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To estimate causal relationships, time series econometricians must be aware of
spurious correlation, a problem first mentioned by Yule (1926). To deal with this
problem, one can work either with differenced series or multivariate models: VAR
(VEC or VECM) models. These models usually include at least one cointegration
relation. Although the Bayesian literature on VAR/VEC is quite advanced, Bauwens
et al. (1999) highlighted that “the topic of selecting the cointegrating rank has not
yet given very useful and convincing results”.

The present article applies the Full Bayesian Significance Test (FBST),
especially designed to deal with sharp hypotheses, to cointegration rank selection
tests in VECM time series models. It shows the FBST implementation using both
simulated and available (in the literature) data sets. As illustration, standard non
informative priors are used.

Keywords Bayesian inference; Cointegration; Hypothesis testing; Reduced rank
regression; Time series.

Mathematics Subject Classification Primary 62P20; Secondary 62F03, 62F15.

1. Introduction

One of the main goals of econometricians is to estimate causal relationships.
However, since the seminal work of Yule (1926), it is known that spurious regression
is a possible problem for time series analysis. This might arise when variables are
integrated or have unit roots. One approach is to test the series for unit roots
and then, if not rejected, to adopt the procedures to make them stationary, usually
by differencing it. Alternatively, one may estimate cointegration relations between
them. For the latter procedure, the most used instrument is the parameter estimation
of Vector Error Correction Models (VECM).
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Cointegration: Bayesian Significance Test 3563

Recently, the authors applied the Full Bayesian Significance Test (FBST) to unit
root tests, (Diniz et al., 2007). Following the same path, we apply the FBST to test
for cointegration. For more on FBST general aspects and properties, see Pereira and
Stern (1999) and Pereira et al. (2008).

The Bayesian literature on cointegration is vast, especially articles concerned
with inferences for cointegration space parameters. They usually assume some
cointegration rank value and the inference is made conditionally on this value.

On the other hand, the research concerning Bayesian cointegration tests has
progressed only recently. Most proposed tests are based on the Bayes Factor.
This approach has well-documented shortfalls. As highlighted by Bauwens et al.
(1999), using posterior odds approach leads to rather heavy computation and
requires specification of proper prior densities; see Kleibergen and Paap (2002),
Villani (2005), and Sugita (2002). Since we are dealing with sharp hypotheses, our
main contribution here is the implementation of the FBST for cointegration rank
selection. Note that we do not have to attach a prior probability to null measure sets
(the sharp hypothesis submanifold) and can use a standard non-informative prior:
not always possible when working with Bayes Factors.

Section 2 presents alternative Bayesian solutions described in the literature. In
Sec. 3, we apply the FBST on cointegration rank selection using both simulated and
real data. Finally, crucial remarks are listed in Sec. 4.

2. Alternative Bayesian Tests

This section briefly summarizes the most recent developments made by the Bayesian
School for cointegration tests. The discussion made here closely follows Bauwens
et al. (1999) and Koop et al. (2006).

The pioneer Bayesian works to approach the VAR models and reduced rank
regressions are DeJong (1992), Bauwens and Lubrano (1996), and Geweke (1996).
Geweke (1996) discussed Bayesian methods to test for the rank. He proposed the
use of the predictive odd ratios that do not require a proper prior, but this could be
used if desired, and the traditional Bayes factor is a special case of it.

When the main concern of the research is estimating parameters and their
posterior distributions usually, the long run matrix rank is assumed known and
the calculus made conditional on that. The reference for the Bayesian inference on
VECM is Koop et al. (2006).

To justify the inference that assumes known values for the long run matrix
rank, Bauwens et al. (1999) argued that an empirical cointegration analysis should
be based on some economic theory model that defines equilibrium relations.
Taking this into account, cointegration research is “confirmatory” rather than
“exploratory.” Although the inference conditioned on some given value of the
cointegration matrix rank is simple and very useful for small samples, it is important
to develop inference procedures to evaluate the cointegration matrix rank, as
proposed by Geweke (1996), Kleibergen and Paap (2002), Sugita (2002), Strachan
(2003), Strachan and Inder (2004), and Villani (2005).

The Bayesian approach based on Bayes Factors leads to complex calculus and
requires the use of proper priors; see Kleibergen and Paap (1997). Bauwens and
Lubrano (1996), using an informal approach, calculated the posterior distribution
of the ordered eigenvalues of the square of the long-run matrix of VECM, obtained
from a VAR model without a cointegration hypothesis. As the long-run matrix has
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3564 Diniz et al.

a reduced rank, it has some null eigenvalues. This should be revealed by the fact
that the smallest eigenvalues should have a lot of probability mass accumulated on
values next to zero. The calculus can be made straightforwardly, simulating values
for the long-run matrix from its posterior, which is a matricvariate Student under
the non informative prior, also considered in the sequel.

Moreover, it is usual to choose the posterior mode as an estimate for the
long-run matrix rank. Conditioned in this value, one proceeds to estimate the
matrix itself. Chao and Phillips (1999) used the Posterior Information Criterion
(PIC), developed by Phillips (1996), to choose the mode of the long run matrix
rank. However, as highlighted by Koop et al. (2006), one of the advantages of
the Bayesian approach is the possibility to incorporate the uncertainty about the
parameters in the analysis, represented by the posterior distribution of the rank:
whatever choice the scientist makes to infer the rank value, he/she must know its
posterior distribution.

Kleibergen and Paap (2002) nested the reduced rank model in an unrestricted
VAR and used Metropolis-Hastings sampling with the Savage-Dickey density ratio1
to estimate Bayes Factors for the model with incomplete rank up to the model
with a full rank. The Bayes Factor derivation requires the estimation of an error
correction factor for the incomplete rank. This factor, however, is not defined for
an improper prior due to the Bartlett paradox. This problem arises whenever one
compares models of different dimensions. It is relevant in the present case because
after deriving the rank posterior density, it is possible to understand that we are
comparing models of different dimensions. The paradox is enounced informally
as: improper priors should be avoided when one calculates Bayes Factors (except
for common parameters to both models) as they depend on arbitrary constants
(integrals).

Recently, Villani (2005) developed an efficient procedure to obtain the rank
posterior density using a uniform proper prior over the cointegration space linearly
normalized. The author derived solutions for the posterior probabilities for the
null rank and for the full rank. The posterior probabilities for each intermediate
rank value are calculated from the posterior samples of the matrices that compose
the long run matrix, properly normalized, under each rank and using the method
proposed by Chib and Greenberg (1995).

3. FBST

The FBST was introduced by Pereira and Stern (1999). It was created mainly to
test sharp hypotheses which is a matter of discussion and controversies. This article
assumes that one accept and is interested in testing sharp hypotheses.

Let us now consider general statistical spaces, where the parameter space is � ⊂
�m and the sample space Xk ⊂ �. A sharp hypothesis H states that � belongs to
a sub-manifold �H of smaller dimension than �. The subset �H has null Lebesgue
measure whenever H is sharp.

In the FBST construction the posterior probability density on the parameter
space is used as an ordering system and all sets of the same nature are dealt with
accordingly in the same way. As a consequence, the sets that define sharp hypotheses
keep having null probabilities. Instead of changing the nature of H by assigning
positive probability to it, we consider the tangential set T of points having posterior
density values higher than any � in �H . We then reject H if the posterior probability
of T is large. We will formalize these ideas in the sequel.
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Cointegration: Bayesian Significance Test 3565

Let us consider a standard parametric statistical model: � ∈ � ⊂ �m is the
parameter, g�·� a probability prior density over �, x is the observation (a scalar or
a vector), and Lx�·� is the likelihood given the data x. Posterior to the observation
of x, the sole relevant entity for the evaluation of the Bayesian evidence, ev, is the
posterior probability density for � given x, denoted by

gx��� = g���x� ∝ g���Lx����

We are, of course, restricted to the case where the posterior probability
distribution over � is absolutely continuous, that is, gx��� is a density over �. For
simplicity, we may use H for �H in the sequel. Now, let r��� be a reference density
on � such that the function s��� = gx���/r��� is called the “relative surprise.”1

Definition 3.1 (Evidence). Consider a sharp hypothesis H � � ∈ �H and let

s∗ = sup
�∈H

s��� (1)

and

T = �� ∈ � � s��� > s∗�� (2)

The Bayesian evidence value against H is defined as the posterior probability of
the tangential set, i.e., ev = Pr�� ∈ T �x� = ∫

T
gx���d�.

Notice that the tangential set T is the highest relative surprise set. It is the set
of points � ∈ � with higher relative surprise s��� than any point in H . Therefore,
the set is “tangential” to H . This approach does not exclude or avoid the model
considered in the hypothesis being tested but just uses the concept of “tangent” to
define an evidential measure favouring the hypothesis.

One must also note that the evidence value supporting H , ev = 1− ev, is
not evidence against A, the alternative hypothesis (which is not sharp anyway).
Equivalently, ev is not evidence in favor of A, although it is against H .

Definition 3.2 (TEST). The FBST (Full Bayesian Significance Test) is the
procedure that rejects H whenever ev = 1− ev is smaller than a critical level, evc.

Being a statistic, ev has a sampling distribution. For well-behaved likelihood
and posterior densities,2 Pereira et al. (2008) showed that, asymptotically, the
evidence follows a 	2 distribution with degrees of freedom given by the dimension
of the parameter space. This fact gives a way to define, at least asymptotically, a
critical level to reject the hypothesis being tested.

A major practical issue for the use of the FBST is the determination of the
critical level. Ev being a statistic defined on a zero to one scale does not ease the
matter (the same occurs with p-values). The formal identification of the FBST as a
Bayes test of hypothesis yields critical values derived from loss functions allowing
this identification. In fact, Madruga et al. (2001) showed that there are loss functions

1See Good (1983).
2See Schervish (1995), p. 436.
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3566 Diniz et al.

the minimization of which makes ev a Bayes estimator of 
 = I�� ∈ H�. Hence, the
FBST is in fact a Bayes procedure in the formal sense of Wald (1950).

By using a reference density in the definition of the tangential set T , the
FBST formulation above presented is explicit invariant under general coordinate
transformations of the parameter space.3 For the FBST application on unit root
tests discussed in the sequel, we will use the (improper) uniform density as reference
density on �. Madruga et al. (2003) remarked that it is possible to generalize the
procedure using other reference densities such as neutral or reference priors if one
is available.

3.1. Numerical Calculus

The calculus of the evidence value supporting H defined in the last section is
performed numerically in two steps. The first one involves the optimization of s���
under H and, the second one, the integration of the posterior, gx���, over T .

The optimization step consists of finding the parameter space point in H that
maximizes s���. It is, therefore, a maximization under constraint problem:

�∗ = argmax
�∈�H

s���� s∗ = s��∗��

To solve this problem we use a numerical optimizer. To calculate the integral,
it is possible to use various numerical techniques. We introduce a method based on
Laplace approximation that is able to deal with a great number of the problems
discussed in the literature, specially when the MCMC sampling is burdensome.

Let � be the parameter vector and x the observations vector as above. The
posterior distribution is given by:

g�� � x� = g���Lx���∫
�
g���Lx���d�

�

To calculate the e-value we need to integrate the posterior over the tangential
set, i.e., T = �� ∈ � � s��� ≥ s∗�:

∫
��∈� � s���≥s∗�

gx���d� =
∫
T
g���Lx���d�∫

�
g���Lx���d�

� (3)

One way to approximate integrals like the denominator above is to use the
Laplace approximation. Consider the integral:

I =
∫
�
b���exp�−Nh���d�

in which N is the sample size, � is �k× 1�, � = �k and −h�·� is a twice differentiable
function with only one maximum in �̂, �h���/����=�̂ = 0, and H��� = �2h���

����′ is positive
definite. Furthermore, b�·� is continuous on the neighborhoods of �̂ with b��̂� �= 0.
Expanding h��� as a second order Taylor series for �̂ we have an approximation

3See the Appendix.
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Cointegration: Bayesian Significance Test 3567

of exp�−Nh��� proportional to a normal density. By doing the same with b��� we
arrive at the following approximation for the above integral:

Î = �2��k/2b��̂��NH��̂��−1/2exp�−Nh��̂�

since the O�N−1/2� terms from the expansions of b��� and h��� disappear when we
integrate.

Now we use the Tierney and Kadane (1986) method to calculate (3). Let us
consider b��� = 1 and the restriction exp�−Nh��� = g���Lx���. If h��� satisfy the
conditons given above, we have that the value of (3) is approximated by:

= exp�−Nh��̂�
∫
T���

exp�−N
2 ��− �̂�′H��̂���− �̂�d�

exp�−Nh��̂��2��k/2�NH��̂��−1/2

= �2��−k/2�NH��̂��1/2
∫
T���

exp
[
− N

2
��− �̂�′H��̂���− �̂�

]
d��

The last expression is the integral over the tangential set of the � multivariate
normal density with mean �̂ and variance �NH��̂��−1. Therefore, to evaluate the
integral we can generate a large number of vectors with this distribution and
evaluate the posterior with these vectors. The proportion of them that belongs to T

is the approximate value for (3).

4. FBST Cointegration Applications

In this section we present how we implement the FBST to test for cointegration.
First, we show some examples with simulated data and close with two real data sets
used by the time series literature. We also clarify some aspects about the procedure
implementation.

Another important observation should be made about the hypotheses being
tested. As mentioned by Diniz et al. (2007), the FBST was designed to deal with
sharp hypotheses without the need of attaching probabilites to sets with a null
Lebesgue measure. Therefore, its use is appealing especially when the parameter
space is continuous. At first sight, the parameter space for the cointegration tests,
the rank of matrix �, is discrete. However, we must remember that this rank is
associated with the eigenvalues of the same matrix and they assume continuous
values. It is also important to mention that, for the examples here presented, we
used r���, as reference density, the improper density proportional to the uniform
over the parameter space (non informative prior density).

4.1. FBST as a Cointegration Test

Let a vector with n I�d� series that we want to know if are cointegrated,
Yt = �y1t � � � ynt

′ and t = 1� � � � � T . Consider that its data generating process is a
VAR(p), as:

Yt = �1Yt−1 + · · · +�pYt−p + Et� (4)
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3568 Diniz et al.

in which Et ∼ NIn�0� ��. This can be written as an error correction model:

�Yt = �1�Yt−1 + · · · + �p−1�Yt−p+1 +�Yt−1 + Et� (5)

where �Yt = ��y1t � � � �ynt
′, �i = −��i+1 + · · ·�p� for i = 1� 2� � � � � p and � =

−�In −�1 − · · · −�p�.
Using matrix notation, the error correction model (5) can be written as:

�Y = ZB + E� (6)

where

�Y =


�Y ′

p+1
���

�Y ′
T


 � Z =




�Y ′
p � � � �Y ′

2 Y ′
p

�Y ′
p+1 �Y ′

3 Y ′
p+1

���
���

���
�Y ′

T−1 � � � �Y
′
T−p+1 Y

′
T−1


 � B =




�1
���

�p−1

�




and the error vector is given by E ∼ MNT×n�0� �⊗ IT �, denoting the matricvariate
normal distribution.4

Considering Eq. (6) and a non informative prior

p�B��� ∝ ���−�n+1�/2�

we have that the likelihood and the posterior are, respectively:

p��Y �B���Z� ∝ ���−T/2exp
{
− 1

2
tr��−1��Y − ZB�′��Y − ZB�

}

p�B����Y�Z� ∝ ���−�T+n+1�/2exp
{
− 1

2
tr��−1��Y − ZB�′��Y − ZB�

}

= ���−�T+n+1�/2exp
{
− 1

2
tr��−1�S + �B − B̂�′Z′Z�B − B̂��

}
�

∝ fn×k
MN �B�̂B��⊗ �Z′Z�−1�f n

WI���S� T� (7)

where B̂ = �Z′Z�−1Z′�Y , S = �Y ′�Y − �Y ′Z�Z′Z�−1Z′�Y and k the dimension of
B, which is k× n. The likelihood and the posterior just presented are for the
linear error correction model, which is equivalent to the posterior of a multivariate
linear regression model. That is, unlike in the cointegration model, the matrix � is
assumed to have full rank.

It is also important to mention that marginal posterior of B, obtained
after integrating out � in (7), is a matrix-t distribution. Therefore, the Laplace
approximations described in Sec. 3 are not needed since to calculate evidence value,
in this case, one simply needs to get draws from the posterior of �B��� and count
the proportion of times that the surprise function is higher than s∗.

4It is said that the vector X ∼ MNp×q�vecM�Q⊗ P� if and only if vec�X� has a
multivariate normal distribution, i.e., vec�X� ∼ Npq�vecM�Q⊗ P�.
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Cointegration: Bayesian Significance Test 3569

The posterior (7) is used by the FBST to test the rank of matrix �, ����. To
exemplify, consider a bi-dimensional vector Yt generated by a VAR(1):

Yt = �1Yt−1 + Et� (8)

where Et ∼ NI2�0� ��, and the same model written in the error correction form:

�Yt = �Yt−1 + Et� (9)

We want to test, for instance, H0 � ���� = 1. To implement the FBST we have
to find the posterior maximum under the space of the hypothesis being tested and
then to integrate the posterior over the tangential set. In this case, we assume that
� has a reduced rank and decompose it in two matrices of rank one and dimension
2× 1, � and �, in accordance to the Granger representation theorem, implying that
� = ��′. In order to define the restricted posterior (under H0) in this situation, we
write:

� =
[
�11
�21

] [
�11 �12

]
and maximize the posterior under this restriction. However, since � and � are not
identified in the likelihood, we can use the method proposed by Johansen (1988) for
finding the maximum of the posterior under the restriction. We adopted the linear
normalization restriction for all the examples below described.

To test ���� = 0 is sufficient to test if � is the null matrix. When the vector
Yt has n components, the approach is automatically extended. In the following
examples we compare the results given by the FBST with the maximum eigenvalue
test. The reported p-values are asymptotic.

Example 4.1. We simulated a 2-dimension VAR(1) with 50 observations, errors
NI2�0� �� and the following parameters:

�1 =
[
0�8 0�1
1 0�5

]
and � =

[
1 0�5
0�5 1�5

]
�

The �1 matrix has eigenvalues equal to 1 and 0.3. Therefore, there is one
cointegration vector. The test for ���� = 0 shows an e-value of 0.00428, leading us
to reject the hypothesis. By testing ���� = 1 we obtain an e-value of 0.99686, and
this confirms the existence of one cointegration vector. The maximum eigenvalue
test to H0 � r = 0 against H1 � r = 1 reports a p-value close to zero and to H0 � r = 1
against H1 � r = 2, p-value of 0.4746, reaching the same conclusion obtained by the
FBST, i.e., that there is one cointegration vector.

Example 4.2. We simulated another 2-dimension VAR(1) with 50 observations and
the following parameters:

�1 =
[
1 0
0 1

]
and � like above�

The matrix �1 has both eigenvalues equal to one. Therefore, the series are
I�1� and do not cointegrate. The FBST to test ���� = 0 gives an e-value equal
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3570 Diniz et al.

to 0.4586, which is substantial evidence to not reject the hypothesis, as expected.
The maximum eigenvalue test to H0 � r = 0 against H1 � r = 1 presents a p-value of
0.3889 and, therefore, the null is not rejected.

Example 4.3. Now we present a 3-dimension VAR(1) with 50 observations and the
following parameters:

�1 =

1 0 0
0 0�5 0
0 0 0�3


 and � =


 1 0�2 0�2
0�2 0�5 0�2
0�2 0�2 1


 �

The �1 matrix has eigenvalues equal to 1, 0.5, and 0.3. Therefore, there are two
cointegration vectors. The FBST to test ���� = 0 gives us an e-value of 0.0151, and
it is possible to reject it. After testing ���� = 1 we found an e-value of 0.0342, and
also rejected the hypothesis. Testing ���� = 2 the e-value is 0.9991, which confirms
the existence of two cointegration vectors.

The maximum eigenvalue test reports a p-value close to zero for H0 � r =
0 against H1 � r = 1 and to H0 � r = 1 against H1 � r = 2. The test of H0 � r = 2
against H1 � r = 3 presents a p-value of 0.11489. Therefore, we do not reject this last
hypothesis and conclude that there are two cointegration vectors.

Example 4.4. We simulated a 2-dimension VAR(2) with the following generating
process:

Yt =
[
0�45 −0�2
1�1 0�3

]
Yt−1 +

[
0�35 0�3
−0�1 0�2

]
Yt−2 + Et�

where � = � 1 0�5
0�5 1�5 . We know that there is one cointegration vector since the �

matrix has eigenvalues equal to 1 and 0.3.
The FBST reports an e-value of 0.0276 testing H0 � r = 0, leading us to reject

it. The maximum eigenvalue test, testing this null against H1 � r = 1 presents a p-
value of 0.0003. To test H0 � r = 1 , the FBST reaches an e-value of 0.9972 and the
maximum eigenvalues test, against H1 � r = 2, a p-value of 0.4392.

Example 4.5 (Johansen and Juselius, 1990). Now we apply the FBST to the Finish
data set used by Johansen and Juselius in their seminal work.

The authors used the series in natual logarithms of the M1 monetary aggregate,
inflation rate, real income, and the primary interest rate set by the Bank of Finland
to model the money demand which, in theory, follows a long term relation. The
sample has quarterly observations starting at 1958:02 and goes until 1984:03. The
chosen model was a VAR(2) with unrestricted constant and seasonal dummies for
the first three quarters of the year. Writing the chosen model in the error correction
form, we have:

�Yt = � +�Dt + �1�Yt−1 +�Yt−1 + Et� (10)

where � = �1 +�2 − I , �1 = −�2, � is the constants vector, and Dt has the
seasonal dummies. This vector could also contain other deterministic variables. It is
assumed that Et ∼ NI4�0� ��.

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
3:

50
 3

0 
Se

pt
em

be
r 

20
12

 



Cointegration: Bayesian Significance Test 3571

Table 1
FBST and maximum eigenvalue test applied to Finish data of Johansen and

Juselius (1990)

H0 FBST �max p-value

r = 0 0.0006 38.489 0.0007
r = 1 0.0505 26.642 0.0060
r = 2 0.9726 7.8924 0.3983

Table 2
FBST and maximum eigenvalue test applied to U.S. data of Lucas (2000)

H0 FBST �max p-value

r = 0 0.0145 25.334 0.0101
r = 1 0.9299 4.2507 0.8271

To implementate the FBST in this case, we used the Frisch-Waugh-Lovell
theorem. Thus, we run the auxiliary regressions:

�Yt = �′ +� ′Dt + � ′
1�Yt−1 + R0�t

Yt−1 = �∗ +� ∗Dt + �∗
1�Yt−1 + R1�t

and then we can work only with the residual vectors to study the rank of �, since
the theorem assures that

R0�t = �R1�t−1 + Et�

being Et the same of (10). The results are reported in Table 1.
The authors concluded that there is, at least, two cointegration vectors, the same

conclusion reached by the FBST.
It is relevant to consider that, for a non informative prior, the value of s∗ can

be calculated using the techniques proposed by Johansen (1988). He gives analytical
formulas for the maximum likelihood estimate in the cointegration model and
therefore, there is no need for using the Frisch-Waugh-Lovell theorem. Therefore,
it would not be necessary to use a numerical optimizer as claimed in Sec. 3.1.

For the models and examples here presented, the methods in Johansen (1988)
would be a much more reliable way to obtain the maximum. Still, it is worthwhile
mentioning that a numerical optimizer might be used in the case that an informative
prior is used. However, if one is going to use a numerical optimizer it is necessary
to use a normalization restriction. We stress again that we used the linear
normalization restriction.

Example 4.6 (Lucas, 2000). We apply, as a last example, the FBST to an US data
set used by Lucas (2000). The observations have annual periodicity and went from
1900–1985. We tested for cointegration between real national income, M1 monetary
aggregate deflated by the GDP deflator and the commercial papers return rate.
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We adjusted a VAR(1) with an unrestricted constant. The data are used in natural
logarithm and the results are reported in Table 2.

5. Concluding Remarks

In the past few decades, the econometric literature introduced statistical tests to
identify unit roots and cointegration relations in time series. The Bayesian approach
applied to these topics advanced considerably and interesting alternatives were
developed. Following Geweke (1996), Kleibergen and Paap (2002), Sugita (2002),
Strachan (2003), Strachan and Inder (2004), and Villani (2005), the present work
introduces a simple and powerful procedure that performs well for this task of
identifying the cointegration rank. It is shown that the FBST works considerably
well even when one uses improper priors. Recall that the use of a non-informative
prior of this kind may cause problems for the use of Bayes Factors, the standard
Bayes hypotheses tests.

To apply classical (frequentist) statistical tests one needs hard simulations to
find critical values: no closed analytical forms are available. These simulations
depend on restrictions in order to obtain the asymptotic distributions of the
statistics used.

If the researcher is working with samples that do not have critical values
“tabulated,” then either the asymptotical approximation or the closest sample size,
for which the critical values were calculated, are considered. This can be a problem
especially for small samples: the simulations assume that the data follow given
distributions, usually the gaussian.

The FBST does not need any restriction concerning sample sizes and can be
calculated assuming any parametric sampling distribution. The FBST can conduct
the conduction of the test without restrictions to sample sizes, prior distributions or
error sampling distributions; it is in fact an exact test. Comparing with the standard
Bayes Factor based tests; the FBST does not have to assume positive probability
to any set of nil Lebesgue measure. The most important feature of the FBST is the
fact that its use does not violate the likelihood principle. As another contribution,
in Sec. 3, the article presents a useful numerical approach to calculate e-values
when MCMC sampling is burdensome, even though they were not necessary for the
models here presented.

For future work the authors will investigate the power of FBST, based on
simulation studies, to compare it with the Johansen procedure. Clearly, the FBST
is not restricted to noninformative priors: we shall investigate the effect of the prior
choice in the estimates of cointegration relations.

Appendix

The definition of the evidence against some sharp hypothesis H given in Sec. 3
is invariant with respect to a proper reparameterization. For instance, let � =

��� where 
�·� is a measurable and integrable function. For the purpose of
illustration, assume that it is bijective and continuously differentiable. Under
the reparameterization, the Jacobian, surprise, posterior, and e-value (against the
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hypothesis) are, respectively, J���, r̃���, g̃x���, and ẽv�H�, given by:

J��� =
[
��

��

]
=

[
�
−1���

��

]
=




��1
��1

� � � ��1
��n

���
� � �

���
��n
��1

� � � ��n
��n




s̃��� = g̃x���

r̃���
= gx�


−1�����J����
r�
−1�����J���� �

Let �H = 
��H�. It follows that

s̃∗ = sup
�∈�H

s̃��� = sup
�∈�H

s��� = s∗�

hence, the tangential set under the reparameterization is, T �→ 
�T� = T̃ , and

ẽv�H� =
∫
T̃
g̃x���d� =

∫
T
gx���d� = ev�H��

We remark that the FBST is also invariant with respect to the null hypothesis
parameterization. This is not a trivial issue because some statistical procedures do
not satisfy this property. The reader interested in a broader discussion of the FBST
properties can see Madruga et al. (2003) and Pereira et al. (2008).
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