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Introduction
The complexity definition has appeared during my analysis of visual structures 
perception (Stanowski, 2005). The binary model of visual impacts finding was essential 
here for a possibility of the general (abstract) research. The Abstract Complexity 
Definition is one of the research results.

The difficulty of defining complexity is well characterized by Francis Heylighen 
(1999).

Complexity has turned out to be very difficult to define. The dozens of definitions that 
have been offered all fall short in one respect or another, classifying something as 
complex which we intuitively would see as simple, or denying an obviously complex 
phenomenon the label of complexity. Moreover, these definitions are either only 
applicable to a very restricted domain, such as computer algorithms or genomes, or so 
vague as to be almost meaningless. Edmonds (1996) gives a good review of the different 
definitions and their shortcomings, concluding that complexity necessarily depends on 
the language that is used to model the system. Still, I believe there is a common, 
"objective" core in the different concepts of complexity. (Heylighen, 1999, p. 3)

Binary Model of Visual Impacts
In my analyses I have been investigating the impact (the effects) of visual structures 
using examples characterized by various complexities (Stanowski, 2010).1 Despite a great 

                                                
1 The analyses give information about the source field of exploration but they are not necessary 
for understanding the paper.
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diversity of impacts analyzed in them, all of them conformed to the same principle of 
contrast. I looked for an example which could provide a representative model for these 
impacts. Such an example was found among the most simple and abstract structures, 
that is structures made up exclusively of two different types of elements, i.e., binary 
structures. Let me define more precisely the necessary meanings concerning a binary 
structure:

1. Binary structure (binary string) – sequence of 0’s and 1’s, e.g. 101101110011101101.
2. Basic element – each 0 or 1. There are 18 basic elements in the structure.
3. Element – distinctive basic element or group of basic elements e.g. 

101101110011101101.
4. Substructure – distinctive group or arrangement of elements e.g. distinctive group 

of double elements: 101101110011101101, increasing arrangement of elements: 
101101110011101101. In a particular case, when only one element has a 
particular feature, e.g. single: 1100100111000, we count it also as substructure.

What makes any substructure distinctive, is that all elements of the substructure 
have the same (common) feature. That is, elements which are double (e.g., 11 or 00) have 
the feature “double” or “doubleness”and belong to substructure “double elements.” 
Elements which consist of zeros (e.g., 0, 00, or 000) have the feature “zero” or, let say, 
“zeroness” and belong to substructure “zero elements.” For example: substructure “double 
elements” in the structure 101101110011101101 (below), contains all those elements which 
are “double,” while substructure “zero-elements” in the same structure, contains all those 
elements which consist of only zeros. One may notice that element 00 belongs to both 
substructures because it has the features “double” and “zero.” We can also say that the 
element 00 connects these two structures. For a better understanding, let’s count all the 
substructures in the structure: 101101110011101101. 

1. Single elements 101101110011101101
2. Double elements 101101110011101101
3. Triple elements 101101110011101101
4. Elements “0” 101101110011101101
5. Elements “1” 101101110011101101
6. Increasing arrangement in 101101110011101101

the first eight basic elements
7. Decreasing arrangement in 101101110011101101

the last eight basic elements
8. Symmetry of the structure 101101110 011101101

There are eight substructures in the structure. Notice that the number of 
substructures is the same as the number of features of the structure. Consider another 
example: we may count the substructures present in three binary structures (each with 8 
basic elements) composed of black and white squares (Figure 1). Structure II has the 



Abstract Complexity Definition

80

most substructures, i.e. as many as eight. This is due to this structure's having the 
greatest number of linkages, and arguably the optimal organization of elements.2

In structure I 

1. black elements 
2. white elements 

In structure II
1. symmetrical elements marked 1
2. symmetrical elements marked 2
3. 1 and 2 symmetrical to 3
4. black elements
5. white elements
6. 6. 5 and 4 show symmetry of

black and white ones
7. single elements
8. double elements 

In structure III
1. single elements
2. white elements
3. double elements
4. black elements
5. symmetry - two black ones and one white
6. same two elements

Figure 1. Counting substructures in three binary structures 
(each with 8 basic elements) composed of black and white squares

                                                
2 The method of counting substructures presented should be treated as merely an approximation 
because it fails to account for the degree of distinctiveness of particular arrangements. 
Nevertheless, it is sufficient for our purposes.
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Abstract Complexity Definition
By limiting the inquiry to the simplest abstract binary structures, it is possible to 
unambiguously determine the number of substructures within these structures. Once 
the number of substructures is known, it is possible to also specify the degree of 
complexity of the structure.

It is intuitively obvious that a structure which has more substructures but the same 
number of basic elements is a more complex one. As a measure of the degree of 
complexity, it is therefore possible to use the ratio of the number of substructures of a given 
structure to the number of its basic elements.

n
N

D 

D – degree of complexity of structure

N – number of substructures of a given structure 

n – number of basic elements

According to Heylighen (1999), one of the important criteria of complexity is that “a 
system would be more complex if more parts could be distinguished, and if more 
connections between them existed” (p. 3).

The degree of complexity (D) relates to better organization (number of connections), 
while the number of substructures/parts (N) relates to the number of distinguished 
parts. Consequently, the complexity (C) of a structure would depend on the degree of 
complexity (D) and number of substructures (N).

C – complexity of a structure    n

N
N

n

N
C

2



I call the complexity (C) so defined (i.e., the product of the degree of complexity and 
the number of substructures/features), Abstract Complexity.



Abstract Complexity Definition

82

How the definition relates to the existing complexity criteria

Returning to the Heylighen (1999) article: 

Let us go back to the original Latin word complexus, which signifies ‘entwined’, ‘twisted 
together.’  This may be interpreted in the following way: in order to have a complex you 
need two or more components, which are joined in such a way that it is difficult to 
separate them. Similarly, the Oxford Dictionary defines something as "complex" if it is 
"made of (usually several) closely connected parts". Here one finds the basic duality 
between parts which are at the same time distinct and connected. Intuitively then, a 
system would be more complex if more parts could be distinguished, and if more 
connections between them existed.

More parts to be represented means more extensive models, which require more time to 
be searched or computed. Since the components of a complex cannot be separated 
without destroying it, the method of analysis or decomposition into independent 
modules cannot be used to develop or simplify such models. This implies that complex 
entities will be difficult to model, that eventual models will be difficult to use for 
prediction or control, and that problems will be difficult to solve. This accounts for the 
connotation of difficult, which the word "complex" has received in later periods. 

The aspects of distinction and connection determine two dimensions characterizing 
complexity. Distinction corresponds to variety, to heterogeneity, to the fact that different 
parts of the complex behave differently. Connection corresponds to constraint, to 
redundancy, to the fact that different parts are not independent, but that the knowledge 
of one part allows the determination of features of the other parts. Distinction leads in 
the limit to disorder, chaos or entropy, like in a gas, where the position of any gas 
molecule is completely independent of the position of the other molecules. Connection 
leads to order or negentropy, like in a perfect crystal, where the position of a molecule is 
completely determined by the positions of the neighbouring molecules to which it is 
bound. Complexity can only exist if both aspects are present: neither perfect disorder 
(which can be described statistically through the law of large numbers), nor perfect 
order (which can be described by traditional deterministic methods) are complex. It thus 
can be said that complexity is situated between order and disorder, or, using a recently 
fashionable expression, "on the edge of chaos". (Heylighen, 1999, p.3)

Let’s consider the characteristics. What is suggested is that the parts/substructures 
distinction is in opposition to their connections or even exclude each other: quite 
independent gas molecules can’t be completely bound crystal molecules in the same 
time. Only compromise “the edge of chaos” could be possible here. Our considerations 
deny such a reasoning. 

In our analyses distinguished parts/substructures such as white elements, double 
elements, symmetry of elements etc., comprise also, what we can call, connections 
between them. Connection of elements is not in opposition to their distinction, but  
makes the distinction even stonger. Consider two elements which have common and 
different features. e.g. substructure of double elements connect different elements which 
have the common feature “doubleness. The common features attract those elements 
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making the different features of the contrasting elements stronger. Without connection 
different features wouldn’t be even noticed. 

In the example of structure II (Figure 1): substructure “double elements” connects 
substructure “white elements” and substructure “black elements” (directly double white 
and double black, and indirectly single white and single black); “symmetrical elements 
marked 1” connects substructures “single black,” “single white” and “double white,” 
indirectly also substructure “double black.”

It is also easy to see how components are “entwined” here, and how difficult is to 
separate them without destroying the structure.

One can also see duality between parts which are at the same time distinct and 
connected. Such duality is possible because each element belongs to more than one 
substructure (has more than one feature).

Conclusion
The definition is not a speculative one. It is based on the model of visual impacts which 
is directly connected with nature of our perception. 

The field of visual perception has been not explored yet enough, but it seems to be 
very useful and profitable for further analyzes, beside such fields as language, biology, 
society, physics.
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