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With his chapter, Phoronomy, Kant defies even the seasoned interpreter of 
his philosophy of physics.1 Exegetes have given it little attention, and un-
derstandably so: his aims are opaque, his turns in argument little motivated, 
and his context mysterious, which makes his project there look alienating. I 
seek to illuminate here some of the darker corners in that chapter. Specifi-
cally, I aim to clarify three notions in it: his concepts of velocity, of compo-
site motion, and of the construction required to compose motions.   

I defend three theses about Kant.  1) his choice of velocity concept is ul-
timately insufficient.  2) he sided with the rationalist faction in the early-
modern debate on directed quantities. 3) it remains an open question if his 
algebra of motion is a priori, though he believed it was.  

I begin in § 1 by explaining Kant’s notion of phoronomy and its argu-
ment structure in his chapter. In § 2, I present four pictures of velocity cur-
rent in Kant’s century, and I assess the one he chose. My § 3 is in three 
parts: a historical account of why algebra of motion became a topic of early 
modern debate; a synopsis of the two sides that emerged then; and a brief 
account of his contribution to the debate. Finally, § 4 assesses how general 
his account of composite motion is, and if it counts as a priori knowledge.  

                                                             
1 Hereafter, by ‘Phoronomy’ I mean his chapter, “Metaphysical foundations of phoronomy,” 
and by ‘phoronomy’ the discipline that Kant so denoted. The same goes for his other chap-
ters (Dynamics, Mechanics, etc.). Throughout, I use ‘Foundations’ as a convenient name for 
his book at issue in this volume, viz. Metaphysical Foundations of  Natural Science. Unless 
noted otherwise, all translations are mine.  
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To achieve my aims, I use two methods. One is to translate his key 
terms into the language of modern kinematics. This approach lets us dis-
ambiguate his notions, clarify their explanatory connections, and better 
grasp the scope and limits of his phoronomic foundation. The other method 
is to read the problems and theses of Phoronomy in the context of early-
modern efforts to mathematize motion. I show that Kant was part of a long 
effort to secure algebraic structure for directed quantities—which the new 
science of motion needed, but classical mathematics could not provide.2 
This casts fresh light on Kant’s phoronomy, and on his place in the long 
history of foundational debates in mechanics. 

More broadly, grappling with Phoronomy is good training for a much-
needed examination of Kant’s notion of proof in mathematical physics: its 
epistemology, sources of evidence, and reliance on central distinctions in his 
thought, such as a priori/a posteriori, pure/empirical, and the like.  

 

1.   The subject-matter of phoronomy 

By his account, phoronomy studies matter regarded just as “the movable in 
space.” It “abstracts,” or leaves out, all internal structure in matter, and so it 
considers just “motion, and its magnitude.” Specifically, its speed and direc-
tion (480). The challenge is to explain these ideas without paraphrase, in 
clear concepts—preferably, our concepts. That task faces several obstacles, 
so I try here to remove them first. In particular, there are some red herrings 
that can lead astray even the wary reader.   

One is Kant’s very term. ‘Phoronomy’ had been a coinage used just 
twice before Foundations, and in contexts quite unrelated to Kant’s usage. 
Leibniz invented the word in the 1680s to denote the doctrine of the “laws 
of nature,” whereby he meant the dynamical principles of collision theory.3 
Then his disciple, Jakob Hermann, adopted it for his own project, a 1716 

                                                             
2 By ‘algebraic structure’ I mean the concepts and principles that legitimize addition, sub-
traction, and related operations. In this regard, I also use ‘algebra of motions’ as an auxilia-
ry synonym for the idea that motion-quantities can be added and subtracted.  
3 The term came from the Greek for local motion (phora) and law (nomos). For a sense of 
Leibniz’s meaning, cf. his dialogue Phoranomus, sive de Potentia et legibus naturae.   
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comprehensive treatise in particle dynamics.4 Kant does not mean his term 
in these senses. For the Leibnizians, phoronomic doctrine dealt indispensa-
bly with the causes of motion processes, whereas Kant is clear that his 
phoronomy is a pre-causal treatment.  

Another red herring is the modern notion, ‘kinematics.’ Just decades af-
ter Kant, Ampère and Poncelet invented it to denote the purely geometric, 
descriptive and non-causal account of motion. That sounds much like 
Kant’s objective in Phoronomy, and so we might think that his term is an 
exact synonym for ‘kinematics.’ But that would be a mistake. There is no 
single, all-encompassing discipline that covers descriptively all species of 
motion; there are just local theories, fit to describe some species but not 
others. Namely, each branch of classical physics has its own kinematics, 
with just enough mathematical structure for the needs of that branch, not 
generally.5 Hence saying that phoronomy is a kinematics leaves things fun-
damentally incomplete—we ought to also add, what his kinematics is for.  

Finally, the third red herring is Kant’s announcing that phoronomy is a 
general account, qua part of the “general doctrine” of body. Recall his claim 
to have “completely exhausted this metaphysical doctrine of body, so far as it 
may extend” (473, my italics). That is unhelpful in two respects. Qua de-
scriptive theory of motion quantities, phoronomy is not general; far from it, 
in fact. There are many motion species that his chapter does not cover and 
could not possibly cover, because the conceptual basis he offers is too weak 
for them. Moreover, his phoronomy does not really describe the motion of 
bodies. Namely, it is too weak to describe their motion as extended volumes 
of matter, which require stronger concepts (and mathematics, too) well be-
yond the basis of his chapter. Insofar as it applies to bodies, phoronomy is 
valid of them only under very narrow, restrictive assumptions that Kant un-
fortunately mischaracterized. I detail these charges in Section 4. 

                                                             
4 The book’s full title was Phoronomy: the forces and motions of  bodies, solid and fluid. Kant 
had it in his library (Warda 1922: 34).  
5 That is, there is a kinematics of wave motion; one for free-particle orbits; one for rigid-
body motion; yet another one for continuous deformations; a kinematics for constrained-
motion systems; one for continua with microstructure, e.g. liquid crystals; and so on. No 
single branch of mathematics has the conceptual resources to treat all of these motions 
within one framework. E.g., for free particles and deformable continua, the most compre-
hensive kinematics requires as mathematics the differential geometry of skew curves and 
surfaces; whereas for rigid bodies we need to add tensor algebra, so as to describe the kind 
of rigid motion known as ‘change of attitude.’  
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Then what is phoronomy? I propose here a construal of his movability 
doctrine in modern terms. To avoid the threat of incompleteness I signaled 
above, I specify these terms as best I can. I claim that Kant’s phoronomy is 
a kinematics for particle collision in a force-free vacuum. Just what grounds I 
have for my construal will become more clear in Section 4.  

 

2.  Kant’s concept of speed 

The keystone of Kant’s account of how we mathematize motion is a notion 
of speed at an instant. He was right to give it such attention, because it was 
a thorny problem. Between Galileo and Lagrange, mechanics relied on 
mathematical descriptions of motion that were often implicit, and depend-
ent on foundations shifting rapidly. Kant found himself amidst this long age 
of drastic change. In particular, around the time of Foundations there were 
four notions of (instantaneous) speed available. Here I present those con-
cepts, I use them to elucidate Kant’s preferred concept, and then I assess his 
choice, as befits this guide. To keep them apart, I give them below custom 
names; in every case, let P be a particle moving in some curve. 

Pre-classical.  Speed is the ‘intension’ of a ‘form.’  Namely, it assumes 
that P has a ‘form of motion’ at every point of its trajectory. Imagine P to trav-
el for some finite time T over some distance S while having the same ‘form’ at 
every instant, viz. ‘uni-formly.’ Instantaneous speed is the numeric ‘intension’ C 
of the form, and it equals S/T defined as above.    

Condensive. Speed at a location X is the ‘condensation point’ of a se-
ries of decreasing values. Namely, let XA, XB, XD, etc. be segments standing 
for future paths of the particle P currently passing through X. And, let their 
lengths increase serially, i.e. XA<XB<XD, etc. The speed C is the value toward 
which these lengths tend, if taken smaller and smaller. In our terms, C is their 
‘limit from above.’  

Differential. Speed is a ratio of two infinitesimals. Let ds be the infi-
nitely small path that P crosses in an instant, i.e. an infinitely small time dt. P’s 
speed is the ratio ds/dt.  

Analytic. Speed is a part of an algebraic object. Let P’s motion be repre-
sentable by an analytic function of time f(x, y, z, t). At any location X on its 
path, P’s speed equals the coefficient of the second term in the Taylor-series 
representation of the function f at X. Alternatively, at any instant, the speed of 
P is f’s derivative with respect to time.  
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Now I give evidence for the concepts above. I called the first notion ‘pre-
classical’ because it it shows up early, well before the law of inertia and the 
classical mechanics that it engendered. The notion received clear expression 
already in the 14th century from figures who reflected on mathematizing 
motion. At Paris in the 1340s, Nicole Oresme explained how speed links up 
with extended distance: “We imagine punctual instantaneous speed by 
means of a straight line” (1968: 292, my italics). The verb, ‘to imagine,’ was 
his way of conveying that in considering instantaneous speed we do not 
grasp a stretch of space actually crossed, but rather one that we may imag-
ine the mobile to traverse [spatium quod ymaginatur pertransiri] counterfactu-
ally, if it crossed it at the same punctual speed (Oresme 2013: 686). This 
need (to rely counterfactually on stretches not actually traversed) is implicit 
in another, equivalent definition by Roger Swineshead at Oxford: “of local 
motions, one is swifter [velocior] when, by the intension of the former mo-
tion, one could cross [poterit pertransiri] a greater space, during some time, 
than by the latter motion’s intension.”6 The thought that we may use line 
segments to quantify punctual speeds is even older; we see it voiced by 
1260: “the proportion of the motions of points is as the proportion of 
straight lines described in the same time.”7  

And, the pre-classical notion of speed survived well into the early mo-
dernity. John Wallis relied on it: “Speed [celeritas] is an affection of motion, 
and it results from comparing distance [longitudo] and time; that is, from 
determining how much distance is crossed in how much time” (1695: 576). 
But Wallis and his age made a mistake while adopting the medieval con-
cept. Note that, as Oresme and Swineshead above knew, to define punctual 
speed we must resort to counterfactual distances; but the early moderns omit 
to specify this crucial point. In so doing, their failure (to mention that S and 
T denote non-actual stretches) becomes a crippling defect. In sum, it replac-
es the desired concept (namely, instantaneous speed) with the wrong one, 
viz. average speed, which concept is not at issue here.  

The condensive notion of speed is not explicit in 18th-century works. 
Only its underlying concept is, viz. of limit of a sequence, can be found. 
D’Alembert defined it as the fixed value toward which a convergent se-

                                                             
6 Translated from Roger’s unpublished Erfurt Manuscript, page 43 retro, column a; ex-
cerpted in Sylla 1973: 245.  
7 Translated from Gerard of Bruxelles, Liber de motu, excerpted in Clagett (1984: 64). 
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quence tends: “a magnitude [grandeur] is the limit of another one when the 
latter can approach the former magnitude by more than any given, arbi-
trarily small magnitude, such that the difference (of the approaching magni-
tude) to its limit is unaccountably small” (1780: 52). Elsewhere, he singled 
out certain sequences—for instance, a sequence of ever-decreasing distanc-
es, as Kant’s diagram (for his Parallelogram Rule) allows us to visualize—as 
especially easy to test for convergence: “for a series to be as perfect as pos-
sible, it must be the case that 1) its terms consecutively decrease, after the 
first one; and 2) all of its terms have the same sign” (d’Alembert: 1768: 
177). But, I cannot find direct evidence for the condensive speed concept in 
the 1700s. Sutherland attributes it to Kant (2014: 703ff ). But, we must 
count it merely as a possible interpretation—viz. just compatible with the 
textual evidence—because Kant himself did not declare it overtly.  

The differential concept of speed is on display in Euler’s Theoria motus, 
the first significant tract in rigid-body dynamics; Kant appears to have seen 
it, though perhaps too late.8 There Euler introduces uniform and non-
uniform motion, declares that “they differ in their essence,” and goes on to 
treat non-uniform motion [inaequabilis] in a straight line first: 

[In problems of particle mechanics], the entire business reduces to finding the place 
where the moving point shall be at any arbitrary given time. Thus let AB be the 
straight line in which the point moves, starting from A. After a time =t, the point will 
be at place S, and let AS =s, the distance crossed in time t. […] By differentiation, we 
obtain the element of distance ds that the particle crosses in an element of time dt. And 
the fraction ds/dt expresses the moving point’s speed at the place S. Evidently, this frac-
tion is a finite quantity. Hence, if we let v denote the speed at S, we have v = ds/dt. 
Consequently, for particle motion we can assign a speed at any place or also at any in-
stant. (Euler 1765: 16; my italics) 

Thus Euler taught lucidly the notion of instantaneous speed qua local mag-
nitude defined at a point. And, he warned that C=S/T, the definition fa-
vored by Kant and others, is valid only in a very narrow context, namely 
when a particle moves in uniform translation.  

Lastly, the analytic notion of speed was Lagrange’s singlehanded crea-
tion. He began by taking for granted that we may represent particle position 
by some coordinate function; indeed, that was established practice by then. 
Lagrange refined this assumption in two respects. First, he imposed the 

                                                             
8 Euler’s book was reissued in 1790, and Kant in the Opus postumum, written largely in the 
1790s, once refers to “Euler’s materia rigida” (1993: 32; 22: 213).  
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condition that any such coordinate mapping must be an analytic function.9 
Second, he assumed that, for any such function, its value at a point (x+i) 
can be represented by a Taylor-series expansion (1797: 8):  

f(x+i) = f(x) + p(i) + q(i)2 + r(i)3 + …. 

Against this backdrop, for any particle motion given by a function f of co-
ordinates and time, its speed at point W is the second term in the Taylor-
series representation of the value f(w) that the function takes at W: 

The functions [that we use in mechanics] inevitably relate to time, which I will always 
designate by t. And so—since a point’s position in space depends on three rectangular 
coordinates x, y, and z—in all mechanical problems I will take these coordinates to be 
function of t. … 

Generally then, in any rectilinear motion where the distance crossed is a given func-
tion of the time passed, the first function of  this function represents the speed, and the se-
cond represents the accelerating force at some instant. (Lagrange [1797]: 223, 228; my 
italics)   

That was his way of saying that speed is the first derivative of the particle’s 
change of coordinates with respect to time.10  

With this synopsis of kinematic concepts behind us, three questions 
need our attention now. Which concept of speed really was Kant’s notion? 
We have no direct evidence for an answer—he remained oracular about it. 
Exegetes have ascribed him two such concepts. Sutherland says Kant used 

                                                             
9 Start with the notions of a variable quantity x, y, etc.; of value of a variable, viz. a particu-
lar number; and of a constant quantity a, b, c, etc. (The post-Leibnizians called them ‘sym-
bols,’ as did Kant.) In the 18th century, an analytic function was any ‘expression,’ or syn-
tactic string composed from variables, constants, and the common algebraic symbols +, –, 
·, ÷, plus exponentiation. See the definition in Lagrange 1797: 7. In the formula above, p, 
q, r are component functions of Lagrange’s “derived function.” See below. 
10 Lagrange’s phrasing is opaque, but easy to explain. For him, the Taylor expansion repre-
sents a function f by means of a “derived function” g, which is an (infinite) sum of other 
functions f', f'', f''', etc. Let u, v, w be consecutive values of some real variable, such that 
they differ from the next one by an infinitesimal amount du. (E.g. they could be points in 
space lying next to each other; or consecutive instants of time.) To represent f(v), i.e. f’s 
value at v, we use g(v), built as follows: g(v) = f(u) + af'(v+du) + bf''(v+du) +cf'''(v+du), 
etc. In this infinite sum, f(u) is a fixed value, not a variable. Therefore, f' counts as La-
grange’s “first function of the function” g. As is well known, f' is the first derivative of f, 
the represented function.  
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the condensive notion, but Friedman gave a strong argument that it would 
not be the right account to attribute to Kant.11  

Why did Kant choose his particular speed-concept? There is an exter-
nalist explanation for his choice, but it is philosophically unsatisfying.12 
Fortunately, Kant had an internal reason to prefer the pre-classical concept. 
Namely, the concept integrates very naturally with his theory of mathemati-
cal cognition in two respects. One, it allows us to show that speed can be 
constructed geometrically, viz. represented by the picturable singulars that 
he considered essential to construction. Two, Kant thought that pre-
classical speeds being constructable in pure intuition lets him argue that op-
erations on speeds count as synthetic a priori knowledge. I turn to this point 
below, in Sec. 4.  

Finally, was it a wise choice? On this point, I am not sanguine. Kant’s 
velocity concept has an unobvious but real shortcoming. Namely, it is not 
general. More exactly put, the defect is this. Systematic reasons drove him to 
adopt geometric representings of the quantities crucial to a modern theory 
of motion—position, velocity, and acceleration. But, qua descriptive lan-
guage for those parameters, the geometric framework is too weak for mod-
ern theory as it had grown by his age. First, it lacks a general way to express 
accelerations, though it admittedly allows us local, configuration-specific 
ways of representing velocity-difference, or acceleration.13 Second, it cannot 

                                                             
11 See Friedman (2013: 62-7) and Sutherland (2014: 703f ). I am not sure what Sutherland’s 
evidence is, for attributing the condensive speed-concept to Kant.  
12 Apart from brief interludes around mid-century, the German lands in the 1700s were a 
backwater of mathematics; what cutting-edge research there was (by Euler, and then La-
grange) was confined to the Berlin Academy, from which Kant and his peers—campus 
metaphysicians, with few exceptions—were cut off. To compound his predicament, Kant’s 
mathematical training was always deficient, and his lack of French (the lingua franca for 
new science then, with Latin a distant second) prevented him from trying to keep up with 
the work of Euler and Lagrange. Cf. also Rusnock 2004, Sec. 2.  
13 One local approach to acceleration was by means of ‘natural’ coordinates. Specifically, at 
a given point C of the particle’s motion (in a plane), one represented the induced accelera-
tion as two speed increments, along two lines: one tangent to the trajectory at C—hence, 
locally—and one normal to the trajectory, likewise at C. The task was to infer the magni-
tude of these speed increments, from the known forces acting on the particle at that loca-
tion. Once known, these increments would be ‘composed’—via the Parallelogram Rule—
with the particle’s (already known) velocity at C. The result of this composition was 
knowledge of the location D where the particle would be at the next instant, once it moved 
past C. At that stage, the task above had to be reprised: a new ‘composition of motions’ 
was needed, to find the location E at the following instant; and so on. A vivid illustration of 
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be used to write differential equations. And yet, mechanics after 1760 had 
evolved into a stage that required the two capabilities above as sine qua non 
features of any mathematical language aspiring to be a representational ve-
hicle for kinematics.  

In particular, consider how Euler stated his “new principle of mechan-
ics,” i.e. the law of motion that governed all the mechanical processes 
solved mathematically by then, including some that neither Newton nor 
Kant had analyzed. Euler wrote his law in component form, viz. stated rela-
tive to each of three orthogonal axes of an inertial frame external to the sys-
tem to be described. And, for each motion-component, he used a coordi-
nate function to represent it:14 

 

 

Thus Euler makes clear that, in regard to mathematical form, all the laws of 
motion are differential equations. For the scientific elite then, successfully 
mathematizing matter in motion amounted to deriving equations of kine-
matic change at a point, over an instant, for that particular type of matter.  

The import of these facts is: in Kant’s time consensus among theorists 
had coalesced around three convictions. First, the laws of physics had to be 
stated in coordinate functions. Second, quantifying the motions of particular 
bodies amounted to finding the derivatives of these functions. Three, infer-
ring to those derivatives was through deductive reasoning from differential 
equations, not geometric construction—because those equations cannot be 
represented geometrically. To be sure, some role remained for the geometric 
approach that Kant favored: it was useful for motions tractable in ‘natural 
coordinates.’ The fact is, however, that such geometric approaches were not 
general.  

 

                                                                                                                                                    
this natural-coordinates approach is Newton’s proof of the Area Law in Principia, Book 
One, Proposition VI.  
14 P, Q , and R are the components of the total impressed force (on a point mass) along 
three orthogonal axes Ox, Oy, and Oz supposed immobile; x, y and z are coordinate func-
tions, while d2x/dt2, d2y/dt2, and d2z/dt2 are the components of the resulting acceleration 
(induced by the total force). The 2 factor is needed because M is not really a mass; it is a 
weight, with the value of g, the acceleration of gravity, set by convention at ½.  
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[Fig. 2.  Newton’s diagram for his proof of Kepler’s Area Law. Bc is a coun-
terfactual path that the planet-qua-particle would cross in an instant, if it 
moved inertially with the velocity it had at location B. And, BV is another 
counterfactual path, which the planet would cross in an instant if it were sit-
ting stationary at B (instead of moving, as it in fact does) while a gravity-like 
force (emanating from S) acted on it. Finally, BC is the effective path, which 
the particle actually crosses in an instant—as a result of arriving at B, where 
the force S acts on it. Note that BC results from applying the Parallelogram 
Rule to the two counterfactual motions above. Mutatis mutandis for the 
planet’s motion at the subsequent locations C, D, E, etc.] 

 

They worked just for particle motions under gravity-like forces as Newton 
had geometrized, with great success, in the previous century (see Fig. 2).  

In sum, Kant’s concept of velocity appears seriously hampered, if the 
foundational intent was to ground a sufficiently general theory of kinematic 
experience. If I am right, then we should ask again, just how much ex-
planatory scope does his metaphysics of phoronomy have?   

 

3.   Kant on composite motion 

The key result in Phoronomy is the Parallelogram Rule, a composition theo-
rem for adding velocities. I begin with a baffling fact: Kant constructs the 
Rule—but, why? Why is there a geometric figure (and diagrammatic rea-
soning on it) in a treatise of metaphysics? After all, Kant is famous for draw-
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ing a sharp line between the evidence-gathering methods of metaphysics 
and mathematics.  

One reason is that velocity crosses architectonic boundaries, so to speak. 
It counts as an intensive magnitude, but it is associated with extensive ones 
as well (the size of spaces crossed at various speeds). Thus treating degrees 
of speed with the mathematics of extension seems to rest on certain ground-
ing assumptions that Kant wishes to uncover and defend: “it is not clear by 
itself that a given speed consists of smaller speeds (and a rapidity consists of 
slownesses) in the way that a space consists of smaller ones” (493).  

Another rationale for him to discuss Composition is for the sake of a 
philosophical explanation. In particular, Sutherland has argued that Kant 
needs his diagram so as to explain how we represent an identity: of parts and 
the whole they make up. The compounding motions are the parts, and the 
composite motion is the whole (Sutherland 2014). 

I suggest that Kant would have had yet another, third philosophical aim 
with his diagrammatic construction and philosophical explication of it. Spe-
cifically, I read Kant’s diagram as an episode in the early-modern efforts to 
show that directed quantities have an algebra—they add and subtract—and 
to clarify the epistemology of their mathematization.  

Adding velocities (by the Parallelogram Rule) was the gateway insight of 
early-modern science, on a par with the Law of Inertia but far more useful 
than it.15 And yet, crucial and indispensable as it was, velocity addition was 
a foundational enigma for early-modern theorists. There were two sources 
of difficulty, and they required much skill and insight to navigate safely past 
them. Briefly, the difficulties were: 

§ velocities have directions too, not just sizes. And, direction makes a differ-
ence to the size of the sum, or resultant, of their addition.  
§ but the algebraic framework of classical mathematics had no way to de-
termine the result of adding velocities. It lacked rules for adding directions.  

                                                             
15 Like any inertial dynamics, early-modern theory grappled with the generic task of math-
ematizing deflections from inertial paths. (Inert translation, if it ever occurs, is trivial to 
quantify.) But that process always requires adding velocities as the sine qua non operation. 
It is because, from one instant to the next, forced particles move along the resultant, or 
‘composite’ motion, of two velocities: one that the particle has and keeps (by the Law of 
Inertia), and an acquired velocity increment, due to the net impressed force (acting on it at 
that point and instant). See, again, Newton’s above derivation of the Area Law.   
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To grasp the first difficulty above, consider the two combinations below. 
Each involves the addition of two velocities pairwise equal in size: their 
speeds are the same. But, one velocity differs in direction from its size-twin 
in the other pair. That difference alone is enough to make a difference to 
their addition—by affecting the size of the resultant.  

 

 

 

 

 

 

 

 

 

 

 

[Fig. 3.  Pairs of velocities respectively equal in size. In each case, the heavy arrow 
represents their resultant, obtained in accordance with the Parallelogram Rule] 

 

And so, a difficulty of composite motion was that, when it comes to adding 
velocities, knowing the size of the parts is not enough to infer the size of the 
whole. A confounding predicament, clearly.  

To grasp the second difficulty, recall a key fact. Before the 1800s re-
forms in mathematics, the canon for adding magnitudes—more generally, 
the algebra of quantities, as we put it—was recorded halfway through Eu-
clid’s Elements. It is the theory of proportions historically credited to Eu-
doxus of Knidos. Like everyone then, Kant accepted it as the algebraic 
framework for mathematics qua general science of magnitudes.16  

                                                             
16 See the conclusive case for that in Sutherland 2006.  
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But that framework had a debilitating gap. Born well before early mod-
ern kinematics, Eudoxean proportion theory was not designed to handle 
oriented magnitudes, viz. objects having a size and also a direction. The rea-
son is that Euclid, Eudoxus and their pre-modern descendants counted as 
magnitudes just two basic species of object: discretes, viz. integers and their 
fractions; and continuous magnitudes, i.e. Euclidean multiples of straight-
line segments.17 In consequence, this algebra had no explicit rules for taking 
direction into account when adding motion-magnitudes. As illustration, 
consider the question (Fig 4): what counts as two equal motions? 

 

 

 

[Fig. 4.  Pairs of equal speeds. Which pair represents two equal motions, and 
why—on what grounds?] 

 

This question is not well-posed in Eudoxean proportion theory—it has no 
rule or algorithm whereby to answer it.18 But then, without an answer to 

                                                             
17 Suppose a line segment AB to be given, and let it be unit length, by convention. Starting 
with AB and using nothing but straightedge and compass, construct a arbitrary segment CD. 
A Euclidean multiple is any magnitude m such that m is to 1 as CD is to AB.   
18 To be sure, embryonic forms of the Parallelogram Rule were known in Antiquity; for 
instance, in the Alexandrian tradition of statics. My point is that knowledge (of what results 
by applying the Rule) could not be fit into the official algebra, viz. Eudoxean proportion 
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this question there is no way to decide whether one motion counts as twice 
as much as another—it is a “doubled celerity,” as Kant has it—or not; and 
so on, for every multiple. In sum: the classical theory of magnitude had no 
official rule for adding oriented magnitudes.  

The lacuna was felt painfully when Descartes and others began to theo-
rize in optics, collision theory, and dynamics—the ‘mixed-mathematics’ 
areas in which resolving and adding motions is the key device. Lacking any 
guidance from the Eudoxus and Aristotle, it took the 17th century many 
decades to understand how, and accept that, size is linked to direction inex-
tricably, such that treating them separately would give the wrong result.19 
Then the early moderns faced up to another conundrum. Knowing that the 
Parallelogram Rule was true—but not in virtue of Eudoxean algebra—they 
had to answer the epistemological question, why is the Rule true? That is, 
what is the evidence for its truth, and how strong is it?  

By the 1720s, two approaches to answering this question had emerged, 
and they would compete into Kant’s age. Each approach had several spe-
cies, but I can only very briefly mention them here; a real discussion of 
their subtleties belongs elsewhere. One approach was broadly empiricist, 
and indirect. That is, the approach rested on empirical facts about forces; 
and on conclusions about the motions—and their composition—associated 
with these forces. An example is Newton, who showed that his first two 
laws jointly entail that forces add by the Parallelogram Rule. In turn, single 
impressed forces generate accelerations, or velocity increments. It follows 
that a composite motion is proportional to (and inferable by the same Rule 
as) the composite force associated with it.20 Later, ‘s Gravesande devised 
another proof procedure, even more decidedly empiricist. It relied on ex-
periments with static forces on weights (1742: 94f). They showed that any 
two forces jointly acting on a body have a resultant equal to the diagonal of 
the parallelogram they form with each other (see Fig. 5, up). 

The other approach was broadly rationalist. It relied on premises made 
true by some broad principle of rationality; or on evidence accessible to 

                                                                                                                                                    
theory. As a result, knowers of the Rule would not have been able to explain why applying 
the Rule counted as an operation on magnitudes.   
19 These struggle are lucidly and rigorously explained in Miller 2017.  
20 See Corollary II (on composition of forces) and I (on composite motions) to the section 
‘Axioms, or Laws of Motion,’ in Newton, Principia, Book I (1687: 13f).  
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rational intuition. The former was Daniel Bernoulli’s way, who relied on 
the Principle of Sufficient Reason: he started with three static forces f, g, h 
that add up to zero (by the PSR, allegedly). Then he argued that any other 
three forces a, b, c obeying the Parallelogram Rule will be dynamically 
equivalent to f, g, h in that they too will result in equilibrium.21 The latter 
was d’Alembert’s procedure, who relied on a Gedankenexperiment with two 
parallel planes in uniform translation and a point moving relative to them—
such that three relative velocities at issue (d’Alembert 1743: 35-7). From this 
thought scenario, he concluded we can grasp rationally that his three veloci-
ties above obey the Parallelogram Rule (see Fig. 5, down).  

 

 

 

 

 
                                                             
21 Bernoulli’s starting premise posits three forces f, g, and h to be equal, at 120 degrees with 
one another; he claims that PSR entails they are in equilibrium; cf. Bernoulli 1728.  
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[Fig. 5] [Up: ‘s Gravesande’s experimental apparatus for confirming the Paral-
lelogram Rule. The two outer weights a net resultant force R on the the mid-
dle body. R is equal and opposite to the body’s weight (because the body re-
mains at rest). The apparatus yields evidence that R is always equal and col-
linear with the diagonal of the parallelogram formed by the two outer-weight 
forces.  Down: d’Alembert’s a priori proof of the Rule. A is a point particle, 
mobile in a plane BDCA that sits, and slides without friction across, plane 
HMLK underneath it; cgOa represents where plane BDCA arrives, relative 
to absolute space, after a finite time. ] 

 

We can put the early-moderns’ problem above in Kant’s own terms, to 
make vivid his predicament. Let a, b, c be ‘motions,’ i.e. instantaneous ve-
locities qua directed speeds, and let ‘ª’ denote addition with direction fac-
tored in. For him, statements like ‘a ª b = c’ have truth values, and they are 
knowable a priori. But Eudoxean algebra had no way to secure non-
empirical evidence for their truth or falsity. Hence Kant had to expand that 
algebra, so as to make ‘a ª b = c’ into meaningful, determinate judgments.  

In effect, he argued that the Parallelogram Rule (for inferring the size 
and direction of c in ‘a ª b = c’) is synthetic a priori. In Phoronomy, I 
suggest, he aimed to show that the Rule is true on non-empirical grounds, 
so it is a priori; and it is synthetic, not analytic, as the evidence for it comes 
from a synthesis, not from discursive reasoning with concepts. I assess his 
dual claim below.   

Hopefully, knowing the early-modern context I uncovered above might 
make it easier to understand why Kant decided to insert a diagrammatic 
proof in a chapter ostensibly on metaphysical foundations.  

 

4.  Scope and warrant 

This being a critical guide, I end my contribution by assessing phoronomy 
in regard to its scope, or descriptive reach; and in regard to Kant’s warrant 
for his Composition Rule.  

Generality.  So far, I have hinted at how phoronomy lacks generality 
when examined from outside, as it were: in light of mechanics’ then-
growing need for a descriptive vocabulary (of motion quantities) that far 
exceeds geometry in representational content.  



 17 

But the question of generality arises internally as well, from within his 
doctrine. In particular, his Phoronomy has two concepts of motion: ‘change 
of outer relations in space’ and rectilinear point-motion, respectively. Kant 
show that the latter motion is mathematizable: its size is C=S/T, and its 
directions are additive. Still, this concept is just a species of motion (and a 
narrow one, at that). It is the former motion-concept that is general. How-
ever, Kant left it fallow: he did not analyze the notion of outer relations in 
space, did not survey its scope, and did not try to show that it is mathe-
matizable. He gave us no argument that “change of outer relations in space” 
belongs in the “pure mathematics of motion.” To restate my worry above, 
then, Phoronomy has shown just that there is a Kantian-proper science of 
linear velocity, nothing more.  

And yet. Phoronomy may not be general, but it is consilient—with his 
main agenda in Foundations. In Mechanics Kant’s epitome of interaction is 
the collision of bodies, which he treats under very restrictive conditions: he 
reduces each body to a ‘representative point’ and treats their collision. In 
effect, Kant disregards the bodies’ extension and the very complicated mo-
tions that bodies undergo because they are extended. He just singles out 
their mass-centers and analyzes their impulsive motion (in impact) as mere 
points. Given that restrictive treatment, to represent their motion quantita-
tively he needs just a kinematics for particle collision in a force-free vacuum. 
Which is exactly what I claimed (in Section I) that his phoronomy amounts 
to. Specifically, it is a meager kinematics that includes a notion of velocity 
of translation; and the Galilean transformation—that is what really Kant’s 
‘composite motion’ amounts to—which he needs so as to describe the colli-
sion from two different frames: the observer’s perspective, and the ‘absolute 
space’ in which the two bodies collide with equal forces of motion.22  

Apriority.  Now I examine the claim that his proof (of the Parallelo-
gram Rule) is a priori. That he thinks so emerges from his objection to em-
piricist attempts to prove it: the Rule “must be constituted wholly a priori, 
and indeed intuitively, on behalf of applied mathematics” (486; my italics). 
But, is he right to think that his own proof counts as synthetic a priori?  

The Rule is synthetic in the strongest sense: he infers it by diagrammat-
ic reasoning on the output of a synthesis, viz. a parallelogram constructed in 

                                                             
22 Again, see Stan 2013 for the full details.  
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intuition. Still, is it a priori? That is not clear yet. There is a chance that, in 
the final analysis, the Rule might count as a posteriori. I give here two sign-
posts to guide future discussion on the real epistemic status of his Rule, be-
cause I consider it an open question.  

Recall that apriority is a dual notion in Kant: semantic and epistemo-
logical. On semantic criteria, the Rule would count as a priori if it con-
structs pure concepts in pure intuition. Epistemologically, the Rule counts 
as a priori if all the evidence for it comes from non-empirical sources. This 
clarification should help us see why we cannot yet grant that his Rule is ap-
odictically true. Consider.  

Semantically, the Rule relies on the concept of a relative space: some of 
the motions it constructs are motions of relative spaces relative to one an-
other. But, it is unclear if ‹relative space› counts as an a priori concept. Kant 
own words suggest the opposite, when read naturally: 

In any experience, something must be sensed—that is the real of the sensible intu-
ition. Hence, the space too (in which we set up our experience of motion) must be 
perceptible: we must designate it through what can be sensed. (481; my italics) 

That is, ‹relative space› is an acquired representation—by Lockean abstrac-
tion, he thinks—so it must count as an a posteriori concept. Also, ‘relative 
space’ is not a term in the inventory of basic concepts of the mathematical 
disciplines that Kant regards as pure, viz. elementary geometry and arith-
metic. In sum, if future exegesis wishes to count ‹relative space› as a pure 
concept, it must make a case for it. More broadly, Kant admits that ‹mo-
tion› is an empirical concept. Then rules for composing motion would 
count as operations on a posteriori inputs.  

Epistemologically, things are just as ambiguous. Kant wishes to restrict 
the scope of his Rule to rectilinear motions alone. Namely, he infers the 
Rule from a ‘phoronomic principle,’ namely, that rest and straight-line mo-
tion are equivalent: “I assume here that all motions [subject to the 
Phoronomic Principle] are rectilinear.” But, what justifies these restrictive 
premises? Why not let all motions be phoronomic-relative, i.e. equivalent 
to rest? He gives us a hint: “for, in the case of curvilinear motion, it is not 
the same in all respects whether I regard the body as moving and the relative 
space as resting,” or vice versa (488). In plain English, he means to say that 
rest and straight-line motion are dynamically indistinguishable—they count 
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as the same state of motion—because of Galilean relativity.23 (Or, even 
more strongly, because of Newton’s Corollary VI.)24 However, things are 
not the same—and so the Phoronomic Principle is not true—in the case of 
rest vs circular motion. 

But, Galilean relativity is an empirical fact. It falls out of Newton’s Third 
Law, viz. that impressed forces come in pairs and balance each other. New-
ton regarded the law as true a posteriori.25 In sum, a key part of Kant’s war-
rant for his Rule is empirical. Then how can it count as a priori true?  

Objection: Kant has his own version of the Third Law; he argues that it 
is a priori; and it too entails Galilean relativity. Ergo, all of the evidence for 
his Rule amounts to a priori warrant, ultimately. Answer: the law is estab-
lished late in Foundations, as a foundation for mechanics. So, it is not avail-
able as a premise in Phoronomy, where he would need it for the Parallelo-
gram Rule. Plus, he derives his law of action-reaction from premises about 
force (mechanical and dynamical) and about ‘active relations of matters in 
space.’26 But those notions do not count as pure concepts. This attempted 
defense thus must face up to Kant’s own injunction against ‘impure’ con-
structions and inference from them:  

For the construction of concepts, we require that the condition for presenting 
them not be borrowed from experience. So, their construction must not presup-
pose certain forces, whose existence can be inferred only from experience. Put 
more generally: the condition for constructing must not be itself a concept that 
cannot at all be given a priori in intuition. Such are the concepts of cause and effect, 
action and resistance, etc.  (486f.; my emphasis)  

                                                             
23 In this context, Galilean relativity means two things. 1)  Rest and uniform straight-lien 
motion are equivalent states: neither requires any forces, nor produces any effects, that the 
other one does not. 2)  The laws of motion work just as well in a relative space at rest and 
one in uniform rectilinear motion. In contrast, circular motion is different: neither (1) nor 
(2) hold of it, as Kant knows well (see below). Further, in Kant’s doctrine—and also in 
Newton’s science—Galilean relativity obtains only because of their respective Third Law, 
not unconditionally.  
24 Newton’s Corollary VI is a stronger version of Galilean relativity. It asserts that rest and 
all rectilinear motion (uniform and accelerated) count as equivalent states. Friedman 2013 
argues that Kant meant his Phoronomic Principle to be compatible with Corollary VI.   
25 Based on evidence from collision experiments. After him, in the 18th century, new evi-
dence for the Third Law came from the mutual perturbations that Saturn and Jupiter in-
duce on each other gravitationally. Cf. Wilson 1985.  
26 I have spelled out these conceptual assumptions and premises in Stan 2013.  
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If some of the concepts required for a construction are empirical; and if 
some of its premises are justified empirically: does the purported conclusion 
still count as a priori knowledge? McNulty 2014 likewise notes these deli-
cate aspects of constructing motion. His efforts to elucidate these aspects, 
combined with my worries above, support the notion that we need more 
scholarly work to untangle this knot in Kant.  

 

Conclusions 

On the reading I have proposed here, phoronomy appears to be Kant’s cau-
tious, conservative attempt to articulate a geometry of motion compatible 
with his overall framework, methodology, and foundational agenda for the 
science of nature. Read this way, his project succeeds. Phoronomy, I ar-
gued, is consilient with his broader picture of how we use geometry to de-
scribe nature; with his constructive methods for mathematics; and with the 
centrality of collision in his philosophy of mechanics.  
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