -. ( XeX)} (the Russell class 
of X's which are not members of themselves) is such an inconsistent collection, and its 
existence is forbidden by the dominant set theories. The discovery of inconsistent, 
formally defined collections of objects led to the development of axiomatic set theories 
and Lesniewski's mereology. 

The theory of Zermelo and Fraenkel, denoted by ZF or ZFC (C standing for the axiom 
of choice) is the most important axiomatic set theory. In this theory, the existence of 
a set, such as the set of all natural numbers, is derived from axioms. These axioms are 
formulated in the standard first order language containing additionally the relation of 
membership e. For instance, the axiom of infinity says: 

(3x)[ ({)ex & (V'yex)[yU{y}ex ]] 

By rejecting some of the axioms of ZFC, in particular the axiom of infinity, and slightly 
reformulating the other axioms, we obtain a weaker set theory -- the theory of Kripke 
and Platek or KPU. Barwise and Perry [6] mention KPU as a possible basis for their 
situation semantics (cf. [IO] for an introduction). In KPU, individuals without ele
ments, called points, atoms, or urelements (primitive elements) are allowed to exist 
(while in ZFC the only set without members is the null set ({)). The KPU set theory is 
expressed with the language of set theory containing the additional predicate Atom(.). 
It differs from ZFC in that it does not have the axioms of powerset, substitution 1 and 
infinity. (But :E - replacement, which is a weak version of the axiom of substitution 
is provable in KPU). Moreover the axiom of subsets (separation) applies only to for
mulas with restricted quantifiers -- 8 0 - formulas. (80 formulas have all quantifiers re-
stricted; for instance, V' s3tP(s,t) is not a 8 0 formula, while 
(Vs e a)(3t e b)P(s,t) is 8 0). Also the axioms of choice. and regularity have slightly 
different fomis (for details, cf. [ 4]) 

Axioms of KPU (with Powerset) 

Al. Extensionality: 
(a) Atom( a) -+ -. (s e a) 
(b) -.Atom(a)&-.Atom(b)-+ [ V's(s e a-::;.s e b)-+ a=b] 

A2. Pairing: V's V' t3u[ u = { s, t} ] 

A3. Empty set: 3s[ -. Atom(s) & ( V' t)-. (t e s)] 

A4. Union(binary): V's V' t3u[ u = (s U t)] 

,I I 
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AS. Intersection (binary): Vs V t3u[ u = (s n t)] 

A6. Difference (binary): Vs V r3u[ u = (s - r)] 

A7. Powerset: V s3t[ t = P(s)] 

AS. Union: V s3t'Vu[ u et<==> 3u'[ u' es & u e u']] 

Additionally, the set theory should satisfy the following schemes: 

A9. Regularity ( e - induction): Vs[ (Vt e s) P(t) - P(s)] - V sP(s) 

where P is any formula. 

AIO . .10-Separation(Subsets): 'Vs3t'v'u[u e t<==>u e s&P(s)] 

where P is a .10 - formula 1. 

Al I. .10- Collection: Vs e a3tP(s,t) -+ 3b( 'v' s e a)(3t e b)P(s,t) 

where P is a .10 - formula. 

In addition, the obvious axioms defining the operators P, { ... }, U , n and - are 
needed. 

The axioms of the above .theory are not independent, for instance AS and A2 imply 
A4. But they form three groups of different status: We have no doubt that any set 
theory should satisfy the axioms Al-A6 (group 1). We are not sure that powersets and 
unions (A 7 and A8 -- group 2) should always exist. (But notice that the powerset of a 
finite set can always be constructed by a finite composition of pairing and binary un
ion). One can also argue how strong/weak should be the schemes of regularity, sepa
ration, choice and replacement/substitution (group 3). The axiom of regularity forbids 
e-chains: s e s, s e s1 e ... e s,. e s. · 

3.2. Set theory for multimedia indexing 
How do we imagine the division of labor between set theory and mereology in the 
context of multimedia applications? We would use part-of relations to describe a visual 
dictionary, since objects depicted there have non-arbitrary relations; and use the 
member-of relation to describe a video clip or a picture. Thus, indexes of a multimedia 
d~ta would be sets encoding their attributes. For example, a picture of the mess on 
my desk could have been stored and indexed by the following facts (mof -- stands for 
"member-of'). 

mof( cup, mess-on-the-desk). 
mof( book, mess-on-the-desk). 
mof( papers, mess-on-the-desk). 
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I could retrieve it by formulating a query about, say, a cup and a book. But in a more 
interesting scenario I would like to retrieve it by formulating a query about a handle, 
and to use the facts that "cup" member-of "mess-on-the-desk" and "handle" part-of 
"cup" during the processing of the query. Therefore, for retrieval, the query would have 
to make reference to background knowledge about everyday objects; a formal model 
of such background knowledge, i.e. situation independent collections of facts, was 
presented in [26] under the name referential level. Under the related scheme that we 
propose here, in the simplest case, the background knowledge would consist of a da
tabase of pof( x,y,z) facts. But when more then one decomposition of objects into paris 
is needed it would consist of a database of collections of pof(x,y,z) facts. This would 
happen for instance when it is necessary to reason about assembling a bicycle from a 
kit, where its part-of decomposition for the purpose of assembly does not agree with 
the typical description of bicycle parts, and both are needed for a successful accom
plislunent of the task. Reasoning with background knowledge as consisting of sets of 
theories is discussed in detail in [22], [23], [26] and [27], and we refer the reader there. 

Thus the basic idea behind our proposal should be clear now: a commonsense set 
theory would constrain the object level, while mereology would do the same for the 
background knowledge about what can be a part of what. But, as we did for 
mereology, we can ask the obvious question of how much set theory is actually needed 
to ensure the properties of sets we care about. For example, maybe we only need one 
level of braces { ,} , which is sufficient to encode the mess-on-the-desk as 
{cup, book, papers, ... }. 

While we cannot exclude a possibility of using different sets of axioms describing 
properties of the membership relation, there are convincing arguments that we should 
allow arbitrary sets of objects, and hence the deeper nesting of{ ... }. These deeper 
nesting are useful: with sets we can encode predicate-argument relations. For instance, 
a video in which a dog bites John can be indexed by {bite{dogUohn}}}, while 
{ biteUohn{ dog}}} is the sequel in which John bit off the dog's ear. A similar encoding 
can be done for modification, to encode John bit off the ear of the dog who bit him. 
Then, since there is a priori no limit on the depth of modification, we should not put 
an a priori limit on· the depth of nesting. 

4. The formal system SetNM: Natural mereology with finite set theory 

The language of SetNM is a first order language containing the primitive relations -<j 
and e ; two types: PART and SET; constants I and (/); an infinite number of variables 
of type PART written as xc•J• Yw. zco; an infinite number of variables of type SET written 
as s<•J• t<•J• 1'(o ; an infinite number of predicate names; and equality =. In order to 
simplify the notation we will refer to to all -<j relations by -<. 

Axioms for Natural Mereology with Sets 

The relation -< is defined on PARTxPART; the relation e on SETXSET. The axioms 
for Natural Mereology with Sets consists of three groups: 
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1. The axioms of KPU as described in Section 3. 

2. Axioms defining properties of the part-of relations, as described below. 

3. Axioms relating parts and sets. 

We begin with the last group. 

• Any part is a set (but not necessarily vice versa) 

x -<y - 3s[s = x] 

• The set of atoms is identified with the set of parts, i.e. U =PART: 

('v' s)[ Atom(s) - (3x)[ s = x ]] 

('v' x)[ Atom(x)] 

Now we list the axioms defining the basic properties of-<(. 

• -< is a strict partial order on PARTXPART 

(x-<y)-+ -.(y-< x) 

(x-< y &y-< z)-+ (x-< z) 

• 1 is the unique top element of -< 

x-< 1 

.., (1 -< x), 

('v'x)[('v'y ¥= l)(y-< x) -+ x = 1] 

• Weak Supplementation Principle (p.28 of [21]) 

('v' x)('v'y)[y-< x -+ (3z)[z-< x & zlY ]] 

• Existence of the least upper bound 

('v'x1)('v'x2)(3y)('v'z)[y-< z <:;> X1-< z & X2-< z] 

We end this section with a discussion of the axioms of SetNM. It is easy to see that 
SetNM is a modification of set theory. It is obtained by .postulating that in addition 
to the membership relation a part-of relation with certain properties is defined on some 
sets. The question on which sets it should be defined can be a matter of discussion. 
Thus, although in the axioms that relate sets and parts the first axiom is a consequence 
of the second one, we decided to list both of them, since we can imagine for instance 
a mereology in which atoms are identified with parts which do not have proper sub
parts. 

We do not have extensionality for PART's, although we have it for sets. In the latter 
case, the motivation being that indexes of two different multimedia objects must be 
distinct. Extensionality for PART is not assumed, because we do not want to exclude 
different names for differently arranged collections of the same parts, e.g. a bicycle and 
a bicycle kit. The weak supplementation principle eliminates models of mereology 
where all parts overlap each other. It says that if an individual has a proper part, it 
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must have another part disjoint from the first one. ~otice that in set theory a set and 
its singleton are always distinct, i.e. s * {s}.3 

Finally, we do not assume that sums exist. That is, not all collections of parts form an 
individual in PART. But we do assume existence of the least upper bounds. That is, for 
any finite collection of parts, there is an individual in PART of which all members of the 
collection are a subpart. (The finite case is an immediate consequence ofthe the exist
ence of the least upper bound of two individuals). We believe that the existence ofleast 
upper bounds is sufficient for dealing with decompositions of objects into parts. Notice 
that if a sum exists, then so does a least upper bound, but not vice versa. For example, 
in a simple model consisting of of five objects, the least upper bound of any two ele
ments of A= [a, b, c, d] might be A, but no sum of any two elements exists (cf. the 
discussion in Section 2.2). If a stronger axiom of sums is needed, in [21] we can find 
a discussion of its many variants. 

5. SetNM theories as formalizations of multimedia indexing schemes 
In order to describe the formal model of indexing we are proposing we have to con
struct a model of SetNM. This is easily done. We begin with the mereologies. We as
sume we are given a set R(P) of background knowledge facts about part-of relations, 
perhaps organized by topics, and an active database DB(P) of relevant part-of relations 
which is a subset of a set R(P). We assume it is a collection of ground atoms. In the 
simplest case DB(P) = R(P) is a set of atoms of type x -<;y, e.g. WHEEL-<. CAR ("a 
wheel is a visible part of a car"). More generally, DB(P) can be computed from R(P) 
by the methods of [26] and [27]. At this point, the precise method of obtaining 
DB(P). is not important. However, it is important that the part-of relations described 
in DB(P) satisfy the axioms of mereology described in Section 4. The set PART(P) con
sisting of names of objects that appear in DB(P) will be our set of atoms. 

Since we are interested in models of indexing and retrieval, we must also be given a set 
of indexes /, and obviously we must assume that each index is a set made of atoms 
contained in PART(P). Informally, the set I is a set of descriptions of multimedia data. 
In contrast with PART(P), which satisfies the axioms of mereology, the set I does not 
have to satisfy the axioms of set theory (because there is no reason why a union or an 
intersection of two indexes should be an index). Those axioms have to be satisfied by 
the set of potential indexes, M, which includes /. M is defined as the smallest model 
of KPU that contains the set PART(P) of constants appearing in DB(P) as the set of its 
atoms. Then, by the definition, the structure 

< M, e, -<;> 

is a model of SetNM. (Notice that we have to trivially extend the domains of the 
part-of relations to all the urelements of M). 

J A theory of non-well founded sets where s = {s} is possible is described in [3], and its applications to 
semantics of natural language are discussed in [5] and [25]. 
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A query Q is an open formula in the language L( e , -<.). An answer is a substitution 
8 of indexes (members of I) for all free variables of Q such that 

< M, /, E ' -<; > I= Q[O] 

The queries are fairly expressive. E.g. one can ask for a set of indexes such that they 
contain some unspecified common entity. But, in applications we played with, one 
typically asks for an index with certain properties; this corresponds to restricting que
ries to formulas with just one free variable. To see how it works, let us briefly discuss 
this model of indexing and retrieval. 

Examples: Consider a short video clip about preparation. for a bicycle trip. It consists 
of just two cuts, one showing a bicycle and a tent, and the other the content of a 
first-aid kit. Because we have previously stored the information about parts of bicycles, 
tents, and first-aid kits, the clip can simply be indexed as {{bicycle, tent},fa - kit}. 

What are the queries that would produce this index as an answer? The simplest query 
is the formula fa - kit e Y, which reads "find an index which, contains a fa - kit". A 
slightly more interesting one would be aspirinc(X & Xe Y, which can be translated as 
"find an index which contams aspirin as a part of something"; here this something or 
Xis of course the fa - kit. Now, notice that the query aspirin e Y would not produce 
our set as an answer; neither would we get it using the formula bicycle e Y, because 
bicycle e {bicycle, tent} and bicyde¢{{bicyc_le, tent},fa- kit}. 

However, our query language is expressive enough to encode more forgiving relations 
between objects and indexes. We can define the relations e*t to hold ifs is a member 
of the transitive closure oft, i.e. if either ifs is a member oft, or s is a member of a 
member oft, ors is a member ofa member ofa member oft, and so on. The existence 
of the transitive closure of any set is provable from the axioms. (By the axiom of reg
ularity, there can be only finitely many layers of membership for any set, so the relation 
can be easily expressed in an always terminating computer program). Then, we can 
ask for "an index with a bicycle" by writing bicycle e*Y. 

Notice the influence of the structure of indexes on our ability to control the precision 
and recall. By saying that {a, {b}} is not {a,b} we increase the precision of queries. But 
by using the membership in the transitive closure of indexes, which roughly(!) corre
sponds to identifying all the sets {a, {b} }, {{a}, {b} }, { {{a}}, {b} }, and the like, with the 
set of their atoms { a,b}, we increase the recall. 

6. Some open problems 

There are a number of interesting problems that arise when we try to apply mereology 
to the task of indexing and retrieving of multimedia objects. Some of them, like having 
to deal with necessary part-of s are not new, just acquire a slightly different meaning; 
others, like dealing with visible part-ofs are new. There are problems we have not 
discussed so far, but which can be very relevant, since they have to be solved in prac-
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tice. They can be grouped according to categories, and we give an example in each 
category. The categories are named after the source of the problems. 

Natural language ambiguity 
In our example, the first-aid kit contains a needle. If it contains a syringe, we have 

needle 
needle 

pof first-aid-kit 
pof syringe 

but clearly we are talking about different kinds of needles. Hence the problem of am
biguity (cf. e.g. [12]). The natural question arises: since we cannot assume that names 
refer to the same types of entities (although we can assume that they are related by a 
kind-of relation), what are the consequences of this fact for the logic of the part-of re
lations? 

The content of the database 
The next question is what do the tokens in the database represent. For instance, we 
have 

pof( edge , scissors, [iconic(v,1), necessary(l)]). 

but there are two edges on the picture. There may be various ways of describing what 
is really there, e.g. using multisets or rather multiparts to represent objects with many 
parts of the same kind. But notice that for the purpose of indexing and retrieval the 
information about there being two edges might not be necessary.4 That is, we can read 

edge pof scissors 

as "for any object named 'scissors' there is an object named 'edge' which is a part of 
it". This is also interesting if we compare it with 

edge mof scissors 

(defined as mof(edge,scissors)) under the assumption that sets represent arbitrary col
lections of objects. Here, the expression reads "there is an object named 'scissors' and 
an object named 'edge' which is a part of it". Notice the difference in the quantifiers: 
'v'3 vs. 33. 

What does it mean that a database satisfies some constraints? 
We have said that the axioms ofmereology can be viewed as constraints on multimedia 
databases. But a database can satisfy such constraints in more than one way. For in~ 
stance, the transitivity of the pof relation can be either assured by adding enou.gh 
statements of the form 

x pof y 

so that it is implicitly true, or by adding a rule such as 

X pof Z :- X pof Y , Y pof Z . 

4 lfit is, one might add cardinality as another parameter of the po/( ... ) relation. 
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On the other hand, for a Prolog implementation the axiom of extensionality either for 
SETs or for PARTS (stating that objects with identical members/parts are equal) cannot 
be that easily formulated as a rule of a program, and hence would probably have to 
be regarded as a higher order constraint. However, if our programming language 1s a 
version of CLP [13], such a rule could be formulated. );otice also, we do not have to 
postulate this axiom for SETs if we want to allow the same description to be used for 
different multimedia objects. Intuitively, in that case, a description represents partial 
information about an object. 

Other problems 

Within the context we described there are certainly other interesting problems. For in
stance, with videos we have to confront the problems mentioned on pp.173-251 of 
[21] of creating a mereology that contains a time variable. And, as usual, we can ask 
about computational aspects of various formalizations, e.g. worry about complexity 
issues. 

7. Conclusions 
We have presented a system of computational mereology and set theory. We call it 
"computational" because it addresses some issues of computation, such as restricted 
forms of the axiom of sums, different kinds of part-of relation (visible, x-ray, ... ), and 
because some of the ideas presented here have actually been implemented in a system. 
The other reason for calling it "computational" is to contrast it with the classical 
mereologies, which are not computational, e.g. because the axiom of sums causes the 
combinatorial explosion of parts. More important, they are not computational, be
cause they were presented as axiomatic theories, and not knowledge representation 
schemes. In contrast, in our theory, mereology is used to specify how background 
knowledge about objects and their parts should be used in reasoning about multimedia 
indexes, and the emphasis is put precisely on knowledge representation issues. 

Since the work we are presenting in this paper is the first of the kind, all conclusions 
must be regarded as tentative. For instance, with respect to the axiom of sums, if we 
view axioms of mereology as constraints, then perhaps this axiom should only apply 
to databases containing descriptions of objects with not too many elements. In prac
tice, there seem to be a natural way for describing those subclasses of multimedia da
tabases for which given axioms should hold. But also notice that there may be a less 
orthodox approach which could be universally applicable, even though it might par
tially disagree with the view presented in this paper. Namely, given a database, we can 
make a particular set of axioms true (for the purpose of search) if according to infor
mation retrieval criteria such an augmented database can be successfully queried. That 
is, the inclusion, e.g. of the axioms of sum should depend on its contribution to recall 
and/or precision. Ditto for commonsense set theory. In such a case, more work is re
quired, e.g. to empirically validate the influence of various axioms on recall and preci
sion. 
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An interactive multimedia system is driven by human users, who would welcome in it 
some built-in intelligence. We suggested that a consequence of this fact might be the 
need to use set theories and mereologies for indexing and retrieval, and allowing users 
to search through databases by partial rather than exact match. The parameterized 
pof relations and mof relations can be used to facilitate such a search by similarity. 
Namely, in our experience, it is possible to use both relations for for multimedia in
dexing, and to view mereologies and set theories as constraints on databases of indexes. 
The contribution of the paper lies in identifying the formal apparatus that can be used 
for the purpose of indexing, and, hopefully, in opening a new avenue of research. The 
symmetry between mereology (-ies) and set theory (-ies) -- namely, that the latter 
should be used to encode arbitrary multimedia objects, while the former the relatively 
permanent background knowledge -- is an intuitively valid justification for the ap
proach. From the formal point of view, having two structural relations on individuals 
should lead to as much interesting mathematics as playing with the two principal 
arithmetic operations, plus(+) and times (x). 
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