
Unity for Kant’s Natural Philosophy
Marius Stan*y

I uncover here a conflict in Kant’s natural philosophy. His matter theory and laws of
mechanics are in tension. Kant’s laws are fit for particles but are too narrow to handle
continuous bodies, which his doctrine of matter demands. To fix this defect, Kant ulti-
mately must ground the Torque Law; that is, the impressed torque equals the change in
angular momentum. But that grounding requires a premise—the symmetry of the stress
tensor—that Kant denies himself. I argue that his problem would not arise if he had
kept his early theory of matter as made of mass points, or “physical monads.”

1. Introduction. Several times in Metaphysical Foundations of Natural Sci-
ence, Kant claims to offer the “laws of general mechanics” ð1911, 551; cf.
also 548 and 539Þ.1 It is a bold claim, undeniably, but it is rather mysteri-
ous. Attention to Kant’s historical context reveals that we may take his phrase
in two senses. One is the way of Descartes, Leibniz, and ChristianWolff: gen-
eral laws are statements holding of any body qua body, matter or corporeal
substance. The other is the way of Newton, Euler, and Lagrange: general laws
are dynamical laws that yield equations of motion for all possible bodies.
As Lagrange put it in 1763, “the Statical principle ½of Virtual Work� I just
explained, combined with the Dynamical principle of Mr. d’Alembert, es-
tablishes a sort of general formula”—to wit, the Euler-Lagrange equation—
“containing the solution to all the problems of the motion of bodies” ð1763/
1878, 12; my emphasisÞ. Kant gives strong indications that he means gen-
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2 MARIUS STAN
erality in the second sense. In chapter 3, where he alleges to have general
laws, he outlines a geometric approach to deriving equations of motion for
direct particle collision. Then he claims that his procedure “brings with
it, as its necessary condition” a synthetic a priori law, that is, the Equality of
Action and Reaction ð4:549Þ. However, that law by itself is not general, as
Kant wants. For true generality, it needs supplementation by another prin-
ciple, which I call the Torque Law, namely, the impressed torque equals the
rate of change in angular momentum.

In fact, the Torque Law is general in the first sense too, so it ought to
concern Kant all the more. For him, mechanics is the theory of “commu-
nication of motion,” or momentum transfer. That task requires matter to be
essentially the “movable insofar as it, as mobile, has moving force” ð4:536Þ.
That is, mechanics is possible just in case all matter is movent, or able
to move things in its path as it moves—causally efficient in virtue of hav-
ing momentum. And, Kant declares, the “necessary condition” for me-
chanics is synthetic a priori laws of matter as such ði.e., as moventÞ. How-
ever, note that matter is movent as it spins too, not just as it travels in
a straight line. And, it is movent by making bodies spin too, not just trans-
late. This basic fact obtains at all scales—molecular, mesoscopic, and celes-
tial.2 Therefore, as matter by its essence is movent through spinning, Kant
must supply laws of matter qua movent by spinning. But that is just the
Torque Law and its zero case, Conservation of Angular Momentum ðCAMÞ.
Hence, by Kant’s own standard, the Torque Law cannot be empirical. It
counts as synthetic a priori, so Kant must ground it. Incidentally, this should
obviate a basic serious objection to my project, that is, that the law is em-
pirical, and thus Kant has no obligation to prove it.3 The Torque Law is man-
datory, not optional, for him.

But could he have known it? After all, the law is an advanced principle,
and classical mechanics had a long infancy. It turns out that the makers of En-
lightenment dynamics were quite sophisticated. Daniel Bernoulli, Patrick
d’Arcy, Euler, and Lagrange knew about CAM and argued for it from var-
ious vantage points. Euler found and advertised the Torque Law in Kant’s
metonymic backyard, at the Royal Academy in Berlin, where Lagrange then
used it for his theory of lunar motion. So Kant could, and should, have
known and grounded the basic law of rotation.

And yet he did not. Can we, perhaps, do so, on his behalf and with his
resources? It turns out that there are two ways to achieve that. The first re-
lies on a strong version of Newton’s Third Law. The second needs the sym-
metry of the stress tensor as a premise. Neither strategy is too anachronistic
2. Consider two spinning galaxies in eccentric collision, a tennis ball hitting a racquet
off center, two grains of sand rubbing against each other.

3. I thank an anonymous referee for pressing me on this point.
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to be interesting: both emerge after Kant yet in the classical age, before rela-
tivistic and quantum mechanics.

But there are repercussions for Kant in pursuing either strategy. The first
demands that he go back to his early theory of matter, the “physical mo-
nadology.” The second requires some a priori argument that certain kinds
of shear forces are equal, or at least that the Law of Inertia holds for ro-
tations. Alas, Kant leaves himself little room for doing that.

Failure to carry out the latter strategy comes at a price. Kant’s natural
philosophy ends up too narrow: although he offers it as a basis for allgemeine
Mechanik, it is not truly general: it cannot ground celestial mechanics for
extended bodies—the full theory of the “starry sky above” him—or much
mechanics of continua. Another heavy price is loss of unity: his theory of
matter as a physical continuum is too strong for his mechanics. Kant, I will
show, would have been better off retaining the core of his early view that
bodies are lattices of mass points.4

Below, I explicate or argue for these points, each in its section. Kant
needs the Torque Law in his foundations for mechanics ðsec. 2Þ. He was in
a position to know about it, and so to think about how he might anchor it
in his system ðsec. 3Þ. After Kant, two ways of grounding the Torque Law
emerge. One rests on Newton’s Third Law ðsec. 4Þ. The other requires the
symmetry of the Cauchy stress tensor ðsec. 5Þ. Prima facie, Kant cannot im-
plement the latter ðsec. 6Þ. His theory of matter ultimately prevents him from
grounding the Torque Law in his system ðsec. 7Þ. Changing that theory, by
reverting to mass points, would give his foundations the unity and generality
he seeks ðsec. 8Þ.

In conclusion, Kant’s natural philosophy in Foundations lacks internal
unity at a critical joint. Namely, his theory of matter does not fit his me-
chanics: the former needs stronger laws of motion than the latter has to offer.
To be sure, I do not deny that Kant’s doctrine does have ‘external’ unity,
imposed on it from the outside, as it were, by the transcendental categories
of the First Critique ðfor that, see Friedman 2013Þ.

2. The Torque Law in Kant’s System. I have argued, in the introduction,
that Kant needs the Torque Law indispensably. More specifically, he must
have that law for three reasons.

He calls mechanics the theory of “communication of motion,” or momen-
tum transfer—by contact and at a distance. His paradigm of the former is im-
pact, and he tasks mechanics with “constructing” momentum transfer in in-
tuition. To wit, it must represent the result of an arbitrary collision by
4. If that was indeed his considered view. It seems that, by the end of his Physical Mo-
nadology ð1756/1992Þ, Kant had quietly switched to continuous matter. See the lucid
Smith ð2013Þ.



4 MARIUS STAN
geometric means. But, he asserts, mechanics needs philosophy to supply it
with “principles for the construction” of contact interaction. Among these
principles are a priori dynamical laws to determine the outcome of any im-
pact, given initial conditions. To illustrate his point, Kant constructs a spe-
cial case, the direct collision of two symmetric bodies in pure translation.5

His principle relevant to this case is the Equality of Action and Reaction: the
law is the “necessary condition” for the “construction of the communication
of motion” ð4:549Þ. However, that law is insufficient for the general task of
constructing velocity exchanges in impact. Colliding bodies may rotate too,
thereby exchanging angular momentum, and so a new principle is needed to
construct the outcome: the Torque Law.6

Further, the Torque Law is crucial to Kant’s very project of grounding phil-
osophically Newtonian science. Unhappy with the empiricist justification
of the three laws of motion in Newton’s Principia, Kant replaces them with
equivalents he thinks are demonstrably necessary. Yet that gives him at most
principles to treat planets as particles. However, actual planets and stars are
extended bodies. As such, they exhibit a host of behaviors—precession,
nutation, libration, tidal friction, deformation—that neither Newton’s nor
Kant’s laws can handle unless we add the Torque Law to them. That is be-
cause Newton’s F 5 ma really applies just to causes of linear, not angular,
acceleration. But extended bodies also exert gravitational torques on each
other.

More generally, and crucially, the Torque Law is necessary to underwrite
equations of motion for all continuous bodies, deformable and rigid, and
bodies are continuous in Kant’s doctrine. Now classical continuum me-
chanics is built on two dynamical principles: the Force Law, a generaliza-
tion of Newton’s Lex Secunda, and the Torque Law.7 Kant has an analogue
of the Force Law; see below. But he still needs the latter.
5. That is, the bodies are nonrotating, mass density within each is constant, and they
collide along a common axis of geometric symmetry ðsee 4:545–50Þ.
6. In fact, initial spin is not even needed. Consider the ex-centric collision of two
extended bodies in pure translation. They will exchange linear momentum and angular
momentum. ðI thank Sheldon Smith for drawing my attention to this case.Þ
7. Compare Gurtin ð1981Þ and Truesdell ð1991Þ. A caveat: the Torque Law as I give it here
holds only in standard continuum mechanics. Some modern theories relax it. On the left
side of the law, they introduce sources of torque in addition to the impressed forces of
classical theory, e.g., body couples and couple stresses. On the right side, they posit ki-
nematic effects in addition to change in angular momentum, e.g., increments of spin
angular momentum. This nonstandard, ‘micropolar’ theory was devised to deal with spe-
cial anisotropic materials: ‘oriented media’, or ‘Cosserat continua’, e.g., liquid crystals
in nematic phases. Micropolar theory endows the basic unit—the material point—with
extra kinematic structure, e.g., a director field. Compare Jaunzemis ð1967Þ and Murdoch
ð2012Þ. This structure underlies the extra torques above. I thank Sheldon Smith for press-
ing me on this point.
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In conclusion, Kant’s mature natural philosophy needs to incorporate
and ground the Torque Law. Without it, his foundation of mechanics is just
a feeble shadow of what it aims to be.

3. The Torque Law in Enlightenment Dynamics. The Torque Law was
not unknown in Kant’s age. In fact, that is just when it was found. So, it is
not unreasonable to expect that Kant should have it in his foundations,
seeing as he needs it.

Enlightenment theorists first discovered the null case of that principle
ði.e., CAMÞ. Three figures in the 1740s state it independently. Daniel Ber-
noulli in “Nouveau problème de Mécanique” asserts that, if a body slides
outward in a rotating massless tube, the system’s angular momentum “will
always be the same” ð1746, sec. 8Þ. And, he notes that Euler knew it too.
In “Problème de Dynamique,” Patrick d’Arcy stated a “general principle of
dynamics”: in a system of interacting bodies in motion, the product of their
respective masses and areas swept relative to a fixed point “is always a
quantity proportional to the times” ð1752, 348Þ. Then in 1760, the young
Lagrange obtained CAM as a theorem from his then-basic law, the Princi-
ple of Least Action. He applied the latter to a system of free bodies driven
“to move around some fixed point” by forces, integrated twice, and found
that the area swept by each body around the fixed point times its mass “is
always proportional to the time.” Later, in Méchanique analitique, he de-
rived CAM from a different basis: the Principle of Virtual Work ðLagrange
1762, 212; 1788, 202ff.Þ.

While many Enlightenment figures found that CAM holds in isolated
systems, Euler saw further than all. He alone grasped the Torque Law, or
that the moment of the external forces equals the increment of angular mo-
mentum. Still, even Euler took decades to grasp it with full clarity. In 1736,
he discovered that a rotating body in impact acquires two independent
kinds of motion: a translation and a spin ðEuler 1744, sec. 16Þ. Then, in
Scientia navalis, he found that if a force turns a ship around an axis of
symmetry, the total spin equals the torque divided by the ship’s moment of
inertia around that axis ðEuler 1749, sec. 458Þ.

However, in the 1740s Euler’s insight was limited—he knew how to ap-
ply it only to a special case, that is, rigid spin around a fixed axis. His real
pursuit was rotation around a variable axis. During the subsequent decade, he
showed twice how to obtain differential expressions relating component-
wise the impressed torque and the angular acceleration of a rigid body
in arbitrary motion ðEuler 1752, sec. 48; 1765, sec. 24Þ. Nowadays we call
his threefold expression ‘Euler’s dynamical equations’. He also codified
another insight: that mass opposes rotation unlike how it resists translation.
He named the former “moment of inertia,” as do we, in his wake. Euler
systematized all these results, including his key equations, in Theoria mo-
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tus corporum solidorum seu rigidorum, a tract published twice in Ger-
many and easily accessible to Kant ðEuler 1765/1790Þ.

One might retort that this is irrelevant to Kant, who denies rigid mat-
ter. That would be hasty. Euler’s results were indispensable for mechani-
cal knowledge of actual objects. For instance, he used the Torque Law to
model the vibrating string as a set of tiny rigid bodies connected by flexi-
ble lines, in “De motu corporum flexibilium” ðEuler 1751Þ. More impor-
tantly, he used rigid dynamics to handle torques on planets, in “Recherches
sur le mouvement de rotation des corps celestes” ðEuler 1766Þ and else-
where. Lagrange too used ‘Euler’s equations’ to explain the libration of the
moon, which he modeled as a rigid ellipsoid ðLagrange 1763/1878Þ.

Finally, in the 1770s, Euler’s research began to make clear that New-
ton’s Second Law by itself is not general and needs the Torque Law to sup-
plement it. Together—and only together—these two principles yield equations
of motion for a vast range of mechanical systems. Thus, in “Genuina prin-
cipia doctrinae de statu aequilibrii et motu corporum tam perfecte flexibil-
ium quam elasticorum,” Euler showed that the external actions on an ele-
ment in a plane elastic continuum come in two kinds: forces and “moments
of forces” ði.e., torques; Euler 1771, 384–85Þ. Hence, we need two laws to
handle them. ðIn turn, he explained, the first kind produces two sorts of ef-
fects: normal and shear stresses.Þ The same insight underlies his mature
work on vibrating systems ðEuler 1776aÞ. And, so it does in Nova methodus
motum corporum rigidorum determinandi, his last word on rigid dynam-
ics. There, he states the Torque Law as the second fundamental principle
governing the action of forces on rigid bodies ðEuler 1776b, sec. 29Þ:8

H5 L0: ð1Þ
To conclude: by 1776 Kant was in a position to know that the Newtonian
tradition of mechanics, to which he is committed philosophically, requires
the Torque Law to be a fully general theory. There is, however, no clear trace
of the law in his works, let alone a robust account.9 Then a friendly inter-
preter may be allowed to try and derive the law from resources Kant already
8. Euler’s other principle is his generalization of Newton’s Lex Secunda, often called
‘Euler’s First Law’ in analytic mechanics. He wrote the Torque Law in differential form.
I give here the integral form, to make his insight lucid. ‘H’ is torque; ‘L’ is angular
momentum. The prime symbol denotes time differentiation.

9. It is hard to know how much of this literature Kant had studied. Warda’s catalog of
Kant’s personal library lists none of the titles above. But that is no proof that he had read
none. They were all published in proceedings of the academies of Berlin, Paris, and St.
Petersburg and thus not beyond Kant’s reach. For instance, in his tract on vis viva,
written as an impecunious youth in 1747, Kant cites volume 1 ð1728Þ of the proceedings
of the Imperial Academy of St. Petersburg. My point is that he could have read Euler’s
papers, not that he did so.
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has, so as to broaden the scope of his natural philosophy as needed. Next I
present one way to do just that and the historical context of its birth.

Before I move on, I must remove an obstacle. In both proofs of the
Torque Law, Newton’s Second Law is the indispensable premise. Kant’s
official laws of mechanics are not identical to Newton’s, but they overlap
greatly with the first and third laws in the Principia. However, the Sec-
ond Law is visibly absent from Kant’s Foundations. Then what chance
does he have to even embark on the proofs I propose?

That is no real impediment, I submit. Kant does have the premises for
a full equivalent of Lex Secunda, namely, the Parallelogram of Forces.
Newton had proved, in Corollary II to his laws of motion, that these two
principles are dynamically equivalent. Kant proves first the Parallelogram
of Velocities in his Phoronomy ð4:487Þ. Then, in his Dynamics, he argues
that forces act in the direction of the accelerations, or velocity increments,
they produce. That entails that forces add like vectors, that is, according to
the parallelogram rule. It is Kant’s declared aim to make the Parallelogram
of Forces obtainable a priori, by proving first “the principles of the com-
position ½ofmotions� in general” ði.e., the Parallelogram of Velocities; 4:498;
cf. also Friedman 2013, 373–75Þ.

Newton’s Second Law is not an official tenet in Kant’s doctrine, for two
reasons. ðiÞ In the Enlightenment, a sizable group aiming to secure apodic-
tic foundations for mechanics—Varignon, Daniel Bernoulli, d’Alembert, de
Foncenex, Kant—replaced the Second Law with the Parallelogram of Forces.
They thought the latter was confirmable by a priori methods, thus shown
to be necessary, whereas Lex Secunda seemed undeniably contingent.
ðiiÞ Among these figures, two factions emerged. Varignon, Bernoulli, and
Lagrange’s student Daviet de Foncenex tried to deduce directly the Par-
allelogram of Forces, from allegedly indubitable axioms, for example,
the Principle of Sufficient Reason and the Law of the Lever.10 D’Alembert
and Kant sought to prove—by the same approach, that is, the method of
moving frames—that the Parallelogram of Velocities was apodictic. That
was enough for d’Alembert, a neo-Cartesian who grounded his entire me-
chanics in “motion,” not force. Kant, who was a realist about force, added
a second premise—the colinearity of force and its resultant acceleration—
to infer that forces add like vectors. This explains the otherwise baffling
absence of the Second Law from Kant’s Foundations.11

Note that thereby the Second Law—as equivalent to the Parallelogram of
Forces—counts as synthetic a priori for Kant. So, he does have a key
element to show that the Torque Law is likewise a priori.
10. I am not here concerned with the cogency of these proofs. In their time, they were
found compelling. By the way, this story has a fascinating sequel in the nineteenth cen-
tury;see Lange ð2011Þ. For some eighteenth-century authors, cf. Radelet de Grave ð1992Þ.
11. This point deserves its own paper, in due time.
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4. Generality for Kant’s Mechanics: The First Way. Kant has a choice
between two strategies to secure the Torque Law. They rest on the same
idea, that is, proving the law as a theorem from other more basic dynamical
principles. The two strategies share a premise, namely, the Force Law F 5
ma. But they diverge as to the other key premise they employ. That is be-
cause these strategies rely on different theories of matter. Let us examine the
first ðI follow here Joos 1934Þ.

The given is a system of interacting particles, subject in addition to a
net external force. Apply the Force Law above to each component particle.
The equation of motion for the jth particle becomes

EFj 1 o
k

Fjk 5 mjaj: ð2Þ

The left side is the total force on the particle. It comes from two sources:
the external force EF originating outside the system, and the sum of all the
forces individually exerted inside the system by every kth particle on j.
Now recall that a torque is really the moment of a force around a point ði.e.,
the center of momentÞ. Its measure is the cross-product of the force vector
and its ‘arm’, or distance vector r, to that center. Then cross-multiply by r
each member in the equality ð2Þ above:

o
j

rj � EFj 1o
j
o
k

r � Fjk 5 o
j

rj � mjaj: ð3Þ

In ð3Þ above, the right-side term is the time rate of change in angular mo-
mentum, and the first term on the left side is the external torque. For these
two quantities, we use conventionally the labels ‘L’ and ‘H’. Then we may
rewrite ð3Þ as the claim that the external and the internal torques on a parti-
cle jointly equal its rate of change in angular momentum:

H1 o
j
o
k

r � Fjk 5 L
0
: ð4Þ

We are now at a crucial step in the proof. Let us invoke a fact about the
dynamics of particles. The forces between them obey the strong version of
Newton’s Third Law: they are pairwise equilibrated and central. That is,
any two interparticle forces are equal, opposite, and directed along the
straight line between them.12 In precise terms, the Strong Third Law says

Fjk 5 2 Fkj: ð5Þ
12. The centrality condition distinguishes the ‘strong’ Third Law from its ‘weak’ coun-
terpart, on which the forces are just equal and opposite. The Weak Third Law holds, e.g.,
between any two contiguous volume elements in a physical continuum.
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That is, any two interparticle forces are equal and opposite, and

ðri 2 rkÞ � Fjk 5 0: ð6Þ
That is, the forces are central.13 Together, expressions ð5Þ and ð6Þ, namely,
the Strong Third Law, entail that

o
j
o
k

r � Fjk 5 0: ð7Þ

Which is to say, the internal torques mutually induced in each other by
the particles within the system vanish. Finally, the two results under ð4Þ and
ð7Þ jointly entail that

H5 L0: ð8Þ
That is the Torque Law for a system of particles. It says that the external
torque equals the system’s rate of change in angular momentum.

The first explicit proof along these lines comes from Poisson. Near the
end of the second edition of his international best seller Traité de mécan-
ique, Poisson had declared that, for a system of free mass points, “the forces
arising from their mutual actions not only do not enter into the equations
of their translation—they also vanish from the equations of their rotation
around the origin of coordinates” ð1833, sec. 554Þ. Poisson had written the
latter in component form. Specifically, he wrote the Torque Law for any
two particles j and k that are internal to the body or system and invoked
the Strong Third Law to prove that their mutual torques vanish: “Hence,
the terms arising from the mutual action of the points in the system destroy
each other pairwise” ðsec. 554Þ. In other words, the self-torque on a body
or system is zero. Thereby, he concluded that only external torques change
its angular momentum. But his result is indemonstrable without the Strong
Third Law. This proof differs radically from the one I present next.

5. AnotherWay: The Boltzmann-Hamel Axiom. Kant’s program has an-
other path, better suited to his theory of matter in the Critical period. Like
the first, it starts with the Force Law F5 ma and turns the Torque Law into
a theorem, by an additional premise—which, however, is quite unlike the
Strong Third Law above. The reason is that the second strategy starts with
matter as physical continuum, not discrete particles. In this picture, force
takes on new guises.

The external forces acting on continuous bodies come in two kinds. One
is body force, acting directly on every volume inside the body, such as gravity
13. To see that, consider that ri 2 rk is really the vector between particles j and k. To
say that an interparticle force is central is to say that its cross-product with the inter-
particle, relative-distance vector is zero; i.e., they are collinear.
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and electromagnetism. The other is contact force, or traction, which deforms
the bounding surface of the body.14 Kant too has this duality: in his language,
forces are either “penetrating” or “surface” actions ð4:516Þ. Now, to write
equations of motion, and so predict how the body will respond to contact
actions, we need to know how surface tractions will affect its interior. To
describe the state of contact-force transmission at a point inside the body,
continuum mechanics uses the concept of stress. The stress measures how
that point is driven to move, by the total traction on the body’s surface.
Cauchy discovered that the stress at a point is always the sum of traction
forces on three mutually normal planes intersecting at that point and that
the sum is independent of the planes’ orientation. In turn, the stress vector
on each plane may be resolved into three components: one normal to the
plane and two tangential, also called shear stresses, each tending to turn its
plane toward one of the other two planes ðHjelmstad 2005, 103–18Þ.

The stress being equivalent to three traction vectors, each with its own
three components, entails that, to represent the stress at a point mathemati-
cally, we need a second-rank tensor—really, a 3 � 3 matrix. In the stress
tensor, usually labeled ‘T’, each row stands for the stress vector on one of
the three arbitrary, mutually normal planes at that point. In turn, each row has
three entries, one normal and two shear stresses:15

Tx: Xx Yx Zx

Ty: Xy Yy Zy

Tz: Xz Yz Zz

: ð9Þ

Let Tij be the jth entry in the ith row of a tensor. Then the tensor is sym-
metric if Tij 5 Tji. If Tij 5 2Tji, the tensor is skew. Finally but crucially,
conjugate shear stresses are those tending to turn any two normal planes
toward each other ðMalvern 1969, 77–78Þ.16

Georg Hamel first grounded rigorously the Torque Law for continua—
as a theorem, in 1909. His dynamical premises were the Force Law and the
axiom that the stress tensor is symmetric. I reconstruct below a proof, from
Hamel’s terse sketch ðHamel 1909, 360ff.Þ.
14. Strictly speaking, both are force densities over continuous volumes or surfaces. The
force at a point is the limit of such densities, as the volume or surface, respectively,
shrinks to that point. We must assume, of course, that such limits exist at every point and
that their upper bound is always finite.

15. For instance, Xx is the component that presses against or pulls normal to the plane
YZ, Yx is a shear stress that turns the plane toward the y-axis, and the shear stress Zx

turns it toward the z-axis.

16. In the above, Xy andYx are conjugate shear stresses; so are Xz and Zx and Yz and Zy.
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Start with the key premise, the Force Law for a continuous medium, or
Cauchy’s First Law of motion. It says that the rate of change in linear mo-
mentum equals the contact forces plus the body forces:17

d=dtE
V

rv dV 5 E
S

Tn dS 1 E
v

rb dV: ð10Þ

With the distinctions above as a backdrop, the Torque Law for continua
says that a body’s rate of change in angular momentum equals the moment
of the contact forces plus the moment of the body forces, both external,
acting on it. ðRecall that the first kind acts on surfaces, the second on vol-
umes.ÞMore precisely, cross-multiplying each term in the Force Law above
by its distance r to the center of moment, we get18

d=dtE
V

ðr � rvÞ dV 5 E
S

ðr � TnÞ dS 1 E
V

ðr � rbÞ dV: ð11Þ

The rate of change above provably equals the moment of the acceleration
of mass, for any volume element ðGurtin 1981, 92Þ:

d=dtE
V

ðr � rvÞ dV 5 E
V

ðr � raÞ dV: ð12Þ

Apply the divergence theorem, once called Gauss’s Principle, and transform
the surface integral of the tractions into a volume integral:

E
S

ðr � TnÞ dS 5 E
V

rðr � TÞ dV: ð13Þ

It can be proven ðBowen 2010, secs. 3.3.12–13Þ that the integrand on the
right side can be rewritten as

rðr � TÞ5 ðr � rTÞ1 ðej � TjÞ; ð14Þ
where j is a dummy index, ej are basis vectors, and ej � Tj is the Einstein
summation convention. Substitute all these equivalences into ð11Þ above,
and the Torque Law becomes
17. Cauchy’s First Law is Newton’s Second Law F 5 ma for continuous bodies. A
limpid account of this principle, for philosophers, is Smith ð2007Þ, sec. 4.
18. Here, r is the mass density, b the body force, T the Cauchy stress tensor, and r is the
distance vector ðx 2 xOÞ from a point inside the volume element to O, the center of
moment. The vector a is the acceleration, and n is the unit vector normal to a surface
element dS pointing outward.
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E
V

ðr � raÞ dV 5 E
V

ðr �rTÞ dV 1 E
V

ðr � rbÞ dV

1 E
V

ðej � TjÞ dV:
ð15Þ

Because all the functions in the integrand are assumed to be continuous
and the integral holds for any arbitrary volumeV inside the body, we can
rewrite it in vector form:

r � ra5 r �rT1 r � rb1 ej � Tj: ð16Þ
We can prove ðTruesdell 1991, 363–64Þ that

ej � Tj 5 T2 TT 5 2D: ð17Þ
Substituting ð17Þ in expression ð16Þ above gives

r � ra5 r �rT1 r � rb1 2D: ð18Þ
Note some facts: D above is a vector. It behaves like a torque: when

included in ð18Þ, the body still obeys the Second Law ðHamel 1909, 366Þ.
Critically, D results from the action of contiguous volume elements within
the body. Thus, D counts as an internal torque, generated by stresses in the
interior of the body. Hence, the Torque Law—namely, that the external
torque equals the rate of change in angular momentum—is true if and only if

D5 0: ð19Þ
But that just means that the skew part of the stress tensor T is nil; hence, T
itself is symmetric. To conclude: the Torque Law holds for continuous bodies
just in case the stress tensor is symmetric. And that entails trivially the equality
of conjugate shear stresses.

Hamel made the symmetry of the stress tensor an axiom in his formal-
ization and credited Boltzmann with the insight.19 The latter in 1905 had ex-
plained that, to ground continuum mechanics, we need new assumptions that
go beyond what particle dynamics requires. Boltzmann singled out an as-
sumption he called “Principle X”: “If we now apply the principle of static
moments to a volume element, we will find that, in the case of equilibrium,
the force acting in the y-direction on a surface element normal to the x-axis
must be equal to the force acting in the x-direction on an equal surface
element normal to the y-axis” ð1905, 298Þ. In retrospect, we recognize Prin-
19. It is his Axiom VII. His Axiom VI is Cauchy’s First Law. Axioms I–V introduce
inertial-kinematic structure.
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cipleX as the assumption that the conjugate shear stresses at a point are equal.
Hamel then baptized it “Boltzmann’s Axiom” and generalized it as his Axiom
VII: “For any volume element, the moment of all external forces, divided
by DV, relative to the point X inside the volume element toward which DV
converges, vanishes in the limit” ðHamel 1909, 358Þ.20 This too entails the
symmetry of the stress tensor.

6. Kant at an Impasse. The strong presumption—it may be resisted, al-
though I explain below that it is costly to do so—is that Kant has to choose
Hamel’s strategy above. If one starts with continuous matter, as he does, to
obtain the Torque Law a priori one must ground the symmetry of the stress
tensor. Clearly, neither Kant nor anyone before Cauchy in the 1820s had a
concept of a stress tensor ðTruesdell 1968Þ, let alone Hamel’s insight that
it must be symmetric. But Enlightenment figures, and so Kant too, could
have had an equivalent idea and tried to ground it philosophically. Such an
idea is Boltzmann’s principle that conjugate shear forces must be equal.21

Another equivalent, inchoate but correct, was well within Kant’s reach: the
Law of Inertia for rotation, that is, the principle that, in the absence of ex-
ternal unbalanced forces, a continuous body does not change its own an-
gular momentum.22

I say that rotational inertia was within Kant’s reach because he does
have a proof for inertia of translation. For him, the latter was a synthetic a
priori law, which he sought to derive from the Second Analogy. Then if we
show he could have proved a rotational analogue of that law, we would de-
fuse the challenge that the Torque Law poses to his system.

Unfortunately, the prospect is bleak for the interpreter. Any attempt to
prove Inertia of Rotation for Kant seems doomed, for he denies himself
the very possibility of doing so. For that result, he ought to establish that the
internal contact forces—between any two parts created by an arbitrary Euler
cut—produce no net self-torque. That is a direct consequence of Boltz-
mann’s Principle X: conjugate shear forces are equal everywhere. How-
ever, this avenue is closed to Kant in principle, for he denies that there
20. More precisely, if z is the distance vector to a point X inside a volume DV, and F is
the total external force on the volume element, limDV→0 1=DV ∫ðz � dFÞ5 0. Regret-
tably, Hamel is somewhat confusing here. Context alone makes it clear that, by “ex-
ternal,” he means external to the volume yet internal to the body. His point is really that
the internal forces in a continuous body generate no net self-torque.

21. The Torque Law and the Symmetry of the Stress Tensor are equivalent: either fol-
lows from the other, with the Force Law as an additional premise. In turn, the Symmetry
of the Stress Tensor and the Equality of Conjugate Shear Stresses entail each other.

22. Remember what the ðintegralÞ Torque Law really says: that the total change in angular
momentum is equal to the net external torque; hence, the self-torque on a body is always zero.
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can be any shear forces at all. Kant in the Critical years declares that the
only conceivable forces are central, along the line between two “matters,”
as forces of mutual approach or receding: “only these two moving forces
½of matter� can be thought. For all motion that one matter can impress on
another, since in this regard each of them is considered only as a point, must
always be viewed as imparted in the straight line between the two points”
ð4:498Þ. But that rules out all shear forces inexorably. Recall that only the
normal components of the mutual tractions by two volume elements are
normal to their common deformed surface and thus—loosely and improperly
speaking—along the line “between” elements. Shear forces are tangential to
that surface, thus lateral between two elements, and so by Kant’s lights are
inconceivable and hence nonexistent.23 Then we cannot appeal to them so as
to ground for him inertia of rotation, Principle X, or any equivalent prem-
ise that yields the Torque Law as a theorem. Kant will not allow it. His drastic
conceivability claim above makes it very hard for him to have continuous
matter and fully general laws of mechanics.

Note that Kant’s centrality claim above is the same thought that lets him
infer that force is collinear with its acceleration, and thereby prove the
Parallelogram of Forces, his alternative to Lex Secunda. Thus, to ground
Newton’s Second Law, Kant commits to a view of force—as central in-
teraction—that leaves him eventually unable to ground contact stresses in a
true continuum, which has noncentral, shear components.24 In light of these
difficulties, I argue below that he would be better off changing his matter
theory—to something he used to have.

Objection: why not just conclude that Kant’s counterfactual attempt to
prove the Torque Law fails and end my inquiry here? I have two responses.
First, I take it to be sound hermeneutics that we must not give up on a
major thinker unless we have exhausted all reasonable, well-grounded at-
tempts to make her look coherent. But there is a good way to salvage Kant’s
important generality claim. Second, I think a negative verdict on Kant is
less interesting than the alternative I have to offer. His presumptive inability
to pursue the proof strategy most natural to his foundations is symptom-
atic of larger problems in them. More exactly, his theory of matter is too
strong: it requires his kinematics, dynamical laws, and concept of mechani-
cal objectivity to bear a load they cannot support. Thus, I will argue, de-
emphasizing one aspect of Kant’s theory of matter—to wit, the continuity
of mass distribution—will yield vast benefits for his overall natural phi-
losophy.
23. Mark Wilson puts it delicately: Kant “cannot find a way to incorporate ½some source
of shear� into his framework” ð2013, 89 n. 39Þ.
24. I thank Michael Friedman for drawing my attention to this point.
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7. Must Kant Follow Hamel? If Kant were to pursue Hamel’s proof
strategy, he evidently has conceptual problems—but must he do so? Per-
haps I was too hasty to conclude that he must. There are two reasons to
doubt my inference; I mark them A and B and answer them below.

A. If pressed, Kant could reply that, as all fundamental forces are central,
all shear forces are zero everywhere; hence, conjugate shears are trivially
equal. Ergo, the Torque Law follows as a matter of course.

This answer is unsatisfactory, for two reasons. Systematic: the proposal
would make the foundation coherent and general, but explanatorily inad-
equate, as it fails to ground a general fact about the empirical behavior of
continuous matter, which does exert actual nonzero shear forces ðexcept in
inviscid fluidsÞ. Historical: Kant’s foundation thereby would be inadequate
even for the mechanics of his time. By then, Euler had already computed
the shear force ðvis tangentialisÞ at a point on a continuous elastic line and
a lamina ðEuler 1771, 1776aÞ. His contemporaneous result would contra-
dict directly Kant’s claim that all shear forces vanish.

B. Take visible bodies to be lattices of ‘squishy atoms’, or microscopic but
continuous and deformable particles, separated by empty space but kept in
equilibrium configurations by action-at-a-distance forces. This retains Kant’s
essential tenets—that matter is continuous, compressible, and ‘dynamical’, or
endowed with forces—but restricts them to the fundamental level.25 Constru-
ing macroscopic bodies that way would let Kant take Poisson’s route to the
Torque Law, not Hamel’s. Then the symmetry of the stress tensor is no prob-
lem for Kant, because he needs not invoke it. That is presumably because
the forces between ‘squishy atoms’—being all gravity-like distance interac-
tions—obey the Strong Third Law.

However, I do not think this interpretive strategy is very wise.
‘Squishy atoms’ are foreign to the spirit of Kant’s mature doctrine. Un-

like modern approaches, for which continuity is scale dependent, Kant takes
continuous mass distribution to hold at all scales, not just microscopic. Wit-
ness his strenuous efforts, in Foundations, to argue against empty space.
Further, it would be hard to motivate, on Kant’s behalf, restricting conti-
nuity to ‘atoms’, given that visible bodies appear continuous. ðThat phe-
nomenological fact is likewise the chief motivation for contemporary me-
chanics to model matter as a continuum.Þ
25. More advantageously, this view is latent in Kant’s Physical Monadology ð1756/
1992Þ and thus not too alien to his doctrine; see Smith ð2013Þ.
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Kant is deeply interested in collision mechanics, although scholars have
so far neglected it, unduly. His program is to show that the mechanism
of velocity exchanges in impact is metaphysically intelligible, in the sense
of not amounting to the actual transfer of properties like ‘motion’, ‘mov-
ing force’, or momentum between corporeal substances.26 Ultimately, he
will have to describe what happens on the boundary when two ‘squishy
atoms’ collide and how that results in changes to the velocity of their mass
centers—or else his self-imposed obligation remains unfulfilled. Now he
has two basic choices. Either he will admit that there is genuine kine-
matic contact between ‘atoms’. Then talking about ‘atomic’ torques and shear
may be inevitable, and lending him the Poisson strategy merely delays the
inexorable. ðIn modern terms, if Kant posits his ‘atoms’ as true continua, he
must endow them with microstrains.Þ Or he will claim that impact is really
scattering caused by short-range, action-at-a-distance repulsive force. Then
all collision—a fortiori all “communication of motion”—ends up mediated
by body forces, not any genuine contact force.27 In that case, the continuity
of matter becomes explanatorily idle for his mechanics—all interactions are
really between entities modeled as point masses—and also unmoored from
his kinematics ðsee belowÞ. Then why not do away with it, as I suggest be-
low, and thereby make Kant’s natural philosophy wholly coherent?

Kant’s kinematics likewise militates against ‘squishy atoms’. His Phor-
onomy allegedly spells out the a priori laws of “matter as the movable in
space.” However, all we get from him under that heading is the Parallelo-
gram of ðInstantaneous LinearÞ Velocities. Combined with ‘squishy atoms’,
this generates tension. ðiÞ Either, by ‘movability’, Kant means the possible
motions of an atom’s mass center. Then in effect he treats the ‘atom’ as a mass
point, and so basic ‘atomic’ extension, deformability, and continuous mass
density have no kinematic or dynamical import. Ockham’s Razor demands
that we might as well excise them and give Kant the mass points I advocate
for below. ðiiÞ Or, by ‘atomic’ movability, he really means the full range of
its possible kinematic behaviors. Then, for ‘squishy atoms’, ‘motion’means
26. Kant excoriates some predecessors who explained impact as literal transfer of mo-
mentum. That is metaphysically absurd, he objects correctly, since properties do not
migrate across substances. So, the natural philosopher must “explain the communica-
tion of motion itself with regard to its possibility” ð4:550Þ. All he offers, however, is that
the possibility of momentum transfer rests on the repulsive force essential to matter. That
is a contact force, in Foundations, and so our task as interpreters is to reconstruct a
plausibly Kantian account of collision that escapes his own censure above: i.e., we must
offer a description of themechanismwhereby two bodies suffer changes in momentum as
a result of action by contact.

27. Anyway, that would be against his explicit assertion that repulsion is a genuine con-
tact force.
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a translation, rotation, or deformation. But Kant’s kinematic foundation is
too weak for that: his Parallelogram of Velocities holds for ‘atomic’ trans-
lations alone.28 Ergo, Kant has failed to give us all the laws of “matter as
the movable in space”—an undesirable outcome, completely avoidable if
we have him go back to mass points. In conclusion, if Kant must insist
that matter is continuous, he ought to follow Hamel in the attempt to de-
rive the Torque Law.

8. Reclaiming Mass Points for Kant. It turns out that Kant at some point
had the conceptual resources to replicate Poisson’s crucial result. That
put him in a position to obtain the Torque Law, and so to ensure that his
philosophical basis is wide enough for a truly general theory of classical
mechanics, as he requires and is desirable. Next, I present these resources
and explain how they entail the Strong Third Law.

For decades in his youth, Kant had embraced a theory of matter he called
“physical monadology.” In his official view, the unit of matter, or physical
monad, was an entity endowed with two forces—of repulsion and attraction.
Both were actions at a distance, “exerted from a given point,” and thus were
central forces ð1992, 1:483Þ. Kant made repulsive force act radially outward
“from the central point of the space occupied” by a monad and speculated
that the force would be an inverse-cube function of the “distance from the
center of its presence.” As a result, this repulsion will be “infinite at the
central point itself” ð484, 487; my italicsÞ. Finally, Kant’s physical monad
also had a “force of inertia . . . called its mass” ð485Þ. Crucially, the mass of
a Kant monad is located at a point, not distributed over a volume. Thus, in
some essential respects his monads are just like our modern mass points.

Unfortunately, the young Kant did not hold on steadily to this picture.
Rather, he also bestowed on his monads a property that puts them closer
to deformable continua. Kant posited repulsive force so as to secure im-
penetrability. But he conceived of that force—and thus monadic impen-
etrability—in two very different ways. Early in his Physical Monadology
ð1756/1992Þ, he thinks of repulsion as a distance force. This makes a monad
impenetrable in the sense that no two monads can be superimposed: the me-
chanical work required would be infinite. By the end of the essay, though,
Kant came to speak of repulsion as a contact force. That changes the mean-
ing of impenetrability: now no monad can be compressed to zero volume.
Crucially, in this conception monads are deformable and can act by kine-
28. What is missing: a composition theorem for ðinfinitesimalÞ rotations, i.e., the Paral-
lelogram of Angular Velocities, and basic kinematics for strain, e.g., the Polar Decom-
position Theorem.
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matic contact.29 In that respect, they resemble elastic volume elements, not
mass points.

Officially, however, Kant had monads be endowed with point-sized
mass and purely action-at-a-distance forces. Admittedly, he did not adhere
consistently to this view. Had he done so, his monads would have had cru-
cial commonalities with modern mass points, and so would have allowed
him to take the route Poisson opened to the Torque Law.

But do Kant’s physical monads, in his official view, obey the Strong
Third Law, as they must if Poisson’s proof is to hold for them? Yes. Purely
Kantian premises yield a twofold case that they do.

A. One is an argument for the Weak Third Law: intermonadic forces of
the same kind are pairwise equilibrated. Kant sketched it twice, in the
1780s, and it presupposes Transcendental Idealism—specifically, the claim
that Newton’s absolute space, metaphysically distinct from body, is “no
object of experience.” That is, we cannot possibly know absolute space,
whether directly by acquaintance or indirectly, from its inertial effects on
corporeal motions ð4:481Þ. For that reason, we cannot possibly know ac-
celerations relative to absolute space: they are ðepistemicallyÞ impossible,
Kant claims.

With this premise in place, Kant’s case for the Weak Third Law is a proof
by reductio. In a nutshell, it goes as follows. Assume that interbody forces
are not equal and opposite. Then interactions will result in a net increase
of linear momentum for the entire physical universe. That would displace
the mass center of the “world whole” in absolute space. But that would be a
“motion” empirically inaccessible to us and so “simply impossible” for us
as knowers. Then its entailing premise—that interactions are not equal and
opposite—is apodictically false. Ergo, the Weak Third Law must be true.
That is Kant’s meaning, I submit, behind these declarations:
29. S
press
Absolute motion would be simply the motion a body had without relation
to any other matter. Of this kind would be just the rectilinear motion of the
whole world, or of the system of all matter. . . . Because of that fact, every
proof for a law of motion which argues that the law’s opposite would
entail the rectilinear motion of the entire world-edifice is an apodictic
proof of that law. That is simply because, from its opposite, absolute
motion would follow, which is simply impossible. Such is the law of
antagonism ½i.e., of action and reaction� in all community of matter
through motion. ð4:562–63; cf. also Kant 1925, 14:166Þ
If this is too vague, there is a rigorous way to spell out Kant’s idea. Some
decades ago, Walter Noll gave a strict deductive proof for the Weak Third Law,
mith ð2013Þ argues for these findings conclusively. I thank Michael Friedman for
ing me on this point.
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in one of his axiomatizations of mechanics ðNoll 1973Þ.30 His key relevant
premise is that interactions between bodies are balanced, in the sense that, for
every body A, the interaction between itself and its exterior Ae is null: IðA, AeÞ
5 0. Charitably read, Kant’s ruling out cosmic self-acceleration in absolute
space is philosophical support avant la lettre for a special version of Noll’s key
premise: namely, all interactions by forces are balanced, because the “univer-
sal body,” or Kant’s Weltganze, is in static equilibrium of force.31 With Noll’s
proof as a backdrop, Kant turns out to have had the right insight, although not
the means to give it rigorous expression. Then an interpreter may reconstruct,
just from Kantian resources, an argument that the Weak Third Law holds for
physical monads.32

B. Kant also has a way to show that the basic forces between his monads
are central. Although not explicit in his work, the idea is naturally at home
in his physical monadology. It is this: the very mathematics of monadic
forces entails that they are central. Kant thinks of those basic forces—re-
pulsive and attractive—as subject to power laws, on the model of gravity.33

As such, any monad induces irrotational scalar potentials around its point
source. Then, for any particular location outside the monad, the ‘New-
tonian’ force—really, the action and reaction in the Third Law—is given in
strength and direction by the negative gradient of the potential at that lo-
cation. In particular, the direction is always normal to the equipotential sur-
face passing through that point. For Kant’s monadic forces, those surfaces
are all concentric spherical shells of a different radius. It follows that the
accelerations induced by those forces, and so the action, always point ra-
dially to the center, where the monad sits—mutatis mutandis for the second
monad, in an interaction. Ergo, monadic forces are central.

The Weak Third Law A plus the centrality condition B entail the Strong
Third Law for physical monads. Then, if Kant can have it, and also an
equivalent of Newton’s Second Law, he can avail himself of the Torque
Law.
30. But, unlike Kant’s proof, Noll’s is direct, and he did not set out to vindicate Kant.

31. Noll’s “interaction” is a genus concept meant to cover four species pertinent to con-
tinuum mechanics: forces, torques, body couples, and distributed couple stresses. Kant’s
argument from absolute motion applies only to the first species. For instance, he ad-
mittedly cannot prove that torque interactions are balanced, as their resultant might well
be nonzero; see 4:563.

32. Of course, Noll’s proof has other substantive premises, i.e., his six axioms of body.
But he admits that they “reflect our common experiences with physical bodies” and are
so general as to hold for continuous bodies and discrete objects like Kant’s physical
monads ðNoll 1973, 91Þ.
33. Although that is clear, it is quite obscure why Kant thinks he is allowed to do that.
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9. Conclusion. I have uncovered a potential conflict in Kant’s mature
philosophy of physics. For him, matter is a continuum, but his laws of mo-
tion work for particles, not true continua. ðAnd so does his kinematics.Þ To
ground mechanical phenomena in general, and angular momentum ex-
change in particular, Kant needs the Torque Law H 5 dL/dt. The best hope
for Kant would be to obtain the law as a theorem, from premises he already
has. I examined above two strategies for doing just that. But either strat-
egy demands an additional premise beyond what Kant has to offer. The first
requires the Strong Third Law. The second needs the Symmetry of the Stress
Tensor. Kant banishes shear forces from his system, and so the second strat-
egy comes at a prohibitive price for him. To pursue the first, Kant ought to
bring back the physical monadology, his old theory of matter. Physical mo-
nads, or mass points, would be fully cohesive with his kinematics and dy-
namical laws. They alone can give Kant the generality and unity he seeks for
his foundations of mechanics.
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