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INSTRUMENTALISM REVISITED* 

ARTlCULOS 

CRfTICA, Revista Hispanoamericana de Filosofia 
Vol. XXXI, No. 91 (abril 1999): 3-39 

Elliott Sober 

Department of Philosophy 
University of Wisconsin 

Like many of the good ideas that the logical empiricists 
had, instrumentalism did not receive the attention it de- 
serves. In part this was because of what I'll call the light- 
ning rod effect. Here's how you can witness this phe- 
nomenon in the comfort of your own home (children 
should not do this without adult supervision): 

Put a good idea next to a bad one. Someone will then 
refute the bad idea. Then people will think that the good 
idea as well as the bad one have both been demolished. 

You don't always get the lightning rod effect when you 
follow these instructions, but it occurs often enough that 
it deserves a name. 

* I am grateful to Martin Barrett, Ellery Eells, Branden Fitelson, 
Malcom Forster, Ilkka Kieseppa, Theo Kuipers, Greg Mougin, Diana 
Raffman, Larry Shapiro, Chris Stephens, Neil Tennant, and Mark Wil- 
son for useful discussion and to Branden Fitelson and Tina Eliassa-Rad 
for doing the computer simulations that allowed them to prepare the 
figure. A short version of this paper will appear in the Proceedings of 
the 1998 World Congress of Philosophy. 
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The logical empiricists said some good things about epis- 
temology and scientific method. However, they associated 
those epistemological ideas with some rather less good ideas 
about philosophy of language. There is something episte- 
mologically suspect about statements that cannot be tested. 
But to say that those statements are meaningless is to go 
too far. And there is something impossible about trying to 
figure out which of two empirically equivalent theories is 
true. But to say that those theories are synonymous is also 
to go too far. 

My goal in this paper is not to resuscitate all these posi- 
tivist ideas, but to revisit just one of them. Instrumentalism 
is the idea that theories are instruments for making predic- 
tions. Of course, no one would disagree that this is one of 
the things we use theories to do. In just the same way, no 
one could disagree with the emotivist claim that one of the 
things we do with ethical terms like "good" and "right" is 
to express our feelings of approval and disapproval. Instru- 
mentalism and emotivism become contentious, and there- 
fore interesting, when these claims are supplemented. 

The most familiar sort of supplementation that they re- 
ceived is semantic. Emotivism claimed that ethical state- 
ments are neither true nor false; instrumentalism said the 
same thing about scientific theories. This negative semantic 
claim is what is usually intended when it is said that ethical 
statements "merely" express feelings of approval and disap- 
proval and that scientific theories are "merely" instruments 
for making predictions. I don't propose to go down that 
well-trodden path again. Setting ethics to one side, I am 
happy to assume that scientific theories have truth values. 
Arguments to the contrary rest on bad theories of meaning. 
Theoretical terms have meanings that transcend what can 
be stated in some proprietary observation language (even 
assuming, controversially, that there is such a thing as an 
observation language); the fact that the meanings of terms 
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like "mass" and "charge" are not exhausted by statements 
about meter readings doesn't show that statements about 
mass and charge are neither true nor false. 

If instrumentalism as I construe it does not deny that 
theories have truth values, what is there left to discuss? 
The claim that theories are instruments for making predic- 
tions now seems to be the boring point that this is one of 
the many things that scientists do with theories; scientists 
also use theories to explain regularities, to impress their 
colleagues, and for other purposes as well. Can instrumen- 
talism do anything better than teeter between falsehood 
and triviality? I think it can. The important point of in- 
strumentalism is methodological, not semantic. It is the 
idea that theories are to be judged by their ability to pre- 
dict. Of course, if this just means that predictive accuracy 
is one of the criteria that scientists use and ought to use 
for evaluating theories, then we again have a truism. But 
instrumentalism goes further. The claim is that predictive 
accuracy is the only consideration that matters in the end 
- it is the unique ultimate goal that scientists bring to 
bear in evaluating theories. Instrumentalism does not deny 
that theories are and ought to be judged by their simplici- 
ty, their ability to unify disparate phenomena, and so on. 
However, instrumentalism regards these considerations as 
relevant only in so far as they reflect on a theory's predic- 
tive accuracy. If two theories are predictively equivalent, 
then a difference in simplicity or unification makes no dif- 
ference, as far as instrumentalism is concerned. Simplicity, 
unification, even fitting the data at hand are simply means 
to the end of securing predictive accuracy. 

I won't try to show in the present essay how simplicity, 
unification, and other desiderata are related to predictive 
accuracy, although that's an important task for a proper 
defense of instrumentalism to undertake (see Forster and 
Sober 1994 for discussion). What I do want to consider 
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is how instrumentalism, thus construed, is related to a 
quite different proposal concerning how theories should 
be evaluated. Scientific realism has many formulations; the 
one of interest here says that the goal of science is to find 
theories that are true (Van Fraassen 1980). Understood in 
this way, realism does not say that our present theories are 
true, nor does it offer a substantive account of what truth 
is. It specifies an end; scientific theories are to be judged 
by how well they manage to attain that end. 

How are the goals of truth and predictive accuracy relat- 
ed? Is it possible to choose between instrumentalism and 
realism as accounts of scientific practice? In The Struc- 
ture of Science, Ernest Nagel (1979, p. 139) says that the 
difference between instrumentalism and realism is merely 
"verbal". In any concrete situation in which scientists have 
to make a decision, the two philosophies make the same 
recommendations. We'd expect scientists to be doing the 
same things, regardless of whether their ultimate goal is to 
find true theories or to find theories that are predictively 
accurate. Truth and predictive accuracy seem to go hand- 
in-hand. Nagel's contention is an important one, if we are 
to determine whether anything interesting can be salvaged 
from instrumentalism. 

Just as instrumentalism as a methodological claim needs 
to be separated from instrumentalism as a semantic thesis, 
we also need to separate the methodological idea from what 
I'll term the realm of \he personal. Scientists are people and 
different people have different goals and the same person 
may have many goals. To say that successful prediction 
is the goal of science thus seems to deny the multiplicity 
of goals that exists within and among scientists (Putnam 
1975, pp. 233-234). My reply is that instrumentalism is not 
a claim about the goals of individual scientists or of scien- 
tific institutions so much as it is a claim about the goals of 
scientific inference. This requires clarification. Inference 

6 

This content downloaded from 128.104.46.196 on Wed, 9 Oct 2013 12:22:17 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


rules are abstract entities, like numbers and functions. Ap- 
parently, inference rules have "goals" no more than the 
number 17 has a goal. 

What I mean is that when scientists distinguish a "good" 
inference from a "bad" one, they do so, whether explicit- 
ly or implicitly, by assuming a set of desiderata that the 
inference should satisfy. Their evaluative comment is a 
claim about whether the inference at hand fills the bill. 
Rules of inference are tools whose justification depends on 
one's aims (Hempel 1979, Forster 2000). Modus ponens is 
a good rule to follow if you want your inference to be truth- 
preserving. But if your goal is to draw conclusions that go 
beyond what the premisses assert, then Modus ponens is 
not what you should use - you should use an ampliative 
mode of inference instead. 

This means that the debate in philosophy of science 
about realism and instrumentalism could be conducted in 
two ways. One could argue about whether scientists should 
seek true theories or theories that are predictively accurate. 
Or, one could argue about what scientists in fact are get- 
ting at when they distinguish good inference from bad. It 
is the latter question that interests me; I am not going to 
discuss what the categorical imperatives are to which sci- 
entists should swear allegiance. Rather, the task at hand is 
to examine the inferential practices at work in science and 
try to infer from them what their goal is. This is something 
like what evolutionary biologists do when they observe a 
phenotypic trait and try to guess what function the trait 
subserves. In both cases, one is engaged in a project of 
"reverse engineering". As the analogy with biology sug- 
gests, our question is not automatically settled by asking 
scientists what they think they are trying to achieve. Sci- 
entists may or may not be able to describe the rules they 
follow; and even if they can, they may or may not have 
anything useful to say about what the desiderata are that 
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"good" inferences typically satisfy and that "bad" infer- 
ences typically do not. 

The gloss I have given of the dispute between realism 
and instrumentalism differs somewhat from an interpre- 
tation one frequently hears. The more usual idea is that 
realism and instrumentalism are claims about normative 
methodology, not about descriptive psychology or sociolo- 
gy. The question, so it is said, is not about what scientists 
actually think, but what they ought to think. I do not reject 
the idea that philosophers can make normative recommen- 
dations about science; after all, anyone, even a philosopher, 
can make a normative suggestion, which should be judged 
on its merits, not on the basis of the union card that the 
recommender happens to carry. Rather, the point is that 
the normative suggestions made in philosophy of science 
are different in character from those made in ethics. Ethics 
is in the business of discussing categorical imperatives. I 
don't see much of a role for this in philosophy of science. 
Philosophers of science, like statisticians, advance hypo- 
thetical imperatives - "if your goals are such-and-such, 
then X is a practice you should embrace while Y is a 
practice you should eschew". Formulating hypothetical im- 
peratives is part of the project of reverse engineering; this 
project is descriptive and normative at the same time. 

Let us return, then, to Nagel's very good question about 
the seeming equivalence of instrumentalism and scientific 
realism. The problem he posed is illustrated in the follow- 
ing two-by-two table: 

Believed to be 

More predictively Less predictively 
accurate accurate 

Believed True 
			 HI 
			 
to be | False 


			 
| 


			 
| H2 
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If scientists have to choose between hypotheses HI and 
H2, what will they do? If they think that HI is true and that 
H2 is false, and that HI will be more predictively accurate 
than H2, they presumably will choose HI over H2. Howev- 
er, this doesn't tell us whether they are really after theories 
that are predictively successful, or theories that are true, 
or both. When the competing hypotheses fall on the main 
diagonal of this table, the two factors "truth" and "predic- 
tive accuracy" are hopelessly confounded.1 

To test realism against instrumentalism as claims about 
the goals of science, we should try to find a situation in 
which the desiderata of truth and predictive accuracy come 
into conflict. What would be nice is a pair of hypotheses 
H3 and H4 that are taken to have these properties: 

Believed to be 

More predictively Less predictively 
accurate accurate 

Believed True 
			 H3 
			 
to be False H4 

If scientists prefer H3 over H4, this result favors scientific 
realism - they are opting for the theory they think is true, 
even though they think it will be less predictively accurate 
than its competitor. On the other hand, if they prefer H4 
over H3, this result favors instrumentalism, since it shows 
that scientists are prepared to sacrifice truth to improve 
predictive success. 

Could there be an anti-diagonal case of this sort in which 
truth and predictive accuracy come into conflict?2 Let's 

1 The use of two-by-two tables to represent the interaction of two 
desires is borrowed from the treatment of psychological egoism and 
altruism in Sober and Wilson (1998), Chapter 7. 

2 It's easy to invent situations in which truth and predictive accu- 
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begin by examining more carefully an argument that seems 
to support Nagel's contention that this is impossible. The 
argument in question is the sure thing argument: 

Suppose that Ti is true and that T2 is false. Then you 
can deduce only true predictions from Ti; however, if 
you use T2 to make predictions, it is an open question 
whether the predictions you deduce from it will be true. 
Hence, if your goal is true prediction, you should use Ti 
rather than T2; Ti is a "sure thing". 

This argument has two limitations. It construes prediction 
as deduction; yet, many predictions involve nondeductive 
inferences. In addition, the argument describes successful 
prediction in terms of the dichotomous concept of truth, 
rather than in terms of the matter-of-degree concept of 
predictive accuracy. 

It is possible to supplement the sure thing argument with 
an argument that has neither limitation. The new argument 
still isn't perfectly general, but it is worth seeing that the 

racy "conflict", but not in a sense that is relevant to the disagreement 
between realism and instrumentalism concerning what acceptance in- 
volves. Suppose H3 is a true hypothesis about geology and H4 is a 
false (though predictively accurate) hypothesis about economics. If one 
wants to make predictions about economics, it is no surprise that 
one should use H4 rather than H3. This, however, is no argument 
in favor of instrumentalism, since H3 and H4 are not competing hy- 
potheses. They don't make contrary predictions, and so we are not 
forced to decide which predictions to trust. A similar point pertains to 
an idea that Mark Wilson (forthcoming) has emphasized - that it often 
happens that theories in mathematical physics that are regarded as true 
are mathematically intractable, and so are not very useful as devices 
for making predictions. To make predictions, applied mathematicians 
opportunistically employ various tricks, shortcuts, and idealizations. 
Here, the true theory "makes predictions" in the sense of entailing 
them; the trouble is that human beings can't figure out what those 
predictions are. So once again, there is no practical problem of being 
faced with contrary predictions. 
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thought behind the sure thing argument isn't completely 
tied to the two limitations just noted. Suppose your goal is 
to estimate the mean value (/i) that a continuous trait has in 
a population, assuming that the trait is normally distribut- 
ed with variance a . For example, you might want to say 
what the average height is in a population of corn plants 
in which height has the familiar bell-shaped distribution. 
You construct an estimate (9) of the population mean in 
some way, perhaps by examining some of the individuals 
in the population. How accurately will 9 predict new data 
that you draw from the same population? The predictive 
inaccuracy of 9 is defined as its average distance from the 
mean values that will be found in new samples. Suppose 
you sample ten corn plants, determine that their average 
height is si, return the sample to the population, then sam- 
ple ten individuals again, noting that their average height 
is S2, and so on. The sample averages si, S2, . . . will differ. 
Although an accurate estimate of the population mean may 
occasionally be quite distant from a given sample mean, on 
average it will be quite close. 

It is no surprise that the most predictively accurate esti- 
mate is the population mean itself. If you use \i to predict 
the sample averages, you won't achieve perfect predictive 
accuracy, but you'll do better than if you use any other 
value. This intuitive idea is vouchsafed by the following 
fact. Suppose your value for 9 is obtained by sampling a 
number of individuals in an initial sample, whose mean is 
so; if you use so as your value of 9 and you then use this 
value of 9 to predict the means that will be found in new 
samples, then the predictive accuracy of 9 is defined as 
follows: 

3 The more general definition of the predictive accuracy of an 
estimate 0, A(0), is its expected log-likelihood; A(0) = E(log-likelihood 
of 9). When error is symmetrically distributed around the true value, 
inaccuracy may be defined as the average (expected) distance. 

n 
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The right side of this equation has its maximal value when 
/i = 9. In other words, nothing can be more predictively 
accurate than the truth; the more distant the estimate 9 is 
from the true population mean //, the worse, on average, 9 
will do in predicting new data. Nagel's intuition that truth 
and predictive accuracy go hand-in-hand is vindicated in 
this type of inference problem. 

However, just like the sure thing argument, the present 
argument also has its limitations. First, even if it is true in 
this type of inference problem that nothing is more pre- 
dictively accurate than the truth, it doesn't follow that this 
holds for all inferences. If we can find even one situation 
in which truth and predictive accuracy come into conflict, 
we'll have an interesting test case for instrumentalism. The 
other limitation is both more serious and more subtle. If 
the true hypothesis is the one that is most predictively 
accurate, does it follow that the best way to make accurate 
predictions is to try to find the truth? This may seem to 
follow, but in fact it does not. The following principle is 
false: 

(*) If you want to maximize A and T maximizes A, then 
the best way to maximize A is to try to maximize T. 

To see why (*) is a bad principle, suppose that if you aim 
at T, you will have a very small probability of finding T 
(though if you do, you'll maximize A), but that if you aim at 
something else, you'll have a better chance of scoring a high 
value with respect to A. 

The defect in the (*) principle is not limited to what 
it says about the goals of truth and predictive accuracy. 
Suppose you go to the bus terminal and want to get on a 
bus that will take you as close as possible to Fred's house. 
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The buses in the city are numbered. You know that one of 
the buses that is numbered 1-10 goes right to Fred's door, 
but you don't know which one it is. You also know that no 
bus that is numbered 11-20 goes there. Should you take 
a bus numbered 1-10? Well, you've got a 10% chance of 
getting right to Fred's house if you take a low-numbered 
bus, and a 0% chance of being dropped at Fred's house 
if you take a high-numbered bus. So, if your goal were 
simply to be delivered to Fred's door, you should take a 
low-numbered bus. 

But now let's add a little more information. Suppose 
that one of the buses numbered 1-10 takes you right to 
Fred's door, while the other nine take you very far away; 
on the other hand, all of the buses numbered 11-20 go 
very near Fred's house, though none of them goes right 
to his door. The bus routes are as depicted in Figure 1. 
If your goal is to get as close as possible to Fred's house, 
you should take a bus numbered 11-20. The point is this: 
even if a bus with a low number is the one that goes closest 
to Fred's house, it doesn't follow that the best way to get 
close to Fred's house is to take a low-numbered bus. Sim- 
ilarly, even if the true hypothesis is the one that is most 
predictively accurate, it doesn't follow that the best way to 
maximize predictive accuracy is to try to find the truth; 
the (*) principle is false. This suggests that there may be 
inference problems in which trying to find the truth and 
trying to maximize predictive accuracy lead to different 
decisions. The bus example suggests that this may be pos- 
sible even if no hypothesis is more predictively accurate 
than the truth.4 

4 In Sober (1998), I argue that the (*) principle underlies a fal- 
lacious argument in the surprise examination problem, in which one 
concludes that the teacher should assign a probability of zero to giving 
an exam on the last day of the semester if her goal is to surprise the 
students. 
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FIGURE 1 

The example I want to describe in which the quest for 
truth and the quest for predictive accuracy lead to dif- 
ferent decisions is an extremely mundane problem in sta- 
tistical inference. Suppose you examine two populations 
of corn plants and want to determine whether the mean 
height (/ii) in the first population is the same as the 
mean height (^2) *n the second. You sample a number 
of plants from each population and have to figure out 
from these samples which hypothesis to accept. In formu- 
lating the question as one about "acceptance", I leave open 
whether "acceptance" means believing that the hypothesis 
is true or believing that it will be predictively accurate. 
The question is whether the practices of scientists in this 

5 
Although I'll formulate the problem in terms of the concept of 

"acceptance", this is a matter of convenience; the dichotomous concept 
of acceptance could be replaced with the concept of degree of belief. 
Formulated in the latter way, the question would be whether the goal 
of science is to say how probable it is that various hypotheses are true, 
or to say how predictively accurate one should expect those hypotheses 
to be. 
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routine testing problem provide evidence as to what the 
underlying goal is of scientific inference. 

The two hypotheses, then, are as follows: 

(Null) /ii = /i2 

(Diff) //! ± to. 

The (Null) hypothesis has this name because it says that 
the difference between the population means is zero. The 
conventional practice in science is to compare the sample 
means (6\ and #2) drawn from the two populations and 
determine whether they are significantly different. If they 
are, you reject (Null) and accept (Diff). If the two samples 
do not differ significantly, you decline to reject (Null) and 

you also do not accept (Diff). 
What does it mean for 0\ and 62 to differ "significant- 

ly?" The idea is that 0\ and 62 are sufficiently different 
that there would be only a small probability (5% is the 
conventional choice) that their values could be that dif- 
ferent (or more) if in fact the null hypothesis were true. 
For example, if the two corn populations have the same 
mean height, then it is exceedingly improbable in sam- 

pling 10 plants from each population that one would end 

up with #i = 50 inches and 62 = 68 inches, and with the 
10 plants in the first sample tightly clustered around 50 
inches and those in the second tightly clustered around 
68 inches. On the other hand, with only 10 plants drawn 
from each population, it would not be especially improba- 
ble, if the (Null) hypothesis were true, to obtain samples in 
which 9\ = 60 inches and 62 = 62 inches and with the two 
samples each showing a variance of one inch around the 
observed mean values. Whether an observed difference is 
statistically significant depends on the sample size; if 1000 
plants were drawn from each population, a difference of 2 
inches between the sample means, given a sample variance 
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of one inch, would be significant (see Sokal and Rohlf 1969, 
pp. 220-223 for details). 

This is just standard statistical practice. I suggest that 
this practice is completely irrational if the goal in science 
is to discover whether (Null) or (Diff) is true. This is be- 
cause we know with virtual certainty, before the samples 
are drawn and afterwards as well, that the (Null) hypothe- 
sis is false. This hypothesis says that the two populations 
have exactly the same mean height. Who could believe 
this - that their average heights aren't just close, but are 
exactly the same, down to a thousand decimal places and 
beyond? If "not rejecting" the (Null) hypothesis means be- 
lieving it, then scientists are crazy. And if "not rejecting" 
means remaining agnostic, then scientists are also crazy, in 
that they are refusing to assent to a proposition (namely, 
Diff) that is obviously true. 

On the other hand, if the goal is to choose hypothe- 
ses that will be predictively accurate, the routine scientific 
practice I have described makes sense. To flesh out this 
suggestion, I need to explain how (Null) and (Diff) are 
used to make predictions. The idea is that a model makes 
predictions about new data by using the old data to es- 
timate the values of the adjustable parameters it contains. 
Suppose your sample means are 6\ = 60 inches and #2 = 62 
inches. If you use these observations to identify the likeliest 
estimates of the parameters found in the two hypotheses, 
you'll obtain: 

L(Null) Hi = /J>2 = 61 inches. 

L(Diff) /ii = 60 inches and /i2 = 62 inches. 

L(Null) is the likeliest member of (Null) in the sense that 
it confers a probability on the observations that is greater 
than the probability entailed by any other assignment: 
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p[#l = 60 inches and 62 = 62 inches | /j,\ = 112 = 61 
inches] > 
p[#l = 60 inches and 62 = 62 inches | fi\ = ^2 = x 
inches], for any x ^ 61. 

L(Diff) is the likeliest member of (Diff) for the same rea- 
son: 

p[#l = 60 inches and #2 = 62 inches | fi\ = 60 inches 
and \i2 = 62 inches] > 
p[#l =60 inches and 62 = 62 inches | m = x inches 
and /i2 = y inches], for any x ^ 60 and for any 
y^62. 

If L(Null) is the likeliest member of (Null) and L(Diff) is 
the likeliest member of (Diff), how do L(Null) and L(Diff) 
compare to each other? The answer is that L(Diff) has the 
higher likelihood: 

p[#l = 60 inches and 62 = 62 inches | fi\ = 60 inches 
and /j,2 = 62 inches] > 
p[#l = 60 inches and 62 = 62 inches | ii\ = 1x2 = 61 
inches] . 

Even though L(Diff) fits the o/c? data better than L(Null) 
does, most scientists will expect L(Null) to do a better 
job of predicting new data in the circumstance described. 
They will suspect that L(Diff) has over/it the old data; 
that is, they'll suspect that the small difference between 
the two sample means is just sampling error - it is noise, 
not signal. This doesn't mean that they in their hearts 
believe that the two populations have exactly the same 
mean height when they see two sample means that are 
only slightly different. I've already claimed that no one 
could or should believe that. Scientists regard the small 
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difference in sample means as misleading as far as the task 
of predicting new data is concerned. 

The procedure whereby scientists use hypotheses that 
contain adjustable parameters to predict new data can be 
diagramed as follows: 

Null 

I 
-> L(Null) 

Old Data New Data 

I -> L(Diff) 
Diff 

Given the old data, one deduces that L(Null) is the likeliest 
member of (Null) and that L(Diff) is the likeliest member 
of (Diff); these likeliest members, in turn, make probabilis- 
tic predictions about new data. 

How are the predictive accuracies of (Null) and (Diff) 
to be understood? This is a slightly different question than 
the one we asked earlier about the predictive accuracy of 
an estimated value of 0, since (Null) and (Diff) contain 
adjustable parameters. However, the idea of average per- 
formance in a series of prediction problems provides the 
common thread. As shown in the above flow chart, we 
imagine a two-part process in which parameters are esti- 
mated from an old data set and a new data set is predicted 
on that basis. A model is predictively accurate to the degree 
that this process, on average, generates predictions that are 
close to the means observed in new data. An accurate model 
may on occasion find itself faced with an old data set that 
leads it to do a poor job of predicting new data; but, on 
average, an accurate model will come close to the means 
found in new data. 
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Notice that (Diff) is a family of hypotheses - it is com- 
prised of the infinitely many specific hypotheses obtained 
by assigning different values to m and H2- We are imagin- 
ing that one of these specific hypotheses is true; if only you 
could find that member of (Diff) and use it to predict new 
data, you'd be doing as well as it is possible to do, since 
nothing works better than the true specific hypothesis in 
the inference problem we are considering. The problem is 
that you don't know which member of (Diff) is true, even 
though you know in advance that one of them is. You also 
know that no member of (Null) is true, but, curiously, if 
the sample means differ only modestly, (Null) is apt to 
yield more accurate predictions of new data than (Diff). 

I hope the analogy with the bus problem is becoming 
clear. You know that one of the low-numbered buses goes 
right to Fred's house, and that none of the high-numbered 
buses does so. This is analogous to your knowing that (Diff) 
is true and (Null) is false. If your goal were literally and 
only to reach Fred's door, then you should take a low- 
numbered bus. Likewise, if your goal were literally and 
only to find the true hypothesis, then you should choose 
(Diff) and reject (Null). However, real bus-riders aren't 
like this and real scientists aren't either. Real bus-riders 
want to get as close as possible to their destinations; they 
think that the saying "a miss is as good as a mile" is 
absurd. And real scientists w^rit accurate predictions and 
the more accurate the better. What this means is that it 
can make sense for bus-riders to take a bus that they know 
in advance cannot take them precisely to their destination; 
rather, they choose a high-numbered bus because that bus 
can be expected to come closer to Fred's house than a low- 
numbered bus. And scientists will use (Null) to predict 
new data rather than (Diff) when the sample means differ 
only a little because they expect the false hypothesis (Null) 
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to deliver more accurate predictions in this instance than 
the true hypothesis (Diff).6 

There is an important asymmetry between (Null) and 
(Diff). If (Diff) is true, it can sometimes be better to use 
(Null) to predict new data. However, if (Null) is true, it 
can never be better to use (Diff) to predict new data. This 
asymmetry is described in the following table: 

(Null) is more (Diff) is more 
preaictively accurate preaictively accurate 

(Null) is true possible impossible 

(Diff) is true POSSIBLE possible 

I've written one of the entries in this table in capital letters 
because it is the one that matters to the dispute between 
realism and instrumentalism. 

The three possibilities represented in this table are de- 
picted in more detail in the accompanying figure, which 
summarizes the results of a large number of computer 
simulations. The values for the two population means are 
assumed to fall between 0 and 100; the x-axis represents 
cases in which the difference between the two population 
means | Mi - /i2 I is less than 8. The y-axis represents some 
possible values for the within-population variance, a . In 
the square, (Diff) is true practically everywhere; (Null), on 
the other hand, is simply the line that comprises the y-axis 
- it is true when | n\ - fi2 \ = 0. When n=10 individu- 
als are drawn from each population, (Diff) will probably 

6 As noted in footnote 5, describing acceptance and rejection as 
a dichotomous choice is incidental to the argument of this paper. If 
scientists assigned probabilities to hypotheses, what probability should 
they assign to (Null) and (Diff)? I am suggesting that they should assign 
(Null) a very low probability of being true, both before and after they 
look at data; however, the data may indicate that (Null) has the higher 
expected degree of predictive accuracy. 
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be more predictively accurate in the region shown; (Null) 
is more predictively accurate when it is true, but also in a 
region in which it is false. As the sample size is increased, 
the region in which (Diff) will be more predictively accu- 
rate increases in size; this consequence of increasing sample 
size is depicted for the cases of n=50 and n=250. 

FIGURE 2 

This figure depicts the "metaphysics" of the relation be- 
tween truth and predictive accuracy, so to speak. It shows 
the region of parameter space in which a false hypothe- 
sis has a higher degree of predictive accuracy than a true 
one; this says nothing about whether or how scientists are 
able to determine which hypothesis are true and which will 
make more accurate predictions. So far, I've addressed this 
two-part epistemological question simply by appealing to 

7 These simulations closely agree with the analytic solution that 
Branden Fitelson obtained, according to which (Null) will be more 
predictively accurate (in expectation) than (Diff) precisely when | fi\ - 

/x2 | < 1.34898 ajy/n. 
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experience. First, I've claimed that our general knowledge 
of the world tells us, with as much certainty as we're ever 
liable to have, that (Diff) is true and (Null) is false. Sec- 
ond, I've said that it is part of the day-to-day experience 
that scientists have when they use models to make pre- 
dictions that (Diff) can be expected to make less accurate 
predictions than (Null) when the sample means differ only 
a little. These facts about the practical knowledge that sci- 
entists have would be enough to show that the behavior of 
scientists favors instrumentalism over realism, at least in 
the context of the problem of choosing between (Null) and 
(Diff). However, there is more to be said about the episte- 
mology of this problem. It isn't just the lived experience 
of scientists that is relevant here; there is a mathematical 
theory that undergirds the expectations that scientists have 
about the inference problem at hand. 

That undergirding was provided by the Japanese statis- 
tician H. Akaike (1973, 1977; see the excellent review in 
Burnham and Anderson 1998). Akaike proved a theorem 
that shows how one can obtain an unbiased estimate of 
the predictive accuracy of a family of hypotheses. A family 
has some number of "adjustable parameters". To explain 
what this means, and to make more precise the way in 
which (Null) and (Diff) can be used in prediction, I need 
to describe more carefully what the two hypotheses say: 

(Null) | /ii - & | = 0 + N(0, a2) 
(Diff) | fii - fi2 | = 0 + N(0, a2), where 0 ^ 0. 

The (Null) hypothesis says that there is no difference be- 
tween the two population means, but that sampling from 
the two populations and examining the difference between 
the two sample means (6\ and #2) is subject to error; vari- 
ation in the sampled difference is described by a normal 
distribution with mean 0 and variance a2. The (Diff) hy- 
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pothesis says that the two population means differ by a 
value (3 =fi 0, and that this difference is also subject to the 
sampling distribution given. Notice that (Null) has one ad- 
justable parameter (a2) and (Diff) has two (/?, a2). L(Null) 
and L(Diff), on the other hand, contain no adjusta&Ze 
parameters; these specific hypotheses are obtained from 
(Null) and (Diff) by using the data to substitute constants 
for parameters; their "parameters" have all been adjusted. 
Akaike's theorem says that the predictive accuracy of a 
family can be estimated by attending to two considerations 
- how well the likeliest member of the family fits the evi- 
dence at hand and how many adjustable parameters (k) the 
family contains: 

An unbiased estimate of the predictive accuracy of the 
family F = 

Log-likelihood[L(F)] - k. 

In our example in which the sample means were 9\ = 
60 inches and 62 = 62 inches, L(Diff) has a higher log- 
likelihood than L(Null); that is, the data are more probable 
according to the hypothesis L(Diff) than they are according 
to L(Null). However, the estimated predictive accuracy of 
a family doesn't depend just on how well its likeliest mem- 
ber accommodates old data. Akaike's theorem says that the 
estimate also should take account of the complexity of the 
family. (Diff) receives the higher penalty for complexity 
than (Null), since (Diff) contains more adjustable parame- 
ters. Thus, if (Diff) and (Null) fit the data about equally 
well, one should expect the simpler hypothesis, (Null), to 
be more predictively accurate.8 

8 If or is known in advance and thus need not be estimated from 
the data, then (Null) has zero adjustable parameters and (Diff) has one, 
and the penalty term in Akaike's theorem has the form cr2k. 
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Although Akaike's theorem makes no overt mention 
of sample size, this consideration influences estimates of 
predictive accuracy, just as it influences the decision in 
conventional statistics as to whether the (Null) hypothesis 
should be rejected. When 6\ = 60 inches and #2 = 62 inches 
and 10 individuals are sampled from each population, the 
likelihoods of L(Null) and L(Diff) will be fairly close to- 
gether. However, L(Diff) would be much more likely than 
L(Null) if the same sample means were obtained by exam- 
ining 1000 individuals from each population. For a fixed 
quadruple of sample means and sample variances, simplic- 
ity matters more in the estimate of predictive accuracy for 
smaller data sets than for larger ones. 

There is still some controversy in statistics about 
Akaike's results. For example, there are model selection 
criteria on the market that impose different penalties for 
complexity (see Burnham and Anderson 1998, pp. 70-73, 
and Forster 1999 for discussion). However, this does not 
affect the philosophical question I'm addressing. Different 
criteria sometimes provide different advice about which 
models one should use to predict new data; however, there 
is no disagreement about the fact that a false model can 
sometimes be more predictively accurate than a true one. 

It also is no objection to the argument I've presented 
to point out that scientists usually use standard Neyman- 
Pearson statistics to evaluate (Null) and (Diff), and these 
procedures are conceptually quite different from the ones 
that the Akaike framework recommends. Even if Neyman- 
Pearson statistics provided a satisfactory account of why 
one should sometimes prefer (Null) over (Diff), the ar- 
gument would still go through. However, I believe that 
Neyman-Pearson statistics doesn't do a very good job of 
justifying the methods that the framework advocates. In 
the example I've been discussing, one is told to reject the 
(Null) hypothesis if and only if the difference between 6\ 

24 

This content downloaded from 128.104.46.196 on Wed, 9 Oct 2013 12:22:17 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


and 02 is statistically significant. It is a matter of definition 
that a significant difference 6\ and 62 is very improbable 
if (Null) is true. Presumably, this is a reason to "reject" 
the (Null) hypothesis, or at least to reduce one's degree of 
belief in it, only if (Diff) does a better job of accommo- 
dating the observations. But what probability does (Diff) 
confer on a significant difference between 0\ and 62? The 
trouble is that (Diff) doesn't make any predictions. This 
is why Neyman-Pearson statistics focuses its attention on 
the predictions made by the (Null) hypothesis; as far as 
Neyman-Pearson statistics is concerned, (Diff) is a mystery 
that is passed over in silence. 

The Akaike framework provides a very different analy- 
sis. (Diff) makes predictions in the same way that (Null) 
does; one uses the old data to estimate the values of ad- 
justable parameters and then uses L(Diff) and L(Null) to 
predict new data. When 6\ and 62 differ only modestly, 
one prefers (Null) over (Diff) because the former has the 
higher estimated predictive accuracy. When the observed 
difference is larger, one makes the opposite decision. The 
beautiful thing about the Akaike approach is that it throws 
light on the properties of both competing hypotheses. This 
is why I think that the Akaike framework provides a better 
explanation than the Neyman-Pearson framework of why 
the behavior of scientists makes sense, even though sci- 
entists usually appeal to Neyman-Pearson and often have 
never even heard of Akaike. However, I want to emphasize 
that the argument for instrumentalism doesn't depend on 
the Akaike framework's being correct. I mention it to point 
out that it isn't just the de facto practices of scientists that 
underwrite my claim that a false theory sometimes can be 
expected to be more predictively accurate than a true one; 
there is, in addition, a mathematical explanation of why 
this is so. 
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At the start of this paper, I discussed the Nagelian mot- 
to "nothing is more predictively accurate than the truth". 
What is the status of this principle in the context of the 
present problem? As the previous table and figure show, 
(Null) can be more predictively accurate than (Diff) even 
when (Null) is false and (Diff) is true. However, (Null) and 
(Diff) are each infinite disjunctions. If (Diff) is true, let's 
denote the true member of (Diff) as T(Diff). It certainly 
is correct that T(Diff) has a higher degree of predictive 
accuracy than any other member of (Diff) or (Null). The 
Nagelian formula fails when it is applied to families of hy- 
potheses; however it is correct when it is applied to the spe- 
cific members of those families that contain no adjustable 
parameters. 

Although instrumentalism is often thought of as a ver- 
sion of empiricism, the construal of instrumentalism pre- 
sented here differs from the constructive empiricism of 
Van Fraassen (1980). According to Van Fraassen, the goal 
of science is to find theories that are empirically adequate, 
which means, roughly, that they are true in what they say 
about observables. However, in the example under discus- 
sion, (Diff) is empirically adequate while (Null) is not. If 
so, the goal of predictive accuracy and the goal of empirical 
adequacy are different. If my argument shows that instru- 
mentalism is a better account of the goals of science than 
realism, it also shows that instrumentalism is superior to 
constructive empiricism. 

Where does this discussion leave the general issue of 
realism versus instrumentalism? I've described a standard 
problem of statistical inference and have argued that the 
goal that scientists pursue in their efforts to solve this 
problem is one of predictive accuracy, not truth. I do not 
conclude from this example that scientists always aim at 
predictive accuracy rather than truth. First, there are many 
inference problems in which the two goals coincide; instru- 
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mentalists cannot cite such inference problems as evidence 
for their position, but neither can realists. In this circum- 
stance, there is no issue worth discussing between realism 
and instrumentalism, just as Nagel claimed. Furthermore, 
the analysis I've suggested for the case of (Null) and (Diff) 
does not rule out the possibility that there may be other 
inference problems in which truth and predictive accuracy 
conflict, and where scientists prefer the hypothesis they 
think is true and predictively inaccurate over one that 
they think is false and predictively accurate. In terms of the 
second two-by-two table, perhaps there are situations in 
which the choice is between H3 and H4 and scientists pre- 
fer H3. Realists need to produce such examples. We can't 
rule out the possibility, in advance, that global instrumen- 
talism and global realism are both false. Perhaps scientific 
practice is sufficiently diverse that local instrumentalism 
and local realism are both correct. 

Can the inference problem of choosing between (Null) 
and (Diff) be reinterpreted so as to accord with the dictates 
of scientific realism? One suggestion in this vein is that the 
(Null) hypothesis should not be interpreted literally. It says 
that the two population means are exactly the same, but 
perhaps this gets glossed by scientists as the idea that the 
mean values are approximately the same. If this is how 
scientists interpret (Null), then perhaps they are not being 
irrational if they sometimes believe that the hypothesis is 
true. It is ironic that a realist should make this suggestion, 
since realism as a semantic thesis often involves an insis- 
tence on literal readings of scientific theories. But irony 
aside, the question is whether this suggestion accords with 
scientific practice. Prima facie, it does not; when scientists 
judge whether 6\ and #2 differ significantly, they are talk- 
ing about the probability of the sample means' being that 
different or more, conditional on the (Null) hypothesis' 
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being true. The numbers they use are obtained by taking 
the (Null) hypothesis to mean what it says. 

If scientists interpret the (Null) hypothesis as saying 
that the two population means are within e of each other, 
what value do they assign to e? No matter what (nonzero) 
value the realist suggests for e, the practice of science turns 
out to be irrational. If e is tiny (say, 10 inches), then 
"| fi\ - H2 I < e" remains a hypothesis that we know to be 
false, and so scientists are behaving irrationally when they 
fail to reject it. On the other hand, if scientists assign e a 

larger value (say, 2 inches) in their construal of (Null), then 
their statistical practice is irrational for another reason. If 
scientists interpret the (Null) hypothesis as saying that the 
means are no more than 2 inches apart, then they should 
not reject the (Null) hypothesis when they find that 6\ 
and #2 differ by 1 inch in a large sample. However, this is 
precisely what they do. This argument generalizes to any 
setting of e, large or small. The behavior of scientists shows 
that they interpret (Null) literally. 

Another way to try to bring this inference within the 
orbit of realism is to suggest that scientists are being good 
realists because they are trying to choose hypotheses that 
are close to the truth. When scientists judge that (Null) 
will be more predictively accurate than (Diff), based on 
the data at hand, they are inferring that the values for 
fi\ and /i2 specified in L(Null) are probably closer to the 
true population means than are the values given in L(Diff). 
My reply is that this is correct, but the fact remains that 
when scientists fail to reject (Null) they are failing to reject 
a hypothesis that they know is false, and when they fail 
to accept (Diff) they are failing to accept a hypothesis 
that they know is true. If the goal of scientific inference 
were merely to assign truth values to (Null) and (Diff), the 
behavior of scientists would be very different. 
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The argument for instrumentalism that I have construct- 
ed is predicated on the assumption that it is rational for 
scientists to refuse to reject the (Null) hypothesis when 
they obtain sample means 6\ and #2 that differ only a little. 
I used this rationality assumption to argue that scientists 
are seeking predictive accuracy, not truth, in this instance. 
However, why accept the assumption that scientists are ra- 
tional when they act like this? Perhaps scientists really are 
trying to discover the truth but are just doing a poor job of 
selecting methods to achieve that end. How are we to tell 
whether scientists are rational instrumentalists or irrational 
realists? One way to address this question is to present the 
argument of this paper to scientists themselves. Once they 
understand the argument, will they change their behavior 
and reject the (Null) hypothesis no matter what the data 
are? I suspect that they will not. Of course, this in itself, 
does not conclusively prove that they are rational; after all, 
they may be irrational about their choice of inference meth- 
ods and impatient when they listen to arguments made by 
annoying philosophers. However, I still think that the test 
just sketched would provide evidence. 

My colleague Haskell Fain once described a similar prob- 
lem about basketball. How do we know that the players are 
trying to score baskets, rather than trying to miss and doing 
a bad job of it? One test would be to say the following to 
basketball players - "look, if you're trying to miss baskets, 
here are some things you can do that will allow you to in- 
crease your effectiveness in attaining that goal". If players 
take the proffered advice and start to score fewer baskets, 
we have evidence that their goal is to miss; however, if they 
reject the advice and keep doing the same old things, we 
have evidence that their goal is to score. 

Although the inference problem of testing (Null) against 
(Diff) has considerable generality, I think the case for in- 
strumentalism goes further. I've focused on an inference 
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problem in which scientists know that truth and predictive 
accuracy conflict. But there is another type of inference 
problem that also bears on the issue of instrumentalism 
versus realism. It is depicted in the following table: 

Believed to be 
More predictively Less predictively accurate accurate 

Believed True 
to be False H4 

"" 
H2 

This is a good way to describe the problem that scien- 
tists face when they try to choose between different ide- 
alizations (Forster and Fitelson, unpublished). If the only 
goal of science were to find true theories, then H4 and H2 
should be equally unsatisfactory. However, the instrumen- 
talist has an obvious explanation of why scientists prefer 
H4 over H2. 

In fairness to scientific realism, I have to admit that 
there is yet another type of inference problem that needs 
to be considered: 

Believed to be 
More predictively Less predictively accurate accurate 

Believed True 
			 HI 
			 
to be False H4 

If scientific practice provided methods for choosing be- 
tween theories that are predictively equivalent, that would 
favor realism over instrumentalism. Many philosophers of 
science seem to think that this is precisely what consider- 
ations of parsimony, unification, etc. permit scientists to 
do. I do not, but that is a subject for another occasion (see 
Sober 1996 for discussion). 
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In the present paper, I have described four types of in- 
ference problem. The first is one in which truth and pre- 
dictive accuracy are thought to coincide (HI versus H2); 
here the behavior of scientists provides no information 
about whether realism or instrumentalism is right. The 
second type of problem is one in which truth and pre- 
dictive accuracy conflict (H3 versus H4); I described an 
inference problem of this type and argued that the be- 
havior of scientists suggests that instrumentalism is more 
plausible than realism. But even if I'm right about this 
example, that doesn't justify instrumentalism tout court. 
Instrumentalism and realism, as I've construed them, are 
monistic doctrines; each says that scientific inference is 
aimed at a single ultimate goal. If scientists sometimes pre- 
fer a false theory over a true one because they expect the 
former to be more predictively successful, this shows, at 
minimum, that the pursuit of truth is not their only ul- 
timate aim. Instrumentalism is consistent with this result, 
but so is the pluralistic position that says that truth and 
predictive accuracy are both ultimate goals. The same am- 
biguity must be recognized in the third and fourth types 
of inference problem that I described. In the third, when 
scientists choose one idealization over another (H4 versus 
H2) because they expect the former to be more predictively 
successful, this doesn't establish that successful prediction 
is their only goal. And in the fourth type of problem, if sci- 
entific inference sometimes allows one to discriminate be- 
tween predictively equivalent hypotheses (HI versus H4), 
that doesn't show that truth is the only ultimate goal in 
scientific inference. Both instrumentalists and realists may 
need to expand their horizons; these monistic theories have 
the virtue of simplicity, but scientific inference may be var- 
iegated enough that a more complex model is warranted. 

Indeed, a prima facie argument that favors pluralism 
over instrumentalism is already at hand. In the discussion 
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of (Null) and (Diff) I claimed that scientists are reasonable 
in believing that (Diff) is true and that (Null) will be more 
predictively accurate when the sample means 9\ and 62 
differ only a little. This judgment is a conjunction and I 
take it that the argument for each conjunct is made by 
using principles of inference that are part of "the scientific 
method". Were scientists to disown the argument that as- 
signs truth values to (Null) and (Diff),9 that might suggest 
that their only interest, qua scientists, in those hypotheses 
concerns the issue of predictive accuracy. But this, I take 
it, is not what they do or should do. 

If this is right, then there is no univocal notion of "ac- 
ceptance" that is potentially influenced both by judgments 
about truth and judgments about predictive accuracy. This 
is how I formulated the problem of choosing between 
(Null) and (Diff), but that formulation made sense only 
because the problem was to test the monistic theories of 
realism and instrumentalism against each other. However, 
if pluralism is the right way to view the goals of science, 
we should think of scientists as accepting that (Diff) is 
true and as (sometimes) accepting that (Null) is more pre- 
dictively accurate. There needn't be, in addition, some all- 
things-considered notion of acceptance that takes these two 
judgments into account and delivers a decision about which 
hypothesis to "really" accept. 

Even if scientists have these two irreducibly distinct 
goals, the question remains, within a pluralistic framework, 
of which goal is more important in shaping the trajectory of 

9 The argument for thinking that (Null) has got to be false is 
Bayesian, but not in a way that should be controversial. A population 
can be thought of as having different probabilities of exhibiting dif- 
ferent average heights, depending on the mix of genotypes and micro- 
environments that pertain. The chance that two populations should 
end up with exactly the same mean height is zero. In just the same 
way, the chance that an infinitely sharp pin dropped on a line a mile 
long will land exactly at point p, rather than anywhere else, is zero. 
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scientific change. We need to look at episodes of change in 
fundamental theory and at more mundane cases in which 
one lower-level hypothesis replaces another and see whether 
scientists are looking for truth, or for predictive accuracy, 
or for both. Both the macro- and the micro-evolution of 
scientific ideas matter to this question. If the example 
of (Null) and (Diff) is any guide, we may speculate that 
scientific change that is data-driven is driven by the goal 
of predictive accuracy; one needn't look at data from the 
two populations of corn plants to see that (Null) is false 
and that (Diff) is true. 

What, then, was the point of revisiting instrumentalism? 
Once the lightning rod effect is seen for what it is, we can 
see that methodological instrumentalism is not refuted by 
the fact that semantic instrumentalism is mistaken. And 
when truth and predictive accuracy coincide, we can see 
that methodological instrumentalism is not refuted by the 
fact that scientists prefer true theories over false ones. The 
more relevant situation is the one in which the potential 
goals of truth and predictive accuracy conflict. Here we 
found a case in which it is standard scientific practice to 
not reject a hypothesis that is palpably false and to not ac- 
cept a hypothesis that is obviously true; this practice makes 
sense if scientists are looking for theories that are predic- 
tively accurate. The example of (Null) and (Diff) shows 
that instrumentalism was right to claim that realism had 
missed something. However, the fact that instrumentalism 
contains a kernel of truth does not show that it is true. 
In looking for a case in which instrumentalism could be 
tested against realism, we also seem to have found a case 
in which pluralism can be tested against instrumentalism. 
Instrumentalism was worth revisiting even if we decide in 
the end that it isn't true. 
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Appendix on Verisimilitude0 
Can scientific practice with respect to (Null) and (Diff) 
be explained by the hypothesis that scientists want their 
theories to be "close to the truth"? Popper's endorsement 
of this conception of the goal of science gave rise to the 
verisimilitude program in philosophy of science (Niiniluoto 
1987, 1998). Although the idea of closeness to the truth has 
been explicated in a number of ways, the verisimilitude of 
a statement is always taken to reflect its truth value and 
its information content. Because of this second component, 
(Null) may be closer to the truth than (Diff), even though 
(Null) is false and (Diff) is true. After all, (Diff) is almost 
a tautology whereas (Null) has a lot of content. 

Since (Diff) is a disjunction, how is its distance from the 
truth related to the distance from the truth of its disjuncts? 
If each population's possible mean height is scaled to fall 
between 0 and 100 inches, then the two hypotheses can be 
represented in terms of a line: 

(-100) 
			 t 
			 0 
			 (+100) 

|< - d 
			 >| 

This line represents possible values of the mean of the 
first population minus the mean of the second. (Null) says 
that the true value t = 0; (Diff) says that the true value 
is somewhere else. Suppose that the true value (t) is d 
units from 0. Then the distance from the truth of (Null) 
is d. If (Diff)'s distance from the truth is defined as the 
average distance of the different disjuncts from the truth 

10 I am grateful to Theo Kuipers for calling my attention to the 
relevance of the verisimilitude idea to the argument of this paper and 
for his help in understanding how Niiniluoto's quantitative notion of 
verisimilitude applies to the example of (Null) and (Diff). 
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(with each disjunct having equal weight), then the average 
distance from the truth of (Diff) is: 

[d/200]{d/2} + [(100-d)/200]{(10O-d)/2} 
+ [100/200] {50 + d}. 

Here the numbers in square brackets [ . . . ] are probabilities 
of falling in different intervals, and the numbers in curly 
brackets { . . . } represent distances from the truth to the 
centers of those intervals. (Null) is closer to the truth than 
(Diff) if and only if 

d < d2/4O0 + (100-d)2/400 + y2(50+d), 

which simplifies to 0 < (d-100)2. This is true for all values 
of d ^ 100; when d = 100, the two sides are equal. So (Diff) 
is never strictly closer to the truth than (Null), and one can 
know this a priori. Yet, we have seen that (Diff) is some- 
times more predictively accurate, and whether this is so is 
something one can't know a priori. It follows that distance 
to the truth cannot be defined in the way described, if one 
wishes to say that scientists consult the data to determine 
whether (Null) or (Diff) is apt to be "closer to the truth". 

Niiniluoto (1987, p. 216) gives a different formula to 
define the distance D(I,t) from an interval hypothesis I 
to the truth t, which has a point value. He uses two param- 
eters p and q (each having values between 0 and 1): 

D(I,t) = p[Dmin(t,I)] + q[Dsum(t,I)]. 

Here Dmin(t,I) is the minimum (normalized) distance be- 
tween t and I, and Dsum(t,I) is the normalized integral of 
the distances between t and the members of I. From this 
it follows that 
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D(Null,t) = p[d/200] + q[0] = pd/200 

D(Diff,t) = p[0] + q[l]= q. 

Which hypothesis is closer to the truth depends on the 
truth (d), but also on the values of p and q, which represent 
how much one values truth and how much one values con- 
tent. Distance from the truth therefore reflects the values 
of the inquirer as well as features of the world. Further- 
more, if there is no uniquely correct mix of values that an 
inquirer ought to have, there will be no uniquely correct 
answer to the question of whether (Null) is closer to the 
truth than (Diff). 

Although the distance from the truth of (Null) and (Diff) 
in the sense defined depends on d, p, and q, it is worth 
recalling from the previous figure that the predictive ac- 
curacy of the two models depends on d, a , and n. Here 
I am talking about the definition of predictive accuracy, 
not about Akaike's method for constructing an unbiased 
estimate of that quantity. Predictive accuracy depends on 
perfectly objective features of the populations under study 
(including the manner in which samples are drawn from 
those populations), which are independent of the values of 
the inquirer. 

How might Niiniluoto's idea of distance from the truth 
be harnessed epistemologically? Does it make sense to say 
that scientists decide between (Null) and (Diff) by deciding 
which is "closer to the truth" in the sense just defined? One 
might try to flesh out this idea by saying that scientists use 
the data to obtain a maximum likelihood estimate of d, and 
assign values to p and q as a matter of scientific convention. 
Depending on how these conventions are described, the 
verisimilitude idea might be able to mimic the policies 
recommended by the Akaike framework; if so, it probably 
can be made to reproduce the advice given by other rules 
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as well. However, it is hard to see how the verisimilitude 
framework can be used to decide which policy is best to 

pursue. Alternatively, it may be that the verisimilitude 
approach can use the goal of predictive accuracy as a way 
of spelling out its concept of closeness to the truth. 

If the verisimilitude approach can be brought into agree- 
ment with the Akaike approach, in the sense that estimates 
of predictive accuracy induce the same ordering of hy- 
potheses as estimates of their closeness to the truth, what 
becomes of the question of how each is related to the de- 
bate between realism and instrumentalism with which we 
began? Perhaps at this point we should take up Nagel's 
suggestion that the difference is merely verbal - we have 
moved to an HI versus H4 problem in which closeness 
to the truth and predictive accuracy coincide. But if we 
do, we should not forget that the Nagelian formula - that 
nothing is more predictively accurate than the truth - is 
true in some cases, but false in others. 
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RESUMEN 

En filosofia de la ciencia, el instrumentalismo a menudo se in- 
terpreta como la tesis semantica de que las teorias cientificas 
no son ni falsas ni verdaderas, sino meros instrumentos utiles 
para predecir. El instrumentalismo que se examina en este tra- 
bajo es epistemologico, no semantico. Doy por hecho que las 
teorias son falsas o verdaderas; la cuestion es si el objetivo de la 
inferencia cientifica es explicar cuales teorias son verdaderas, o 
explicar cuales teorias son predictivamente exactas. Argumento 
que el proposito de encontrar teorias que son verdaderas y el de 
encontrar teorias que son predictivamente exactas pueden en- 
trar en conflicto. Enseguida analizo un problema de inferencia 
estadistica por medio del cual argumento que las practicas de 
los cientificos tienen sentido si consideramos que se proponen 
descubrir cuales teorias son predictivamente exactas, pero que 
no tienen sentido si consideramos que se proponen descubrir 
cuales teorias son verdaderas. 

f Traduccion: Claudia Chavez A.] 
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