
Non-arbitrage in financial markets: A Bayesian approach for verification
F. V. Cerezetti and Julio Michael Stern 
 
Citation: AIP Conference Proceedings 1490, 87 (2012); doi: 10.1063/1.4759592 
View online: http://dx.doi.org/10.1063/1.4759592 
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1490?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A financial market model with endogenous fundamental values through imitative behavior 
Chaos 25, 073110 (2015); 10.1063/1.4926326 
 
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems 
Chaos 25, 043111 (2015); 10.1063/1.4917550 
 
Modified multidimensional scaling approach to analyze financial markets 
Chaos 24, 022102 (2014); 10.1063/1.4873523 
 
A seasonal and heteroscedastic gamma model for hydrological time series: A Bayesian approach 
AIP Conf. Proc. 1490, 97 (2012); 10.1063/1.4759593 
 
The structure and resilience of financial market networks 
Chaos 22, 013117 (2012); 10.1063/1.3683467 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.192.114.19 On: Tue, 11 Aug 2015 15:05:51

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=F.+V.+Cerezetti&option1=author
http://scitation.aip.org/search?value1=Julio+Michael+Stern&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4759592
http://scitation.aip.org/content/aip/proceeding/aipcp/1490?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/25/7/10.1063/1.4926326?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/25/4/10.1063/1.4917550?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/24/2/10.1063/1.4873523?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4759593?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/1/10.1063/1.3683467?ver=pdfcov


Non-Arbitrage In Financial Markets:
A Bayesian Approach For Verification

F. V. Cerezetti∗,† and J. M. Stern∗∗

∗Ph.D. Candidate at the Department of Statistics, Institute of Mathematics and Statistics,
University of São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090, São Paulo, Brazil.

† Risk Department, BM&FBovespa, Praça Antonio Prado 48, 01010-901, São Paulo, Brazil.1
∗∗Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São

Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090, São Paulo, Brazil.

Abstract. The concept of non-arbitrage plays an essential role in finance theory. Under certain reg-
ularity conditions, the Fundamental Theorem of Asset Pricing states that, in non-arbitrage markets,
prices of financial instruments are martingale processes. In this theoretical framework, the analysis
of the statistical distributions of financial assets can assist in understanding how participants be-
have in the markets, and may or may not engender arbitrage conditions. Assuming an underlying
Variance Gamma statistical model, this study aims to test, using the FBST - Full Bayesian Sig-
nificance Test, if there is a relevant price difference between essentially the same financial asset
traded at two distinct locations. Specifically, we investigate and compare the behavior of call op-
tions on the BOVESPA Index traded at (a) the Equities Segment and (b) the Derivatives Segment of
BM&FBovespa. Our results seem to point out significant statistical differences. To what extent this
evidence is actually the expression of perennial arbitrage opportunities is still an open question.

Keywords: Non-Arbitrage; Options; Variance Gamma; Full Bayesian Significance Test.
PACS: 89.65.Gh

INTRODUCTION

The concept of arbitrage (profit without risk), or rather its non-occurrence, plays a key
role in finance theory. For non-arbitrage markets, under completeness and other standard
regularity conditions, it is possible to prove the Fundamental Theorem of Asset Pricing.
This theorem states the existence and uniqueness of a consistent pricing system for all
the market’s securities, when prices are expressed in a common numeraire asset (for
example, nominal dollar prices discounted by a basic interest rate structure over time).
Consistent current prices of an asset can then be computed as the expected value, with
respect to an equivalent risk neutral or martingale probability measure, of the asset’s
payoff structure, that is, a full description of the asset’s value in each of the possible
states of nature in the future.

More synthetically, as pointed out in the preface of [10], the Fundamental Theorem
of Asset Pricing states that, in a regular mathematical model for financial markets, the
non-arbitrage principle holds if and only if there is an equivalent probability measure
that makes prices martingale processes. For fundamental insights and interpretations of

1 The ideas presented in this article express the authors’ personal ideas, and not the view of any private or
public institution.
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these results, see also [6], [9], [11], [15], and [16]. For a much wider perspective of
equilibrium conditions in economical theory, see [17].

The objective of the study is to estimate and compare parameters of statistical distribu-
tions governing some specific assets. Using the FBST - the Full Bayesian Significance
Test, we check if there is a significant difference on the parameters estimated for the
same financial asset traded at two distinct markets. Detection of significant discrepancies
may indicate distinct behaviors of the participating agents in these markets, a difference
that, in turn, may generate arbitrage opportunities. Specifically, we will study contracts
that are traded at two distinct markets, namely options on the Bovespa Index, Ibovespa,
traded at (a) the Equities Segment and (b) the Derivatives Segment of BM&FBovespa.2

This paper is organized as follows: Section 2 introduces the Variance Gamma model,
used as the basis of our statistical analyses; Section 3 describes the FBST methodology
for testing the statistical significance of sharp hypotheses; Section 4 discusses the avail-
able empirical data bank; Section 5 covers empirical estimation procedures; Section 6
describes the implementation of MCMC algorithms used for numerical integration; and
Section 7 gives our conclusions and final remarks.

THE VARIANCE GAMMA PRICE MODEL

Modern theory of option pricing started with the work of [3] and [26], assuming the hy-
pothesis of normality for continuously compounded returns. Strong empirical evidence,
like volatility smiles and smirks or sporadical market crashes, suggested the need to
extend the theory to more general statistical models, exhibiting skewness, kurtosis and
time-varying volatility structures. Some early examples of such extended models of par-
ticular historical importance were given by [30] and [22]; for general overviews, see [5]
and [31].

The Variance Gamma (VG) model, initially presented in [24] and [23], and general-
ized in [22], has achieved in the past few years considerable popularity among financial
market quantitative traders. According to its authors, VG models can accommodate very
well the empirically observed volatility smiles as well as prize-for-asymmetry, by cali-
brating or estimating the model’s parameters related to kurtosis and skewness.

The VG process is an extension of the standard Ito process, characterized by constant
drift and diffusion, where time unfolds as a random variable following a stochastic
Gamma distribution. The basic intuition of this model is that “time” accounts for relevant
economic action, having as many random jumps as the market activity engenders. With
a few small changes in the terminology used in [22],

X(t;σ ,ν ,μ) = μ · γ(t;1,ν)+σ ·B(γ(t;1,ν)), (1)

in which X(t;σ ,ν ,μ) is the VG process, μ is its drift, σ is its volatility; and B(t) is a
standard Brownian Motion. Finally, the Gamma process with mean rate μ and variance

2 BM&FBovespa, created in 2008, through the integration between the SÆo Paulo Stock Exchange (Bolsa
de Valores de São Paulo) and the Brazilian Mercantile and Futures Exchange (Bolsa de Mercadorias e
Futuros), is the 3rd largest financial exchange worldwide.
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rate ν , γ(t;μ;ν), has independent gamma increments over non-overlapping time inter-
vals, g(h) = γ(t + h;μ;ν)− γ(t;μ;ν), following a gamma density with mean μh and
variance νh. This key compositional property in an expression of the reproductive prop-
erty for the Gamma distribution, as discussed in [28], and can be generalized to other
stochastic processes, see [33].

One appealing characteristic of the VG process is that it nests the Ito process (used in
the Black and Scholes model) as a special case. Moreover, conditional on the realization
of a random time change, g(t), the process X(t;σ ,ν ,μ) is normally distributed. Hence,
the unconditional density for the X process can be obtained integrating on the gamma
distributed increment,

f (X) =
∫ ∞

0

1
σ
√
2πg

exp
(−(X−μg)2

2σ2g

)
g

t
ν−1 exp

(−g
ν
)

ν
t
ν Γ

(
t
ν
) dg. (2)

Using the VG process to replace the standard geometric Brownian motion, it is
possible to greatly extend many standard models of dynamic evolution, and still obtain
tractable analytical or semi-analytical solutions. In particular, [22] extend the classical
Black-Scholes model expressing the evolution of a (fundamental) asset price as

S(t) = S(0) · exp(r · t+X(t;σ ,ν ,μ)+ω · t), (3)

in which the parameter ω = ν−1 · ln(1− μ · ν − σ2 · ν · 2−1) is determined so that
E[S(t)] = S(0) · exp(r · t), where r is the riskless interest rate.

In this setting, it can be shown that

[ln(E(S(t))/S(0))] = r · t or S(0) = E [S(t) · exp(−r · t)] ,
implying a compatibility with the general framework given by Fundamental Theorem of
Asset Pricing, as commented in the introduction.

In this framework, given a fundamental asset that follows a VG process, it is possible
to compute the price of a call option with strike value of K and maturing at time t:
Expressing this option price by the martingale condition, c(S(0);K, t) = exp(−r · t) ·
E[max[S(t)−K;0]]. Furthermore, [22] demonstrates that this mathematical expectation
can be analytically expressed as follows, where Ψ is a function defined in terms of
Second Order Modified Bessel Functions and degenerate hypergeometric functions of
two variables.

c(S(0);K, t) = S(0) ·Ψ
(
d ·

√
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ν
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t
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, (5)
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α = ζ · s , ζ =
−μ
σ2 , s=

σ√
1+

(μ
σ
)2 · ν

2

, (6)

c1 =
ν · (α + s)2

2
, c2 =

ν ·α2

2
. (7)

SHARP HYPOTHESES AND THE FBST

As explained in the introduction, we intend to test the validity of the non-arbitrage
condition in some Brazilian markets. In order to accomplish this task, we will analyze
price time-series for option contracts on the BOVESPA Index traded at (a) the Equities
Segment and (b) the Derivatives Segment of the BM&FBovespa Exchange. Specifically,
we will estimate and compare parametric models for these two price series using the VG
statistical model described in the last section. In this setting, our specific task is to test
the significance of a statistical hypothesis stating a compatibility condition for the two
price series under study.

If the two price series were unrelated, the corresponding and independent VG mod-
els would have six free parameters, namely, (σa,νa,μa) and (σb,νb,μb). However, as
explained in the previous sections, under the non-arbitrage condition, the following hy-
pothesis, H, expressed as a (vector) equality equation, must hold:

H : [σa,νa,μa] = [σb,νb,μb] .

This condition implies reducing by half the dimension (or degrees of freedom) of the pa-
rameter space under consideration. Hence, following this path, the abstract non-arbitrage
condition is translated into a concrete sharp statistical hypothesis in our statistical model.

Testing the significance of sharp hypotheses poses several technical and epistemolog-
ical difficulties for traditional Bayes Factors. The FBST was specially designed to give
a measure of the epistemic value of a sharp statistical hypothesis H, given the observa-
tions, that is, to give a measure of the value of evidence in support of H given by the
observations. This measure is given by the support function ev(H), the FBST e-value.

Let θ ∈ Θ ⊆ Rp be a vector parameter of interest, and p(x |θ) be the likelihood
associated to the observed data x, as in the standard statistical model. Under the Bayesian
paradigm the posterior density, pn(θ), is proportional to the product of the likelihood and
a prior density,

pn(θ) ∝ p(x |θ) p0(θ).
The (null) hypothesis H states that the parameter lies in the null set, defined by

inequality and equality constraints given by vector functions g and h in the parameter
space.

ΘH = {θ ∈Θ |g(θ)≤ 0∧h(θ) = 0}
From now on, we use a relaxed notation, writing H instead of ΘH . We are particularly
interested in sharp (precise) hypotheses, i.e., those in which there is at least one equality
constraint and hence, dim(H)< dim(Θ).
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The FBST defines ev(H), the e-value supporting (in favor of) the hypothesis H, and
ev(H), the e-value against H, as

s(θ) =
pn(θ)
r(θ)

, s∗ = s(θ ∗) = supθ∈H s(θ) , ŝ= s(θ̂) = supθ∈Θ s(θ) ,

T (v) = {θ ∈Θ |s(θ)≤ v} , W (v) =
∫
T (v)

pn (θ)dθ , ev(H) =W (s∗) ,

T (v) = Θ−T (v) , W (v) = 1−W (v) , ev(H) =W (s∗) = 1− ev(H) .

The function s(θ) is known as the posterior surprise relative to a given reference
density, r(θ). Its role in the FBST is to make ev(H) explicitly invariant under suitable
transformations on the coordinate system of the parameter space. The truth function,
W (v), is the cumulative surprise distribution.

The tangential (to the hypothesis) set T = T (s∗), is a Highest Relative Surprise Set
(HRSS). It contains the points of the parameter space with higher surprise, relative to
the reference density, than any point in the null set H. When r(θ) ∝ 1, the possibly
improper uniform density, T is the Posterior’s Highest Density Probability Set (HDPS)
tangential to the null set H. Small values of ev(H) indicate that the hypothesis traverses
high density regions, favoring the hypothesis.

Notice that, in the FBST definition, there is an optimization step and an integration
step. The optimization step follows a typical maximum probability argument, accord-
ing to which, “a system is best represented by its highest probability realization”. The
integration step extracts information from the system as a probability weighted aver-
age. Many inference procedures of classical statistics rely basically on maximization
operations, while many inference procedures of Bayesian statistics rely on integration
(or marginalization) operations. In order to achieve all its desired properies, the FBST
procedure has to use both, having a simple and intuitive geometric characterization.

In general, the optimization and integration steps are performed numerically. The
optimization step can be implemented using general porpose numerical optimization
algorithms, like [1] and [2]. The integration step, is often tailor coded for each specific
application using standard computational tools and techniques of Bayesian statistics
like Monte Carlo and Markov Chain Monte Carlo procedures, see [13] for a general
overview.

MARKET DATA

This study covers two options on Ibovespa (BOVESPA Index) spot, that are traded, re-
spectively, at the Equities Segment of the BM&FBovespa Exchange and at the Ibovespa
Futures at Derivatives Segment operated in the same institution. Regardless of some
fine contractual distinctions concerning the definition of the underlying asset for each of
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these options, the definition of their liquidation process at maturity depends on the same
economic variable, namely, the value of Ibovespa Settlement.3

The options at the Equities Segment are liquidated at maturity, according to the
difference between the Ibovespa Settlement and the strike of the option. Meanwhile, on
the expiration date, the parties in an option on Ibovespa Futures traded at the Derivatives
Segment take positions in Future Ibovespa contracts. However, according to the rules
of the Ibovespa Futures market, the underlying value that is traded in these contracts
is the same Ibovespa Settlement. Hence, on the expiration date, these Futures are also
liquidated accordingly to the Ibovespa Settlement. Thus, exercising the option on the
expiration date, the parties in this contract on Ibovespa Futures are also (implicitly)
assuming a liquidation according the difference between the Ibovespa Settlement and
the strike of the option. Besides this subtle difference, all other relevant aspects of the
options contracts are the same for both segments.

This study is based on market data for the aforementioned european call options
on Ibovespa within the two months period starting on 15/12/2012 and ending on
14/02/2012. This data was captured for the Equities Segment and Derivatives Segment
for strikes ranging from 54,000 to 72,000, with bands at 1,000 points. Because trading in
Ibovespa Future option at Derivatives Segment only becomes bulky two months before
its maturity, we considered only the contracts expiring in Feb./2012. In order to avoid
non-synchronization effects, we used data captured in trades close to the marking to
market call. The Ibovespa spot values were obtained near the time of each trade. In total
543 observations are available for analysis.

As a proxy of the Reference Interest Rate of the economy, we used the value of the
fixed rate implicit in DI Futures contracts traded at BM&FBovespa. When maturity dates
of the DI Futures differed from maturities dates of the options, the interest rates for the
options were estimated using an exponential interpolation based on the standard 252
business days convention.4

EMPIRICAL LIKELIHOOD AND ESTIMATION PROCEDURES

One of the standard approaches to perform a Bayesian analysis in finance econometrics,
is to formulate an empirical observation error model, combine it with the basic stochastic
models driving the price evolution of financial assets, and derive a joint empirical
likelihood function, see [7], [12], [20], [18] and [19].

This approach is used in [22] to estimate the parameters of the VG model. The
authors formulate a simple observation error model for observed prices, wi, relative
to theoretical model prices, ŵi, using an exponential multiplicative structure, wi =
ŵi exp(ηεi−η2/2), where εi stands for the standard white noise, that is, a zero-mean
unit-variance Gaussian process. According to [22], this formulation is well suited to
deal with heteroskedasticity in option prices for different strikes. The combined model

3 The Ibovespa Settlement is defined as the arithmetic mean of the BOVESPA Index in the three last hours
of trading of the last trading day, including the end of the closing call.
4 The source of the data on the options, DI Futures and Ibovespa spot was BM&FBovespa.
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TABLE 1. Median ML-Estimators for the VG-Model, 12/2011-02/2012.

Equities Segment Derivatives Segment

σ (Volatility) 0.4092 0.2519
ν (Kurtosis) 0.0001 0.0001
μ (Skewness) 0.1411 0.0234
Total Number of Observations 481 62

renders the following empirical log-likelihood function,

ln�=−1
2

M

∑
i=1

(
ln(wi)− ln(ŵi)

η
+

η
2

)2

−M · ln(2π)
2

−M · ln(η)−
M

∑
i=1

ln(wi), (8)

where

η =

√
2 · (

√
1+ k2−1) , k2 =

1
M
·

M

∑
i=1

(ln(wi)− ln(ŵi))
2 , (9)

M is the number of observations, wi stands for the i-th observation of the option’s price
in the market, and ŵi is the corresponding value calculated from the pricing model
presented in Equation 4.

The numerical maximization of Equation 8 would render, as optimal arguments, the
Maximum Likelihood or ML-estimators for this combined empirical model. However, in
this exploratory work, we use the easier to compute and asymptotically equivalent non-
linear least squares estimator that miminizes k, the sum-of-squares term in Equation 9.

Following this approach, we estimated approximate optimal parameters for options
traded at the Equities and Derivatives Segments, considering the databank described in
the last section, from 12/15/2011 to 14/02/2012, divided into ten blocks of weekly data.
The median of these ten block estimates are displayed in Table 1, apparently showing a
sensible dissimilarity between the two market segments. For example, considering the
parameters in Table 1, an annual interest of 10.34%, strike at 66,000 and the BOVESPA
Index trading at 61,820 pts, an option with 19 days to expiration would be priced
at approximately $189.00 on the Equities Segment and $193.00 on the Derivatives
Segment.

In Section 7 we will investigate the statistical significance of this apparent divergence
between the VG-model estimated parameters for the aforementioned trading segments.
The next section explains some technical details that are necessary for an efficient
numerical implementation of the FBST integration step.

MCMC IMPLEMENTATION

As explained in Section 3, the FBST methodology requires the computation of definite
integrals with the probability measure given by the posterior density for the statistical
model in study, pn(σ ,ν ,μ |W ), given the observed data, W . This section describes an
efficient implementation of a Markov Chain Monte Carlo used to compute the required
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integrals, see [14] for general surveys and overviews of MCMC algorithms and their
application in Bayesian Statistics.

The implementation of our MCMC is based in a hierarchical combination of the Gibbs
and Metropolis-Hastings algorithms, used to generate a random sample, (σ ,ν ,μ)(k),
k = 1 . . .m, according to the desired posterior density, see [8].

At the higher level, the MCMC uses a Gibbs sampling procedure following a cyclic
chain along conditional posterior densities, that is,

σ (k+1) ∼ pn(σ |W,ν(k),μ(k)) , (10)

ν(k+1) ∼ pn(ν |W,σ (k+1),μ(k)) , (11)

μ(k+1) ∼ pn(μ |W,σ (k+1),ν(k+1)) . (12)

At each step of the Gibbs chain, one still has to sample from non-standard, although
univariate, statistical distributions. This task is performed by a lower level sampling
method based on the Metropolis-Hastings algorithm. This Metropolis-Hastings proce-
dure uses a dynamically adjusted Gaussian kernel, N(0,ξ ), for generating random pro-
posals, followed by the standard acceptance/rejection phase.

The numerical simulations in this article had, at the higher hierarchical level, the burn-
in period, spacing among realizations and sample size, pre-set at, respectively, 200,
10 and 500. Fine tuning of these parameters for the very best performance in FBST
applications, can be accomplished using the error control method presented in [21].

CONCLUSIONS AND FINAL REMARKS

In the preceding sections we defined a coherent framework for testing the non-arbitrage
condition in some financial markets based on:

1. the Fundamental Theorem of Asset Pricing;
2. the Variance Gamma stochastic model for price evolution of a fundamental asset

and the associated formula for pricing european options;
3. a carefully defined empirical likelihood function well suited for data analysis in

financial econometrics;
4. the Full Bayesian significance test methodology;
5. the efficient implementation of computational algorithms; and
6. a carefully assembled data bank with price series of options on the BOVESPA

Index traded at (a) the Equities segment and (b) the Derivatives Segment of the
BM&FBovespa Exchange.

A direct translation of the non-arbitrage hypothesis presented in section 3 requires
the optimization of a six-parameter model under a three dimensional vector constraint,
followed by a six-dimensional integration operation. In this exploratory work, we will
test a pair of much simpler hypotheses, namely, the point hypothesis stating that: Hab:
the “true” parameters for the price model in segment (a) are equal to the maximum
likelihood estimates obtained in segment (b), and vice-versa, namely, the hypothesis
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TABLE 2. e-values supporting com-
plentary point hypotheses of non-arbitrage
for two distinct Ibovespa market segments.

Hab Hba

e-value of H 0.242 0.066

Hba stating the converse situation. Table 2 presents the FBST e-value supporting these
two hypotheses.

The computed e-values do not support either of the two complementary point hy-
potheses. The following empirical observation seems to corroborate this conclusion,
pointing to divergent behavioral patterns for the agents participating in the two mar-
ket segments: While trade at Equities Segment seems to be more evenly distributed over
time, at the Derivatives segment it peaks around one month before expiration.

To what extent the statistical evidence obtained in this study actually expresses a
perennial arbitrage opportunity between the two market segments is still an open ques-
tion. However, our study seems to indicate that, at some moments, traders in the two
segments appear to price the same future payoff structure differently, suggesting that, at
least at these specific moments, real arbitrage opportunities could be found.
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