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WITH RELIABILITY CONSTRAINTS 

1. INTRODUCTION 

During the last 25 years considerable progress has been made in the fields of structural optimi- 

zation and structural reliability theory. In classical deterministic structural optimization all 

variables are assumed to be deterministic. Due to the unpredictability of loads and strengths 

of actual structures it is now widely accepted that structural problems are non-deterministic. 

Therefore, some of the variables have to be modelled as random variables/processes and a re- 

liability-based design philosophy should be used, Cornell [ 1], Moses [2], Ditlevsen [3] and 

Thoft-Christensen & Baker [4]. 

In this paper we consider only structures which can be modelled as systems of elasto-plastic 

elements, e.g. frame and truss structures. In section 2 a method to evaluate the reliability of 

such structural systems is presented. Based on a probabilistic point of view a modem struc- 

tttml optimization problem is formulated in section 3. The formulation is a natural exten- 

sion of the commonly used formulations in determinstic structural optimization. The mathe- 

matical form of the optimization problem is briefly discussed. 

In section 4 two new optimization procedures especially designed for the reliability-based 

optimization problem are presented. In some examples in section 5 the optimization proce- 

dures are compared. 

2. RELIABILITY OF STRUCTURAL SYSTEMS 

The loads on the considered structures and the strengths of the structural elements are modelled 

as thne-invariant stochastic variables. All other variables such as geometrical quantities are as- 

sumed to be deterministic. 

Failure of the structural system can be defined in a number of ways. For a detailed descrip- 

tion, see e.g. Thoft-Christensen [5]. The computationally simplest defmition which in statical- 

ly indeterminate structures can be taken as a serviceability limit state is to define failure of the 

system as failure of one of the structural elements. This is called a level i definition of failure. 

As a measttre of the reliability of a structural element the reliability index ~ can be used, see 

Thoft-Chfistensen & Baker [4]. Let the N basic random variables be collected in the vector 
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~Y = (YI, Y2 ..... YN ) with given density function fy (y) and the failure surface which de- 

fines the separation between the safe and failure areas in the sample space be given by the 

equation g(y) = 0. When Y is non-normaily distributed a transformation from Y to the nor- 

maily distributed standardized vector U = T(Y) is established (e.g. the Rosenblatt transforma- 

tion can be used, [6]). The reliability index ~ is now defined as the shortest distance from the 

origin in the u-space to the failure surface: 

N I 
~] = min (.~'zi2) "~ (1) 

g(T(z ))=0 ifl 

The reliability of the structural system can now be estimated by modelling each structural 

element as an element in a series system. 

The above definition of failure can be generalized to a level m definition of failure. Failure of 

the stmcturai system is then defined as the event that m structural elements have failed. Such 

a failure mode can be modelled as a parallel system with m elements. To estimate the relia- 

bility of the structural system each parallel system is modelled as an element in a series sys- 

tem. 

Usually in elasto-plastic systems the ultimate limit state is defined by the formation of a mecha- 

nism (i.e. collapse). The number of possible mechanisms in a structural system is usually very 

large. For the types of structure considered here the so-cailed safety margins for the mecha- 

nisms can be written 

N a Np 

M i  = ~ "  aijRj - -  Z bijPj , i = 1, 2 . . . . .  h (2) 
i f 1  jffil 

where R and P model the yield strength and load variables, a and b are matrices which con- 

tain coefficients of influence. N = N R ~- Np and h is the number  of  mechanisms. Here R and 

P are assumed to be normally distributed with expected values ~R and ~p and covarianee 

matrices C R and Cp. R and P are assumed independent. 

The reliability index ~i for the ith safety margin is then  as follows 

N R N F 

[3 i _ g i  = "= aij 'uRl bij/~Pl 
- - -  1 ( 3 )  a i N R N R N p  Np -~ 

( X  ~ aijaikCR, k + ~ ' ~ - "  bljblkCp, k) 

where #i and o i are the  expected value and the standard deviation of M i. The coefficient of  

correlation between the i th and j th  safety margin is 

Pij = 

N R N R Np Np 

2 ~a ika j~CRk~ + Z Z bikbj~Cpk~ 
k=l ~=I k=l ~=i 

Oi° j 
(4) 

These failure modes are modelled as elements in a series system, and an upper-bound estimate 

of the reliability of the elasto-plastic structural system is given by 
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~s = - ~ - '  (1 - ch (~; ~ )) (5) 

where q~ -~ is the inverse standard normal distribution function and ~h(" ;P~) is the standard 

distribution function for h normal variables with correlation coefficient matrix p. 

In real structures (e.g. offshore steel jacket structures) the number of possible failure modes 

is generally very large. I t  is therefore important  to be able to identify the most significant 

failure modes. For that  purpose the so , a i l ed  ~]-unzipping technique has been developed by 

the authors, Thoft-Christcnsen & S~rensen [7]. 

The basic idea in the E-unzipping technique is that  a failure tree is successively formed. Each 

node signifies a modified structure where a number of elements have failed and each branch 

is an element. The critical elements are selected on the basis of the safety indices of the ele- 

ments in the modified structures. 

3. RELIABILITY-BASED STRUCTURAL OPTIMIZATION 

In classical deterministic structural optimization for truss and frame structures the design 

variables are usually the cross-sectional areas xi, i = 1, 2, . . . .  n, where n is the number of 

sets of different structural members. Each structural element is characterized by one number. 

This is fully satisfactory for truss structures where only tensile/compressive forces exist. How- 

ever, when bending occurs in a structural member, the plastic section moduli  w i, i = 1, 2 , . .  

• . ,  n and the second moments of area Ii, i = 1, 2 , . . . ,  n are significant. To maintain the great 

computational advantage of having only one design variable for each structural member i t  is 

often assumed that  

w i =k~x~/3 (6) 

I i = k 2 x  ~ (7) 

where k 1 and k 2 are constants. 

As objective function a natural choice would be the total  cost of the structure. But due to 

the difficulties in assigning monetary values to  failure consequences and to the initial cost 

we have in this paper used the structural weight as objective function. If the structure is 

made of only one type of material the weight is proportional to 

n 

W(x) = ~ ~ixl (8) 
i=l  

where ~i is the total  length of the elements having the area x i- 

In classical structural optimization the constraints usually signify that  the stresses and/or  

displacements should be smaller than some prescribed values. In reliability-based structural 

optimization a choice for the constraints could be that  the reliability index in all elementa 

should be greater than some target value. However, based on the discussion in section 2 a 

more natural choice would be to  use the system reliability index 

~ s ( ~ ) - ~  ; o (9) 
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where ~0 is some target system reliability index and #3s(X ) is given by (5). Because the areas 

of the structural elements have to be non-negative we also have the constraints 

x i ~ 0  , i=1,2 . . . . .  n (10) 

The optimization problem is seen to have a linear, objective function. Since an optimum 

point is a global optimal point if the optimization problem is convex it is important to in- 

vestigate if the constraint (9) is concave. A precondition is that the Hessian matrix is negative 

semi-definite. The elements in the gradient vector and the Hessian matrix are 

- =~(--~1~S)[ ~-~k "~'-~ k=l ~=k+l apk ' ~Xi ] (11) 

where ~ and p are given by (3) and ( 4 ) .  ~ is the standard normal density function. 

a2~----s(x) ~(-~is)  [~s~(--~s) a~s a~s 
ax~axj - ax~ ax i 

k=l = k=l 

a~ n-1 n ~dp ;~2~ 
~- -1  2 ~ 1  2 a2*h aPkK t-.~L+ , ~ 2 " - h  " t 'kK] Jc - -  
k=l K=k+l~= l  L=~+I ~pkK~)p~L 8Xi bxj k= ~ K.k+l~PkK~)Xia~ 

(12) 

The derivatives in (11) and (12) can be derived from the definition of ~b h , (3) and (4). As seen 

from (12) it is very difficult to establish whether the constraint in a given problem is concave. 

To show that the fulfilment of the concavity condition depends on the parameters in the 

given problem consider the following simple example. 

Example N 1, Np Np. 

I n  ( 2 )  we assume that h = 1 ,  N R = 2 ,  a l l  = a 1 2  = 1 ,  f f - v  b i j /~p  t = 2 ,  Z ~ b i i b i k C P j k  = 0.05, 
j= i=i  j=l k=l 
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Figure 1. 
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E[R 1 ] = Xl, E[R 2] =.x2, CR11 = (0.1 Xl)2 , CR~ 2 = (0.1 x2)2 , CRI 2 = (0.1)2pxlx2, p = 0.3. 

In figure 1 contours of ~S (Xl, x2 ) are shown. The Hessian matrix is determined according to 

(12). The hatched area in figure 1 shows the area where the Hessian is not negative semi-definite. 

It  is seen that only for combinations of x 1 and x 2 where the reliability index is relatively small, 

the Hessian is not negative semi-definite. 

The above example indicates that for a structure with a reasonable reliability index (/~s > 3) the 

reliability-based optimization problem will in most cases be convex. 

4. OPTIMIZATION PROCEDURES 

In this section we describe two optimization procedures. The computational work involved 

in solving the optimization problem described above can be divided in three parts: 

I Identification of critical failure modes by the E-unzipping method. 

II Evaluation of the systems reliability index for a given set of critical failure modes. 

III Optimization calculations. 

Due to the great complexity of the constraint (9) the derivatives of (9), if needed, will be 

calculated by using finite differences. Each time calculation of the constraint (9) is requested 

by the optimization algorithm both part I and 17i have to be performed. But because part I is 

very time-consuming compared to part II and because the set of critical failure modes can- 

not be expected to change significantly due to small changes in the design vector x, the 

critical failure modes are only identified when one of the following conditions is fulfilled 

(the latest identification is performed at iteration step i with the design vector xi): 

1. The actual iteration step is equal to i + I c. 

2. --  x;) 2 ~ xma x, where x is the actual design vector. 

Evaluation of the systems reliability index given a set of significant failure modes (part II) 

has to be performed many times. Generally, the evaluation has to be made approximately. 

In this paper we have used partly the so-called PNET method, Ang & Ma [8] and partly the 

average correlation coefficient method, Thoft-Christensen & Soreusen [9]. 

The special formulation of the optimization problem where the constraint (9) is very im- 

portant has caused the following test for optimality to be used: 

. i _  i - 1  , W ( x i ) _  W ( x i - 1 )  Xc1  xl i÷ c311 N 
j=l 

where x i is the value of x at iteration level i. This stopping criterion can only be used when 

the set of significant failure modes is updated, c I , c 2 , and c 3 are prescribed constants. 

The two different optimization algorithms which have been used in the above optimization 

procedure are 

a. The non-linear programming code NLPQL developed by Schittkowski [10]. This mathe- 

matical method is based on the successive solution of quadratic programming sub-prob- 

lems and a subsequent one-dimensional line search with an augmented Lagrange func- 

tion as merit function. The optimality test (13) has been added to the tests in NLPQL. 
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b. In  s t ruc tu ra l  o p t i m i z a t i o n  a sequen t i a l  l inear  p r o g r a m m i n g  t e c h n i q u e  based  o n  the  inverse 

areas  o f  the  s t r uc tu r a l  e l emen t s  is o f t e n  used ,  e.g. F l eu ry  [11] .  A t  t he  i th  i t e r a t ion  level 

t he  cons t r a in t  (9) is l inear ized 

n d! 

At iteration level i the new design vector x i+ 1 is then found by solving the  lineari:,.ed 

Problem ((8) 4- (14) 4,--(10)): 

i+ 1 - max{O,  k = l  xi - ~i /~ } (15) 

where  ~ is de f ined  in (8) a n d  

i 
D!- i - r  X (16) 

k = l  

(16)  is a d d e d  t o  s tabi l ize  t h e  i t e r a t ion .  

5. E X A M P L E S  

Cons ide r  the  f r a m e  s h o w n  in f igure  2 .  I t  has  4 d i f f e ren t  s t ruc tu ra l  e lements  w i th  areas  x l ,  x2 ,  

x3 ,  a n d  x 4.  k I a n d  k 2 in  (1) - (2) are chosen  as ( G o r m a n  [12] )  k I = 1 .84  a n d  k 2 = 3 .20 .  

The  load ing  (5 c o n c e n t r a t e d  loads)  a n d  the  19 fa i lure  e l emen t s  (po t en t i a l  y ie ld  hinges)  are 

mode l l ed  b y  4 + 19 n o r m a l  s tochas t i c  var iables  w i th  c o n s t a n t  coef f ic ien ts  o f  var ia t ion .  T h e  

e x p e c t e d  values o f  t he  fai lure  e lements  are  d e t e r m i n e d  b y  

/ ~ i = w i - 2 7 0 - 1 0  s k N m  -2 , i = 1 , 2 , 3 , 4  

w h e r e  w i is given b y  (6) .  F u r t h e r  detai ls  c o n c e r n i n g  t h e  load ing ,  t h e  co r r e l a t i on  s t r uc tu r e ,  

a n d  t h e  ~-unzipping  can be  f o u n d  in Thoft-Chris tensen & S~rensen  | 1 3 ] .  T h e  c o n s t a n t s  in 

(13) are  c h o s e n  as c 1 = c 2 = c 3 = 1 a n d  e = 0 .01 .  
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X 1 x 1  

X 1 

x 3 

X 1 

i / ,  , / j  

x 4 

~ / /  / /  

Figure 2. Geometry and optimization variables. 
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Figure 3. Iteration history for failure defined at level 2. × indicates identification of significant failure modes. 
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The NLPQL algorithm is used. 
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Figure 5. Iteration history for failure defined at 
mechanism level. × indicates identification of 
significant failure modes. The simple optiml~.a- 
tion algorithm in section 4 is used. 

For  failure defined a t  level 2, I c = 5, Xmax = 20, the PNET m e t h o d  used to  evaluate  the  systems 

reliability index ~S approx imate ly  and the  NLPQL algor i thm used for  the  opt imiza t ion  the 

i terat ion his tory is shown in figure 3. The  c o m p u t e r  t ime is 1203 sec. (CDC Cyber  170-730).  

Some  f luctuat ions  are observed.  These are mainly  due  to the  stepwise upda t ing  of  the  signifi- 

cant  faihtre modes .  The  op t imal  areas are x = (52.0,  51.9,  82.6,  55.0).  

With the  same parameters  the i terat ion his tory for  failure def ined a t  mechan i sm level is shown 

in figttre 4. The  c o m p u t e r  t ime is 150 sec. Again it  is seen tha t  the process converges,  a l though 

there  is a great  f luctuat ion at  i terat ion no.  4. The  op t imal  areas are  x = (42.9,  50.7,  70.3,  59.8).  

In  figure 5 the  i terat ion his tory is shown for  the  same example  as in figure 4. Th e  only  differ- 

ences are tha t  the  s imple opt imiza t ion  algori thm b in section 4 is used instead of  the  advanced 

NLPQL algor i thm and I e = 1. Also with this a lgori thm the process converges.  Th e  o p t i m u m  
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Figure 6. Spatial truss tower. 

2{}.Ore 

I~ 18 
28,1 m 

~.1.It m 

~" 39.1 m 

14 35.2 m 

t 

area element~ 

x 1 1 , . .  , , 4 

x2 5 , . . .  , S 

% 9 . . . . .  12  

~4 13 . . . . .  24 

x 5 25 . . . .  ,32  

x 6 33 .... , 4 0  

x 7 4 1 , . . . ,  48 

~S W'lO-S 

4 4 

3 3 . ~ ' ~  

2 2 ~  

W ffi 1.505 
1 1 

I I , I I I " iteration 

4 8 12 16 20 24 

Figure 7. Iteration history for failure defined at mechanism level. × indicates identification of  significant 
failure modes. The simple optimization algorithm in section 4 is used. 
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point is the same and the same great fluctuation is found (here at iteration no. 3). The com- 

puter time is 124 sec. 

In the following example consider the three-dimensional truss structure in figure 6. The 

structural system is a model of a steel jacket offshore platform and has 48 structural ele- 

ments. But only 7 of them are chosen to be different in the optimization, see figure 6. 

The loading (16 concentrated loads) and the 48 failure elements (potential axial yielding 

elements) are modelled by 2 + 48 normal stochastic variables with constant coefficients of 

variation. The expected values of the failure elements are determined by 

~ i=x i  • 270.103 kNm -2 , i = 1 , 2  . . . . .  7 

Further details concerning the loading, the correlation structure, and the/3-unzipping can be 

found in Serensen et al. [14]. The method of average correlation coefficients, see section 4, 

is used to evaluate ~s approximately. 

With the same parameters as used in the first example and failure defined at mechanism level 

iteration histories are shown in figures 7 and 8. In figure 7 the result from using the simple 

optimization ~lgorithm b in section 4 is shown. Convergence is obtained after 9 iterations. 

The total computer time is 8191 see. (2805 sec. for identification of failure modes, 4625 sec. 

for evaluation of ~s, and 761 sec. for optimization calculations). The optimal areas are (0, 

105,127,172, 0, 2.7,271). 

In figure 8 the result of a run with the NLPQL algorithm is shown. After 26 iterations con- 

vergence is not obtained. The run stopped because the algorithm could not find a better 

point. The reason is probably that the reliability constraint is very fiat in the area about 

the minimum point. The object function value is 3% greater than the value which was found 

using the simple optimization algorithm and the areas at the point where the algorithm 

stopped are (0, 60, 88,248, 0, 5.5,212). The computer time is 11266 sec. It  is seen that three 

of the areas are almost 0. 

The results of the latter example therefore indicate that the simple optimization algorithm 

(see section 4) is better than the advanced NLPQL algorithm to find the optimal areas in a 

structural system with reliability constraint. Further investigations of the effect of the choice 

of the parameters in the algorithms are being performed. 

6. CONCLUSION 

The optimization problem which is considered in this paper is to find the minimum weight 

of a structural system subject to the constraint that the reliability of the structure exceeds 

a critical value. 

In this paper it is shown that it is generally not possible to establish that the optimization 

problem is convex. A simple example demonstrates this. 

To solve the optimization problem a new optimization procedure is developed. The procedure 

is composed of three main parts, namely identification of significant failure modes, evalua- 

tion of the systems reliability index, and calculation of the optimal point. Since the first two 

parts are the most computer time consuming special considerations are given to these parts 

in designing the procedure. Two different optimization algorithms are investigated, namely 

a simple procedure based on linearization of the constraint and the NLPQL algorithm which 



885 

is an advanced procedure based on solving sequential quadratic subproblems. 

In two examples the procedure is ihvestigated. In the first example runs with both  algorithms 

converge. In the second example only the  run with the simple optimization algorithm con- 

verges. The run with the NLPQL algorithm stops at a point with a value of  the weight which 

is 3% greater. This result indicates that  for complex structural systems with reliability con- 

straint it is better to use a simple optimization algorithm. 
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