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ABSTRACT

We argue that concerns about double-counting—using the same evidence both to cali-

brate or tune climate models and also to confirm or verify that the models are adequate—

deserve more careful scrutiny in climate modelling circles. It is widely held that

double-counting is bad and that separate data must be used for calibration and confirm-

ation. We show that this is far from obviously true, and that climate scientists may be

confusing their targets. Our analysis turns on a Bayesian/relative-likelihood approach to

incremental confirmation. According to this approach, double-counting is entirely

proper. We go on to discuss plausible difficulties with calibrating climate models, and

we distinguish more and less ambitious notions of confirmation. Strong claims of con-

firmation may not, in many cases, be warranted, but it would be a mistake to regard

double-counting as the culprit.
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1 Introduction

Climate scientists express concern about the practice of ‘calibrating’ climate

models to observational data (another widely used word for ‘calibration’ is

‘tuning’). Calibration occurs when a model includes parameters or forcings

about which there is much uncertainty, and the value of the parameter or

forcing is determined by finding best fit with the data. That is, the parameter

or forcing in question is effectively a free parameter, and calibration deter-

mines which value(s) for the free parameter best explain(s) the data. A prom-

inent example, which we refer to later, is the fitting of the aerosol forcing.

The apparent concern about calibration is that it may result or always re-

sults in data being double-counted: data used to construct the fully-specified

model are also used to evaluate the model’s accuracy, in a problematic way.

Indeed, various climate scientists worry about circular reasoning:

In addition some commentators feel that there is an unscientific

circularity in some of the arguments provided by GCMers [general

circulation modelers]; for example, the claim that GCMs may produce a

good simulation sits uneasily with the fact that important aspects of the

simulation rely upon [. . .] tuning. (Shackley et al. [1998], p. 170)

This is one particularly suggestive quote about the badness of double-

counting. But what exactly is the badness here? We will see that this depends

crucially on the details.

This article seeks to clarify and evaluate worries surrounding calibration

and double-counting. We appeal to statements made by various climate sci-

entists, but our aim is not to rebut particular individuals. Our main concern is

that, in general, climate scientists’ statements about calibration/tuning/

double-counting do not attend to the details, and are, at worst, misleading.

A number of different issues are bundled together as the ‘problem of

double-counting’, and each of these issues deserves to be carefully articulated.

It is necessary to introduce some terminology. Calibration is introduced

above. Confirmation refers to the evaluation of a model’s accuracy for par-

ticular purposes.1 Note also that there is an important difference between

incremental and absolute confirmation: the former concerns whether confi-

dence in a model hypothesis has increased, whereas the latter concerns

whether confidence in a model hypothesis is sufficient, or above some thresh-

old. This article focuses on (varieties of) incremental confirmation.2 The

1 Some authors, for example, Frame et al. ([2007]), use the term ‘verification’ in lieu of ‘confirm-

ation’. We use the latter term in the interests of making a clear connection with the philosophical

literature.
2 From now on, when we use the term ‘confirmation’ we mean incremental confirmation, unless

otherwise indicated. As will become clear, we distinguish two varieties of incremental confirm-

ation: comparative and non-comparative.
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central question is: what is the inevitable/proper relationship between cali-

bration and confirmation?

Some climate scientists appear to claim that calibration is bad and should

therefore be avoided:

Climate change simulations should, in general, only incorporate forcings

for which the magnitude and uncertainty have been quantified using

basic physical and chemical principles. (Rodhe et al. [2000], p. 421)

This statement may be stronger than the authors intend.3 In any case, an

anti-calibration position is not defensible, because it would preclude refining

models in response to observational evidence. This is common practice in all

areas of science. In short, whatever the details of the relationship between

calibration and confirmation, it had better be the case that calibration is not

something that is bad or needs to be avoided.

Our main target here is the widespread view amongst climate scientists that

calibration and confirmation should be kept ‘separate’. The following quotes

suggest that evidence used in calibration should not (or cannot) yield incre-

mental confirmation; only separate data, not already used for calibration, can

boost confidence in a model. In other words, tuning is fine if it simply amounts

to calibration, but double-counting is not fine:

The inverse calculations [calibration] are also based on sound physical

principles. However, to the extent that climate models rely on inverse

calculations, the possibility of circular reasoning arises—that is, using the

temperature record to derive a key input to climate models that are then

tested against the temperature record. (Anderson et al. [2003], p. 1103).

If the model has been tuned to give a good representation of a

particular observed quantity, the agreement with that observation cannot

be used to build confidence in that model. (Randall and Wood [2007],

p. 596)

Indeed, the need for separate data for calibration and confirmation is usually

simply taken for granted in the climate science literature, or else the reasoning

is ambiguous.4 But this position is far from being obviously true, and requires

further argument.

The first part of the article argues that separate data for calibration and

confirmation are not an uncontroversial tenet of confirmation logic, because it

does not follow (in fact, quite the contrary) from at least one major approach

3 Perhaps the authors want to exclude forcings that have no physical plausibility at all, rather than

forcings that merely cannot be well quantified.
4 See, for instance, Anderson et al. ([2003], p. 1103), Knutti ([2008], p. 4651; [2010], p. 399),

Randall and Wood ([2007], p. 596), Shackley et al. ([1998], p. 170) and Tebaldi and Knutti

([2007], p. 2070).
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to confirmation—the Bayesian approach.5 After some remarks in Section 2

about climate models and adequacy-for-purpose that are useful to bear in

mind throughout the discussion, in Sections 3 and 4 we demonstrate, using

a very basic model and examples from climate science, that evidence may be

used to calibrate and also to incrementally confirm a model relative to another

model (we call this comparative confirmation).

We then go on to address some complicating issues—reasons why in some

contexts data are useless for calibration or confirmation. Some climate scien-

tists’ worries about double-counting are most charitably reconstructed along

these lines, i.e. as concerning the inapplicability, rather than the inherent bad-

ness of double-counting. Section 5 considers the issue of ‘old evidence’—if

evidence already informs the prior probability distribution over models, it

cannot be used a second time over for further calibration and confirmation.

Section 6 discusses the worry that past data are irrelevant for model adequacy

in the future and, hence, cannot be used for calibration or confirmation.

Section 7 discusses a different sense of incremental confirmation that cli-

mate scientists may have in mind: non-comparative confirmation, which con-

cerns our confidence in a model tout court, i.e. relative to its entire

complement. While evidence may also be used to calibrate and confirm a

model for non-comparative confirmation, the worry arises that climate

models are based on assumptions that may be wrong, especially in the

future. Hence, there is considerable uncertainty about the full space of

models, implying that data will not confirm a model. Section 8 presents an

example from climate science that brings these subtler issues to the fore. The

article ends with a conclusion in Section 9.

Let us now turn to the remarks about the predictive purposes of climate

models and how this bears on what evidence is relevant for assessing them.

2 Remarks about Models and Adequacy-for-Purpose

A variety of climate models are used to study the Earth’s climate. In the words

of Parker ([2010], p. 1084):

[Climate models] range from the highly simplified to the extremely

complex and are constructed with the goal of simulating in greater or

lesser detail the transport of mass, energy, moisture, and other quantities

by various processes in the climate system. These processes include the

movement of large-scale weather systems, the formation of clouds and

5 We try to deal minimally in Bayesian assumptions that may be objectionable to some readers,

chiefly, prior probabilities. While we restrict our attention to Bayesian confirmation logic, the

lessons apply more broadly, and we note this where appropriate. In any case, our aim is simply

to show that it is not uncontroversial to claim that separate data must be used for calibration

and confirmation.
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precipitation, ocean currents, the melting of sea ice, the absorption and

emission of radiation by atmospheric gases, and many others.

Climate scientists note that many of the aforementioned processes are still

poorly understood, and, moreover, that these processes can typically be only

approximated in a model, even one of maximum possible precision.

Consequently, it is clear from the outset that climate models will not correctly

represent or predict the target systems in all their details. This means that

climate models themselves cannot be confirmed. As Parker ([2009]) has con-

vincingly argued, instead what can be confirmed is the adequacy of climate

models for particular purposes. The hypotheses about the purposes of climate

models need to be specified by climate scientists. Here is a prime example of

such a hypothesis: this climate model with these initial conditions is adequate

for predicting the mean surface temperature changes within 0.5 degrees in the

next fifty years under this emission scenario.

In climate science typically some model error is allowed. Therefore, an im-

portant part of specifying the hypothesis about the purpose of a model is to

state the assumptions about the model error. There are two main kinds of

error. First, for discrete model error all that counts is whether the actual

outcome is within a certain distance from the simulated outcome, for example,

whether the actual and simulated mean surface temperature is <0.5�C apart.

Second, there is probabilistic model error when the error is described by a

probability distribution. To give a simple example, the error might be mod-

elled by a Gaussian distribution around the true value.6

In this framework of adequacy-for-purpose, one needs to be cautious about

what data are actually relevant to assess whether a model fulfills a particular

purpose. We have to determine the observational consequences that are likely

to follow if the model is adequate; the data about these consequences will then

be relevant. To come back to our example about mean surface temperature

changes, here many will regard past temperature changes as relevant (al-

though we return to this issue later in Section 6). However, it is less clear

whether, for example, past precipitation changes are relevant. As Parker

([2009]) has argued, if climate scientists have obtained a good understanding

of the relation between mean surface temperature changes and precipitation

changes, then precipitation changes will be relevant. However, when lacking

any knowledge about the interdependence of these two variables, then pre-

cipitation changes will not be relevant. Which data are relevant is crucial for

two reasons: only relevant data can confirm or disconfirm the adequacy of a

6 One source of error derives from the uncertainty about the initial conditions (this is the problem

of internal variability—see Randall and Wood [2007]). It goes without saying that the compari-

son of models with data also depends on the assumptions made about internal variability.

However, this is different from, and does not seem to shed any further light on, the issue of

calibration/double-counting. Hence, it will not be discussed further here.
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model and can meaningfully be used to calibrate the free parameters of a

model.

This article does not, for the most part, focus on the question of what data

are relevant to assess a model’s adequacy for purpose. General points about

the suitability of data for confirmation will, however, become important in

Sections 5 and 6. Here, it is just important to realize that this question is a

separate issue and should not be confused with the worry of double-counting.

That is, if data are not relevant to a model’s adequacy for purpose, then testing

the model against the data even once would be counting the data one too

many times; likewise, calibrating the free parameters of the model against the

data would be counting the data one too many times.

The next section discusses calibration/double-counting in the context of

more simple models. The aim is to elucidate calibration vis-à-vis Bayesian

confirmation.

3 Evidence for Calibration Can Also Yield Comparative

Confirmation

Here, we argue against the view that double-counting, in the sense of using

evidence for both calibration and confirmation, is obviously bad practice. We

show that, by Bayesian or likelihoodist standards at least, double-counting

simply amounts to using evidence in a regular and proper way. This is best

demonstrated in the context of comparing two well-specified hypotheses. We

distinguish two interpretations of double-counting—I (Section 3.1) and II

(Section 3.2)—because the legitimacy of the latter is more controversial

than the former.

3.1 Double-counting I

Let us start with a straightforward case, and then add complexity. Consider

just one type of base model with very simple structure: a linear relationship

between variables y and t. Because, as outlined in the previous section, climate

scientists typically allow for model error, we will assume a probabilistic model

error term that is distributed normally with standard deviation �:7

L : yðtÞ ¼ �t +�+ Nð0, �Þ: ð1Þ

The Bayesian account of model calibration depends crucially on the follow-

ing setup: there is a whole family of specific instances of the base model L,

7 Alternatively, the error term could be interpreted as observational error or as a combined term

for observational error and model error. We focus on model error because it seems particularly

widespread in climate science papers. However, all we say carries over to any other interpret-

ation of the error term.
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where each specific instance has particular values for the unknown parameters

or forcings, � and �. For instance, assume that possible values for � are

f1, 2, 3, 4g, and likewise for �. So the scientist associates with L a (discrete)

set of specific model instances that we might label L1, 1, L1, 2, . . . , where the

subscripts indicate the values for � and �.

Calibration of L then amounts to comparing specific instances of the base

model—L1, 1, L1, 2, . . .—with respect to the data, i.e. observed values for yðtÞ.

Of course, strictly speaking, what we are comparing are model hypotheses;

assume that the hypotheses here postulate that the model in question accur-

ately describes the data generation process for yðtÞ. Calibration is simply the

common practice of testing hypotheses against evidence. Given the probabil-

istic error term, none of the hypotheses, L1, 1, L1, 2, . . ., can be falsified by the

data, even if the data lies very far away from the specified line. Note also that

since the model error is probabilistic, the hypotheses are mutually exclusive.

This is important: calibration is best understood as the comparison, given new

evidence, of the mutually exclusive hypotheses constituting a base model.8

Calibration, understood in this way, may well result in confirmation of Li, j,

say, with respect to Lk, l . By Bayesian logic, the extent of confirmation depends

on the likelihood ratio: PrðEjLi, jÞ=PrðEjLk, lÞ, where PrðEjLi, jÞ is just the

probability, Pr, of the evidence, E, i.e. the observed data points, given

the model Li, j.
9 The likelihoods are related, in a manner that depends on

the assumed error probability distribution (in our case Gaussian), to the

sum-of-squares distance of the data points from the line. If the likelihood

ratio is >1, then Li, j is confirmed by the data relative to Lk, l , and vice versa

if the likelihood ratio is <1. When the likelihood ratio equals 1, neither hy-

pothesis is confirmed relative to the other. Note that the relative posterior

(post-evidence) probabilities of Li, j and Lk, l are a further matter of absolute

rather than incremental confirmation (cf. comments in Section 1); absolute

confirmation depends also on their relative prior (initial) probabilities.10

8 Where model error is discrete, identifying mutually exclusive model hypotheses is more com-

plicated. For instance, consider a simple example of two hypotheses involving discrete model

error: L1, 1 is the hypothesis that yðtÞ ¼ t + 1 accurately predicts yðtÞ within �2, and L1, 2 is the

hypothesis that yðtÞ ¼ t + 2 accurately predicts yðtÞ within �2. These two hypotheses could both

be correct. Indeed, the model hypotheses in Knutti et al. ([2002], [2003]) discussed later in

Section 4 and 7 deserve further scrutiny on this basis. We will not discuss this further here;

we merely want to flag the issue.
9 To be more precise, we should also explicitly state the background knowledge, B, in the like-

lihood expressions, such that they read PrðEjLi, j and BÞ. In the interests of readability, we will

not use these more precise expressions, but the B should be understood as implicit.
10 This is the Bayesian wisdom, anyhow. The complete Bayesian expression is as follows:

Prf ðLi, jÞ

Prf ðLk, lÞ
¼

PrðLi, j jEÞ

PrðLk, l jEÞ
¼

PrðEjLi, jÞ

PrðEjLk, l Þ
�

PrðLi, jÞ

PrðLk, l Þ
ð2Þ

where the first term is the ratio of posterior probabilities, i.e. the ratio of probabilities after

receipt of the evidence. The final term is the ratio of prior or initial probabilities for the model

hypotheses, i.e. before the evidence. In short, the ratio of posteriors for the model hypotheses,
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We begin with this case to show that there is a straightforward way in which

double-counting is fine. Calibration of L involves ascertaining appropriate

values for � and �; thus, the whole point is to consider which specific model

hypotheses are confirmed relative to others in light of the data. Call this

double-counting I; we do not expect its legitimacy to be controversial, given

a hypothesis space as described above. So we already see that unqualified

statements about the badness of calibration/double-counting are problematic.

Note that, for double-counting I, calibration can be regarded as the same

process as confirmation in the sense that the evidence is used to do both cali-

bration and confirmation simultaneously: different model instances are con-

sidered, and then the evidence is used once to confirm model instances over

others. Hence the term ‘double-counting’ here does not signify that the evi-

dence is used twice; just that it is used for both calibration and confirmation.

3.2 Double-counting II

An interesting qualification may be deduced from the work of Worrall

([2010]). He suggests that the real double-counting sin would be to use evi-

dence to calibrate a base model such as L above, and also hold that the same

evidence confirms not only specific instances of this base model relative to

others but also the base-model hypothesis itself:

Using empirical data e to construct a specific theory T 0 within an already

accepted general framework T leads to a T 0 that is indeed (generally

maximally) supported by e; but e will not, in such case, supply any

support at all for the underlying general theory T . (Worrall [2010],

p. 143)

Call this double-counting II. In this quote, Worrall refers to a general theory,

T , that is already ‘accepted’. In such a case, the general theory cannot be

incrementally confirmed, as it already has maximal probability.11 Worrall’s

remarks are thus consistent with Bayesian confirmation. We take Worrall’s

work to be highly suggestive, however, of the more general claim against

double-counting II. We will show that, according to Bayesian confirmation

theory, double-counting II is legitimate—thus conflicting with the more gen-

eral claim against double-counting II.

Perhaps when climate scientists claim that separate data are required for

confirmation and calibration, they take for granted, along the lines of Worrall,

given new evidence, E, is a product of the ratio of prior probabilities and the likelihood ratio. As

mentioned, it is the likelihood ratio that governs the relative extent to which the model hypoth-

eses are confirmed by E. Note that the likelihood ratio plays a key role in other theories of

confirmation too, not just the Bayesian.
11 Note also that Worrall considers only cases where the evidence falsifies all but one instance of a

base model.
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that double-counting II is illegitimate, i.e. calibration of a base-model hypoth-

esis cannot result in that hypothesis being confirmed relative to another

base-model hypothesis, and thus other data are needed for any such

confirmation.

This position, however, is not born out by Bayesian confirmation logic (at

least).12 On the contrary, double-counting II is legitimate and can arise for two

reasons: (i) ‘average’ fit with the evidence may be better for one base model

relative to another, and/or (ii) the specific instances of one base model that are

favoured by the evidence may be more plausible than those of the other base

model that are favoured by the evidence.13

As per double-counting I, our analysis revolves around straightforward

likelihood ratios, although here we must introduce prior probability distribu-

tions over the specific model instances, conditional on each base-model hy-

pothesis being true.14 In the interests of a more concrete discussion, we first

introduce a second base-model hypothesis, a quadratic of the form:

Q : yðtÞ ¼ �t2 +�+ Nð0, �Þ: ð3Þ

Assume that the specific model instances, like those of L above, are all

combinations of � and �, where each may take any value in the discrete set

f1, 2, 3, 4g. As before, the error standard deviation, �, is fixed. Specific model

instances are labelled Q1, 1, Q1, 2, . . .. Note that the base-model hypotheses, L

and Q, are of the same complexity, i.e. they have the same number of free

parameters. This is an intentional choice. We do not want to introduce a

further issue of relative model complexity and penalties for overfitting.

While an important and controversial issue that is certainly tied up with

calibration, the overfitting debate only confounds the question of

double-counting. (Nonetheless, we will return to this debate briefly at the

end of the subsection.)

In standard Bayesian terms, the confirmation of one base-model hypoth-

esis, for example, L, with respect to another, for example, Q, depends on the

likelihood ratio PrðEjLÞ=PrðEjQÞ. As before, if the ratio is >1, then L is

12 We remark on frequentist ‘model selection’ methods at the end of this section. According to

these methods, double-counting II is legitimate, in conflict with the general claim we are attri-

buting to Worrall. Note that Mayo’s ‘severe testing’ approach to confirmation does not support

the Worrall conclusion either (see Mayo’s ([2010]) response to Worrall). What is important for

the severe testing approach is not whether evidence has already been used to calibrate a

base-model, but whether the evidence severely tests this base-model hypothesis. These two

considerations do not always match up. It is beyond the scope and aims of this paper, however,

to elaborate further on the severe testing approach or any other alternative vis-à-vis Bayesian

confirmation.
13 Our analysis is thus more in line with Howson ([1988]).
14 For double-counting I, we were able to eschew prior probabilities altogether when assessing

confirmation.
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confirmed relative to Q, and if it is <1, then Q is confirmed relative to L.15 In

this case, the relevant likelihoods, however, are not entirely straightforward:

PrðEjLÞ ¼ PrðEjL1, 1Þ � PrðL1, 1jLÞ+ � � � + PrðEjL4, 4Þ � PrðL4, 4jLÞ,

PrðEjQÞ ¼ PrðEjQ1, 1Þ � PrðQ1, 1jQÞ+ � � � + PrðEjQ4, 4Þ � PrðQ4, 4jQÞ: ð4Þ

Note that PrðL1, 1jLÞ is the prior probability (i.e. probability before the data is

received) of yðtÞ ¼ t + 1 + Nð0, �Þ being the true description of the data gener-

ation process for yðtÞ, given that the true model is linear. The expressions

above provide formal support for our earlier statement that confirmation of

base models depends on (1) fit with the evidence and (2) the conditional priors

of all specific instances of these base models.

Consider first the special case where the conditional prior probabilities of all

specific instances of L and Q are equivalent. That is:

PrðL1, 1jLÞ ¼ � � � ¼ PrðL4, 4jLÞ ¼ � � � ¼ PrðQ1, 1jQÞ ¼ � � � ¼ PrðQ4, 4jQÞ ¼ x:

ð5Þ

Suppose the observed data, E, yield on balance greater likelihoods for in-

stances of L than Q. Then L is confirmed relative to Q because of reason (1),

viz. the average fit with the evidence is better for base-model hypothesis L than

for Q. Furthermore, there is calibration because E is used to determine the

most likely values of � and �.

Another special case is where the base-model hypotheses have equivalent fit

with the data when all specific models are weighted equally, but the priors are

not in fact equal. Suppose that the specific instances of L that have the higher

likelihoods for E are in fact more plausible (higher conditional priors) than the

specific instances of Q that have the higher likelihoods. Then L is confirmed

relative to Q because of reason (2), viz. the specific instances of L favoured by

the evidence are more plausible than the specific instances of Q favoured by

evidence. Furthermore, there is calibration: E is used to determine the most

likely values of � and �.

Alongside these two special cases there is also the case of double-counting II

because of both (1) and (2). Note that for double-counting II, as per

double-counting I, calibration can be regarded as the same process as con-

firmation in the sense that the evidence is used to do both calibration and

confirmation simultaneously. The evidence is used once to confirm model

instances over others, which can then result in base models being confirmed

over others.

Worrall ([2010]) has claimed that, in cases where data seem to be used for

calibration and confirmation of a base-model hypothesis, what really happens

15 Again, as before, the relative posterior probabilities of L and Q, i.e. PrðLjEÞ=PrðQjEÞ, depend

also on their prior probability ratio.
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is that only some of the data are needed to determine the values of the initial

free parameters, and the rest of the data then confirms the hypothesis; thus,

there is no double-counting. However, this splitting of the data can throw

away valuable information about the free parameters and is not in keeping

with Bayesian logic of confirmation. Rather, as we see for the cases discussed

here, all of the data are used to determine the values of the free parameters and

for confirmation of base-model hypotheses, and thus we have a genuine case

of double-counting.

Finally, while the Bayesian approach to confirmation is far from marginal,

there have been interesting challenges to this approach in the context of

double-counting II. Concerns about comparing base models of differing com-

plexity have lead to special methods for assessing base models, i.e. families of

models. This is the field of model selection (see Burnham and Anderson

[1998]). Our analysis above is standard Bayesian, but it is important to note

that various alternative methods for comparing base models have been sug-

gested, including the Akaike approach (see Forster and Sober [1994]). The

controversies here run deep and extend to whether the basic unit of analysis

should be a family of models or a specific model, and also to what we are

trying to assess: the truth of model hypotheses, or their predictive accuracy. It

is beyond the scope of this article to enter into this debate. We note simply

that, even if an alternative (frequentist) approach to confirmation of base

models is taken, the legitimacy of both double-counting I and II holds.

Evidence used for calibrating base models is also used for determining their

relative standing, or, in other words, for confirmation (see, for instance,

Hitchcock and Sober [2004]).

Section 4 presents two analyses from the climate literature which exemplify

the two special cases of double-counting II. The aim here is to show that

climate scientists do engage in double-counting, even if they do not acknow-

ledge it as such.

4 Climate Science Examples: Comparative Confirmation in

Practice

There is considerable discussion in climate science about calibrating aerosol

forcing. To give some background: Aerosols are small particles in the atmos-

phere. They vary widely in size and chemical composition and arise, for exam-

ple, from industrial processes. Aerosols alter the Earth’s radiation balance,

and the aerosol forcing measures the extent that anthropogenic aerosols alter

this balance. Anthropogenic aerosols influence the climate in two ways. First,

they reflect and scatter solar and infrared radiation in the atmosphere (mea-

sured by the direct aerosol forcing). Second, they change the properties of
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clouds and ice (measured by the indirect aerosol forcing). Overall aerosols are

believed to exert a cooling effect on the climate.

The uncertainty about the magnitude of the aerosol forcing, in particular

about the indirect aerosol forcing, is huge because little is known about the

physical and chemical principles of how aerosols change the properties of

clouds and ice, and how they scatter radiation. Consequently, it is standard

practice to calibrate the aerosol forcing against data, and the aerosol forcing

constitutes a prime example of calibration in climate science.

We will now show that in climate papers about the aerosol forcing we can

find the two special cases of double counting II.

4.1 Confirmation due to better and worse best fits

The first paper we look at is Harvey and Kaufmann ([2002]). They compare

the adequacy of two climate models (with model error) for simulating the

observed warming of the past two and a half centuries. The two base

models (derived from an energy balance model coupled to a two-dimensional

ocean model) are:16

M1: model instances that consider both natural and anthropogenic forcings

to describe climate change (plus model error).

M2: model instances that consider only anthropogenic forcings to describe

climate change (plus model error).

They assume that the model error is such that none of the base-model hypoth-

eses can be falsified by the data but where, roughly, the closer the simulations

are to the observations, the better.17 The evidence regarded as relevant for

assessing the adequacy of the base models are the past record of mean surface

temperature changes, interhemispheric surface temperature changes, surface

temperature changes in the northern hemisphere, and surface temperature

changes in the southern hemisphere. This evidence is used to simultaneously

calibrate the aerosol forcing and the climate sensitivity. (The climate sensitiv-

ity measures the mean temperature change resulting from a doubling of the

concentration of carbon dioxide in the atmosphere.) Motivated by physical

considerations, the initial ranges considered are [0, �3] for the aerosol forcing

and [1, 5] for the climate sensitivity.
They proceed as follows: among all the model instances of M1 and M2,

Harvey and Kaufmann identify a model instance which best matches the data.

16 The base model M1 (M2) does not consist of one model to which different forcing values can be

assigned. It consists of several different models, which consider different anthropogenic and

natural influences (different anthropogenic influences), to which different forcing values can be

assigned. Hence Harvey and Kaufmann compare two sets of models.
17 They do not assume any observation error.
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Then they apply a statistical test to determine whether other model instances

differ significantly from the best instance. In this way they arrive at a set of

best performing models instances. (Denote this set by MB and let MBC be the

model instances of M1 and M2 which are not in MB.) It turns out that MB

only includes instances of M1. Consequently, they conclude that there is con-

firmation: M1 (natural and anthropogenic forcings) is more adequate for

simulating the past temperature record than M2 (only anthropogenic for-

cings). Furthermore, they use the same data to calibrate the aerosol forcing:

the instances of M1 in MB correspond to an aerosol forcing range of (�1.5, 0],

which is thus regarded as the likely range.

Harvey and Kaufmann can be seen as engaging in double-counting II. Their

procedure can (roughly) be reconstructed in Bayesian terms, as per Section 4.

The model error is probabilistic.18 Furthermore, because initially they are in-

different about the exact forcing values, they assume a uniform prior over the

aerosol forcing and climate sensitivity conditional on M1 and M2.19 Their

procedure comes close to assigning to the probability of the data a much

smaller value, given MBC , than to the probability of the data, given MB.

(That is, Pr(EjMBC)=Pr(EjMB) is much smaller than 1, for example, 1
9
.)

Then, because MB only includes instances of M1, it follows that the probability

of the data given M1 is much higher than the probability of the data given M2.

Consequently, probabilistic confirmation theory yields that M1 is confirmed

relative to M2 and that the aerosol forcing is very likely in the range ð�1:5, 0�.

To conclude, Harvey and Kaufmann justifiably use the same data for cali-

bration and comparative confirmation. They engage in case (1) of double

counting II, i.e. there is confirmation because the average fit with the evidence

is better for M1 than for M2. Note that we are not here assessing other aspects

of the experimental design. For instance, climate scientists may debate the

relevance of the past ocean temperature change data for comparing the

models’ adequacy. As stressed earlier, that is a different question not to be

confused with double-counting.

4.2 Confirmation due to more and less plausible forcings values

As a second case let us compare the models of Knutti et al. ([2002]) and Knutti

et al. ([2003]). Knutti et al.’s ([2002], [2003]) concern is to construct models

which are adequate for long-term predictions of temperature changes (within

the error bounds) until 2100 under two important emission scenarios. They

18 Their method implies that (roughly) the smaller the model error, the better, and that none of the

models can be falsified. However, apart from this, the assumptions about the model error

remain unclear. It would be desirable to spell out these assumptions because this is needed

for specifying the models’ adequacy.
19 Likewise, we assume that each of the different models in M1 (M2) are equiprobable (see Section

4.1).
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assume that the model error is discrete (cf. Section 3). The two base models

(derived from a dynamical ocean model coupled to an energy- and

moisture-balance model of the atmosphere) are:

M1: model instances considered by Knutti et al. ([2002]). There are five

different ocean setups and the carbon cycle is not accounted for explicitly

(the carbon cycle determines how emissions are converted into concentra-

tions in the atmosphere).20

M2: model instances considered by Knutti et al. ([2003]). There are ten

different ocean model setups and the carbon cycle and its uncertainty are

explicitly accounted for with a parameterization.21

The evidence that they regard as relevant for assessing the adequacy of these

models is past mean surface temperature changes and ocean temperature

changes.

All the elements needed to compare the two base-model hypotheses in the

framework of probabilistic confirmation theory are present in Knutti et al.

([2002], [2003]). The evidence is used to calibrate simultaneously the indirect

aerosol forcing and the climate sensitivity. Motivated by physical estimates,

Knutti et al. ([2002], [2003]) assume that, conditional on M1 and M2, the

indirect aerosol forcing is initially normally distributed with the mean at �1

and a standard deviation of 1.22 The climate sensitivity is assumed to be ini-

tially uniformly distributed over [1,10], conditional on M1 and M2.

Knutti et al. ([2002], [2003]) then calculate the posterior probabilities for

model instances, i.e. the likelihood of an arbitrary model-hypothesis instance

given the data, assuming that M1 (M2) is true. A model-hypothesis instance is

regarded as consistent if the average difference between the actual and the

simulated observations is smaller than a constant.23 A posterior probability

is zero for inconsistent model-hypothesis instances. Consistent model-

hypothesis instances are assigned a probability proportional to the prior prob-

ability over the forcings values (i.e. over the model instances24). It turns out

that a posterior probability distribution over the forcings is the same for M1

and M2, implying the indirect aerosol forcing is likely (with approximate

20 The ocean setups of M1 and M2 differ: the ten ocean setups of M2 do not include the five ocean

setups of M1.
21 Because of the different ocean setups, the base model M1 (M2) does not consist of one model to

which different forcing values can be assigned but of five (ten) different models to which dif-

ferent forcing values can be assigned. Hence the sets of models M1 and M2 are compared.
22 They also discuss the case of a uniformly distributed aerosol forcing. However, the case of the

normal distribution will be more insightful here.
23 The constant equals the standard deviation of the model ensemble, which in climate science is

regarded as a measure of model error. They also assume that there is observation error. To

account for it, the difference of the observed and modelled temperature is divided by the un-

certainty of the observed warming (Knutti et al. [2002], [2003]).
24 Knutti et al. ([2002], [2003]) assume that each of the five (ten) different models constituting the

base model class M1 (M2) are equiprobable (cf. Section 4.2).
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probability 0.90) to be in the range [�1.5, 0.2). In short, the consistent model

instances of M1 span the same range of forcing values as the consistent model

instances of M2. As all consistent model instances are regarded as having

equivalent fit with the data (because postulated model error is discrete), we

conclude that there is no comparative confirmation.

Now suppose that for M1 a posterior probability distribution over the

forcings would have been different, say, the likely (with probability 0.90)

aerosol forcing range would have been [�2.7, �1]. Then the data would

have been justifiably used both for calibration and comparative confirmation

of the base-model hypotheses. This would have been an example of case 2 of

double counting II. M2 would have been confirmed relative to M1 because the

specific instances of M2 favoured by the evidence are more plausible than the

specific instances of M1 favoured by the evidence.

5 Old Evidence

We have seen that double-counting is not illegitimate, at least by Bayesian

confirmation standards, and is, moreover, practised by some climate scien-

tists. This problematizes assertions that double-counting is clearly bad. The

remainder of the article considers reasons why double-counting may yet be,

for the most part, inapplicable in the climate-model context. Note that the

reasons we canvas concern the failure of calibration and/or confirmation of

base models. Nothing we say in these final sections supports the position that

separate data should be used for calibration and confirmation.

We start with what seems a prevalent concern: the evidence in question was

used to formulate the climate-model hypotheses, and so is old evidence that is

not suitable for further confirmation purposes. This appears to be a concern of

Stainforth et al. ([2007a]):

Development and improvement of long time-scale processes are therefore

reliant solely on tests of internal consistency and physical understanding

of the processes involved, guided by information on past climatic states

deduced from proxy data. Such data are inapplicable for calibration or

confirmation as they are in-sample, having guided the development

process.

The term ‘in-sample’ is ambiguous here: on the one hand, it apparently refers

to evidence belonging to a different time(or spatial) period from the predic-

tions of interest (we discuss this issue in subsequent sections), yet on the other

hand it seems to refer to old evidence, i.e. evidence already taken into account

in model development. Since these two issues come apart,25 they deserve sep-

arate treatment.

25 Consider: it is possible to find ‘new’ evidence from the same time period as the ‘old’ evidence.
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Our current concern is updating on old evidence. How might this problem

manifest? It helps to consider a paradigm case: Imagine that a detective an-

nounces that the most plausible hypothesis, given the expensive earring and

strands of hair found at the crime scene, is that the rich Lady visiting the

manor killed the host. Clearly the evidence has already been taken into ac-

count in announcing that this hypothesis is the most plausible one. In

Bayesian terms, the current plausibility of the hypothesis—the relatively

high probability Prðrich-Lady hypothesisÞ—is already in effect a posterior

probability, given the evidence. It would thus be a mistake to further confirm

the rich-Lady hypothesis with respect to the same evidence. One can still assess

the confirmatory power of the old evidence, but this requires constructing a

‘counterfactual’ probabilistic belief function, Pr0, representing what the de-

tective’s beliefs would have been, if the evidence, E, was not already known. It

follows that Pr0ðEjrich-Lady hypothesisÞ < 1. One may also appeal to the

counterfactual prior probability of the rich-Lady hypothesis, Pr0(rich-Lady

hypothesis).26

To better appreciate the problem, it is helpful to consider the overall con-

firmation from two independent pieces of evidence, say E1 and E2, according

to Bayes’ theorem. In such case, the overall confirmation of, say, H1 relative to

H2 depends on the product of the two likelihood ratios:

PrðE1jH1Þ

PrðE1jH2Þ
�

PrðE2jH1Þ

PrðE2jH2Þ
: ð6Þ

It would be a mistake, of course, to treat the one piece of evidence, E, as if it

were two pieces of independent evidence, and thus take confirmation due to E

as:

PrðEjH1Þ

PrðEjH2Þ
�

PrðEjH1Þ

PrðEjH2Þ
: ð7Þ

This is what it means to update again on old evidence, or use the same evidence

two times over for confirmation. It is effectively what would happen if, say,

our detective further confirmed the rich-Lady hypothesis with respect to the

same crime-scene data, and concluded that it was even more plausible that she

was the murderer.

Let us now return to climate models. The way we have characterized cali-

bration in Section 3 already guards against this old-evidence updating, to

some extent. As mentioned, the problem set-up is crucial to a defensible

Bayesian analysis. When calibrating and comparing two base-model

26 Admittedly, it is not clear how to construct such a ‘counterfactual’ probabilistic belief function,

and the controversy about its interpretation runs deep. This is not our present problem, how-

ever, and we note that others offer ways to make sense of these counterfactual probabilities (see,

for instance, Eells and Fitelson [2000]).
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hypotheses, we must assign all the specific instances of these models appro-

priate conditional priors, i.e. probabilities that do not yet take the evidence

into account. Then the evidence can be used to calibrate or discriminate fur-

ther between the model instances (and between the base models too, as per

double-counting II). This is effectively the procedure that is followed in the

case studies of Section 4: suitable conditional prior probabilities are initially

selected and then updated in light of the temperature data.

Of course, evidence might be unwittingly used two times over for calibration

and/or confirmation. Indeed, Frame et al. ([2007]) note this danger in the

context of assessing climate models. They caution against calibrating and/

or confirming twice with the same evidence, not realizing that the evidence

already informed the conditional prior probability distributions over instances

of the base models. In short, updating on old evidence is problematic, and

practitioners should be careful to avoid doing this. But this is not an inevitable

problem, and the remedy is not to use separate data for calibration and con-

firmation. The remedy is simply not to calibrate and confirm model hypoth-

eses two times over with the same evidence.

There may be a lingering concern that prior probabilities for the base-model

hypotheses themselves already incorporate the evidence, especially if base

models with additional forcings or parameters are constructed expressly to

achieve better fit with the data. So the base-model hypotheses are only a subset

of the full space of possible models, and hence assigning each an equal prior

probability would be to over-estimate their initial plausibility. The situation

seems analogous to the murder case above—the base models that climate

scientists work with are considered plausible precisely because the evidence

has already been taken into account in selecting them. Just as the murder

detective does not bother to mention various people near the crime scene

who may have been under greater suspicion if the evidence were otherwise,

climate scientists have presumably already dismissed a large number of pos-

sible base models in favour of the few under consideration that seem to have

the potential to permit a reasonable fit with the evidence. It would then seem

wrong to use the evidence a second time over for confirmation.

Notwithstanding this concern, we can still calibrate and assess comparative

(incremental) confirmation in terms of a counterfactual probabilistic belief

function where Pr0ðEjHiÞ < 1, indicating that the evidence, E, is not already

known.27 Furthermore, as mentioned above, even if the base-model hypoth-

eses are only a subset of the full space of model hypotheses—the ones deemed

most plausible in light of the evidence—one can still estimate counterfactual

27 In the rest of the article, we return to assessing confirmation in terms of the regular probabilistic

belief function Pr. Where there is a problem of old evidence, however, this should be understood

as standing in for the appropriate counterfactual probability function, which we denote here as

Pr0.
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prior probabilities for the base-model hypotheses. Presumably, the counter-

factual prior probabilities for these base models should not add to 1, but to

some probability <1. Determining the appropriate probability mass to assign

to the set of base-model hypotheses may be quite tricky. But this problem

affects only non-comparative and, ultimately, absolute confirmation, and

where we want to assess how confident we should be, overall, in our models.

And again, this has nothing to do with double-counting. In any case, the

assessment of non-comparative and absolute confirmation of climate models

is plagued with even bigger difficulties, and we will get to these in Section 7.

For now we continue to analyse why even calibration and comparative

confirmation may fail in the climate-model context. In particular, we turn

now to concerns about the (ir)relevance of past data.

6 Doubts about the Relevance of Past Data

There is an important difference between the climate studies discussed in

Sections 4.1 and 4.2. In the Harvey and Kaufmann study, past data were

used to calibrate/confirm base-model hypotheses concerning past climate be-

haviour, whereas in the Knutti et al. studies, past data were used to calibrate/

confirm base-model hypotheses concerning long-term future climate behav-

iour (policy makers are most interested in this long-term future climate be-

haviour). The latter is more controversial than the former and, as we will see in

this and the next section, may be what some climate scientists have in mind

when they make negative comments about calibration and confirmation. This

section discusses whether particular past data are relevant for assessing the

adequacy of climate-model hypotheses in predicting future climate variables

of interest. The next section will discuss the concern that climate models are

based on assumptions that may not hold in the future, and hence there is

considerable uncertainty about the full space of models that are possibly ad-

equate for predicting future climate.

Let us initially confine our analysis to the model instances of a single

base-model hypothesis, for example, L (Equation (1) in Section 3). Assume

that the model hypotheses, denoted L1, 1, L1, 2 . . . , this time concern whether

the line in question (plus probabilistic model error) accurately predicts yðtÞ for

future times t � t	. Our question here is: Can past data, i.e. data for t < t	,

help in calibrating L?

The answer: it all depends on what is the implicit relationship between

t < t	 and t � t	, i.e. the implicit extension of the model instances of L that

span t � t	 into the past. One possibility is that the past values depend

strongly on the future values and vice versa, a special case being where each

line in L for t � t	 is associated with just one and the same line for t < t	. In

this case, past data (past values for yðtÞ), E, are clearly relevant for comparing
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L1, 1, L1, 2 . . ..28 The likelihood ratios PrðEjLi, jÞ=PrðEjLk, lÞ may be calculated

as before.29

Another possibility, of course, is that the past values are independent of the

future values, a special case being where each line in L for t � t	 is associated

with any line for t < t	. That is, each line hypothesis in L, such as L1, 1, is

implicitly associated with a whole set of extended models:30

yðtÞ ¼
t + 1 + Nð0, �Þ if t � t	;
�t + �+ Nð0, �Þ if t < t 	 :

�
ð8Þ

Here E, i.e. past values for yðtÞ, will be irrelevant for comparing instances of L,

the reason being that all instances of L are associated with the same pasts, and

so E does not distinguish these instances. That is to say that the pertinent

likelihoods for calibration—PrðEjLi, jÞ=PrðEjLk, lÞ—all equal 1. So in this case

there is no calibration of L and thus, in a sense, no double-counting I.

The analysis of double-counting II is essentially the same. In this case, we

are comparing two base-model hypotheses, for example, L and Q (Equations

(1) and (3) in Section 3) where the concern is whether the models accurately

predict yðtÞ for future times t � t	. Consider the special case where every

model instance of L or Q is implicitly extended into the past in the same

variety of ways.31 In this case, past data, E, again does not favour any instance

of either model over any other instance of either model, and we obtain

PrðEjLÞ=PrðEjQÞ ¼ 1. Neither base hypothesis is confirmed relative to the

other. So in a sense there is no double-counting II (in addition to no calibra-

tion and no double-counting I). Of course, this is just a special case. If the

values of past and future variables were dependent, past data may confirm one

base-model hypothesis over another.

This scenario of independence is what some climate scientists seem to have

in mind when they say:

Statements about future climate relate to a never before experienced state

of the system; thus, it is impossible to either calibrate the model for the

forecast regime of interest or confirm the usefulness of the forecasting

process. (Stainforth et al. [2007a], p. 2146)

We have here the grounds for a charitable interpretation of climate scientists’

claim that data cannot be used to calibrate and confirm climate models. As

28 Note that the various frequentist estimators used in model selection, such as the Akaike esti-

mator, assume an unchanging physical reality or data generation process.
29 Recall our earlier Section 3.1, which notes that the likelihoods are more precisely stated

PrðEjLi, j and BÞ, and so on, where B is background knowledge. Here background knowledge

about the implicit relationship between past and future is very important for determining the

value of the likelihood.
30 Also, the implicit conditional probabilities for the past extensions are assumed not to vary for

the Li, j .
31 Again, the implicit conditional probabilities of the extensions are assumed not to vary for the

Li, j and Qi, j .
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suggested by the quote, one might say that calibration is impossible when the

future climate variables in question (or the equations that adequately predict

them) are considered independent of the past data at hand (or the equations

that adequately predict them).32 It is important to note that the extent to

which the point applies in climate science is controversial. Some climate sci-

entists suggest that the future values of prominent climate variables, including

precipitation and even average global temperature rise, are more or less un-

constrained by the past values of these or other variables (for example, Frame

et al. [2007]; Stainforth et al. [2007a]). Other climate scientists apparently do

not think it so plausible that past values for at least some prominent climate

variables are irrelevant to their future values (for example, Knutti et al. [2002],

[2003]; Randall and Wood [2007]). In any case, the claim that calibration fails

and there is no confirmation of model instances or model hypotheses in a

particular context is very different from the claim that double-counting is

‘bad practice’. Moreover, using separate past data for calibration and con-

firmation is no remedy for this problem.

7 Non-comparative Confirmation and Catch-alls

We have thus far been concerned with confirmation of one model hypothesis

relative to another. Yet certain statements from climate scientists concerning

calibration suggest that what is at issue is whether the evidence confirms the

predictions of a model tout court, i.e. relative to its complement

(non-comparative confirmation). We first show that double-counting is also

legitimate for non-comparative confirmation. Then we explain why, nonethe-

less, confidence in future climate predictions may be hard to amass. The

difficulties arise when climate models are based on assumptions which are

suspected to be wrong in the future. Again, the problem cannot be solved

by employing separate data for calibration and confirmation.

In some cases, assessing non-comparative confirmation is relatively

straightforward. The relevant likelihood ratio involves a model (a base

model or a specific instance) and its entire complement. For instance, the

degree to which evidence, E, confirms base model hypothesis, M, relative to

its entire complement is (where N, . . . , Z are the mutually exclusive base

model hypotheses that exhaust the complement of M):

PrðEjMÞ

PrðEj:MÞ
¼

PrðEjMÞ

PrðEjNÞ � PrðNj:MÞ+ : : :+ PrðEjZÞ � PrðZj:MÞ
: ð9Þ

32 A case which often arises in climate science is that the equations for adequately predicting the

past and future climate variables are considered identical in form, yet the parameters in these

equations have values for past and future that are independent.
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As before, this likelihood ratio may be greater than, less than, or equal to 1,

corresponding to M being confirmed, disconfirmed, or neither, relative to its

complement.

Here again it must be noted that the final probability of M, i.e. PrðMjEÞ, is a

further matter, and depends also on the prior probability PrðMÞ. This section

too focuses just on the extent to which evidence incrementally confirms or

raises confidence in a model, this time relative to its complement. An exam-

ination of the above expression reveals, however, that non-comparative con-

firmation nonetheless requires substantial information regarding the prior

probabilities of base models, in the form of conditional probabilities like

PrðNj:MÞ. So the comments at the end of Section 5 regarding difficulties in

estimating the prior probabilities of base models are pertinent here.

Further problems arise when the full set of base models under consideration

is believed not to be exhaustive, and yet we are unable to specify what is

missing (there are ‘known unknowns’). In other words, we have a range of

plausible base-model hypotheses plus a catch-all, i.e. a hypothesis to the effect

‘none of the above is true’. One can easily see that non-comparative confirm-

ation in these conditions is difficult to assess. The relevant likelihood is (where

M is a base-model hypothesis, and hypotheses N, ::: together with the catch-all

C exhaust the complement of M):

PrðEjMÞ

PrðEj:MÞ
¼

PrðEjMÞ

PrðEjNÞ � PrðNj:MÞ+ : : :+ PrðEjCÞ � PrðCj:MÞ
: ð10Þ

The problem is that the likelihood associated with the catch-all, PrðEjCÞ, let

alone the probability PrðCj:MÞ, is very difficult to evaluate. How do we

estimate the probability of some evidence conditional on the truth of a hy-

pothesis which we cannot actually specify?

The common sentiment in climate science seems to be that there is indeed a

catch-all, especially when the models’ purpose is to predict future climate.

Nonetheless, some studies appear to proceed under the assumption that

model hypotheses may be confirmed (or disconfirmed) to some degree in

non-comparative terms, given evidence. Most plausibly, in these cases the

catch-all is either negligible, or else it is not completely unspecified, and

some climate scientists think they know enough about it to at least have

rough estimates for PrðEjCÞ. If at least a rough estimate for PrðEjCÞ can be

given (as well as rough estimates for all other terms in the expression above),

the main conclusions drawn about double-counting and comparative con-

firmation carry over. In particular, double counting II is legitimate for

non-comparative confirmation and can arise for two reasons (cf. Section 3):

(1) better fit of the model or the complement of the model with the evidence

and/or (2) the specific instances of the model that are favoured by the evidence
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may be more plausible or less plausible than the instances of the complement

favoured by the evidence.

So far so good, but some climate scientists do not think the prospects for

non-comparative confirmation of model hypotheses concerning the future are

so rosy. First, note that if past data is considered independent of the future (cf.

Section 6), there cannot be non-comparative confirmation because there is no

confirmation of one base-model hypothesis relative to another, or indeed the

catch-all.

Second, even if past data are relevant, many scientists worry that climate

models (which are based on our understanding of climate processes to date)

invoke assumptions which may not hold in the future.33 Consider:

For these processes, and therefore for climate forecasting, there is no

possibility of a true cycle of improvement and confirmation, the problem

is always one of extrapolation and the life cycle of a model is significantly

less than the lead time of interest. (Stainforth et al. [2007a], p. 2147)

One might interpret this view as follows: if base-model hypotheses concern

future predictions, then the catch-all is overwhelming. Future climate behav-

iour may differ from that of the past/present in unanticipated ways, and so we

are unable to specify even roughly the appropriate likelihoods of the relevant

catch-all.

At this point it should be mentioned that climate models are designed to

accurately simulate mean surface temperature changes. They fail to simulate

absolute mean surface temperatures to a similar level of accuracy. In particu-

lar, the simulated mean surface temperature changes are derived from simu-

lated surface temperature values that show biases of several degrees Celsius on

many regions of the Earth. The same holds for other variables such as ocean

temperatures (Knutti et al. [2010]; Randall and Wood [2007], p. 608 and sup-

plementary material). There is nothing in principle wrong with modelling

temperature changes rather than absolute temperatures. When one variable

is too difficult to predict, often scientists succeed instead in predicting a sim-

pler variable such as an average or a change in that variable. However, many

climate scientists argue that the reason why climate models fail to accurately

simulate absolute temperatures is because important processes are ignored

which may become relevant for adequately predicting long-term future cli-

mate behaviour of interest (for example, Stainforth et al. [2007a]). From this,

doubts arise about whether current climate models will adequately describe

the relevant aspects of the future climate.

33 Note that while these two concerns are logically distinct, they are of course closely related in the

climate context. This is because the scientific reasons for doubting the relevance of past climate

data have much overlap with the reasons for positing significant uncertainty about the future.
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Climate scientists seem to take different views on the extent of our uncertainty

about the future. But in the case of radical uncertainty, non-comparative con-

firmation of any one, or the whole set, of our climate-model hypotheses con-

cerning the future is indeterminate, even if past data are relevant for comparing

pairs of hypotheses. Overall confidence in any single model or the full set of

models cannot increase.34 This position regarding non-comparative confirm-

ation is reflected in the following statement concerning the modelling of

future climate:

We take climate ensembles exploring model uncertainty as potentially

providing a lower bound on the maximum range of uncertainty and thus

a non-discountable [unable-to-be-ignored] climate change envelope

[range of climate-change predictions]. (Stainforth et al. [2007b], p. 2167)

We now turn to an example in climate science which highlights the con-

troversies surrounding the relevance of past data and the overall adequacy of

climate models for future predictions.

8 Climate Science Example: Non-comparative Confirmation and

Catch-Alls in Practice

Our example for non-comparative confirmation with a catch-all is Knutti

et al. ([2003]), already discussed in Section 4.2, and again concerns the aerosol

forcing. Recall that Knutti et al. aim to construct models which are adequate

for long-term predictions of the temperature changes until 2100 under two

emission scenarios (within the error bounds), and that the model error is dis-

crete. The two base models are:

M : Models instances of Knutti et al. ([2003]).

C : Catch-all.

Recall that mean surface temperature changes and the ocean warming are

regarded as relevant to assess the adequacy of the models, and they are

used to constrain the indirect aerosol forcing and the climate sensitivity.

Motivated by physical estimates, for the aerosol forcing a uniform distribu-

tion over ½�2, 0� is chosen conditional on M or C.35 For the climate sensitivity,

a uniform distribution over ½1, 10� is chosen conditional on M or C.

The data are used for calibration: Knutti et al. ([2003]) calculate the likeli-

hood of an arbitrary model-hypothesis instance given the data, assuming that

M is true. Because of the uniform prior distribution over the forcings values,

consistent model-hypothesis instances are equiprobable given the data;

34 Moreover, applying full Bayesian reasoning, the posterior probabilities of the climate-model

hypotheses would also be indeterminate due to the indeterminate likelihood ratios. Most plaus-

ibly, in the case of a radically unspecified catch-all, the prior probabilities would be indetermin-

ate as well.
35 Knutti et al. ([2003]) also discuss the case of a normally distributed aerosol forcing. See Section 4.2.
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inconsistent model-hypothesis instances have zero probability (a

model-hypothesis instance is regarded as consistent if the average difference

between the actual and the simulated observations is smaller than a constant).

The conclusion is that the likely range (summing to probability 0.93) of the

indirect aerosol forcing is [�1.2,0). Furthermore, Knutti et al. seem to claim

that the data confirm M relative to the catch-all because the fit with the data is

very good and the model could have (easily) failed to simulate the data.

As already discussed in Section 4.2, Knutti et al. ([2003]) use elements of

probabilistic confirmation theory. However, when reconstructing this as a

case of non-comparative confirmation, what is missing are the values of

PrðEjMÞ and, in particular, of PrðEjCÞ. The crucial question is whether

PrðEjMÞ=PrðEjCÞ > 1. If it is, then probabilistic confirmation theory will

yield that the data are justifiably used for non-comparative confirmation

and calibration. There will be double-counting II for reason (1)—the model

instances of M provide a better fit with the data than the catch-all.

It should come as no surprise that the answer to this question is controver-

sial. Knutti et al. ([2003]) tend to an affirmative answer. They seem to claim

that confidence in the future predictions of M has increased. However, if

Stainforth et al. ([2007a]) are right that past data are not relevant to the

future climate predictions of interest (as discussed in Section 6) or that the

probabilities associated with the catch-all cannot be precisely specified (as

discussed in Section 7), then the answer will be negative. The data simply

will not confirm M relative to the catch-all.

The fact that there is controversy among climate scientists about such fun-

damental and policy-relevant questions highlights the need to think more

carefully about them. Whatever the outcome, this controversy is not about

the problem of double-counting.

9 Concluding Remarks

The main contribution of this article is the untangling and clarification of wor-

ries concerning double-counting. We have argued that the common position—

that double-counting is bad and that separate data must be used for calibration

and confirmation of base-model hypotheses—is by no means obviously true.

This is not to say there are no other fundamental concerns about the confirma-

tory power of evidence or about uncertainty in climate science. It is crucial,

however, that the various issues are articulated and distinguished, if we are to

make progress in assessing confidence in climate models and their predictions.

Our claim is that double-counting, in the sense of using evidence for cali-

bration and confirmation, is justified by at least one major approach to con-

firmation—the Bayesian or relative likelihood approach. Calibration of a

base-model hypothesis is all about determining which specific instances of
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the base model are confirmed relative to other specific instances. We call this

double-counting I. Furthermore, we showed that, according to Bayesian

standards, the same evidence may be used for calibration and for incremen-

tally confirming one base-model hypothesis relative to another, or relative to

its entire complement. We call this double-counting II. For both double-

counting I and II, calibration and confirmation can be seen as the same pro-

cess in the sense that evidence is used to do both calibration and confirmation

simultaneously. We appealed to studies in climate science to show that these

two forms of double-counting are in fact practised by some climate scientists,

even if they are not acknowledged as such.

In the latter parts of the article, we acknowledged and discussed important

worries about calibration and confirmation in the climate-modelling context

that may be marring the double-counting debate. In some cases, evidence

already informs the prior assessment of model instances. If so, it cannot be

used again for calibration and confirmation—this would be using the same

evidence two times over. More fundamentally, there is often controversy

about what evidence is relevant to whether a model achieves its purpose.

Treating irrelevant evidence as if it was relevant and using this evidence for

confirmation or calibration is also bad practice. Indeed, some climate scien-

tists state strongly that future climate variables of interest are more or less

unconstrained by the available past climate data. The upshot is that this past

climate data are irrelevant for assessing the adequacy of models for predicting

the future. Hence, there can be no calibration or double-counting. A related

but subtly different concern is that climate models are based on assumptions

which may not be applicable in the future. This would imply that one cannot

hope to even roughly determine the likelihood of the catch-all hypothesis with

respect to adequately predicting the future, and so non-comparative confirm-

ation, let alone absolute confirmation, would be indeterminate.

We noted that climate scientists disagree about whether these worries are all

justified. In any case, the worries concern whether data are useless for confirm-

ation and/or calibration. Problems of this kind cannot be remedied by using

separate data for calibration and confirmation. We thus suggest that practitioners

be clearer about their targets. Suspicions about the legitimacy of double-counting

should not be confused with other important issues, such as what evidence is

relevant for confirmation given the modelling context at hand, whether issues of

old evidence are appropriately handled, or whether the worry is justified that

climate models are based on assumptions which will not hold in the future.
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