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CONJUNCTIVE FORKS 
AND TEMPORALLY ASYMMETRIC INFERENCE 

Elliott Sober and Martin Barrett 

I. Introduction 

Why do we know more about the past than about the future? In The Direction of  
Time, Hans Reichenbach argues that this epistemological asymmetry derives 
from a kind of causal asymmetry. Reichenbach [9, p. 159] discusses the three 
structures depicted in Figure 1. The first (la) he terms a double fork; it involves a 
common cause, C, which produces two events, A and B, which, in turn, produce a 
common effect, E. The second structure (lb) Reichenbach calls a fork open to the 
future; it comprises a common cause C and two joint effects A and B. The third 
(lc), a fork open to the past, consists of two causes (A and B) and their common 
effect, E. 

Figure 1 

E E 

A B A B 
A B 

c c 

(la) (lb) (lc) 

Reichenbach identifies a special statistical relationship that can obtain among 
the events in such forks. Forks are said to be conjunctive when the vertex screens 
off each of the tips from the other. Reichenbach's idea, and the meaning of the 
terms just italicized, can be clarified by considering one of his examples. Suppose 
that two actors in an acting troupe show a correlation in the days on which they 
experience gastro-intestinal distress. Each gets sick, let us say, about once every 
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2 Conjunctive Forks and Temporally Asymmetric Inference 

hundred days, so the probability of sickness on a randomly selected day is 1/100. 
If the two actors got sick independently, the probability that both would be ill on 
a randomly selected day would be (1/100)(1/100) - 1/10000. However, let us 
suppose that they get sick together far more often than this probability would 
suggest. Just for simplicity, let us suppose that when one gets sick, the other 
almost always does too. So the probability that both are ill on a given day is 
about 1/100. 

I rA represents the proposition that the first actor gets sick on a given day and 
B represents the proposition that the second actor gets sick on that day, then we 
represent the fact that the sick days are correlated by the following 
inequality: 
(1) P(A&B) > P(A)P(B). 
Reichenbach suggests that this correlation be explained by postulating a 
common cause. We hypothesize that the two actors always take their meals 
together, so that on any given day, either both eat tainted food or neither does. 
Let C be the proposition that the actors eat tainted food at their common meals 
on a given day (and let -C be the proposition that they do not eat tainted food at 
their common meals on that day). Now suppose that eating tainted food raises 
the probability of sickness for each actor: 
(2) P(A/C) > P(A). 
(3) P(B/C) > P(B). 
Suppose, finally, that the actors' probabilities of sickness are independent of each 
other if they eat tainted food together, and that the same is true if they eat 
untainted food together: 
(4) P(A&B/C) = P(A/C)P(B/C). 
(5) P(A&B/-C) = P(A/-C)P(B/-C). 
Reichenbach [10, pp. 157-163] proves that propositions (2)-(5) entail proposition 
(1). This deductive relation is intended to reflect an explanatory one: by 
postulating a common cause that obeys constraints (2)-(5), one thereby explains 
why the actors' sick days are correlated. 

Notice that the concepts of cause and explanation do not occur explicitly in 
(1)-(5). In principle, any triplet of events may satisfy these five requirements. 
Events that do so are said to form a conjunctive fork and the event corresponding 
to C is said to screen-off A from B. (1) expresses the idea that A and B are 
correlated (nonindependent); (4) and (5) express the idea that A and B are not 
correlated (are independent) once one conditionalizes on each of the states of the 
common cause. A correlation is explained by postulating an event that removes 
the correlation, so to speak. There is no paradox here, only the contrast between 
unconditional correlation (1) and conditional independence (4-5). 

Reichenbach is a bit careless about the ontology of the common cause 
structure he describes. Is the 'common cause' the common meals the actors share, 
or is it the tainted food that they consume at some of their meals? This question is 
not an idle one, because inferring the existence of the common meals is a 
different problem from inferring whether the food on a given day was tainted, 
given the assumption that the actors dine together (Sober [15]). Reichenbach 
elides these inferential problems. In what follows we will distinguish the 
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Elliott Sober and Martin Barrett 

common cause from the states that the common cause may occupy. The shared 
meal is the common cause. On any given day, the shared meal is in one of two 
states; either the food is tainted or it is not. A similar distinction will be deployed 
with respect to effects and their states. The terminology used to mark this 
distinction is somewhat stipulative, though the distinction itself is a real 
one. 

The common cause and the states of the common cause can be viewed as 
explaining slightly different aspects of the phenomenon in Reichenbach's 
example. The fact that the actors dine together explains why their sick days are 
correlated. But when the actors are both sick on a given day, this may turn out to 
be due to the fact that they both ate tainted food. The first explanandum concerns 
a pattern that encompasses the longer time frame of the actors' enduring 
association with each other; the second concerns what happened on a single day. 
The common cause structure endures as long as the actors eat together; but on 
each day, the state of  the common cause may change, from tainted to untainted 
food, or back again. 

In Reichenbach's example, A and B are effects of a common cause C. But, as 
already noted, the probability relations defined by (1)-(5) do not explicitly say 
how the concepts of cause and effect apply to the three events. For example, A 
and B might be joint causes of some common effect. This raises the question of 
how the conjunctive fork idea applies to the three causal structures depicted in 
Figure 1. 

Reichenbach [10, p. 161] claims that common effects 'usually' form 
conjunctive forks with their joint causes. And Reichenbach's better known 
Principle o f  the Common Cause says that if simultaneous events A and B are 
correlated, then they always have a screening off common cause. Reichenbach 
[10, p. 162] argues that conjunctive forks exhibiting the first two structures 
depicted in Figure 1 are quite common. He maintains, however, that conjunctive 
forks of the third kind are incompatible with the Second Law of 
Thermodynamics. According to Reichenbach, whenever one thinks one has 
found a conjunctive fork open to the past, it really is a double fork in 
disguise. 

Although Reichenbach's views about these causal structures are clear enough, 
we do not entirely grasp what connection he sees between them and the temporal 
asymmetry in our knowledge. Even if conjunctive forks could exhibit patterns 
(la) and (lb), but not (lc), why would that show that the past is better known than 
the future? This question splits into two: why should we focus on conjunctive 
forks in formulating this epistemological problem? And given that conjunctive 
forks are what we wish to examine, why should the existence of (1 a) and (lb) but 
not (lc) engender an epistemological asymmetry? 

We will not try to reconstruct Reichenbach's reasoning. Rather, we will argue 
against some of Reichenbach's claims about the forks just mentioned. We do not 
see why the Second Law of Thermodynamics rules out the existence of 
conjunctive forks open to the past. In addition, we will argue that a common 
effect rarely forms a conjunctive fork with its joint causes. That is, we will argue 
that (lc) is not impossible, but that (la) and (lc) are both rare patterns for 
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4 Conjunctive Forks and Temporally Asymmetric Inference 

conjunctive forks to exhibit. 
Nevertheless, we think there is something to be said for Reichenbach's idea 

that forks of  various kinds are relevant to explaining why we know more about 
the past than about the future. And entropy turns out to play a role in the 
explanation, though not the determining role that Reichenbach envisions. 

II. Why an Effect Rarely Screens Off One of Its Causes 
From the Other 

Reichenbach held that a common effect (E) 'usually' screens off one of  its causes 
(A) from the other (B). When this is so, it must be because there is a common 
cause (C) that allows the structure to conform to pattern (la). Without such a 
common cause (C), E cannot screen off A from B. 

We doubt both these claims. In this section, we argue that common effects 
rarely form conjunctive forks with their joint causes. This arrangement will be 
rare, regardless of whether there is a common cause (C) in the background. The 
rarity of such arrangements derives from the fact that they are 'mathematical 
accidents,' so to speak. General facts about the structure of such forks suggest 
that effects rarely screen off one of  their causes from the other. 

Let AEB be a fork made of a common effect and its (two) joint causes. When 
we talk about the efficacy of these causes, we mean the four conditional 
probabilities of the form P(E/+A_+B), which we call w, x, y, and z: 
w = P(E/A&B) 
x = P(E/A&-B)  
y = P(E/ -A&B) 
z = P ( E / - A & - B )  

If AEB is conjunctive, there must be a nonzero (unconditional) correlation 
between A and B. This means that their covariance is not equal to 0. (Cov(A,B) = 
P(A&B)-P(A)P(B).) It will be useful to bear in mind that Cov(A,B) can also be 
expressed as P(A&B)P(-A&-B) - P(A&-B)P(-A&B). We will refer to the four 
probabilities of the form P(_+A&+B) as the frequencies of  the causes. 

We now will establish the following theorem: 
Theorem 1: Let AEB be a conjunctive fork made of two causes and their 
common effect. Unless the efficacies of the causes are tightly coupled with 
their frequencies, AEB will not remain conjunctive if the efficacies and/or 
the frequencies change. 

The phrase 'tightly coupled" is imprecise, but our argument will clarify what we 
have in mind. 

Bayes' theorem allows the three conditional probabilities we need to consider 
to be expressed as follows: 

P(A&B/E) = P(E/A&B)P(A&B)/P(E) = wP(A&B)/P(E). 
P(A/E) = P(E/A)P(A)/P(E) 

= [P(E/A&B)P(B/A) + P(E/A&-B)P(-B/A)]P(A)/P(E) 
= [wP(B/A) + xP(-B/A)]P(A)/P(E). 
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Elliott Sober and Martin Barrett 5 

P(B/E) = P(E/B)P(B)/P(E) 
= [P(E/A&B)P(A/B) + P(E/-A&B)P(-A/B)]P(B)/P(E) 
= [wP(A/B) + yP(-A/B)]P(B)/P(E). 

E screens off A from B precisely when 
wP(A&B) = [wP(A&B) + xP(A&-B)][wP(A&B) + yP(-A&B)]/P(E). 

This simplifies to 
(*) wz/xy = P(A&-B)P(-A&B)/P(A&B)P(-A&-B). 
Since A and B have a nonzero covariance, we know that: 

P(A&-B)P(-A&B)/P(A&B)P(-A&-B) ~e 1. 
Note that the left-hand side of  (*) describes a relationship among the efficacies of  
the causes while the right-hand side describes a relationship among their 
frequencies. 

Suppose that the system under consideration, at a given time, satisfies (*). Now 
let the frequencies and/or the efficacies change. Unless these changes are 
precisely 'coordinated,' the resulting values will fail to satisfy (*). 

We believe that it is very often the case that w, x, y, and z are independent of  
how often the four combinations of causes are exemplified in the population of 
interest. For example, the probability of  getting lung cancer, given that you 
smoke and are an asbestos worker, is independent of  the distribution of smokers 
and asbestos workers in the population you inhabit. Many other similar 
examples could be cited. 

We do not deny the existence of systems in which the efficacy of  causes and 
their frequencies are connected. The phenomenon of  frequency dependent 
natural selection is a case in point. For example, in a population of prey 
organisms, rarity may be an advantage, if the predators' search image is keyed to 
common appearance in the preyJ But the qualitative fact that the fitness of a 
character (its 'efficacy' with respect to survival and reproduction) declines as it 
becomes more common is not enough to ensure that (*) will be true. (*) demands 
an exact quantitative relationship between efficacies and frequencies, one that we 
believe is almost never exemplified, even in the 'best case' situation of frequency 
dependent selection. 

In the real world, the frequencies of causes often wax and wane. It also is true 
that the efficacies of  causes can change. In the space of  values that these 
functions may assume, there is only a vanishingly small region in which an effect 
will screen off one of its causes from the other. 

What are the corresponding facts about the mirror image case, in which a 
common cause (C) screens off one effect (A) from the other (B)? We believe that 
such forks often remain conjunctive when the probability of the cause or the 
conditional probability of an effect, given a cause, changes. 

Consider Reichenbach's theatrical example. The two actors (A and B) in the 
theatre company exhibit a correlation in their sick days. The common cause 
explanation (C) of  this correlation turns out to be that the actors take their meals 
together, so that on a given day either both eat tainted food or neither 
does. 

1 Some more detailed examples are discussed in Sober [12]. 
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6 Conjunctive Forks and Temporally Asymmetric Inference 

Supposing that this is a conjunctive fork, will it remain one if we manipulate  
the probabil i ty of the cause? That  is, suppose we augment or reduce the 
frequency with which tainted food is placed on the actors' common table. In  this 
case the fork will remain conjunctive, if it was conjunctive initially. Likewise, 
suppose we give one or both actors a drug that reduces the condit ional  
probabil i ty  of getting sick if one eats tainted food. Again, the numbers will be 
modified, but  the fork will be conjunctive after the intervention if it was 
conjunctive before. 

The present argument goes contrary to Reichenbach's  claim that common 
effects usually screen off their joint  causes from each other. In  addition, our 
argument is independent  of Reichenbach 's  thesis about the ubiquity of double 
forks. As will be explained in the next section, lots.of correlations fail to possess 
screening off common causes. When  A and B are correlated though no common 
cause is at work, there is no special reason why A and B cannot  have a common 
effect E. We do not see why it should be 'harder '  for AEB to be a conjunctive fork 
in the absence of  a common cause C. 

We have compared forks made of one common cause and two effects with 
forks made of one common effect and two causes. However, this preoccupat ion 
with the numbers one and two is dispensable.  Consider  any number  of causes 
+C1, +C2 . . . . .  +Cn and any number  of effects +E l ,  _+E2 . . . . .  _+Em. Let the 
efficacies be the probabil i t ies of  combinat ions of causes given combinat ions  of 
effects; these have the form 

P(+E1 & +E2 & ... & _+Era / -I-C1 & -t-C2 & ... & _Cn). 
The frequencies of causes are probabil i t ies of the form P(_+C~ & _+C2 & ... & 
+Cn). We have posed two questions: 

If the causes screen off the effects from each other, will they continue to do so 
if the efficacies or frequencies of the causes are modified? 
If  the effects screen off the causes from each other, will they continue to do so 
if the efficacies or frequencies of the causes are modified? 

We have argued that the answers are, respectively, yes and almost always 
n o .  

Our argument exploits no special explication of the concept of  cause. We have 
talked about some events causing others, both before and after various 
constituent probabil i t ies are modified. This imposes some modest  constraints on 
what the causal relation can be; it cannot  be so fragile that these changes turn 
causes into noncauses. However, much room is left open concerning how the 
causal relation should be understoodY 

Our argument does not show that  common causes and their jo int  effects often 
form conjunctive forks. We consider  this important  question in section IV. 
Rather, our claim is that once a fork open to the future is conjunctive, it usually 

One theory that is consistent with our claims is the probabilistic theory of causality, 
expounded in various forms by Suppes [17], Cartwright [2], Skyrms [11], Eells and Sober [6], 
Sober [12], and Eells [5]. If causes must raise the probability of effects in all background 
contexts, then the four efficacies in the AEB fork will be ordered as P(E/A&B) > P(E/A&-B), 
P(E/-A&B) > P(E/-A&-B). We emphasize that this theory suffices, but is not necessary, for 
the arguments propounded above. 
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Elliott Sober and Martin Barrett 

will r emain  so w h e n  var ious  const i tuent  probabi l i t ies  are modif ied.  3 A 

conjunct ive  fork made  of  a c o m m o n  cause and its jo in t  effects is robust, whereas  

a conjunct ive  fork m a d e  of  a c o m m o n  effect and  its j o in t  causes is not. 

III. Conjunc t ive  Forks O p e n  to the Past  

In  this section, we wish to describe a coun te rexample  to Re ichenbach ' s  c la im that  

any conjunct ive  fork be tween  two causes (A and B) and their  c o m m o n  effect (E) 

must  be  such that  there  is a screening off  c o m m o n  cause (C) of  A and B. 

It is impor t an t  that  this thesis of  Re ichenbach ' s  not  be trivialized. Suppose A 

has a cause (C,) and  B has a cause (Cb). I f  these two causes have  no th ing  much  

to do with each other, it will be false that  A and B have  a c o m m o n  cause. This  

poin t  should  not  be  obscured  by the trick o f  const ruct ing a composi te  event  C,-  

plus-Cb and  cal l ing this the c o m m o n  cause of  A and  B. 

One  of  us has  descr ibed a general  k ind of  coun te rexample  to Re ichenbach ' s  

Pr incip le  of  the C o m m o n  Cause  (Sober [13, 14]). If  two causal ly  independen t  

processes both show a m o n o t o n i c  increase, then there wilt be  a positive 

corre la t ion between the state of  one and the state of  the other. For  example,  there 

is a posit ive corre la t ion between bread  prices in Bri ta in  and  sea levels in Venice 

over  the last 200 or  so years, since each has  increased with time. Yet no one  thinks 

that  there is a c o m m o n  cause explana t ion  in this case. Each  process  developed 

on  its own; the appropr ia te  explana t ion  is in terms of  separate causes, not  
c o m m o n  ones. 4 

a It should be clear that our talk of'modifying' various probabilities accords no essential role 
to human intervention. The question is whether a fork can be expected to remain 
conjunctive when a constituent probability changes its value. 

4 This is one respect in which our account diverges from the one Horwich [8, pp. 72-74] 
proposes for what he terms 'the fork asymmetry'. Horwich assumes that the Principle of the 
Common Cause is correct; he claims that its truth is explained by the hypothesis of 'initial 
micro chaos'. We think the principle is false; moreover, we don't entirely understand what 
Horwich means by initial micro chaos, nor how this hypothesis is supposed to explain 
Reichenbach's principle. 

The derivation that Horwich provides does not show that correlated event types (each of 
which are rarely exemplified) probably have a common cause. Rather, Horwich assumes 
that this is true. For example, his argument does not show that the actors in Reichenbach's 
example, whose rare sick days are correlated, probably eat together. Rather, Horwich argues 
that if one assumes that they eat together, then on those days on which they get sick, one can 
infer that they probably shared tainted food rather than untainted food. Horwich's inference 
is to the state of the common cause, assuming that the common cause structure is already in 
place. This distinction between inferring the existence of a common cause and inferring the 
state of that common cause on the supposition that the common cause exists, is discussed in 
Sober [15]. 

Horwich believes his derivation cannot be carried out for the common effect of the 
correlated events. The reason is that 'since the time reverse of the condition of initial chaos is 
false, we cannot suppose that the alternative .to a joint effect, E, is some condition relative to 
which A and B would be independent of each other'. We find this argument puzzling. Even 
if the time reverse of the micro chaos hypothesis were not available, why would that show 
that no other principle could underwrite the forward-directed inference? In any event, we 
think that if a common effect exists, then its state may be inferable from the observed state of 
its joint causes. 
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8 Conjunctive Forks and Temporally Asymmetric Inference 

This purported counterexample to Reichenbach's principle would be 
undermined if a composite event were defined and said to be the common cause 
of British bread prices and Venetian sea levels. If Cb causes the former and Cv 
causes the latter, then what prevents one from saying that Cb-plus-Cv is the 
common cause explanation of the correlation? The only thing that prevents this 
is that the contrast between common cause and separate cause explanations 
would lose all meaning. If Reichenbach's Principle of the Common Cause is to be 
meaningful, it must describe an alternative to the separate cause pattern of 
explanation. 

Our present concern is not the Principle of the Common Cause, but 
Reichenbach's thesis that conjunctive forks open to the past are impossible. We 
wish to describe a case in which the event triplet AEB forms a conjunctive fork, 
but there is no event C that provides a screening off common cause of A and B. 
To be sure, our example will be one in which A has a cause; and B will have a 
cause as well. But we deny that these together form a common cause of  A 
and B. 

An example of a conjunctive fork open to the past is not far to seek. We have 
just noted that some correlations are not due to common causes. Let A and B be 
simultaneous events of this sort. In the previous section, we found that the 
condition for A and B to produce a screening off common effect (E) is stringent, 
but not impossible. It is set forth in proposition (*). So let A and B be positively 
correlated because each develops autonomously. And let the probabilities of  A 
and B be related to the probabilities that E has conditional on different 
combinations of + A  and +_B as (*) requires. Here, then, is a conjunctive fork 
open to the past. 

Many autonomous processes involve alternations of on/off states, s Hotter and 
colder weather alternate seasonally on planets, no matter what the solar system is 
to which they belong. The same can be said of the pulsing of pulsars and of the 
dormant and active periods of many organisms. Select two quite dissimilar 
processes that develop on approximately the same time scale. Their states will be 
correlated, but not because of  a screening off common cause. Let each process 
send a signal to some receiver (E), the probabilities of whose on/off  states, 
conditional on the signals it receives (that is, w, x, y, and z), conform to (*).6 Such 
systems will form conjunctive forks open to the past. 

The existence of structures of this sort does not contradict the Second Law of 
Thermodynamics. The easiest way to see this is to consider examples that are 
thermodynamically open; in this case, the Second Law says nothing about 
them. 7 

s The idea of a conjunctive fork could be generalized to n-state or continuously varying 
characters, and arguments parallel to the ones given above would apply. 

6 E can employ randomization to 'decide' whether to go into its on or off state, based on 
occurrences of +A and +B. 

r We also suspect that these structures can be thermodynamically closed, but will not argue the 
point here. 
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IV. W h y  Conjunc t ive  Forks O p e n  to the Future  

are Worth  Cons ider ing  

Re ichenbach ' s  Pr inc ip le  o f  the C o m m o n  Cause  does no t  say that  every c o m m o n  

cause screens off  one  effect f rom the other. Rather,  it says that  every pair  of  

correlated effects has  a screening  off  c o m m o n  cause. 8 One  of  us has developed 

reasons  for th ink ing  that  m a n y  c o m m o n  causes fail to screen of f  the effects from 

each other  (Sober  [13, 14]). 

There  are (at least) two general  cases in which a c o m m o n  cause fails to screen 

off. Suppose  a p rox imal  cause  screens off  the effects f rom each other  and  that  the 

p rox imal  cause also screens off  the distal cause from the effects (Figure  2a). In 

this case, the distal cause wilt n o t  screen off  the effects f rom each other.  Secondly,  

suppose there are two c o m m o n  causes o f  the two effects (Figure 2b). I f  the total 

state of  this pa i r  of  causes screens off  each effect f rom the other, then  nei ther  

c o m m o n  cause, taken by itself, will screen off. ° 

Figure 2 

E1 E2 

Cp 

Cd 

E1 E2 

C1 C2 

(2a) (2b) 

C o m m o n  causes are often distal rather  than  proximal .  A n d  where there is one  

c o m m o n  cause, there often is another.  For  these two reasons,  we believe that  

m a n y  c o m m o n  causes fail to screen off. 1° 

8 We ignore here the fact that a correlation may be explained by saying that one of the 
correlates causes the other. That is, we will assume in the examples we'll consider that the 
correlation cannot be explained in this way; rather, the Reichenbachian approach will be to 
postulate a common cause. 

9 Proofs of these claims are provided in the Appendix to Sober [131 and in Sober [14, 
pp.97-99]. 

~o These results about nonconjunctive forks open to the future help clarify the asymmetry that 
should be associated with Theorem 1. A conjunctive fork open to the future can be rendered 
nonconjunctive, either by making the common cause distal, or by introducing a second 
common cause. The robustness claimed for conjunctive forks open to the future has to do 
with interventions in which it is the probability of the cause or the conditional probability of 
the effect given the cause that is modified. It is with respect to these interventions that forks 
open to the past differ from forks open to the future. 
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10 Conjunctive Forks and Temporally Asymmetric Inference 

The somewhat modest point in Reichenbach's principle that is unaffected by 
these examples is that a complete description of all the causal facts will screen off 
the effects from each other. The only problem with this claim, as far as we know, 
is that it is inconsistent with ideas stemming from quantum mechanics. 11 But 
such considerations to one side, the principle seems quite plausible. 

The principle, thus understood, has at least one methodological implication. It 
says that if one's description of the causal facts fails to induce a screening off 
relation, then one's description is incomplete. But the principle cannot be 
invoked to underwrite the claim that the common causes one has established in 
(as yet incomplete) science form conjunctive forks with their joint effects. 

The problem is this: Reichenbach suggests that the existence of forks made of 
common causes and their joint effects helps explain why we know more about 
the past than about the future. Presumably, the forks that contribute to our ability 
to make better inferences about the past than about the future must be forks that 
we know about. But why should we think that these forks, which we know about 
as part of our incomplete knowledge of the world, are conjunctive? The Principle 
of the Common Cause does not provide an answer. 

The forks we wish to consider involve what we will call a main process from 
cause (C) to effect (E) and a branch process that leads from the cause (C) to a 
trace (T). The trace is something we observe now. The effect term (E) in the main 
process will exist in the future. This structure is depicted in Figure 3. 

future 

present 

Figure 3 

T 

pas t  
C 

Traces include such paradigm cases as fossils. An ancestral organism (C) has 
two effects. It produces a fossil (T), which we now observe. It also produces a 
lineage, which eventuates in a descendant organism (E) that exists in the 
future. 

Written records provide another salient example. The Pharaoh's court in 
ancient Egypt (C) may have two effects. Scribes may write down a description of 
the court, which is transmitted through a series of scribes until we now have 
before us a derivative text (T). The Pharaoh's court also has an impact on 

11 See Van Fraassen [18] for discussion of why the violation of Bell's inequality conflicts with 
Reichenbach's Principle of the Common Cause. 
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Elliott Sober and Martin Barrett 11 

Egyptian society, which through a chain of  interactions produces the Egyptian 
society that will exist in the future (E). 

In both these examples, we eventually want to consider why (or in what 
circumstances) T provides more knowledge about C than it does about E. 

What could entitle us to think that these examples involve conjunctive forks? 
The state of the ancestral organism is hardly the only cause of  the shape of the 
fossil or the characteristics of  the descendant. The state of  the Pharaoh's  court is 
hardly the only cause of  what the derivative manuscript says or of the 
characteristics of  future Egyptian society. For this reason, Reichenbach's 
principle (which formulates a sufficient condition for a fork's being conjunctive) 
does not entail that either fork is conjunctive. The suspicion therefore should 
arise that the conjunctive fork model is hopelessly idealized. 

We believe that this suspicion is exaggerated. For there is a fairly general 
circumstance, depicted in Figure 4, in which a common cause does screen off the 
effects from each other, even though other causes also contribute to the effects. 
In such cases, the common cause does not constitute all the causal facts, but it 
screens off nonetheless. 

Figure 4 
E F 

B C D 

We will establish the following theorem: 
Theorem 2: Suppose that C is a common cause of  E and F, that B causes E 
but not F, and that D causes F but not E. If  (i) the total state of all the 
causes (B,C,D) screens off the effects from each other, (ii) the causes that 
contribute to an effect screen off that effect from the cause that does not 
contribute, and (iii) the causes are statistically independent of  each other, 
then C screens off E from F. 

We begin by defining some conditional probabilities: 
h = P(E/B&C) w = P(F/C&D) 
i = P(E/ -B&C)  x = P ( F / - C & D )  
j = P(E/B&-C)  y = P ( F / C & - D )  
k = P ( E / - B & - C )  z = P ( F / - C & - D )  
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12 Conjunctive Forks and Temporally Asymmetric Inference 

The probabilities of one or both effects, giyen the common cause (C), are as 
follows: 
P(E/C) = E P(E/+B&C)P(+_B/C) 

= hP(B) + iP(-B). 
P(F/C) = ~ P ( F / + D & C ) P ( i D / C )  

= wP(D) + yP(-D). 
P(E&F/C) = E P(E&F/+B&±D&C)P(+B&+__D/C) 

= ~ P(E/+B&C)P(F/+D&C)P(+B&+_D) 
= hwP(B&D) + hy(B&-D) 

+ iwP(-B&D) + iyP(-B&-D). 
Note that P(E&F/C) is just the product of P(E/C) and P(F/C). TM 

So here is a case in which a common cause screens off its effects from each 
other even though other causes contribute to the two effects. Notice that the other 
contributing causes are not common  causes; without this assumption, we would 
face the counterexample depicted in Figure 2b. 

How general a circumstance does this theorem describe? We believe that it is 
realistic enough to be of some interest. Consider the two examples described 
before. In the first, an ancestral organism produces a fossil as well as a descendant 
organism. Admittedly, many other factors impinge on the shape of the fossil, and 
still other factors affect the characteristics of the descendant. But to a large extent, 
the further factors affecting the one will be quite different from the further factors 
affecting the other. 

In the second example, the Pharaoh 's  court gives rise to a manuscript that is 
handed down to the present day. The Pharaoh's  court also causally contributes to 
the characteristics of future Egyptian society. Admittedly, the present day manus- 
cript and the future state of Egyptian society are both affected by factors 
additional to what went on in the Pharaoh's  court. But to a considerable extent, 
the additional factors affecting the one will be disjoint from the additional factors 
affecting the other. 

We do not advance this as an absolute claim, nor as one of total generality. It is 
easy to describe how the factors additional to C can include common causes. But 
we believe that in many cases, there will be no such further common causes, or 
their contributions will be modest enough that they may safely be ignored. This, at 
any rate, is our rationale for exploring the case in which a fork composed of a 
common cause and its effects is conjunctive. 

V. Two Theorems about Conjunctive Forks 

In a conjunctive fork TCE with vertex C, we observe the state that T occupies. 
From this observation, we infer the state that C is in; we also infer what state E 
occupies. We wish to investigate the circumstances under which observing T 
allows one to know more about C than about E. 

T, C, and E may be in different states. For simplicity, we will suppose that each 
may be in state '0' or in state '1'. Let 'To' express the proposition that T occupies 

12 A parallel derivation establishes that P(E&F/-C) = P(E/-C)P(F/-C). 
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£11iott Sober and Martin Barrett 13 

state 0; similarly for the other nodes C and E and the other state the nodes may 
occupy. What information T provides about the other nodes depends on which 
state T is found to occupy. Learning that To may provide more information about 
C (or about E) than learning that T1. So when we talk about 'the information pro- 
vided by observing T,' we have in mind an expectation; the quantity of  interest will 
be an average over the information that would be provided by To and by T1, the 
weighting being supplied by the probabilities P(To) and P(T0. 

We shall measure the knowledge we have about a given node - -  C, for example 
- -  in terms of the sharpness of  the probability distribution we assign to its states. 
When we believe that P(Co) = P(C0 = 0.5, we are maximally uncertain about 
what state C occupies; when the probabilities are close to 0 and 1, we know 
a great deal. 

It is important to keep clearly in mind three different measures of  uncertainty 
(or information). There is the prior information we possess about C; this reflects 
how sharp the probability distribution of C's states is before we observe what state 
T occupies. Second, there is what we learn about C from observing T; this 
measures how much observing the state of  T changes the probability distribution 
we assign to C. Information theorists (following R.A. Fisher) call this the mutual 
information (M[C,T]). Third, there is the total information we have about C, once 
we have observed T? z This reflects what we knew prior to making the observation 
and what the observation teaches us. 

Intuitively, we might expect this third quantity to be the sum of the first 
two: 

Total(C/T) = Prior(C) + Mutual(C,T). 
This intuition turns out to be correct, once these three quantities are defined in the 
way we propose? 4 

Prior(C) is the neg-entropy of C. Total(C/T) is the expected neg-entropy of C 
conditional on T, where the average is over the different states that T might 
occupy. And Mutual(C,T) is the mutual information that each of  C and T pro- 
vides about the other. These are defined as follows: 

Prior(C) = ~i P(Ci)[logP(Ci)]. 

Total(C/T) = Z P(Ci/Tj)log[P(Ci/Ti)]P(Tj). 
i,j 

Mutual(C,T) = .Z P(Ci&Tj)[logP(Ci/Tj)] - P(Ci)[logP(Ci)] 
1,j 

= .Z P(Ci&Tj)log[P(Ci&Tj)/P(Ci)P(T3)]. 
14 

Mutual information is a symmetrical measure of the relationship between the two 
random variables. It is zero when observing the state of T does not modify the pro- 
bability assigned to C. 

The summations in the above expressions are needed since we wish to com- 
pute expectations over the possible states of  the random variables involved. This 
complication aside, the relationship between these three quantities is rather sire- 

is Properly speaking, mutual information and total information are expectations, since they are 
averages over the states of T. This will be explained presently. 

14 A fuller defence of these choices of measures is provided in Barrett and Sober [1]; see 
Khinchin [9] for discussion of the relevant mathematical ideas. 
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14 Conjunctive Forks and Temporally Asymmetric Inference 

pie. If P(H) is the probability one assigns to the hypothesis H before determining 
whether O is true, and if P(H/O) is the probability that H has, once one learns that 
O is true, then P(H/O) - P(H) measures the degree to which O confirms H. It may 
be positive (if O confirms H), negative (if O disconfirms H), or zero (if O fails to 
say anything about H). The posterior probability is thus the sum of the prior pro- 
bability and the degree of confirmation. 

Note that it is possible for an observation to strongly confirm H although H 
remains highly dubious after the observation is made. Suppose that P(H) = 0.0001 
and P(H/O) = 0.5. H has gained in credibility. But this does not mean that we are 
entitled to be very confident that H is true. 

Similarly, an observation can have little or no impact on the plausibility of H 
and yet H may be quite plausible nonetheless. Suppose that P(H) = 0.95 and P(H/ 
O)= 0.95. In this case, H is plausible in the light of the observation O even though 
O does not confirm H. 

We do not wish to argue that ordinary usage of words like 'confirms' precisely 
coincides with the distinctions we have just drawn. Suffice it to say that these dis- 
tinctions are important. The diachronic measure of how much difference an 
observation makes to the plausibility of a hypothesis should not be confused with 
the synchronic measure of how plausible the hypothesis is, either before or after 
the observation is made. 

The first theorem about conjunctive forks was independently established by 
Van Rijsbergen [19] and Forster [7]. It says that T provides at least as much infor- 
mation about C as it does about E: 

Theorem 3: If TCE is a conjunctive fork with vertex C, then M(C,T) >_ 
M(E,T). 

A proof is provided in the Appendix. 
What does this theorem say about the conditions under which observing a 

trace provides more knowledge about the trace's cause than about some other 
effect (possibly in the future) of that cause? We wish to emphasize that mutual 
information describes howm uch one learns, not how much one knows in the light 
of the observation. In the vocabulary introduced above, it is a diachronic measure 
of the (average) change in opinion brought about by the observation. This is quite 
different from the synchronic measure --provided by what we have called Total(-/ 
-) - -  of how sharp the distribution can be expected to be in the light of the 
observation. 

So in terms of learning, it is quite reasonable to think that conjunctive forks 
open to the future give rise to a temporal asymmetry. We observe a trace now. This 
may affect our degree of confidence in the slate of the past event C; it also may 
affect our degree of confidence in the state of the future event E. When the fork is 
conjunctive, T ' s  impact on C cannot be less than T ' s  impact on E. 

As noted above, how much you learn from T about C (or E) should not be con- 
fused with how much you know about C or (E) in the light ofT. It is not an uncon- 
ditional fact about conjunctive forks that Total(C/T) 2 Total(E/T). This is easy to 
see once two simple sums are placed side-by-side: 
(6) Total(C/T) -- Prior(C) + Mutual(C,T). 
(7) Total(E/T) = Prior(E) + Mutual(E,T). 
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Elliott Sober and Martin Barrett 15 

Theorem 3 asserts an unconditional relationship between the mutual information 
terms in each equation. Simple arithmetic then provides a sufficient condition for 
Total(C/T) >_ Total(E/T): 

Theorem 4: If TCE is a conjunctive fork with vertex C, then Total(C/T) >_ 
Total(E/T) if Prior(C) >__ Prior(E). 

In other words, one can expect to know more about the past event C than about 
the future event E, after observing the state of the trace T, i f  entropy increases in 
the main process from C to E. 

The approximate Second Law of Thermodynamics says that entropy never 
decreases in closed systems. However, we do not think this shows that Theorem 4 
is the key to understanding why we know more about the past than about the 
future. For one thing, many processes are not thermodynamically closed. 
Furthermore, when entropy is given a nonthermodynamic interpretation, there is 
no guarantee that entropy will increase. 15 Still, Theorem 4 is not without its 
interest. We have here a sufficient condition that connects the idea of a conjunc- 
tive fork with the problem of why we know more about the past than about the 
future. Cases not covered by this sufficient condition will be discussed in the 
next section. 

We wish to emphasize that Theorems 3 and 4 apply to conjunctive forks open 
to the past just as much as they apply to conjunctive forks open to the future. No 
temporal assumption figures in their statement or proof. For this reason, these 
theorems do not, by themselves, give rise to a temporal asymmetry. Matters 
change, however, when they are brought into contact with Theorems 1 and 2. For 
if a common effect rarely forms a conjunctive fork with its joint causes, while a 
common cause often forms a conjunctive fork with its joint effects, then the asym- 
metries established in Theorems 3 and 4 do give rise to temporal asymmetries. 

Theorems 3 and 4 apply to any triplet of events such that one of them renders 
the other two conditionally independent. We have thought of these results as 
applying to the case in which it is a common cause that screens off. But other 
structures can exemplify this pattern as well. Consider the causal process depicted 
in Figure 5a from present (N) to near future (F~) to distant future (Fd). If the pro- 
cess is Markovian, then Fn screens offN from Fd. In this case, learning the state of 
N can be expected to change one's opinion about Fn more than it will change 
one's opinion about Fa (Theorem 3). And when entropy increases with time, 
observing the present allows one to know more about the near future than about 
the distant future (Theorem 4). 

is In Barrett and Sober [1], we discuss entropy's relevance to the issue of temporally asymmetric 
inference. Some examples of how entropy behaves in nonthermodynamic situations (e.g., in 
evolving Mendelian populations) are discussed there. 
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16 Conjunctive Forks and Temporally Asymmetric Inference 

Figure 5 

Fd 

Future 

Present 

Frl 

N N 

Past er 

T 
Pd 

(5a) (5b) 

Symmetrical remarks apply to the case (depicted in Figure 5b) in which one 
observes the present (N) and makes inferences concerning both the recent past 
(Pr) and the distant past (Pd). If the intermediate node screens off the two end 
points from each other, then the present is more informative about the recent past 
than about the distant past (Theorem 3). And when entropy decreases with time, 
observing the present allows one to know more about the recent past than about 
the distant past (Theorem 4). 

Change in entropy provides a sufficient condition for various epistemological 
asymmetries. In the case of conjunctive forks open to the future, entropy increase 
in the main process suffices for C to be better known than E. But sufficiency is not 
necessity. We turn now to cases of declining entropy. What epistemological asym- 
metries do they exhibit? 
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E11iott Sober and Martin Barrett 

VI. Declining Entropy in the Main Process 

17 

In this section we examine cases in which entropy declines in the main process 
from C to E; the goal is to determine when this constraint permits the past to be 
better known than the future. Subtracting equation (7) from equation (6), we 
obtain: 
(8) [Total(C/T) - Total(E/T)] = [Prior(C) - Prior(E)] 

+ [Mutual(C,T) - Mutual(E,T)]. 
The rightmost bracketed term is known to be positive by Theorem 3. The first 
bracketed term on the right side is by assumption negative; that's what decreasing 
entropy means. It follows, then, that the sign of the left side will depend on which 
of the two terms in brackets on the right side is larger. This appears to be a com- 
plex matter. 

The probability distribution of  a conjunctive fork TCE has five degrees of 
freedom. If we choose values for P(C1), P(T1/C0, P(T1/Co), P(E1/C0, and P(E~/Co), 
the entire probability distribution is determined. That is, all eight quantities of the 
form P(Ti & Cj & Ek) can be computed from the five values just given? 6 Moreover, 
the five values can be chosen independently. This creates, in effect, a five- 
dimensional problem. 

We do not have an analytical solution to this problem. However, we 
investigated the behaviour of (8) via computer simulations. For notational 
convenience, we label the five values as follows: 

c = P ( G )  
t = P(T~/C0 x = P(E~/G) 
u = P(T1/Co) y = P(E~/Co) 

The variables c, x, and y govern the main process (from C to E) in the fork; c, t, and 
u govern the branch process that leads from C to the trace T. We began by fixing c; 
initially, we set c = 0.5. Since at this value the prior information about C - -  
Prior(C) - -  attains its minimum value (i.e. the entropy at C is maximal), c = 0.5 
insures entropy non-increase from C to E. We then treated t and u as parameters 
to be varied; for each assignment of  values to t and u, we computed the left side of 
(8) throughout the unit square in the x-y  plane (that is, for all values ofx  and y in a 
discrete array). 

Figure 6 depicts the results of  eight such simulations. In each case, [Total(C/T) 
- Total(ET)] is positive within elliptical region running from lower-left to 
upper-right; within this region the past is better known than the future. A negative 
value for this quantity represents cases in which the future is better known than 
the past; these correspond to areas outside the ellipse. 

18 Five values suffice rather than seven because of the screening-off condition. For example. 
P(TI&CI&E1) = P(TI&E1/G)P(G) = P(T1/C~)P(E~/C1)P(C~), where the last equality 
follows because C screens off T from E. 
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18 Conjunctive Forks and Temporally Asymmetric Inference 

Figure 6 

0 1 2 3 45  6 7 8  

p(E/-C) 

0 1 

8 
7 

6 

5 

4 

3 

2 

1 

p (E/-C) 

The eight cases depicted in Figure 6 correspond to the following assignments. 
In  each, recall that we set c = 0.5: 

t // 

1. P(T1/G)  = 1.0 P(T1/Co) = 0.2 
2. P(T~/C1)  = 0.9 P(T~/Co) = 0.1 
3. P(T~/C1) = 0.99 P(T1/Co) = 0.49 
4. P(T1/G)  = 0.75 P(T1/Co) = 0.25 
5. P(T1/C~) = 0.87 P(T~/Co) = 0.37 
6. P(T~/C~) = 0.98 P(T1/Co) = 0.78 
7. P(T~/C~) = 0.6 P(T,/Co) = 0.4 
8. P(T~/C1) = 0.79 P(T1/Co) = 0.59 

Moving down the list increases the region within which the future is better known 
than the past. 

The major  axis for all these ellipses is the same. lr  The minor  axis varies 
depending on t and u. The ellipse gets fatter as }t-uJ gets larger - -  that is, as the 
strength of the correlation between C and T increases. When  C and  T are highly 
correlated, Total(C/T) exceeds Total(E/T) for 'most '  values of x and y. 

17 This major axis may be shifted by selecting a value for P(C1) other than 0.5. 
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We hasten to add that 'most' does not mean 'all'. Even when T and C are 
strongly correlated, there still are regions in which the future is better known than 
the past. This will be true when P(E1/C1) and P(E1/Co) are either both close to 1 
or both close to 0. In  other words, when P(E1) is close to 1 or close to 0, the future 
will be better known than the past, if P(C0 = 0.5. This is entirely intuitive; if one 
is a priori quite certain about the future and a priori quite uncertain about the 
past, observing a highly reliable trace may not reverse this asymmetry? 8 

The computer evidence strongly suggests the following conclusions. The 
minor axis of  the elliptical region increases monotonically with I t-u I, and also 
with [ (t+u)/2 - 1/2 I. TM Whenever C and T are well-correlated d t-ul is near 1) or 
either u = P(T~/Co) is near 0 or t = P(T~/C0 is near 1, Total(C/T) exceeds Total(E/ 
T) for 'most'  values of  x and y. 

Traces may vary in their reliability. A 'good' trace, we might say, is highly 
correlated with the event of which it is a trace. Ordinary usage also assigns a 
causal meaning to the word 'trace'. For T to be a trace of  C, C must cause 
T. Even if we had excellent indicators of  the future, these would not be traces of 
the future, properly speaking. 

This causal requirement (coupled with the assumption that cause must precede 
effect) does not entail that a trace allows us to know the past better than we know 
the future. Although T is a trace of C but not of E, it does not follow just from this 
that Total(C/T) > Total(E/T). 

Nevertheless, a good trace in a conjunctive fork will enshrine this 
epistemological asymmetry, except when the past is highly uncertain a priori and 
the future is highly certain a priori. The goodness of a trace comes in degrees; so 
does the a priori degree of  certainty attaching to past and future. The results 
represented in Figure 6 show how these quantities may be traded off against each 
other while preserving the temporal asymmetry. 

We do not claim that 'most' conjunctive forks open to the future are such that 
Total(C/T) > Total(E/T). We do not know how to quantify the idea of 'most' in 
this setting; in addition, it is unclear how often the trace in a fork is a good 
one. However, we are more confident about the pattern that obtains for those 
conjunctive forks with good traces that human beings bother to discuss. 

We usually apply the word 'trace' to events that we think are good traces. What 
is more, we usually bother to gather the evidence provided by traces only when we 
are not already certain about the states of  C and E. So in practice, we usually 
make inferences within conjunctive forks only when we believe P(C0  and P(E0 
are not extreme and when we believe that C and T are reasonably highly 
correlated. For cases of this sort, the trace allows us to know more about the past 
than about the future. 

~a An example: let C be the diet you ate at age 10, T your present medical records that describe 
that diet, and E whether you will be dead by age 90. We are rather uncertain about C but 
highly certain about E before we look at the medical records. This difference may remain in 
force even after we look at the records, depending on how reliable the records are as traces of 
your earlier diet. 

~ This latter quantity measures the shift of the [u,t] interval away from 'dead centre' of 
[0,11. 
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VII. Conclusion 

The question 'why do we know more about the past than about the future?' needs 
to be regimented. Otherwise, it will not be clear what the appropriate paired 
comparisons ought to be. The two of us know more about what we will eat for 
dinner tomorrow than we know about what Boswell and Johnson ate on any given 
night. But surely this is to compare apples and oranges. 

In this paper we have regimented the problem of comparison by envisaging a 
main process that extends from past to present to future. A present trace, which 
branched off from that main process some time in the past, is the object whose 
state we are able to observe. On the basis of  that observation, we ask whether the 
past state of the main process is better known than the future state of  the main 
process. This is not the only way to make the comparative problem precise, but it is 
an important one to consider. 2o 

The resulting structure is a fork open to the future. The earliest event we called 
the 'cause' (C) of the main branch effect (E) and the trace (T). The causal 
language here is incidental to some of  the results we obtained. When TCE is a 
conjunctive fork open to the future, certain informational asymmetries exist. The 
fact that C is the common cause of Tand E may be important, but it is not a 
condition on which Theorems 3 and 4 depend. 

It is also an incidental fact that E occurs in the future. E could be any event on 
the main process that happens after C. Because of our interest in temporal 
asymmetry, we assumed that E occurs after both C and T. What this shows is that 
the informational asymmetries do not depend on the futurity of E, but on E's 
topological relationship to C and T. 

We have explored some of the epistemological consequences of conjunctive 
forks open to the future. But for this to reveal some real epistemological 
asymmetry, we had to consider whether there are conjunctive forks open to the 
past and whether such forks, were they to exist, would enshrine asymmetries that 
are mirror images of the ones just mentioned. 

Theorems 3 and 4 apply to any conjunctive fork. If  common effects usually 
form conjunctive forks with their joint causes, full symmetry would be restored. 
But such forks are rare, or so we argued in connection with Theorem 1. In 
contrast, we took Theorem 2 to show that common causes often form conjunctive 
forks with their joint effects. Altogether, these four theorems point to a genuine 
epistemological asymmetry. Conjunctive forks of one kind are common, whereas 
conjunctive forks of the other kind are rare. And the common kind does show 
why we often know more about the past than about the future. 

Still, there are reasons to be circumspect about thinking that this analysis is 
the key to the general epistemological problem. Indeed, we are not confident that 
there is a single key; perhaps the temporal asymmetry in our knowledge is a 
mixture of several different phenomena (Sober [16]). 

Another case to consider involves a process that extends from past to present to future. We 
observe the present state of the process and, on that basis, retrodict the process's past and 
predict the process's future. This 'topology' of the inference problem is explored in Barrett 
and Sober [1]. 
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One l imitat ion is that this analysis focuses exclusively on conjunctive forks. 
This has more generality than might first appear, in that it also encompasses 
causal chains in which the intermediate node screens off the end points from 
each other31 However, there also are nonconjunctive forks as well as other 
topologies whose inferential  properties we have not considered. 

A second l imitat ion is that  the framework used here requires a somewhat 
definite probabil i ty  model  of  the various processes involved. We formulate an 
inference about the past  and  an inference about the future. We then ask under  
what circumstances the past  is better known than the future. The answer depends 
on relationships that obtain among the relevant probabilities. I f  entropy in the 
main  process increases with time, then a simple asymmetry results (Theorem 4); 
if entropy declines, a more complex analysis is required. For  examples in which it 
is possible to say what happens  to the entropy, our results apply. But when this is 
something we cannot  judge, our results do not show why the world is 
epistemologically asymmetrical.  

The difficulty here is not that entropy is a concept that applies only to 
chambers of gas. Entropy is not that l imited a concept; it is well-defined 
whenever probabil i ty is. 22 Rather, the problem arises when we are unable  to say 
anything about the probabi l i ty  distributions attaching to events C and E. 
Bayesians will not feel the bite of this point, since they think that such 
probabil i t ies are always well-defined. But for those who reject this Bayesian idea, 
the fact that our treatment requires a probabi l i ty  model may represent a real 
limitation. 

However, we do not believe that this l imitation is egregious. How much it 
matters will vary from one applicat ion to another. The probabil i t ies we have 
talked about are often empirical ly determinable. Once a scientist subsumes a 
token event under  some suitable type-description, it often will be possible to infer 
probabili t ies from observed frequencies. 23 

We have approached the problem of  why we know more about the past  than 
the future within a probabil is t ic  framework. This is at variance with many 
phi losophical  explications of  the concept of knowledge, but  is more in accord 
with how philosophers sometimes approach the concept of justified belief. It may 
be doubted whether a piece of papyrus gives us knowledge of the Pharaoh 's  court 
or whether a fossil gives us knowledge of an extinct animal 's  morphology. 2. Such 
doubts presuppose a strong reading of the concept of knowledge that is quite 

21 The results of this paper apply to such chains when we imagine ourselves to observe the state 
of one of its endpoints. The case in which we observe the state of the midpoint is treated in 
Barrett and Sober [1]: 

22 This point is developed in Barrett and Sober II1 in connection with Earman's [4] and 
Horwich's [81 discussions of entropy. 

23 We believe that our analysis is consistent with one standard criticism of Bayesianism. Critics 
often insist that a hypothesis has a probability only if it describes the possible outcome of a 
chance process. They therefore deny that scientific laws have probabilities. Note that the 
statements that receive probabilities in our treatment describe events; they do not express 
universal generalizations. 

24 For example, Dretske's [3] theory of knowledge says that the state (f) of a fossil provides 
knowledge of the state (a) of an ancient ancestor only if the fossil would not have been in 
state f if the ancestor had not been in state a. We think that there is a strong conventional (or 
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22 Conjunctive Forks and Temporally Asymmetric Inference 

alien to the kind of  evidence that the sciences are able to provide. We do not take 
this to show that such strong readings of  the knowledge concept are mistaken, 
but that they are irrelevant. Those who think that knowledge imposes such strong 
requirements should view this paper  as discussing, not knowledge, but  justified 
belief. The question is not why we know more about the past  than about the 
future, but  why we have better justification for our beliefs about the past  than for 
those that are about the future. 

It may be objected that the approach we have adopted cannot  hope to explain 
the temporal  asymmetry in our knowledge, since that knowledge was temporal ly 
asymmetric long before anyone thought to apply a probabil i ty model. We reject 
this criticism. We believe that we have identified a family of probabi l i ty  
asymmetries in the world? s Conjunctive forks in aature have this property: when 
we learn about them, we will find ourselves better able to know the past  than the 
future. Our  results provide some justification for the commonsense idea that we 
know more about the past  than about  the future, even though the framework we 
have used is not part  of common sense. Just as Reichenbach suspected, it is 
asymmetries in the causal structure of  the world that engender temporal  
asymmetries in what we know about  the world. 26 
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Appendix:  Proof  of Theorem 3 

We show that M(T,C) > M(T,E) if TCE is a conjunctive fork with vertex C. We 
follow Van Rijsbergen's [19] proof. Recall  that 

M(T,C) = .E. P(Ti&Cj)Iog[P(T~&Cj)/P(TOP(Cj)] 
1,j 

M(T,E) = E P(Ti&Ek)Iog[P(Ti&Ek)/P(Ti)P(Ek)]. 
i,k 

Where H is the entropy function, let 
A = H(T) - M(T,C) 
B = H ( T ) -  M(T,E). 

a4 continued... 
contextual) element in how this counterfactual should be interpreted. However, on one of its 
natural readings, the condition is not satisfied. Relative to that reading of the counterfactual, 
Dretske's theory would have us conclude that the fossil does not provide knowledge of the 
ancestor's morphology. The sciences typically confront situations in which a given body of 
data has more than one possible explanation. If this renders the sciences incapable of 
providing knowledge (properly so called), so much the worse for the concept of 
knowledge. 

a5 In arguing for the various asymmetries discussed in this paper, we have taken the concept of 
cause and our everyday and scientific descriptions of causes at face value. Our arguments 
therefore do not address various conventionalist theses about causality or about the 
appropriate description of causes. 

26 We thank Ellery Eelts, Malcolm Forster, and the anonymous referees of this Journal for 
useful suggestions. 
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T h e n  
A = X PIT~&Cj&EqlogP(WCi) 

-i.j.k 
B = ~ P[Ti&Cj&EkIlogP(Ti/Ek). 

-i,j.k 
Tha t  C screens off E from T means  that 

P(Ti / Cj&Ek) = P(Ti/Cj), for each i,j,k. 

This  entails  that  
A = Y. P(Cj&Ek)[i P(Ti/Cj&E01ogP(T~/Cj&Ek)]. 

-j.k 
A a n d  B may  be compared  us ing  Kraft's inequali ty,  which is the following result 

from in format ion  theory: 
]~ P(Ti/Cj&Ek)logP(Ti/Cj&Ek) > ~ P(Ti/Cj&Ek)logP(Ti/Ek). 
i,j,k -- Lj,k 

This  entai ls  that  A _< B, which means  that  
H(T) - M(T,C) _< H(T) - M(T,E). 

So M(T,C) _> M(T,E). ~' 
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