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Continuous versions of Haack’s puzzles:
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Abstract
This article discusses some continuous limit cases of Susan Haack’s crossword puzzle metaphor for the coherent development
and foundation of science. The main objective of this discussion is to build a bridge between Haack’s foundherentism and
the epistemological framework of objective cognitive constructivism, including its key metaphor of objects as tokens for
eigen-solutions. The historical development of chemical affinity tables is used to illustrate our arguments.
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Daí, o senhor veja: tanto trabalho, ainda, por causa de
uns metros de água mansinha, só por falta duma ponte.

There you see, my lord: So much work, still, just in order to
overcome some harmless waters, for the lack of a good bridge.

João Guimarães Rosa (1956); Grande Sertão: Veredas.

Here the methods of thermodynamics have brought quantitative
precision in palce of the old, vague ideas of chemical affinity,
and thus chemistry has made a greatest advance towards the
status of an exact science since the early chemists, Lavoisier,

Richter, and Dalton laid the foundations of stoichiometry.

Lewis and Randal [43, p.2]; The Scope of Thermodynamics.

1 Introduction

For a long time, the philosopher Susan Haack has been working with the metaphor of science as
a crossword puzzle, in which she compares the scientific activity, i.e., the activity of formulating
scientific theories and solving empirical models, with the activity of solving a crossword game.
Susan Haack makes use of the crossword metaphor to develop the epistemological framework of
foundherentism, see Haack [29–32]. My goal in this article is to build a bridge between Haack’s
crossword metaphor and a celebrated aphorism stating that objects are tokens for eigen-solutions. The
eigen-solution aphorism, due to Heinz von Foerster, is of vital importance in the epistemological
framework of objective cognitive constructivism, a framework that we have explored in several
published articles, see Stern [74–81].

To build such a bridge between foundherentism and objective cognitive constructivism, I gener-
alize the standard discrete crossword metaphor to continuous crossword puzzles. While the latter
preserve the basic analogy of foundherentism, they also exhibit some essential properties studied in
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FIG. 1. Crosswords and equilibrium games

objective cognitive construtivism. Solving such continuous puzzles involves finding special states
called equilibrium-states, steady-states or, more generally, eigen-states or eigen-solutions of a con-
tinuous system. I will also describe and analyse four essential properties of systemic eigen-solutions,
namely, the properties of being precise, stable, separable and composable. Finally, I will relate sys-
temic eigen-solutions to basic entities of a scientific theory, i.e., to entities that belong to that theory’s
ontology. At this point, I take the precaution of quoting Susan Haack on the limits of analogical
thinking:

Of course, the role of an analogy is only to suggest ideas, which then have to stand
on their own feet; of course, the usefulness of one analogy by no means precludes the
possibility that others will be fruitful too; and of course, an analogy is only an analogy.
Haack [30, p. 255].

Other articles already published by the Bayesian research group of the University of São Paulo
complement the informal analogical approach taken in this article presenting arguments in the context
of formal logic and mathematical statistics, as explained in following sections.

In this article I make frequent use of pictures and images, offered as auxiliary resources aiming to
stimulate visual insights, as intuitive complements to starker and dryer text arguments and explana-
tions. This section has four illustrative figures: Figure 1a celebrates 100 years of crossword puzzles.
Figure 1b–d display scales and balances based on achieving (or used to achieve) simple, complex
and abstract equilibrium states. The balances depicted at Figures 1b and 5c can be modelled by
means of a simple linear system, as discussed in Section 3. Some of the simplest and easiest to use
but, at the same time most effective scientific models, are formulated in the continuum as linear
systems. For this reason, we will use several linear models to exemplify the ideas presented in the
following sections.

Figure 1a–d display postage stamps. A postage stamp is a token that can be redeemed or exchanged
for well-established goods or services. Other figures used to illustrate this article display coin and
paper currencies, exemplifying the tokens used as the basic exchange medium in modern economies.
Efficient markets are characterized by well-defined equilibrium prices, in which these currencies
are nominated (or the other way around), see Bayoumi et al. [5], Bordo [7] and Portes and Atal
[58]. These prices can be characterized as economic eigen-values, exhibiting the very same afore-
mentioned four essential properties of systemic eigen-solutions, see Cerezetti [11], Cerny [12] and
Ingrao and Israel [34].
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FIG. 2. Finite regress, infinite regress and circular argumentation

2 Epistemology, foundherentism and crosswords

Epistemology, or knowledge theory, aims to know how it is possible to know, i.e., its (main) goal
is to understand human understanding (see also the final comments at Section 5.3). This article’s
focus is empirical science, including some examples in economics that may suggest the possibil-
ity of extending the frameworks under discussion to broader horizons. Within this scope, a basic
question addressed by epistemology is this: How can we prove that a given hypothesis is true? In
1968, the philosopher Hans Albert gave a very general answer to this question, formulated as —
the Münchhausen trilemma, a contemporary version of earlier forms of the trilemma attributed to
Agrippa the Skeptic or Sextus Empiricus, see Albert [1, p. 18] and Stern [81]. The trilemma states
that there are only three alternative options for proving a hypothesis, each one of them plagued by
particular epistemological problems. This trilemma is named after the Baron of Münchhausen, a
literary character known by his elaborate lies, conveying the idea that, in empirical science, no proof
should be taken as definitive and absolute. Avoiding minutiae and technicalities, we can state the
three alternatives (or horns) of the Münchhausen trilemma as follows: finite regress, infinite regress
and circular argumentation.

Finite regress requires a finite deduction procedure starting from foundational statements, namely,
axioms, unquestionable ideals, empirical ‘facts’, ‘real’ observations, etc. Such a finite deduction
(also called dogmatic) procedure is analogous to a computational procedure starting from known
numerical values that are combined according to specified arithmetic operators to find at the end the
desired result. For example, the operation tree depicted at Figure 2a indicates how to compute the
expression (1+(2∗3))=7, proceeding from the numerical values at the leaves of the tree, to obtain
the final result at its root. Notice that in Logic and Computer Science a tree grows upside down,
having its root at the top, and its leaves at the bottom. The problem with this horn of the trilemma
is that it just transfers the onus probandi or shifts the burden of proof down the line (or down the
branches of the deduction tree) towards the initial axioms or ‘facts’. But the fundamental problem
remains: How can one be sure that the fundational statements at the bottom of the deduction tree
are ‘really’ true?

Infinite regress avoids landing the burden of proof on someone’s lap by creating an infinite line,
for example: I can claim to know something because my father knows it, and that he knows it
because his father (my grandfather) knew it, and so on, ad infinitum, see Figure 2b.

Meanwhile, circular argumentation simply shifts the burden of proof back and forth among a
finite number of players, see Figure 2c. For example: I can make a statement that is guaranteed to
be true because my friend attests that I never lie, while my friend’s testimony is guaranteed because
I vouch for him. The problems of using infinite regress or circular argumentation for proving a
statement are quite obvious. Nevertheless, good stories in the literary genre of detective fiction (or
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the work of detectives in real life) often show how important it is to follow circular arguments in
search of inconsistencies. On the one hand, a good detective can use inconsistencies to detect false
statements; on the other hand, crosschecking a wide web of mutually supporting statements found
free of inconsistencies is a method often used by good detectives to corroborate the whole story. In
this sense, the coherence of circular arguments may be taken as a provisional or tentative indication
of truth.

The philosopher Susan Haack denounces the mutual exclusion of the alternatives in the
Münchhausen trilemma. She claims that both, finite regress and (coherent) circular argumentation,
are important in corroborating scientific hypotheses, an epistemological position she calls — found-
herentism. Furthermore, to advance the case for foundherentism, Susan Haack uses the crossword
puzzle metaphor. This metaphor is concisely explained in Haack [29, p. 198–199]:

How reasonable a crossword entry is depends on how well it is supported by its clue
and any already-completed intersecting entries, how reasonable those other entries are,
independent of the entry in question, and how much of the crossword has been completed.
How warranted an empirical claim is depends, analogously, on how well it is supported
by experience and background beliefs, how warranted those background beliefs are, inde-
pendent of the claim in question, and how much of the relevant evidence the evidence
includes.

[T]he natural sciences, at least, have come up with deep, broad and explanatory theories
which are well anchored in experience and interlock surprisingly with each other, and, as
plausibly filling in long, much-intersected entries in a crossword puzzle greatly improves
one’s prospects of completing more of the puzzle, these successes have enabled further
successes.

Observing the development of natural sciences, and the work of actual scientists, foundherentism
seems to be a compelling general approach to the problem of justification of scientific hypotheses.
Indeed, long after she began working with the crossword metaphor, Susan Haack found that a similar
analogy had been used by Albert Einstein:

The liberty of choice [of scientific concepts and theories] is of a special kind; it is not
in any way similar to the liberty of a writer of fiction. Rather, it is similar to that of a man
engaged in solving a well-designed word puzzle. He may, it is true, propose any word as
the solution; but, there is only one word which really solves the puzzle in all its parts. It is
a matter of faith that nature – as she is perceptible to our five senses – takes the character
of such a well-formulated puzzle. The successes reaped up to now by science ... give a
certain encouragement to this faith.
Albert Einstein [19], as quoted in Haack [30, p. 1].

Nevertheless, some topics deserve further investigation: I would like to clarify what is the positive
role of either (i) direct verification of fundamental hypotheses, or (ii) coherent circular argumentation
(beyond the trivial requirement of coherence as the absence of contradictions), in construing, proving
or corroborating a scientific theory. I also want to investigate the best, strongest or most appropriate
forms of presenting a scientific hypothesis H in the scope of a statistical model or logical formalism.
Finally, I want to relate these investigations to desirable properties of measures of evidence in
support of scientific hypotheses.
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FIG. 3. The theory of everything as a huge crossword

These lines of investigation address some demands made by critics of Haack’s work, like Brian
Lightbody, see next quotation, even though our ‘objective virtuous criteria’ are quite different from
the ones proposed by that author.

It would seem foundherentism is in need of some additional, “objective”, virtuous
criteria to explicate precisely what Haack means by the evaluation of [C] evidence for [a
statement] p. Lightbody [44, p. 19].

The next section presents some ideas concerning limit cases of the crossword metaphor, ideas
that will be used as the starting point for our investigations. Similar pathways have already been
explored by Jeanne Peijnenburg and David Atkinson, see next quotation, even though the specific
limit cases to be explored in this article are quite different from the ones proposed by those authors.

A common objection to coherentism is that it cannot account for truth ... By stretching
Susan Haack’s crossword metaphor to its limits, we show that there are circumstances
under which this objection is untenable. Atkinson and Peijnenburg [3, abstract].

2.1 Large and amazing discrete crosswords

If a scientific theory is similar to a crossword puzzle, then a theory of everything, a theory that
explains every single aspect of the universe, is analogous to a huge crossword, see Figure 3a and b.
Moreover, Atkinson and Peijnenburg argue as follows:

As the complexity of the crossword increases, the ambiguity in general decreases:
it becomes more and more difficult to come up with different solutions. If the size of
the crossword is finite, then the number of words that can be filled in on the basis of
the given clues will also be finite. ... The number of coherent ways of filling in a finite
crossword, with a finite alphabet, irrespective of lexical constraint, is finite. In the end, if the
crossword puzzle is sufficiently complicated, there might be only one solution. Atkinson
and Peijnenburg [3, pp. 353–354].

This seems to be a very powerful argument explaining how coherence arguments can be used
to access, at least in a limit case, the truthfulness of a very complex hypothesis or of a very large
scientific theory. Nevertheless, I would like to have similar arguments that can be used to access
the truthfulness of more modest theories or even small empirical models, like those found in the
ordinary practice of science. I would like to have an operational notion of truth that can be used
in the context of theories of limited scope, but capable of attaining very high precision like, e.g.,
Newtonian physics, Lavoisier’s chemistry or Ohm and Kirchhoff’s circuit theory.
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FIG. 4. Most amazing crossword ever seen. Clues: Across: (17) forcast, (68) title for 39th next year,
(39+43) lead story in tomorrow newspaper; Down: (23) sewing shop purchase, (27) short writings,
(35) trumpet, (39) black halloween animal, (40) french-101 word, (41) provider of support — short,
(42) much-debated political inits

With this goal in mind, I will now analyse some remarkable properties exhibited by good crossword
puzzles of standard size. As a concrete example, I will study the puzzle nominated by the crossword
community as the best of its kind — the most amazing crossword ever seen, namely, the New York
Times puzzle from November 05, 1996, one day before the USA presidential elections, see Figure 4a
and the following partial list of clues for this game.

This crossword game has some standard features, commonly found in other well-designed puzzles,
as well as some extraordinary features that are rarely seen.

– First, we should notice that this puzzle is of standard size, i.e., it uses a 15 by 15 grid of white
spaces, for alphabet letters, and black spaces, for separators.

– Second, we notice that this puzzle complies with the standard rules of crossword games, namely:
(i) each separate word has a correct spelling and significance defined by a standard dictionary; (ii)
words must comply to a composition rule based on letter coincidence wherever they join at grid
intersections.

– Third, we notice that the solution of this crossword has three special entries of maximum length,
running all the way across the grid — at the 3rd (Prognostication), 8th (Clinton-elected) and 13th
(MisterPresident) horizontal lines, see Figure 4a. Such special entries of long or maximum length
are a common feature of well-designed puzzles, fulfilling a very special purpose to be analysed in
the sequel.

Finally, this most amazing crossword game exhibits the extraordinary feature of allowing two
alternative solutions: At the 8th horizontal line, either the entry Clinton-elected or the entry BobDole-
elected generate a correct solution for the game, see Figure 4a and b. Furthermore, the expression
correct solution can be interpreted in two distinct ways: First, each solution is correct according to
the standard rules of the game, i.e., there are corresponding admissible down (vertical) entries with
(dictionary) meanings that match the clues, that also have matching letters at grid intersections. Sec-
ond, both solutions are correct according to English grammar and historical criteria that transcend
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the standard rules of the game: The set of correct special entries of this game, either — ‘Prognosti-
cation Bill Clinton-elected MisterPresident’ or ‘Prognostication Bob Dole-elected MisterPresident’
— span all possible outcomes of the USA presidential election held the day after this crossword
publication.

Special entries of maximum length play very important roles in well-designed games, roles that
will be of great importance in our epistemological investigations. First, it is important to notice that
such a special entry makes a very precise or tight fit, meaning that the probability of a random
miss-fit is very low.1

Moreover, these special entries of maximum length can be thought as long bolts, that hold the
entire puzzle together, giving great stability to the game. For instance, once a player gets one of
these special entries correctly, many other pieces of the puzzle seem to naturally fall into their proper
place. Using the crossword community jargon, we may then feel confident to ‘ink in’ such a cluster
of inter-related entries.

3 Equilibrium states in linear systems

In this section we examine some continuous physical or mathematical systems exhibiting special
solutions, called equilibrium states, having essential properties analogous to the properties of the
special entries examined in the last section, namely, equilibrium states are precise, stable, separable
and composable. In the following sections, we will explain the meaning of these properties and
examine why they are the keys to build an epistemological framework known as objective cognitive
constructivism.

Equilibria are characterized as invariant states of a system. Let x(t) be a real vector giving the
coordinates of a system with n degrees of freedom at time t, x(t)=[x1(t),x2(t),...xn(t)]. For example,
two coordinates x(t)=[x1(t),x2(t)] can be used to describe the position of a point in a plane, and
three coordinates x(t)=[x1(t),x2(t),x3(t)] can be used to describe the position of a point in space.
The time index, t, can be an integer number, t =0,1,2,3,..., so that x(t) describes the position of
the system at the ticks of a discrete clock (seconds, days, etc.). Alternatively, the time index, t, can
be a real number, so that x(t) describes the position of the system in continuous time.

Given the current coordinates of the system, x(t), an evolution function, x(t+1)= f (x(t)), gives
the coordinates of the system at the next tick of the clock. For continuous time systems, the discrete
evolution equation must be replaced by a differential equation. An equilibrium state is a state that
remains strictly invariant in time, that is, x is an equilibrium state if x= f (x).

The notions of eigen-solution, eigen-vector, eigen-state, eigen-form, eigen-behaviour, etc., to be
examined in the next sections, generalize the notion of equilibrium state as follows: the basic form
of the system must still remain invariant, but lesser characteristics, like relative size or position,
may vary through time. For example, in many important systems, an eigen-solution x evolves by a
simple scaling operation: f (x)=αx=[αx1,αx2,...αxn]. In this case, if we can manage to place the
system at coordinates x at time t, in the next time interval the basic form x will only be expanded
or contracted by the scale parameter α. The following sub-sections present equilibrium states in
some simple systems, giving concrete examples intended to clarify these notions. In the following
sections, these simple systems will also be used to explain important epistemological concepts.

1Let f =0.13 be the approximate frequency of the most common letter in the English language (the letter e), and s=15
be the size of the grid. Under these conditions, we can argue that the probability of a random miss-fit should be less than f s,
approximately 5.1×10−14. This value is approximately of the same order of magnitude of the relative uncertainty of the best
known physical constants. For example, according to CODATA — The Committee on Data for Science and Technology —
the relative uncertainty of the best estimate of Rydberg’s constant currently available is approximately 5.9×10−12.
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FIG. 5. Pulley systems and analytical balance

3.1 Pulley systems and balances

Figure 5a displays the simplest pulley system, made by one pulley and two masses with fixed
weights. This system is unable to attain a stable equilibrium: The heaviest of the two masses will
fall all the way down. In contrast, let us consider the far more interesting pulley system, displayed
in Figure 5b. This system has three masses with fixed weights [μ1,μ2,μ3] suspended by strings
that, using a system of two pulleys, transmit their weight forces to a free moving pivot P. This
system can attain a stable equilibrium by ‘adjusting’ its geometry in order to balance vertical and
horizontal projections of the weight forces exerted at pivot P. The system’s geometry is described
by the angles, [θ1,θ2], formed by the left and right strings attached to pivot P and the horizontal
axis. The third string is kept vertical, hence, θ3 =270◦. The equilibrium conditions for this pulley
system can be summarized in the following system of equations:

Sμ=0 , μ=
⎡
⎣ μ1

μ2

μ3

⎤
⎦ , 0=

[
0
0

]
, S =

[
sin(θ1) sin(θ2) −1
cos(θ1) cos(θ2) 0

]
.

This system of equations has an external structure, based on linear algebra, but it also has a non-
linear internal structure, for some of the matrix coefficients in the linear system are trigonometric
functions. Given the weights, [μ1,μ2,μ3], we can find the systemic solution, [θ1,θ2], using an
appropriate numerical method, see e.g. Luenberger [46]. It is interesting to observe that, if two of
the masses are known, one can find out the value of the third (unknown) mass by measuring the
angles [θ1,θ2]; this is the working principle of many mechanical balances, as the one displayed in
Figure 5c and d. Finally, it is worthwhile to pay attention to a peculiar scale invariance of this system:
Any solution, [θ1,θ2], for given masses [μ1,μ2,μ3], is also a solution for masses α[μ1,μ2,μ3]. This
result (known in physics as a gauge invariance) can be interpreted as a liberty to choose the unit in
which we want mass to be measured.

3.2 Four essential properties of equilibrium states

Based on the practical experiments with pulleys and other similar mechanical systems, physicists
and engineers make some truly amazing statements concerning four essential properties exhibited
by such systems and their (equilibrium or invariant) solutions, namely:

Stability property: The static equilibrium under study is a stable state: if slightly perturbed, the
system will regenerate the state of equilibrium. The other way around, the concept of stability means
that, with skill and effort, it is possible to build practical pulley systems (or other similar systems)
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FIG. 6. The spring system in equilibrium

that actually behave in the physical world according to the pertinent equations of the idealized
theoretical model.

Precision property: The equilibrium state under study is precisely defined by the equations describ-
ing it. The very symbol of equality ( = ) used in the linear system conveys this idea, indicating an
exact solution. The other way around, the idea of precision means that, with skill and effort, it is
possible to build practical systems so that they obey the pertinent equations of the idealized theo-
retical model with very high precision. For example, Figure 5c and d display analytical balances,
mechanical instruments similar to the pulley system under scrutiny. Purely mechanical analytical
balances, commonly found at a chemistry laboratory, can be accurate to five parts in a million, or
5×10−6, and electromechanical instruments of even higher precision are commercially available.

Separability and compositionality properties: These properties relate to how several similar sys-
tems (or parts thereof) can work separately or be put to work together. At a concrete level, we could
say, e.g., that we can use a good commercial balance to weigh several masses, and then experiment
with the already weighed masses on a different pulley system, obtaining the expected results. As
another example, we could generalize the pulley system by adding several interacting pulleys, strings
and weights, as one can find in Physics 101 textbooks, see Allen [2], Cross et al. [15] and Halliday
and Resnick [33], see also Dugas [17] and Duhem [18] for historical perspectives.

From a more abstract perspective, the solutions to such linear systems can be handled by means of
standard coupling and decoupling principles for linear operators, or by applying standard composition
and decomposition techniques of Linear Algebra, or by employing standard matrix factorization
algorithms, see Golub and Loan [24], Recski [61], Sadun [66] and Stern [76]. For example, when
formulating the equations for the pulley system, we have implicitly used the concept of basis for a
linear space, decomposing, by orthogonal projections, all the involved forces in their vertical and
horizontal components.

3.3 Spring systems and compositional graphs

Let us now consider the spring system, displayed in Figure 6, a system that is very similar to the
pulley system already studied. Nevertheless, in contrast to the former, this system is characterized
by variable forces and a fixed geometry (fixed angles).

The spring system represents a mechanical apparatus where three springs, σ1, σ2 and σ3, are
extended to lengths [z1,z2,z3]. The springs have one end joined together at a free moving pivot
P, and have the other end free to move along a side of an equilateral triangle of height h. Hence,
at equilibrium, pivot P will remain inside the triangle. Also, each of the springs, represented by
the line segment of length zi between its extremities, will stay perpendicular to the triangle’s side
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along which it can slide. The equilibrium conditions for the spring system can be summarized in the
following system of linear equations:

Sμ(z)=0 and 1z=h , where 1=[
1 1 1

]
,

z=
⎡
⎣ z1

z2

z3

⎤
⎦ , μ(z)=

⎡
⎣ k1(z1 −r1)

k2(z2 −r2)
k3(z3 −r3)

⎤
⎦ , 0=

[
0
0

]
,

S =
[

sin(270◦) sin(30◦) sin(150◦)
cos(270◦) cos(30◦) cos(150◦)

]
=

[ −1 1/2 1/2
0

√
3/2 −√

3/2

]
.

Hooke’s law was enunciated in 1678 by means of the anagram — ut tensio, sic vis — as the
extension, so the force. To take a spring σ , with rest length rσ and elasticity constant kσ , and extend
this spring to length zσ , one has to exert a driving force μσ =kσ (zσ −rσ ). To obtain the projection
of the forces exerted by the three springs, [μ1,μ3,μ3], into the vertical and horizontal axes, we use
the (fixed) geometric coefficients in matrix S. At equilibrium, the resultant horizontal and vertical
forces must cancel, hence the zero vector right-hand side for the first two linear equations.

The third equation in the linear system is a normalization condition: it states Viviani’s theorem,
i.e., the sum of the three components of vector z add up to h, the height of the triangle. If we
take h=1, vector [z1,z2,z3] can be interpreted as the fractional composition of a system with three
constituent parts. Hence, graphical representations like Figure 6a and b are known as compositional
graphs (also known as de Finetti diagrams). The spring system (or compositional graphs) can be
generalized for handling n interacting springs and, in this case, can be represented geometrically in
the n-dimensional simplex, see Figure 6c. Further interpretations for this system are given in the
next sections.

3.4 Statistical equilibria and sharp hypotheses

Let us recall the simplest case of Mendel’s genetic inheritance rules, for a single locus with
two alternative alleles, a and A, and write genotype frequencies as the vector z=[z1,z2,z3]=
[Pr(aa),Pr(aA),Pr(AA)]. The normalization condition for probabilities, z1 +z2 +z3 =1, implies that
vector z can be represented in a bi-dimensional space (the simplex), as seen in the last sub-section.
Mendel rules, see Figure 7a, relate single allele frequencies, [p,q]=[Pr(a),Pr(A)], to genotype fre-
quencies: z=[p2,2pq,q2].

Again, the normalization condition for probabilities requires that p+q=1. Hence, genotype fre-
quencies can be written as z=[p2,2p(1−p),(1−p)2], further constraining the vector z of genotype
frequencies into a one-dimensional curve, see Figure 7b.

The Hardy–Weinberg equilibrium hypothesis, formalized in an appropriate statistical model, states
that, under appropriate regularity conditions (like panmixia), genotype frequencies in a biological
population must fall within the precise one-dimensional curve depicted in Figure 7b, a curve that
lies inside a much larger bi-dimensional space of possibilities, see Pereira and Stern [54, 55].

Using similar ideas, Josiah Willard Gibbs, Figure 7c, advanced the modelling of equilibrium
states in chemical reaction networks in the framework of statistical physics; simple versions of such
models and their historical and conceptual development are going to be analysed in the following
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FIG. 7. Mendel rules, Hardy–Weinberg and Gibbs Equilibrium Laws

sections. In these models, the molecules of chemical substances play a role that is analogous to that
of genotypes in the models of population genetics, while atoms of chemical elements play a role that
is analogous to that of genetic alleles in a biological population. Moreover, it is possible to derive
linearized equilibrium conditions for these models that closely resemble the system of equations
for the spring system seen in the last sub-section, see next Section, Stern and Nakano [82] and the
bibliography therein.

In statistical science, a hypothesis H that requires an extremely tight fit (i.e., a hypothesis that
constrains the parameters of the statistical model into a lower dimensional locus of the parameter
space) is called a sharp or precise hypothesis. On the one hand, testing the veracity, truthfulness,
or statistical significance of a sharp hypothesis poses several technical challenges, requiring the
development of statistical significance measures with characteristics that are adequate for this specific
purpose. On the other hand, equilibrium states are represented by mathematical models specified by
equation constraints that, in turn, can be subject to empirical testing using statistical models with
sharp hypotheses.

The Bayesian research group of the University of São Paulo has developed a statistical significance
measure specially designed to overcome the technical difficulties associated with handling sharp
hypotheses. This measure, ev(H |X ), is known as the Bayesian epistemic value of hypothesis H
given the observed data X , or as the Bayesian evidence value of data X in support of hypothesis
H , see Pereira and Stern [54], Pereira et al. [56]. For examples of statistical models developed to
accommodate practical needs of empirical science in situations similar to the illustrative examples
presented in this article, see Lauretto et al. [41, 42] and Pereira and Stern [55]. We will return to
Sections 5.3 and 6.1.

4 Affinity tables as analytical crosswords

In this section, we use the historical evolution of chemical affinity tables to illustrate the general-
ization steps from the discrete to the continuous crossword analogy in science. At the beginning of
their history, affinity tables share many characteristics of discrete puzzles. Later on in the course of
their evolution, affinity tables display data used to compute equilibrium states in chemical reaction
networks characterized as continuous systems. This historical and conceptual transition from dis-
crete to continuous system representations used in the theories and practices of an empirical science
will be used to build the bridge we are seeking between Science as a crossword puzzle metaphor
and Objects as tokens for eigen-solutions metaphor.
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FIG. 8. Affinity table by Étienne Geoffroy (1718)

In the XVIII century, a chemical reaction was conceived as a one-directional chemical transfor-
mation, in which two or more chemical substances, the reactants, are decomposed, and their parts are
rearranged to form new chemical substances, the products of the reaction. This situation is analogous
to the physical system with one pulley and two masses studied in Section 3, where the system goes
all the way in the direction of the strongest force. At this time, chemical affinities were thought as
forces holding together the parts of a chemical substance. To predict in practice which chemical
reactions actually occur, chemical substances had to be ranked by their chemical affinity.

Figure 8a shows the affinity table published in 1718 by Étienne François Geoffroy, the first table
of this kind, praised at the time as a system of axioms for the science of chemistry, see Stern [80]. We
can think of this table as a discrete puzzle, where we have to rearrange the symbols corresponding to
chemical substances in the correct order, namely, according to the rank established by the strength of
their chemical affinities. Conceived as a game, this exercise resembles the sliding puzzle at Figure 8b.

In 1786, Guyton de Morveau devised a far more sophisticated way to present an affinity table.
Each chemical substance is conceived as made of a base and an acid part. Integer numbers, as those
in Figure 9, convey the force holding the two parts together. The diagram in Figure 10 shows how
to proceed to predict if a given reaction will or will not occur, see Stern [80] and the references
therein for further details. The affinity numbers are arbitrary integer numbers in a specified range, in
Figure 9, between 1 and 70. The table is considered correct if all inequalities obtained in the reaction
diagrams point in the right direction, indicating the substitution reaction that actually occurs.

Magic squares are puzzles, like those displayed in Figure 11, where a matrix or table must be
filled with integer numbers under restrictions imposed by equality and inequality constraints. The
examples at Figure 11 require the sum over all rows, columns and some diagonals to be equal to a
constant, in these examples, 34, 260 and 15. Typical inequality constraints demand that numbers in
a table cannot be repeated or are in a certain range (like single-digits or sudoku). Morveau affinity
tables are similar to magic-square puzzles. In this case, the constraints imposed on the numerical
table are all inequalities, namely, a finite range, plus linear inequalities derived from the observed
direction of substitution in chemical reactions.

In this conceptual framework, reactions are always conceived as uni-directional and irreversible.
However, people began to realize that when the inequality resulting from the reaction diagram was
weak, the resulting reaction was slow or even incomplete, i.e., both reactants and products could
steadily coexist.
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FIG. 9. Numerical affinities by Guyton de Morveau (1786)

FIG. 10. Reaction diagram by Guyton de Morveau (1786)

FIG. 11. Magic squares by Albrecht Dürer, Benjamin Franklin and Su Hui

Almost one century latter, in 1879, Cato Maximilian Guldberg and Peter Waage presented a new
conceptual framework for chemical reactions, in which reactions are not conceived as irreversible
but as reversible, not going all the way in one direction, but reaching a point of equilibrium. There
is a close analogy between such a reversible reaction systems of chemical reactions and the spring
system studied in Section 3:

For a reaction network, instead of a matrix S of fixed geometric coefficients, we have a matrix
S of fixed stoichiometric coefficients, given the proportions in which chemical substances combine.
Specifically, matrix element Si,j expresses the (fixed) stoichiometric coefficient of substance j in
reaction i (following the standard convention of a negative sign for reactants and a positive sign for
products). Meanwhile, vector element zj expresses the molar fraction of chemical substance j present
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FIG. 12. Standard thermodynamic constants

in the system, and the affinity vector element μj expresses the chemical driving force promoting
the formation of substance j. These chemical forces are computable thermodynamic functions (or
potentials) of the molar fractions, z, of systemic state variables, like temperature, pressure, etc., and
of thermodynamic constants as those in Figure 12; see Kondepudi and Prigogine [38, p. 477] for
explanations about the physicochemical meaning of these constants. Nevertheless, having in mind
the goals of this article, we will only comment some general aspects of the form and structure of
this table.

The thermodynamic constants in Figure 12 have the form of real numbers, in contrast to integer
numbers at Morveau table. These constants are used to compute quantities analogous to the elastic
constants in the spring system displayed in Figure 6 that, in turn, are used to compute fractional
compositions analogous to ones portrayed at Figures 6a and 7b; for further details see Knox [37, ch.
4 and 11], Kondepudi and Prigogine [39, chs. 2 and 9], Reichl [62, ch. 3] and Shell [68, ch. 20].

At this point, the historical metamorphosis of affinity tables is complete: from a purely discrete
puzzle, to a fixed point or equilibrium state in a continuous system. The precise formulation of
thermodynamic equilibria for chemical reaction networks was achieved in 1923 by Théophile Ernest
de Donder; for more detailed historical accounts congruent with the perspective taken in this article,
see Donder [6], Goupil [28] and Stern [80]. In Stern and Nakano [82], we explore in great detail
the formal structure of linear systems and minimum divergence optimization problems describing
chemical flows for complex reaction networks.

5 Dynamic invariants and eigen-solutions

The concept of eigen-solution generalizes the idea of equilibrium to dynamic states: eigen-solutions
are conceived as invariant forms of movement — and this is not an oxymoron, an apparent contra-
diction. For the chemical reaction networks studied in the last section, the equilibrium state is static
only from a macroscopic point of view: in more detail, from a microscopic perspective, reactants
and products are constantly being decomposed and regenerated. Many times, to attain a state of
equilibrium, one can not maintain a static position, for the desired equilibrium can only be achieved
dynamically. As an informal example, to keep proper balance when riding a bicycle, one has to keep
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FIG. 13. Systems characterized by dynamic invariants or moving equilibria

FIG. 14. Eigen-solutions for two coupled transverse oscillators

FIG. 15. Eigen-solutions for two coupled longitudinal oscillators

moving. Figure 13 presents a few systems with this distinctive characteristic, all involving circular
motions; Figure 18 presents a system exhibiting similar characteristics, to be analysed in the sequel.

Figures 14 and 15 display a system of two coupled oscillators: in Figure 14, a system of transverse
oscillators, two beads on an elastic string; in Figure 15, a system of longitudinal oscillators, two
pendula coupled by a spring. Figures 14a and 15a display the static invariant states for these systems.
In contrast, Figures 14b, and c and 15b, and c display dynamic invariant states known as the normal
modes of movement for these systems. There are two normal modes, also called eigen-solutions,
for each one of these systems: in Figure 15b, the distance between the two masses remain the same,
and the centre of mass oscillates back and forth, while in Figure 15c, the centre of mass remains
fixed, while the distance between the two masses oscillates, contacting and expanding. Similarly, in
Figure 14b, the transverse displacement of the two beads is the same, while in Figure 14c the two
displacements are of the same magnitude but opposite in sign. In both cases, the pertinent (transverse
or longitudinal) displacements oscillate with a characteristic frequency, known as the eigen-value
of the corresponding eigen-solution.

Hence, if the two particles in one of these systems are placed according to a pertinent eigen-
solution, this specific form will be preserved (up to an oscillating scaling factor). In this way, the
dynamic system constantly re-generates its own characteristic eigen-forms. This is why these forms
are called eigen-solutions: Eigen is the German expression corresponding to auto in Latin or self in
English.

Furthermore, each of the systems above exhibits a fascinating property, that can be stated as
a remarkable composition / decomposition rule: any free movement of the system is a (linear)
composition of its two eigen-solutions, i.e., the set of linear superpositions of its two eigen-forms
spans all possible movements of the system. In a more technical jargon: the discrete set of eigen-
solutions for the dynamical system forms a basis for a functional space that can be used to describe
its general evolution.
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FIG. 16. Eigen-solutions and orthogonal basis for the vibrating string

FIG. 17. Cultural and biological eigen-values

Eigen-solutions are also stable, in the following sense: as the system evolves in time, the energy
stored at each normal mode remains the same. Moreover, eigen solutions are precisely, defined: the
symmetries of each system impose strict invariant forms, the eigen-solutions, and precise oscillating
factor frequencies, the eigen-values.

Similar systems with n (instead of two) identical coupled oscillators exhibit n distinct eigen-
solutions. Finally, it is possible to take the limit of n going to infinity with the purpose of modelling
a continuous system. Figure 16 displays a vibrating string, the continuous limit of the transverse
coupled oscillators, see [89]. The eigen-solutions of the continuous (homogeneous) string are exact
trigonometric functions, and the corresponding eigen-values, are multiples of the harmonic sequence
(1,1/2,1/3,1/4,...). The composition/ decomposition rules and other important properties of the
continuous string and their eigen-solutions are natural generalizations of the properties of the discrete
systems of transverse oscillators. For formal but intuitive accounts of the basic properties of discrete
and continuous vibrating systems and its eigen-solutions, see Crawford [14], French [22], Sadun
[66] and Stern [76].

5.1 Objects are tokens for eigen-solutions

The abstract structure of the composition/ decomposition rules for the vibrating string seen in the
last section and its eigen-solutions is known as a Hilbert space, see Butkov [9, ch. 11], Byron and
Fuller [10, ch. 5], Luenberger [47] and Sadun [66, ch. 6]. The vibrating strings of a harp or a guitar
give very good approximations of such a system, for these musical instruments are designed and
made with the specific purpose of ‘playing’ according to these very same rules. Of course, men and
women have been using intuitive versions of these abstract rules to play music, long before mankind
knew anything about Hilbert spaces. Figure 17a displays a postal stamp showing a forty thousand
year old Neanderthal bone flute found at the Divje Babe archeological site, in modern Slovenia.
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The NSF poster at Figure 17c displays a couple of plain-tailed wrens singing a very complex love
duet whose parts fit precisely together, like a jigsaw puzzle, see Mann [51]. Birds do what they do,
without further elucubration. In contrast, men can and do talk about the things they (or the birds)
do. However, this talking activity requires the things they do to be named. For example, Figure 17b
shows the standard names given in western music to the notes and intervals used in the wren melody,
see [90]. These names point at or stand for entities directly related to eigen-solutions. Musical notes
are names for eigen-values (invariant vibration frequencies of the continuous string), and basic
musical intervals (and consonant musical chords) are names for certain quotients of musical note
frequencies (harmonic quotients).

In general, the entities that we can recognize and name for a given system, are related to operational
invariants of that same system, hence the aphorism: objects are tokens for eigen-solutions. Heinz
von Foerster formulated this aphorism in a slightly different form: objects are tokens for eigen-
behaviors, stressing that the most important entities in our lives, or simply the objects that we
are able to recognize as such, are those invariant entities that we constantly re-encounter in, or
re-generate by, our own activity in life.

5.2 The scientific production diagram

Objects as tokens for eigen-solutions: this is the central metaphor of our version of objective
cognitive constructivism. Moreover, the four essential properties of eigen-solutions, namely, to
be precise, stable, separable and composable, are the key characteristics that allow us to easily
identify the most important entities related to a given system, namely, the system’s core operational
invariants, those being, after all, the objects we should care to name, the entities for which we should
create distinctive labels, so that they can be re-presented in language.

In previous sections we have studied some simple systems described by well-defined mathematical
models. The goal of this section is to show how it is possible to extend the use of the — Objects
as tokens for eigen-solutions — metaphor to much broader systems. Unfortunately, very detailed
mathematical models covering all relevant aspects of the ‘life’ or way of existence of such general
or abstract systems are often unavailable. Nevertheless, we hope to demonstrate how the essential
properties of eigen-solutions can still be clearly recognized and used to identify the most important
objects for the system’s modus vivendi, for its way of life or form of perpetual operation.

Scientific systems are the prime object of our attention, specifically, we focus on abstract system
comprised by the means and methods of a scientific discipline, including pertinent theories, mathe-
matical models, experimental supplies and instrumentation, computational equipment, data analysis
methods, and all other pertinent resources needed by the scientists working in that field to keep doing
whatever they do. Contemporary science relies on statistical methods for validation of its theories
and hypotheses. Therefore, we pay special attention to the way that theoretical entities as well as
observational data are represented in statistical models.

Figure 18 shows the Scientific production diagram, a schematic representation of how objects (or
identifiable invariants) emerge in the scientific system, see Krohn and Küppers [40] and Stern [81].
At the right side of the diagram we have experimental means and methods. In a statistical model,
experimental observations usually correspond to entities represented in the sample space and to
quantities of interest assigned to Latin letter variables. At the bottom, we have operations related
to the technological implementation of experiments, data acquisition and statistical modeling. The
theoretical side of the diagram, at the left, corresponds to the interpretation of mathematical and
statistical models and the mathematical formalization of theories. In statistical models, theoretical
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FIG. 18. The scientific production diagram

entities are usually represented in the parameter space with quantities of interest assigned to Greek
letter variables. At the top of the diagram, we have metaphysics, i.e., the formulation of causal
explanations for the phenomena under study. These causal explanations, often intertwined with
the mathematical formalism of theoretical models, provide valuable ways of understanding the
phenomena under study and also may, eventually, lead to the formulation of new hypotheses. The
endless cycling around this diagram represents typical scientific activities and the modus operandi
of science itself.

5.3 Verification of eigen-solutions

The four essential propreties of eigen-solutions, namely, separability, compositionality, stability and
precision, make them magical objects — magical in the sense of wonderful or astonishing, as in
the Magic Squares studied in Section 4. Furthermore, the essential properties of eigen-solutions
can withstand a process of empirical verification, or else succumb by empirical falsification. In
the practice of science, such verification tasks are accomplished by representing these essential
properties as hypotheses in statistical models, hypotheses that can, in turn, be tested in light of
evidence provided by empirical data.

Verification, confirmation or corroboration are all terms used to convey a similar general idea, but
each of them is also heavily overloaded with very specific meanings related to distinct epistemolog-
ical or statistical frameworks. In the scope of the objective cognitive constructivism epistemological
framework, we have chosen the term verification to express high truth-values of scientific hypothe-
ses, values that, in turn, correspond to strong statistical support (or statistical significance) in light of
observed empirical data. Section 6.1 further elaborates on the objective nature of these truth-values;
for more detailed discussions, see Stern [76, 78, 79, 81].

As already mentioned in Section 3.4, the Bayesian research group of the University of São Paulo
has developed a statistical significance measure tailor made for scrutinizing statistical hypotheses
directly related to the essential properties of eigen-solutions. This measure, ev(H |X ), is the Bayesian
epistemic value of hypothesis H given the observed data X , or as the Bayesian evidence value of
data X in support of hypothesis H , see Pereira and Stern [54] and Pereira et al. [58]. The formal
mathematical and logical properties of ev(H |X ) makes it the right tool for the job of empirical
verification in the epistemological framework of objective cognitive constructivism, as discussed in
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Borges and Stern [8], Esteves et al. [20], Izbicki and Esteves [35], Madruga et al. [48, 49], Silva
et al. [69], Stern [73, 78, 79] and Stern and Pereira [83].

Scientific hypothesis testing is the objective cognitive constructivism counterpart of the founda-
tionalist aspect of foundherentism. Of course, it does not offer a path of finite regress from funda-
tional statements concerning dogmatic axioms or unquestionable facts. Instead it offers a path for
the straightforward statistical verification of fundamental scientific hypotheses, hypotheses that, in
turn, are directly related to (the four essential properties of) eigen-solutions (obtained in the endless
cycle of scientific production); for a more detailed discussion, see Stern [74]–[77, 80, 81].

The stability and precision properties of eigen-solutions are a main characteristic of all that
we came to know as ‘exact sciences’ and their technological achievements. The separability and
compositionality properties of the eigen-solutions of a good scientific theory provide ‘articulation
points’ of reality (as reality is seen through this theory), giving us an opportunity for ‘carving nature
at its joints’. The last expressions under quotation marks are traditionally used to describe desired
characteristics of an ontology, the subject of Section 6.

Before ending this section, let us make a brief comment about another topic of interest of main-
stream epistemology, namely, the somber thema of sceptical worries. Radical forms of skepticism,
solipsism or subjectivism are inexpugnable castles, as explained by I. J. Good [27, ch. 8, p. 93]. Nev-
ertheless, witnessing and understanding the magical or wonderful nature of eigen-solutions, together
with the verification of their essential properties by good statistical analysis based on honest and
carefully obtained empirical data, constitute our best hope for breaking the melancholic spell of
skepticism; for further comments, see Stern [78].

6 Scientific ontologies

In information science, an ontology is a formal definition of terms (words) and their (semantic)
interrelations, reflecting the way they are used in the domain of discourse of a given scientific
discipline, Gómez-Pérez et al. [26, ch. 1], Lim et al. [45, ch. 1]. Our previous considerations take
us to the inexorable conclusion that the key elements of a scientific ontology must be characterized
as systemic eigen-solutions in necessarily circular production schemata. From the perspective of
cognitive constructivism, this is also the ultimate available foundation for affirming the existence
(or for asserting the good ontological status) of an object of knowledge: any investigation concerning
the existence of an object as a Ding an sich, is futile. Any attempt to access a thing in itself outside
its pertinent production diagram is vain, for there is no way of reaching an object that is not mediated
by the means and methods used by the relevant discipline in which it emerges, see Rasch [59, 60]
and Stern [75].

At this point, some similarities and also some differences concerning the role played by the notions
of circularity and fundamental justification in Haack’s foundherentism and in objective cognitive
constructivism should be clear. In the foundherentist epistemological framework, coherent circular
argumentation makes an integral part of the justification of scientific hypotheses. In objective cog-
nitive constructivism however, the notion of circularity plays a far more radical role: not only the
justification of hypotheses, but the very objects of knowledge these hypotheses refer to, owe their
existence to intrinsically circular production schemata, see Stern [81]. Furthermore, in the foundher-
entist framework, some special or foundational statements must find some external justification by
means to be specified by their particular context. In objective cognitive constructivism however, key
elements in the ontology of a scientific discipline must be characterized as systemic eigen-solutions,
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and fundamental hypotheses concerning these key ontological elements must be verified (or not) by
the degree of compliance with the four essential properties of eigen-solutions.

6.1 Objectivity criteria

Coherence in a scientific production diagram is manifested by the emergence of eigen-solutions
and other less formally characterized invariant entities. Good scientific objects, i.e., objective enti-
ties in this process are — by definition — those that comply with the four essential properties of
eigen-solutions, namely, as seen in previous sections, precision, stability and conformance to case
specific composition and decomposition rules (rules that, in turn, in conjunction with other relevant
systemic properties, allow the emergence of invariant features). Moreover, good objects deserve to
be rewarded by receiving a name, so that they can be re-presented in language.

Furthermore, the strong essential properties characterizing an eigen-solution, in conjunction with
statistical significance measures specially developed to evaluate an object’s compliance with these
properties, makes this combination (epistemological framework and statistical methods) specially
appropriate to judge the degree of objectivity of tokens for corresponding eigen-solutions.

In real life, it is not the case that whatever we try to do works, no matter our strongest individual
or collective wishful thinking; it is not true that anything goes, see Stern [75, 76]. Hence, one should
expect the objective version of cognitive constructivism we have been developing, in conjunction
with its accompanying statistical methods, to be able to separate the wheat from the chaff, to discern
strong and weakly objective invariants. More specifically, science needs operational methods able to
distinguish strong from weakly objective eigen-solutions, to discern plausible, trustworthy, reliable
or, in the limit of full statistical support, true theories, from inaccurate, unsound, implausible or, in
the limit of null statistical support, false hypotheses. As already explained in Sections 3.4 and 5.3,
the Bayesian epistemic value of hypothesis H given the observed data X , ev(H |X ), is a statistical
tool that was tailor-made for this task.

Figure 19a–d contrasts some strong and weak economic tokens. These figures depict, respectively:
(18a) a Drachma coin showing the Owl of Athens emblem, from 450 BC (the typical workman’s
day pay at the time, equivalent to six Obolos, Charon’s pay to carry the dead to afterlife); (18b) a
Drachma of 1944, during the German occupation period; (18c) a Greek Drachma of 1973; and (18d)
a Euro coin minted in 2002. While I was writing this article, alarming news of Greek politics called
the world’s attention, reminding us that currencies are not all made equal. As mentioned in Section
1, the quality of these tokens can be studied within the scope of efficient market theories, and judged
by evaluating the epistemic value of the corresponding economic eigen-values, see Cerezetti [11],
Cerny [12] and Ingrao and Israel [34].

Finally, Figure 20a–c display German Notgeld (emergency money) of the Interbellum period
between the first and second world wars. Inefficient markets are unstable, imprecise and prone to
arbitrage. The images used to illustrate these notes should serve to remind us how the deterioration
of key invariants of the economic system can lead to production break-down or even catastrophic
collapse, and also to remind us of our political and social responsibility to preserve the conditions
that maintain economic stability and to perfect mechanisms that promote its efficiency.

6.2 Ontological alignments

In the scientific production diagram, the emergence of a well-characterized eigen-solution depends on
a well-adjusted integration of all components in its production cycle or, paraphrasing Susan Haack’s
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FIG. 19. Tokens for strong and weak invariants

FIG. 20. Tokens for very weak invariants

FIG. 21. Synchronic and diachronic ontological alignments

quotation on Section 2, it requires that components in its production cycle interlock surprisingly
well with each other. Moreover, the practice of empirical science, as well as other less formalized
human activities, require good interlocking properties across far more extensive domains. This is
the topic under examination in this section.

Figure 19a–d display four version of Greek currency, issued in a time period ranging from 450
BC to the present. Most of these coins are called by the same name, the Drachma, and all of them
display the same emblematic figure, the Owl of Athens. Moreover, they have all served a same
basic function: being a common exchange medium for buying and selling goods and services in
the Greek economy. Hence, on the one hand, all these currencies could be considered as different
versions of the ‘same thing’. However, on the other hand, 450 BC Athens was quite different from
modern Greece, with sovereignty over distinct although overlapping territories, speaking distinct
although related languages, and even worshiping different gods, hence placing these currencies in
very distinct contexts. Facing this opposition, it is natural to pose the question: can we ‘convert’
prices nominated in these currencies, diachronically (between distinct time dates) within the time
period they span?

Figure 21a and b display two banknotes, a British Pound and an Israeli Pound. These two banknotes
circulated simultaneously from 1978 to 1983, although in distinct economies. Hence, it is natural to
pose similar questions concerning the possibility of synchronic (at the same time) price conversions.
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Of course, it is unavoidable that a given price will be interpreted in different ways at distinct times,
or at distinct places, or even by two distinct individuals. Nevertheless, such price conversions are a
bare necessity for making commerce over extended periods of time or for trading across the seas.
Hence, it should not come as a surprise that such price conversions are considered by merchants as
a routine operation, for example: At 22 July 2015, the conversion rate from British Pound (GBP)
to Israeli Shekel (ILS) was approximately 5.95. The specifics of how to make (and also how to
make sense of) such price conversions are a topic of active research in statistics and computational
finance; for technical details, see e.g. Balk [4], Biggeri and Ferrari [6], Schultze and Mackie [65],
Selvanathan and Prasada-Rao [67], Staines [71], Takada and Stern [85, 86] and Wang [88].

In the objective cognitive constructivism epistemological framework, these examples of price
conversion are conceived as making an ontological alignment, i.e., establishing (approximate) func-
tional equivalences or compatibilities between (objects designated by) terms, or making (approxi-
mate) translations of words used in two different ontologies, where each of these ontologies concerns
a distinct system (like a national economy or a scientific discipline), and each system is characterized
by its own production diagram.

The banknotes displayed in Figure 21a and b depict, respectively, Sir Isaac Newton and Albert
Einstein, creators of Newtonian Physics, Special Relativity, and General Relativity. Words like
space, time, simultaneity, synchronization, past, future, velocity, mass, momentum, energy, etc.,
belong to the ontology of each one of these three theories, despite having in each one of them a
rather distinct significance, see French [21, 23], Sachs and Wu [64], Stern [72] and Taylor and
Wheeler [87]. Nevertheless, it is perfectly feasible to build effective ontological alignments between
the three theories, so much so that these theories can share the same system of units of measurement.
On an even more fundamental level, these theories can share ‘the same’ universal constants; for
further comments, see Cohen et al. [13], Goldberg [25], Planck [57, pp. 170–172], and Spiridonov
[70].

Few concepts offer more dramatic examples of successive ontological alignments than chem-
ical affinity, in its radical evolution from middle age Alchemy to modern Physicochemistry, see
Goupil [28] and Stern [80]. Changes in experimental methods require similar translation efforts.
Figure 22a–d display scientific instrumentation used for determining the acidity of a solution, a
measurement that, in turn, is often used to determine equilibrium constants for chemical reac-
tions. Titration by volumetric analysis with the help of halochromic indicators, and potentiometric
analysis with the help of glass electrodes, are very distinct procedures. In contemporary chem-
istry, both methods are in current use, a situation that requires the construction of good ontological
alignments, including efficient calibration methods, effective standardization procedures, etc., see
Johansson [36], Madsen [50], Martell and Motelaitis [52], Mirsky [53], Rossotti and Rossotti [63]
and Szabadváry [84].

Figure 23a and c celebrate Ohm’s law (1827) and Kirchhoff’s laws (1845). Put together, these
laws describe a (purely resistive) electrical circuit as a linear system, a theory that is formally very
similar to the linear systems studied in Section 3, see Halliday and Resnick [33]. Figure 23b depicts a
Wheatstone bridge, a prototypical electrical circuit used to measure an unknown electrical resistance
or an unknown electrical potential. This circuit is, in turn, a key element for the construction of
electronic pH-meters, as displayed in Figure 22c and d. A few expert users or designers of chemical
instrumentation may need to be familiar with these concepts; however, a pH-meter is a very user-
friendly equipment, in the sense that a professional chemist can use it without further knowledge of
electronic circuits. Not surprisingly, concepts related to circuit theory are usually placed in formal
ontologies for (and the practice of) disciplines distinct from Chemistry, like Electrical Engineering.
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FIG. 22. More synchronic and diachronic alignments

FIG. 23. Ohm’s formula, Kirchhoff’s law and Wheatstone bridges

One of the most amazing features of the crossword game studied in Section 2, was its power
to (at specific points) harmonically conform to two different sets of rules (for crosswords games,
and for colloquial English), to meaningfully cross the boundary between two different ‘realities’. In
the same way, the electronic pH-meter is a most most amazing instrument, capable of establishing
relevant conceptual bridges between two distinct ontologies, constituting a material link between
the means and methods of the corresponding scientific disciplines.

Or course, scientific ontologies are not fixed in time, but very dynamic. Also the scope and
boundaries of scientific disciplines are subject to changes and revisions. This process can be seen as
an adaptive struggle, an evolutive effort, that seeks optimal structures for scientific disciplines and
aims to improve their forms of communication.

7 Final remarks

My goal in this article was to build a bridge between Haack’s crossword metaphor and Heinz
von Foerster’s aphorism stating that Objects are tokens for eigen-solutions. This bridge should be
able to foster and facilitate the exchange of insights and intuitive understandings provided by the
epistemological frameworks of foundherentism and objective cognitive constructivism. Neverthe-
less, notwithstanding all mutual benefits offered by comparative studies, these two epistemological
frameworks remain quite distinct, and any temptation of naive reductionism should be avoided.
Furthermore, in this article, this conceptual bridge was mostly used in one direction: to cross from
foundherentism to objective cognitive contructivism. Hence, in this comparative study effort, many
topics remain unexplored, awaiting further research, e.g.:

(1) How could the idea of ontological alignment be supported in the foundherentist framework?
(2) How could ontological alignments be represented using the crossword metaphor?
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(3) The universe of scientific measurement instrumentation seems to be populated by many
amazing devices, capable of (or based on the possibility of) ‘translating’ quantities of interest
between the realms of different disciplines. Could the study of some concrete examples be
helpful in investigating the aforementioned questions?

(4) Parallel to the constant restructuring of scientific ontologies, a similar adaptive process takes
place in the organization of university curricula, departamental structures and other social
aspects of the scientific community organization. Could the study these topics benefit from
the approach presented in this article?
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