
Factorization of Sparse Bayesian Networks

Julio Michael Stern and Ernesto Coutinho Colla

Abstract. This paper shows how an efficient and parallel algorithm for inference in
Bayesian Networks (BNs) can be built and implemented combining sparse matrix
factorization methods with variable elimination algorithms for BNs. This entails a
complete separation between a first symbolic phase, and a second numerical phase.

Keywords: Bayesian networks, Probabilistic Reasoning, Variable elimination,
Elimination trees, Sparse Cholesky factorization, Sparse matrix factorizations.

1 Introduction

Bayesian Networks (BNs) are probabilistic graphical models used to represent and
encode uncertain expert knowledge. BNs stand out for dealing with uncertainty in
decision making and statistical inference, and many algorithms were described for
inference in BNs, see Dechter (1996), Heckerman (1995), Jensen (1996), Lauritzen
(1988), Pearl (1988), and Zang (1996). The parallel algorithm described in this pa-
per is based on the sequential variable elimination algorithm of Cozman(2000),
using algebraic operations on potentials. These algebraic schemata for inference in
BNs are not only relatively simple to understand and to implement, but also allow
us to use the techniques, heuristics and abstract combinatorial structures from the
sparse matrix factorizations literature, see appendix, George (1993) and Stern (1994,
2008a,b).

The main goal of this paper is to show how variations of the variable elimination
algorithm can be combined with sparse matrix factorization methods to implement
a fast and efficient parallel algorithm for inference in BNs. This goal is achieved
with the complete separation between a first symbolic phase, and a second numer-
ical phase. In the symbolic phase the proposed algorithm explores the graphical

Julio Michael Stern and Ernesto Coutinho Colla
IME-USP, University of São Paulo, Brazil
e-mail: jmstern@hotmail.com

K. Nakamatsu et al. (Eds.): New Advan. in Intel. Decision Techno., SCI 199, pp. 275–285.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

jmstern@hotmail.com

276 J.M. Stern and E.C. Colla

structure of the model, without computing or even accessing probabilistic informa-
tion. The second numerical phase can be fully vectorized and parallelized using
static data structures previously defined in the first phase. This is done examining
the decoupling or separation operators of sparse matrix factorization algorithms and
BNs inference procedures from a unified combinatorial framework. This unified
framework is the key for implementing efficiently this parallel algorithm.

2 Inference with Bayesian Network

A BN, see Jensen (1996), is a graphical model that efficiently encodes the joint
probability distribution for a set (or list) of random variables, X = {X1,X2, ...,Xn},
each of them having a finite number of possible states. A BN consists of two com-
ponents: (i) A Directed Acyclic Graph (DAG) defining the network structure and
encoding the conditional dependence relations between the variables in X ; (ii) A
set of local probability densities associated with each variable. Each node, i, of the
DAG represents a random variable, Xi. In order to make the notation lighter, we may
write a node index, i, instead of its random variable, Xi, and vice versa. We also use
the vectorized notation, XS, for the subset {Xi}, i ∈ S.

The DAG representing the BN structure has an arc from node i to node j, that
is, i is a parent of j, i ∈ pa(j), if the probability distribution of variable Xj is di-
rectly dependent on variable Xi, and the strength of this influence is expressed by
conditional probability distributions. In many specific statistical models an arc can
be interpreted as a direct influence or causal effect of Xi on Xj, see Pearl (1988).

Fig. 1 Bayesian network example

The semantics of BNs implies a correspondence between the topology of a
DAG and the network’s probabilistic dependence relations, determined by the
Markov condition: Every variable is independent of its nondescendants nonparents
given its parents. Therefore, every Xi is associated with a local probability density,
P(Xi |Xpa(i)), as showed in Fig 1. Based on this condition, a BN encodes a unique
probability distribution: P(X) = ∏i P(Xi |Xpa(i)).

Inference in BNs is based on queries, where the posterior marginal distribution
for a set of query variables, XQ, has to be computed given a set of observed variables,
XE . This set of observed variables is the evidence in the network and establishes the

Factorization of Sparse Bayesian Networks 277

values of the variables in XE . For example: e =
{

Xi = xi,Xj = x j
}

establishes the
values of Xi and Xj, so E = {i, j}.

The posterior probability of XQ given e is:

P(XQ |e) =
P(XQ,e)

P(e)
=

∑X\{XQ,XE}P(X)

∑X\XE
P(X)

. (1)

The expression X\Y indicates the set of all variables which belong to X but do
not belong to Y , and the expression ∑X f (X ,Y) indicates that all variables of X were
eliminated or marginalized out, that is, were summed out from the function f (X ,Y).

Efficient computational algorithms rely on two important technical points:
(I) Given a BN over variables X , an evidence e and a query XQ, not all vari-

ables of X may be required to compute P(XQ |e). If the local probability density
P(Xi |Xpa(i)) is required to compute P(XQ |e), then Xi is a requisite variable, i ∈ R.
Fortunately there are simple polynomial algorithms able to identify the set R. We
have used Bayes-Ball algorithm, see Shachter (1998). It is important to realize that
the requisite variables, XR, can be identified exploring only the DAG topology, with-
out any numerical information concerning probability distributions. Hence, in order
to reduce the problem dimension, the identification of R should be done at the very
first stage of inference calculation.

(II) At intermediate computations, it is not necessary to compute the normaliza-
tion constants, that is, the denominator P(e) of (1). We only need the numerator
in (1),

P(XQ |e) ∝ P(XQ,e) = ∑XR\{XQ,XE}
(
∏Xi∈XR

P(Xi |Xpa(i))
)

. (2)

Hence, a basic rule for operation in BNs is: Compute the numerator P(XQ,e) and
obtain normalization constant P(e) only in the last stage. This rule means that we
can perform the intermediate computations with un-normalized distributions, which
are real-valued tables over a finite set of variables. These tables, φ , are called po-
tentials, see Jensen (1996). A potential’s domain, dom(φ), is its correspondent set
of variables. In the following, we give some important properties of the algebra of
potentials:

(1) A variable Xi can be marginalized out of a potential φ resulting in a new
potential φ ′

Xi
= ∑Xi

φ over the domain dom(φ ′
Xi

) = dom(φ)\{Xi}. Marginalization
follows:
(1a) the commutative law: ∑Xi ∑Xj

φ = ∑Xj ∑Xi
φ ; and

(1b) the distributive law: if Xi /∈ dom(φ1), then ∑Xi
φ1.φ2 = φ1.∑Xi

φ2.
(2) Two potentials can be multiplied, resulting in a new potential with

dom(φ1.φ2) = dom(φ1)∪dom(φ2). Multiplication follows:
(2a) the commutative law: φ1.φ2 = φ2.φ1; and
(2b) the associative law: (φ1.φ2).φ3 = φ1.(φ1.φ3).

As an example, consider the BN in Figure 1. The BN joint probability
distribution can be rewritten as: P(X) ∝ φA.φB.φC.φD.φE .φF .φG.φH .φI .φJ , and the
potentials specified for the network are: P(A) ∝ φA(A),P(B |A) ∝ φB(B,A),

278 J.M. Stern and E.C. Colla

P(C |B) ∝ φC(C,B),P(D |A,C) ∝ φD(D,A,C) and so on. Computing P(I) can be
accomplished by marginalizing out of P(X) all the variables, except I.

P(I) = ∑A,B,C,D,E,F,G,H,J
P(X) . (3)

BNs are particularly useful for calculating new probabilities when we acquire
new information. However, in the preceding calculations no evidence was entered
into the network. Now, assume information e has been acquired, stating that “A =
at”, where A is a variable and at is the t-th state of A. Let A have s states with
probability distribution P(A) = (x1, ...,xt , ...,xs). This observed evidence e means
that all states except tth one are impossible. So the new (un-normalized) probability
distribution is P(A,e) = (0,,0,xt ,0, ...,0) which is the result of multiplying P(A)
with eA = (0, ...,0,1,0, ...,0) in which only tth value is 1. The s-dimensional 0-1
potential eA is called finding.

In the current example, assume that we have the evidence A = a, H = h and
J = j. This evidence e would be represented using three findings eA, eH and eJ . The
posterior marginal P(I |e) can be obtained normalizing P(I,E):

P(I,e) = ∑A,B,C,D,E,F,G,H,J
P(X).eA.eH .eJ . (4)

To avoid calculating the product of all potentials, we use the distributive law:

P(I |e) = ∑
D

∑
E

φI(I,E).φE(E,D)∑
B

∑
C

φC(C,B).

∑
A

φA(A).φB(B,A).φD(D,A,C).eA.

∑
J

∑
G

φJ(J,D,G).eJ ∑
F

φF(F,B).∑
H

φG(G,F,H).φH(H).eH .

First, calculate φ ′
H = ∑H φG(G,F,H).φH(H).eH , then multiply φ ′

H(F,G) on
φF(F,B) and calculate φ ′

F = ∑F φF(F,B).φ ′
H(F,G). The later result is multiply on

φJ(J,D,G).eJ , to calculate φ ′
G = ∑G φJ(J,D,G).φ ′

F (B,G).eJ , and so forth. All the
operations involved are represented in Figure 2.

Because marginalization is commutative it can be done in any order. In the pre-
ceding calculation the marginalization, also called variable elimination, was done in
a particular order, namely q = [H,F,G,E,A,C,J,B,D].

The diagram in Figure 2 also portrays the dependencies among potential
operations to calculate P(I |e). Notice that some operations could be done simulta-
neously. For example, at very first stage, we could perform the required operations
on A, H, and I, calculating φ ′

A = ∑A φA(A).φB(B,A).φD(D,A,C).eA, etc.
If a parallel computer is available, we can simultaneously execute all the

marginalizations using already computed potentials. Hence, it is desirable to find:
(i) An efficient way to specify all dependencies among marginalization operations.
(ii) A way to specify an elimination order entailing a “simple” dependence structure,
so that many operations can be done simultaneously.

Factorization of Sparse Bayesian Networks 279

Fig. 2 The process of marginalizing down to I

The dependence structure of these operations is exactly the same as the de-
pendence structure for “pivoting” operations appearing in numerical linear alge-
bra, namely, in the Cholesky factorization of sparse matrices, see appendix, George
(1993), Pissanetzky (1984), and Stern (1994, 2008b). We describe only the aspects
pertinent to this paper.

An Undirected Graph (UG), G = (V ,E), has undirected edges, {i, j} ∈ E , stand-
ing for pairs of opposite directed arcs, (i, j) and (j, i). The Moral Graph of a DAG,
G , is the UG with the same nodes as G , and edges joining nodes i and j if they are
immediate relatives in G . The immediate relatives of a node in G include its parents,
children and spouses (but not brothers or sisters). i is a spouse of j is they have a
child in common, that is, i ∈ sp(j) ⇔∃k | i, j ∈ pa(k).

The Markov Blanket of Xi, Xmb(i) is defined as the minimal set of variables that
makes a variable Xi independent from all other variables in the BN. This means that
the Markov Blanket of a variable “decouples” this variable from the rest of network:
P(Xi |Xmb(i),Xj)= P(Xi |Xmb(i)). It can be shown that the set of immediate relatives
of node i is the Markov Blanket of node i. Figure 3a shows the Moral Graph of the
BN in Figure 1. It is important to realize that if Xi and Xj are both in the same
domain, of a variable Xk of the BN, then the edge {i, j} is in the Moral Graph.

Given an UG, G = (V ,E), V = {1, . . .n}, and q = [q(1), . . .q(n)], an elimination
order, we define the elimination process of its nodes as the sequence of elimination
graphs Gk = (Vk,Ek), for k = 1 . . .n, as follows: When eliminating node q(k), we
make its neighbors a clique, adding all missing edges between them.

Fig. 3 (a) Moral Graph (b) Filled Graph Fig. 4 Elimination graphs sequence

280 J.M. Stern and E.C. Colla

Vk = {q(k),q(k + 1), . . .q(n)}, E1 = E , and, for k > 1 ,

{i, j} ∈ Ek ⇔
{ {i, j} ∈ Ek−1 , or
{q(k−1), i} ∈ Ek−1 and {q(k−1), j} ∈ Ek−1 .

The Filled Graph is the graph (V ,F), where F = ∪n
k=1Ek. The original edges

and the filled edges in F are, respectively, the edges in E and in F\E . There
is a computationally more efficient form of obtaining the Filled Graph, known as
simplified elimination: In the simplified version of the elimination graphs, G ∗

k , when
eliminating vertex q(k), we add only the clique edges incident to its neighbor, q(l),
that is next in the elimination order.

The marginalization of variable Xi out of P(X) corresponds to the elimination of
the correspondent node in the elimination sequence. In order to marginalize on Xi,
we have first to multiply all the potentials having Xi in its domain, and than sum
out Xi. The domain of the resulting potential includes all the neighbors of Xi. In the
Elimination Graphs, the corresponding elimination of Xi forms a clique with all of
Xi’s neighbors. Figure 3b and 4 show the Filled Graph and a synthetic version of the
eliminations graphs for the order q = [H,F,G,E,A,C,J,B,D].

The Elimination Tree, see appendix, George (1993), Pissanetzky (1984), and
Stern (1994, 2008b), portrays the dependencies among numeric operations on po-
tentials, corresponding to dependencies in the node elimination process in the elim-
ination graph. Hence, building the Elimination Tree for the corresponding Moral
Graph makes it easy to see which variables can be eliminated simultaneously. Fig-
ure 5 shows the Elimination Tree for the order q = [H,F,G,E,A,C,J,B,D].

According to the Figure 5, six steps would be enough to eliminate all nodes:
Variables I, H and A could be eliminated at first step and variables E , F and C at
second one. Note that: (i) The Elimination Tree has the same structure of the tree of
operations portrayed in Figure 2; (ii) A serial elimination would require 10 steps.

Clearly the Elimination Tree depends on the chosen elimination order, and the
sparse matrix literature has many heuristics designed for finding good elimination
orders. In this paper we adopted an heuristic based on a nested dissections of the
breadth-first tree rooted at a pseudo-peripheral vertex which, in turn, was found
using the Gibbs heuristic, see Figures 6 and 7. These procedures are described in
the appendix, see also George (1993), Pissanetzky (1984) and Stern (1994, 2008b).

Fig. 5 Elimination Tree for or-
der q = [H,F,G,E,A,C,J,B,D]

Fig. 6 Nested Dissection Fig. 7 Nested
Dissection

Factorization of Sparse Bayesian Networks 281

3 Parallel Variable Elimination Algorithm

The sequence of operations described in the previous section for inference in BNs
can be summarized in the parallel variable elimination algorithm:

1. Symbolic phase:
1.1* Define the requisite variables XR (ex. using Bayes-Ball algorithm);
1.2 Build the Moral Graph (including only variables in XR);
1.3 Choose a good elimination order using the Gibbs heuristics to find a pseudo-

peripheral vertex used as a root for the Nested Dissection heuristic;
1.4 Symbolic Factorization: Execute the simplified elimination on the Moral

Graph, and build the Elimination Tree;
1.5 Allocate the computation resources and prepare the data structures to execute

the numeric operations.
2. Numeric phase: Using static data structures defined in the first phase:
2.1 While the root of the Elimination Tree was not executed: Based on the Elim-

ination Tree hierarchy, trigger all threads executeing variable eliminations ready to
be done, including its numeric operations of multiplication and marginalization;

2.2 Normalize the remaining potential at the root.

4 Results and Conclusions

The proposed parallel algorithm was implemented and its performance was com-
pared with a serial implementation. Both implementations were done in C and use
the same functions to execute the basic operations for: Load the network; Multiply
and marginalize potentials; and define the elimination order. The only difference
between the two implementations is that the parallel version builds the Elimination
Tree and, if possible, eliminate two or more variables simultaneously. Following
this strategy we hope to isolate the effect of parallelization.

Table 1 displays some illustrative results. These experiments were done in a
bi-processed machine running Linux and consists of 100 inferences for 7 distinct
queries using the Hailfinder25 network (55 variables). The set of experiments sug-
gests that the parallel implementation is much faster than the serial one for larger
experiments. Queries requiring more variables or with a branched structure in the
Elimination Tree allow the simultaneous elimination of several variables, for ex-
ample experiments 1 to 6. Models requiring less variables, or with a more linear
structure in the elimination tree allow less parallelization of elimination operations.
Consequently, in these examples, the serial implementation performed better due to
the computational overheads imposed by the parallel version, namely, building of
the Elimination Tree and the heavy context switch during execution. This was the
case of experiment 7 in which the relations of dependence between the operations
reduce the possibilities of parallelization.

Practitioners always want to solve larger models, most large models used in
practice are sparse, and parallel or distributed computer are increasingly available.
Hence, we see great potential for the parallel algorithm presented in this article.

282 J.M. Stern and E.C. Colla

Table 1 Query example, Numb. or requisite vars., Parallel time, Serial Time, Parallel context
switches. Serial context switches

Q.E. N.R. P.T. S.T. P.C.S. S.C.S.
1 44 174 812 6498 901
2 44 95 125 6514 142
3 45 71 155 6553 183
4 46 74 155 6681 164
5 46 104 126 6817 138
6 48 106 125 7067 152
7 22 98 66 2948 78

Appendix: Sparse Cholesky Factorization

In orther to highlight the analogy between sparse network and sparse matrix fac-
torizations, this appendix presents a few (very summarized and condensed) exam-
ples of sparse Cholesky factorization. For a complete explanation, see Stern (1994,
2008b).

Figure 8 shows the positions filled in the Cholesky factorization of a matrix A,
A = LL′, and in the Cholesky factorization of two symmetric permutation of the
same matrix, A(q,q). Initial Non Zero Elements, NZEs, are represented by x, ini-
tial zeros filled during the factorization are represented by 0, and initial zeros left
unfilled are represented by blank spaces.

Fig. 8 Filled Positions in
Cholesky Factorization

1
2
3
4
5
6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x x x
x 2 x 0
x x 3 x 0

x 4 0
5 x

x 0 0 0 x 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x x x
x 3 0 x x
x 0 6 0 0 x
x x 0 2 0 0

x 0 0 4 0
x 0 0 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 x
4 x

2 x x
x 6 x

x x 3 x
x x x 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Elimination Lemma, see Stern (1994, 2008b) states that, when eliminating
the j-th column in the Cholesky factorization of matrix A(q,q) = LL′, we fill the
positions in L corresponding to the filled edges in F at the elimination of vertex
q(j).

The elimination tree, H , is defined by

h(j) =
{

j, if nze(Lj) = { j}, or
min{i > j | i ∈ nze(Lj)} , otherwise ;

where h(j), the parent of j in H , is the first (non diagonal) NZE in column j of L.
Figure 9 shows the elimination trees corresponding to the example A.1.
The elimination tree portrays the dependencies among the columns for the nu-

meric factorization process. More exactly, we can eliminate column j of A, that is,
compute all the multipliers in column j and update all the elements affected by these

Factorization of Sparse Bayesian Networks 283

6 → 5
↘ 4 → 3 → 2 → 1

,
6 → 5 → 4

↓
1 ← 2 ← 3

,
↗ 2

6 → 5 → 3
↘ 4 → 1

.

Fig. 9 Elimination Trees

multipliers, if and only if we have already eliminated all the descendents of j in the
elimination tree. If we are able to perform parallel computations, we can simulta-
neously eliminate all the columns at a given level of the elimination tree, beginning
with the leaves, and finishing at the root. For example, let us consider an elimina-
tion with the same pattern of the last permutation in 8, 9. This elimination tree has
three levels that, from the leaves to the root, are: {1,3,2}, {4,5}, e {6}. Hence, the
corresponding factorization requires only 2 steps, as illustrated in the following nu-
merical example (in order to avoid taking square roots, we present the LU instead
of the Cholesky factorization):

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 7
2 8

3 6 9
7 53 2

8 6 49 23
9 2 23 39

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 7
2 8

3 6 9
7 4 2

4 2 5 5
3 2 5 12

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 7
2 8

3 6 9
7 4 2

4 2 5 5
3 1

2 1 6

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

The sparse matrix literature has many heuristics designed for finding good elimi-
nation orders. The example in Figures 10 and 11 show a good elimination order for
a 13×13 sparse matrix.

The elimination order in Figure 10 was found using the Gibbs heuristic, described
in Stern (1994, ch.6) or Pissanetzky (1984). The intuitive idea of Gibbs heuristic, see
Figure 11, is as follows: 1- Starting from a ‘peripheral’ vertex, in our example, ver-
tex 3; 2- Grow a breath-first tree T in G . Notice that the vertices at a given level, l,
of T form a separator, Sl , in the graph G . 3- Chose a separator, Sl , that is ‘small’,

1
2
3
4
5
6
7
8
9

10
11
12
13

3 x
x 8 x

1 x x x
10 x x

x x x 9 0
12 x x

13 x
2 x x
x 7 0

x x x 0 6 0
11 x

x x 0 4 0
x 0 x 0 x 0 5

− − − 1 2
/ / | | \

3 | 4 5 6 7
| | | | \ | \
8 − 9 − 10 11 12 13

5;4
↙ ↓ ↘

6 11 9
↙↓↘ ↙↓↘

12 13 7;2 10 1 8;3

Fig. 10 Gibbs Heuristic’s Elimination Order and Tree

284 J.M. Stern and E.C. Colla

10 → 4 11 13
↗ ↗ ↗

T = 3 → 8 → 9 → 1 → 5 → 12 → 6 → 2 → 7

l = 1 2 3 4 5 6 7 8 9

Fig. 11 Nested Dissection by Gibbs Heuristic

i.e. with few vertices, and ‘central’, i.e. dividing G in ‘balanced’ components. 4-
Place in q, first the indices of each component separated by Sl , and, at last, the
vertices in Sl . 5- Proceed recursively, separating each large component into smaller
ones. In our example, we first use separator S5 = {4,5}, dividing G in three compo-
nents, C1 = {3,8,1,10,9}C2 = {12,13,2,7,6}C3 = {11}. Next, we use separators
S3 = {9} in C1, and S7 = {6} in C2.

References

Colla, E.C.: Aplicação de Técnicas de Fatoração de Matrizes Esparsas para Inferência em
Redes Bayesianas. Ms.S. Thesis, MAC-IME-USP, Institute of Mathematics and Statistics,
University of São Paulo (2007)

Cozman, F.G.: Generalizing variable elimination in Bayesian networks. In: IBERAMIA-
SBIA, Workshop proceedings. São Paulo, Tec. Art, pp. 27–32 (2000)

Mandani, A., Heckerman, D., Wellman, M.P.: Real-world applications of Bayesian networks.
Comm. of the ACM 38(3), 24–26 (1995)

Dechter, R.: Bucket elimination: An unifying framework for probabilistic inference. In: 12th
UAI proceedings, pp. 211–219. Morgan Kaufmann Publishers, San Francisco (1996)

George, A., Gilbert, J.R., Liu, J.W.H. (eds.): Graph Theory and Sparse Matrix Computation.
Springer, NY (1993)

Jensen, F.V.: An introduction to Bayesian networks. Springer, NY (1996)
Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical struc-

tures and their application to expert systems. J. Royal Statistical Soc., B 50(2), 157–224
(1988)

Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausive inference. Mor-
gan Kaufmann, San Francisco (1988)

Pissanetzky, S.: Sparse matrix technology. Academic Press, New York (1984)
Shachter, R.: Bayes-ball: The rational pastime (for determining irrelevance and requisite in-

formation in belief networks and influence diagrams). In: 14th UAI proceedings, pp. 480–
487. Morgan Kaufmann, San Francisco (1998)

Stern, J.M.: Simulated Annealing with a Temperature Dependent Penalty Function. ORSA
Journal on Computing 4, 311–319 (1992)

Stern, J.M.: Esparsidade, Estrutura, Estabilidade e Escalonamento em Álgebra Linear Com-
putacional. IX Escola de Computação. UFPE, Recife (1994)

Stern, J.M.: Decoupling, Sparsity, Randomization, and Objective Bayesian Inference. Cyber-
netics and Human Knowing 15(2), 49–68 (2008a)

Stern, J.M.: Cognitive Constructivism and the Epistemic Significance of Sharp Statistical Hy-
potheses. Tutorial book for MaxEnt, The 28th International Workshop on Bayesian Infer-
ence and Maximum Entropy Methods in Science and Engineering, July 06-11, Boracéia,
São Paulo, Brazil (2008b)

Factorization of Sparse Bayesian Networks 285

Stern, J.M., Vavasis, S.A.: Nested Dissection for Sparse Nullspace Bases. SIAM Journal on
Matrix Analysis and Applications 14(3), 766–775 (1993)

Stern, J.M., Vavasis, S.A.: Active Set Algorithms for Problems in Block Angular Form. Com-
putational and Applied Mathemathics 12(3), 199–226 (1994)

van der Vorst, H.A., van Dooren, P. (eds.): Parallel Algorithms for Numerical Linear Algebra.
North-Holland, Amsterdam (1990)

Zhang, N.L., Poole: Exploiting casual independence in Bayesian network inference. Journal
of Artificial Intelligence Research, 301–328 (1996)

	Factorization of Sparse Bayesian Networks
	Introduction
	Inference with Bayesian Network
	Parallel Variable Elimination Algorithm
	Results and Conclusions
	Appendix: Sparse Cholesky Factorization
	References

