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Objectivity and Underdetermination in Statistical Model Selection

Abstract:
The growing range of methods for statistical model selection is inspiring new debates about how 
to handle the potential for conflicting results. While many factors enter into choosing a model 
selection method, we focus on the implications of disagreements among scientists about whether, 
and in what sense, the true probability distribution is included in the candidate set of models. 
While this question can be addressed empirically, data often provide inconclusive results in 
practice. In such cases, we argue that differences in prior metaphysical beliefs can produce 
underdetermination of results, even for the same data and candidate models. As a result, data 
alone are sometimes insufficient to settle rational beliefs about nature.
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1. Introduction

In the last several decades, classical hypothesis tests and especially p-values have come 
under heavy criticism from a number of directions (e.g., Wagenmakers 2007; Halsey 2019). 
Since landmark results by Hirotugu Akaike (Parzen et al. 1998), many scientists have adopted a 
new approach based on information-theoretic methods, which do not rely on error probabilities 
such as p-values; instead, these methods select models based on their relative ranking of 
goodness of fit to the data. In general, these methods invoke different conceptions of evidence 
and do not lead to the same answers. Efforts to settle on one option as generally best, however, 
have not produced a definitive consensus (Chakraborty and Ghosh 2011). As a result, scientists 
must determine which of the available model selection methods they should use relative to their 
question and background knowledge. Making this choice in an objective way has become a 
pressing methodological challenge for multiple disciplines, including ecology, economics, 
psychology, and evolutionary biology (Burnham and Anderson 2002; Wagenmakers and Farrell 
2004; Spanos 2010; Aho et al. 2014). 

An important factor in these discussions is whether, and in what sense, one believes the 
set of candidate models to contain the true distribution (Yang 2007; Anderson 2008; Clarke et al. 
2013; Aho et al. 2014; Ding et al. 2018b). Pointedly, note that this is a relational property of the 
candidate model set, not any particular model selection method. The existing philosophical 
literature, by contrast, focuses on issues regarding particular methods, such as the Akaike 
Information Criterion (AIC), and whether its statistical behavior can be interpreted as consistent 
with a realist or instrumentalist worldview. Our topic here is methodologically prior—it concerns 
how the relation of the true distribution to the set of candidate models informs the applicability 
of these methods in the first place. 

When the available data leave uncertainty about the relation of the candidate models to 
the true distribution, scientists in many cases attempt to settle the issue by invoking prior 
metaphysical beliefs about nature, by which we mean fairly abstract, general expectations about 
how their systems of study behave (e.g., Anderson 2008; Aho et al. 2014). This opens the door to 
disagreements about the choice of method based on conflicting views about whether, for 
example, nature is simple enough or too complex for any finite set of models to adequately 
represent. Because different model selection methods do not in general return identical results, 
scientists consequently may find themselves disagreeing about which hypothesis is best 
supported even for the same dataset and candidate models.

We will argue this conclusion represents a novel type of underdetermination problem, 
which we call the problem of unequal evidence, and poses an important challenge, as yet 
overlooked by philosophers, for the objectivity of model selection. We use objectivity here in the 
sense of being impartial, i.e., that the personal opinions or assumptions of scientists don’t 
influence the practice of model selection in a way that predisposes the outcomes (Longino 1990). 
The pursuit of impartiality was an important historical motivation for introducing model 
selection in our case study below, but we do not take a position here on general discussions of 
the meanings and value of objectivity in science. In particular, we will focus on conflicts arising 
out of methodologies using Akaike’s Information Criterion, the Bayesian Information Criterion 
(BIC), and severe testing (Mayo and Spanos 2006). We will not address Bayesian methodology 
in depth due to limitations of space. We start by introducing the problem of unequal evidence in 
general terms and then provide a motivating example from paleobiology. To achieve a rigorous 
demonstration of the actual workings at issue, we then show in more technical detail how the 
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unequal evidence problem is grounded in general features of contemporary model selection 
practice and theory.

2. The Problem of Unequal Evidence

In this section, we introduce the problem of unequal evidence and highlight its novel 
features in the context of recent practice-oriented work on underdetermination. Our account 
concerns a relationship between method and models plus data, and thus differs from the more 
common account of underdetermination as a relationship between hypotheses and evidence. We 
start by assuming a shared set of observations and models, where the models represent 
alternative hypotheses about the process causally responsible for generating the observations. We 
posit that these observations and models are shared by a group of scientists in a given research 
area who are all interested in determining which model is best supported by the evidence but 
who disagree about the whether the candidate models contain the true distribution as a result of 
prior beliefs about nature. We show how disagreement on this point leads to alternative choices 
of model selection methods, which generally do not return equivalent judgments about the 
evidence. The definition of the problem of unequal evidence is then that the data turn out to be 
insufficient to determine a single correct result because differences in prior assumptions about 
nature, even considering the same data and candidate models, lead to unequal judgments of 
evidence. 

In practice, scientists have many reasons for disagreeing about which method is the 
correct one to use, but one issue in particular — whether the true process is represented among 
the candidate models — is both commonly cited (Burnham and Anderson 2002; Johnson and 
Omland 2004; Wagenmakers and Farrell 2004; Spanos 2010; Aho et al. 2014) and especially 
relevant to underdetermination. Key statistical theorems about the optimality of existing 
statistical model selection methods depend on assumptions about the relation of the entire set of 
candidate models to the true process, in a sense that we define more precisely in Section 5. These 
assumptions must be met for the methods to generate sound conclusions. While the adequacy of 
the candidate models for explaining the observed data is sometimes possible to determine 
empirically, e.g., through model misspecification testing, in many cases the evidence is 
inconclusive or the relevant tests are unavailable or simply intractable. The resulting uncertainty 
leaves an important gap in the empirical basis for determining which method or methods apply. 
Figure 1 illustrates the logical flow of how underdetermination arises in this scenario. In 
particular, we show in Section 6 that scientists invoke prior beliefs about nature to settle the 
adequacy of the candidate models on general grounds.  

The problem of unequal evidence represents a novel form of underdetermination in 
several respects. While underdetermination has classically been viewed as a challenge to 
scientific realism, our interest will be in what this novel formulation can illuminate about how 
science works. Philosopher Derek Turner nicely characterizes this recent shift in motivation for 
studying underdetermination: 

“Philosophers of science have moved away from the general question whether 
scientific theories are always underdetermined by the evidence in order to focus 
on more localized epistemological problems… The philosophers who have taken 
this new approach are less interested in making a priori arguments about science 
in general, such as the argument for the Duhem-Quine thesis, and more interested 
in looking at the ways in which smaller-scale underdetermination problems make 
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a difference to scientific practice… How often do these underdetermination 
problems crop up? When they do crop up, what is their source? How do (and how 
should) scientists deal with them?” (Turner 2011, 147-8). 

We introduce the problem of unequal evidence in this practice-oriented spirit, but we note that 
the problem’s origin in statistical methodology also gives it exceptionally broad relevance across 
scientific domains.

Classically, philosophers have formulated underdetermination as a problematic 
relationship between a set of hypotheses and a set of evidence such that the evidence fails to 
decide among the hypotheses (Stanford 2017). Our formulation is novel in focusing on the 
relationship between a method of model selection and a set of models and data. The root problem 
in this formulation is that even a shared set of models and data can prove insufficient to 
determine the choice of method, leaving a scientist’s empirical results sensitive to background 
views about, for instance, the relative simplicity or complexity of nature. Note that 
underdetermination in this case does not arise because different metaphysical beliefs lead to 
different construals of the same model, e.g., as causal or merely correlational, and hence to 
different judgments being made about the supporting evidence.1 The problem of unequal 
evidence can arise even for identical data and interpretations of the candidate models.

The role of metaphysical beliefs is instead most analogous to using values already held 
by different scientists to break an empirical tie among theories. What must be appreciated is that 
it happens at the methodologically prior stage of choosing which method to use in quantifying 
evidence for the theories. Indeed, many arguments in the classical underdetermination debate 
presuppose that problems only arise when two or more theories are equally well supported by the 
evidence, e.g., debates over whether any two theories in the history of science have ever actually 
been equally well supported (Laudan and Leplin 1991) or whether equally good alternatives can 
always be constructed for any theory (Kukla 1996). These are precisely not the problem in the 
scenario we described, which arises as a result of finding unequal evidence for the models.

Another novel feature is that the problem of unequal evidence concerns what happens 
when a plurality of statistical methods are operating simultaneously in a community of scientists 
all working on similar kinds of problems. While philosophers have investigated 
underdetermination in light of multiple conceptions of evidence, including deductive 
falsification, Bayesian credence, and statistical likelihood, they have generally treated each 
conception in isolation (e.g., Dorling 1979; Kieseppä 2001; Spanos 2010). Some notable 
exceptions include Michael Dietrich and Robert Skipper Jr.’s use of debates over theories of 
molecular evolution to show how evolutionary biologists sought to “manipulate 
underdetermination” by arguing for differently weighted assessment strategies in order to both 
create and break ties between competing models (Dietrich and Skipper 2007). Samir Okasha has 
also argued that the distinction between theory and data can only be drawn contextually, which 
blocks any single all-purpose way of determining whether theories share identical sets of 
empirically testable consequences (Okasha 2002). Additionally, Elliott Sober has shown that the 
holistic character of falsification under deductive logic fails to hold for hypothesis testing using 
statistical likelihood (Sober 2004). 

None of these papers, however, directly raise the possibility that prior metaphysical views 
may justify principled disagreements about how to quantify evidence even when scientists share 
the same data and candidate models. Malcolm Forster captures the general spirit of the challenge 

1 By metaphysical belief, recall that we mean an abstract, general expectation about how nature is. See also Section 
7.
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we are raising here: “There is no simple and no universal model of model selection, for the 
success of a selection method depends greatly on the circumstances, and to understand the 
complexities, we have to model the situation in which the model selection takes place. For 
philosophers of science, this is like making assumptions about the uniformity of nature in order 
understand how induction works. The problem is the same: How can we make assumptions that 
don’t simply assume what we want to prove?” (Forster 2002, 87). The novelty of the unequal 
evidence problem in this respect is therefore to highlight the importance of an overlooked 
premise — whether the candidate models contain the true distribution — for determining what 
evidence the data provide. Given conflicting assumptions about the behavior of the natural 
system, conceptual critique is crucial to ensuring the objectivity of model selection as a shared 
social practice (Longino 1990, Chapter 4).

The problem of unequal evidence therefore hinges on the implications of disagreement 
about the natural system for the adequacy of the candidate model set and hence the applicability 
of alternative model selection methods. While the unequal evidence problem therefore shares 
some features of Stanford’s (2006) unconceived alternatives argument, it does not rely on 
historical inductions about how science changes over time. Stanford argues that the historical 
record of scientific change shows that at any point in time there are hypotheses scientists have 
not yet conceived of but would agree are as equally good as or better than the ones they already 
have. As a result, Stanford concludes we should never be confident that our present set of 
hypotheses contains the true theory of nature. While he arrives at a global conclusion about the 
inadequacy of any candidate set, we focus on disagreement on precisely this issue among 
scientists in particular statistical analyses. The problem of unequal evidence therefore articulates 
a general but not a priori way in which potentially persistent underdetermination can arise in 
local scientific practices.

3. Unequal Evidence in Paleobiology: A Motivating Example

This section provides a case study in paleobiology illustrating the conditions needed for 
the problem of unequal evidence to arise in practice. For our purposes, paleobiology is a field 
that studies evolutionary changes on large time scales using fossil and other data sources (Currie 
2019). The field has been an emerging focus for philosophers studying underdetermination in 
practice, with a number of recent studies examining data models (Bokulich 2018), fossil 
specimen preparation (Wylie 2019), and testing hypotheses about evolutionary events (Cleland 
2001; Turner 2011). Our case study adds to this literature by examining paleobiologists’ 
practices for classifying patterns of change in the traits of fossil lineages according to the 
qualitatively distinct “modes” of behavior they exhibit over geologic time series.

The challenge and importance of classifying these patterns has its roots in the debate over 
punctuated equilibrium versus neo-Darwinian gradualism in the 1970s (Eldredge and Gould 
1972; Sepkoski 2012), and traces some of its key concepts back to George Gaylord Simpson’s 
classic Tempo and Mode in Evolution (Simpson 1944). According to the punctuated equilibrium 
theory, most evolutionary change is concentrated during the phylogenetic branching of lineages 
in rapid bursts of speciation. Much longer episodes of relative morphological invariance, or 
stasis, follow speciation events. This evolutionary mode contrasts with incremental directional 
change within and between related lineages (gradualism), and sometimes with lineage patterns 
that cannot be distinguished from random trends. 

Page 5 of 22

https://mc.manuscriptcentral.com/thebjps

Manuscripts submitted to The British Journal for the Philosophy of Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

6

But how to identify these patterns in an objective way and “test” their relative dominance 
in the fossil record? The relevant data consists of traits of species measured in sequences of fossil 
populations in successive sedimentary layers from a given locality or region (Gould and 
Eldredge 1977; Gingerich 1985). When measurements are available from multiple specimen 
populations from the same lineage over time, paleobiologists can construct a time series based on 
the population averages and variances at different time horizons. Example traits include the 
curvature of mollusk shells and the width of mammal molar teeth, and some example time series 
are shown in Figure 2. The data scientists have accumulated currently includes traits from 
several hundred fossil lineages, and these are broadly accepted in the field, ongoing 
methodological challenges with analyzing the underlying fossil record notwithstanding.2

Given a shared dataset, however, paleobiologists have applied multiple distinct statistical 
approaches to classifying individual time series (Lidgard and Hopkins 2015). Early statistical 
analyses applied null models to test if a trait exhibited a pattern of change over time that differed 
significantly from Brownian motion (also known as a random walk), but these suffered from low 
statistical power (Roopnarine 2001; Sheets and Mitchell 2001). In the early 2000s, Gene Hunt 
introduced a novel approach based on information-theoretic model selection using the AIC (Hunt 
2006, 2007). His approach classifies a time series by selecting one among several models of 
evolutionary mode (stasis, gradualism, Brownian motion) that shows the highest goodness of fit, 
as measured by a version of the AIC. However, it does not conduct a hypothesis test in the sense 
of requiring the evidence for the best model to surpass a threshold limit on the probability of 
false positives (i.e., Type 1 errors). The BIC could also serve to pick out the true model in this 
context, although it hasn’t been applied in practice yet. 

Hopkins and Lidgard (2012) adapted Hunt’s methods by requiring the best model to be 
substantially better supported than the next best model according to a rule of thumb threshold. 
This is similar in spirit to controlling the false positive rate of a hypothesis test but in practice 
does not map directly onto Type 1 or 2 errors (Cullan et al. 2020). More recently, Kjetil Voje has 
further developed Hunt’s approach by incorporating a set of misspecification tests to help 
determine whether the best-fitting model’s statistical assumptions are also consistent with the 
observed data (Voje 2018). Finally, Cullan et al. (2020) have introduced a novel method for 
hypothesis testing that enables control of the Type 1 error rate but does not require null models. 

Behind this proliferation of approaches lie deeper theoretical questions about how one 
should analyze the statistical evidence provided by fossil trait time series. Hunt’s adoption of the 
AIC led a quiet shift away from paleobiology's prior emphasis on using error probabilities in 
classical hypothesis testing to quantify the evidence for a model. As we’ll see in more detail 
below, the AIC has no fixed interpretation in terms of error probabilities across contexts of 
application (Ding et al. 2018b). Hopkins and Lidgard, by contrast, relied on Akaike weights, 
which some have argued are interpretable as the probability of a model being true (Burnham and 
Anderson 2002). Voje’s approach, by contrast, combines a goodness-of-fit criterion (the AIC) 
with null hypothesis tests for model adequacy. Cullan et al. (2020) have reintroduced a focus on 
error probabilities as a way to quantify evidence for the best model; their procedure generalizes 
beyond the classical basis of hypothesis tests in likelihood ratios.

Which method and associated conception of evidence is correct? As we’ll argue more 
generally below, it depends on how one construes the relationship of the probability models to 
the real data-generating processes. While everyone recognizes even the most complex models 

2 Data models are very important in this context but outside the scope of our discussion. 
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used by Hunt et al. are vastly simplified compared to the full evolutionary processes, Voje takes 
the stasis model, for example, to accurately represent some of the trait time series at a coarse-
grained level. In this case, it is sensible to ask whether some coarse-grain mathematical function 
of the true probability distribution is contained in one of the candidate models. Alternatively, 
Hunt et al. (2015) treated their suite of models as providing first-order approximations to time 
trends in the observed fossil traits. One way to interpret this stance is that the candidate models 
come “close” to but do not strictly include even a coarse-grained representation of the true 
process. It is reasonable, then, to ask which model contains the distribution that best 
approximates the observed data. Even so, there are alternative ways to construe what it means to 
best approximate the data, and these correspond to different ways of quantifying evidence.

In sum, while the introduction of statistical methods has arguably advanced scientists’ 
ability to impartially detect trends in fossil traits, a plurality of methods are in current use which 
quantify evidence in conflicting ways and make different assumptions about the adequacy of the 
candidate model set relative to the true distribution. Considerable empirical uncertainty remains 
about this latter question, leaving the door open to scientists to choose one method for their 
analyses based on prior beliefs about the simplicity versus complexity of macroevolutionary 
processes relative to the available models. The choice of method does lead to conflicting results 
for analyses of particular trait data (Cullan et al. 2020), and its impact on broader conclusions 
about the importance of punctuated equilibrium are unknown. As a result, the case provides an 
example of how the problem of unequal evidence can arise in scientific practice. 

4. Evidence in Statistical Model Selection

We now present a more general analysis of how the problem of unequal evidence can 
arise with current model selection methods. We start by introducing in more detail some 
common ways scientists quantify evidence using the AIC, BIC, Akaike weights, and error 
statistical severity of a test. Our discussion is inspired by common practices of scientists (e.g., 
Wagenmakers and Farrell 2004; Hunt 2007). Even so, our intention is more modest than 
expansive; we do not aim to address the full range of possible interpretations of these methods in 
light of philosophical positions on the nature of probability and interpretation of statistical 
models. What matters for our argument is that the problem of unequal evidence can arise among 
at least some positions on these issues as relevant to scientific practice. This section shows that 
alternative ways of quantifying the support for the same candidate models and data can differ 
(most vividly) to the degree that they select entirely different models as best. Crucially, the issue 
is not that models have different numerical scores under alternative methods (as these are not 
especially meaningful in isolation), but that differences in AIC or BIC scores, for example, can 
lead to substantially different judgments about evidence.

The basic setup of statistical model selection includes a set of parametric probability 
models M1, M2, … Mk whose parameters index non-redundant spaces of probability 
distributions. The general purpose of model selection in this context would be to identify which 
of the models contains the distribution that performs best relative to the goal of the statistical 
analysis, which may be predictive accuracy on new data or correctly identifying the process that 
generated the observed data. For example, we could have three regression models: 

, 𝑌 = 𝜇 + 𝛽1𝑋 + 𝜖
,𝑌 = 𝜇 + 𝛽1𝑋 + 𝛽2𝑋2 +𝜖

, 𝑌 = 𝜇 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 +𝜖
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where Y is the response variable, X is a single covariate, and , 1 … 3 are parameters. These 
models overlap but are not redundant because they include different sets of probability 
distributions (in a model-theoretic sense). Being clear up front about the goal of selecting a 
model is important: the most complex model might be true, but for small sample sizes a simpler 
model may still provide better predictive accuracy due to smaller errors in its estimated 
parameters.

Given data D, the first step is to estimate parameter values for each model, for example 
using maximum likelihood. This identifies a single probability distribution from each model that 
will stand for that model during the selection process. Maximum likelihood estimation also 
provides us with a measure of how well the model accounts for the data, i.e., the likelihood of the 
data given the model. In a generic case where each model Mi has parameters i, it’s common to 
write this likelihood as . The likelihood is central to most information criteria, such as the 𝐿(𝐷,θi)
AIC and BIC, as well as hypothesis testing (e.g., likelihood ratio tests).

 Akaike’s work on the AIC initiated a deep transformation in statistics toward 
information theory as a foundation for statistical inference. In particular, the AIC is based on the 
Kullback-Leibler (KL) divergence as a way of quantifying the differences between two 
probability distributions (Burnham and Anderson 2002):

𝐷𝐾𝐿(𝑓,𝑔) = ∫
∞

―∞
𝑓(𝑥) ∗ log (𝑓(𝑥)

𝑔(𝑥))𝑑𝑥

The KL divergence quantifies the degree to which continuous distribution g can be substituted 
for f. For example, we can think of f to be the true distribution and g to be a candidate 
distribution from one of our models. The logarithm term in the integral compares these two 
functions over all values of x, and returns a non-zero value when f and g are unequal. To get the 
overall divergence, any differences are weighted against the probability density of f at that value 
of x and summed. The KL divergence is zero if and only if the two continuous distributions are 
equal, and otherwise takes on positive values.

The AIC provides a statistical estimate of the KL divergence between the true and 
proposed distributions. It is defined as follows:

𝐴𝐼𝐶𝑖 = ―2ln (𝐿𝑖) + 2𝑘𝑖.
Here ki stands for the number of model parameters in model Mi, and  is the estimated likelihood 𝐿i
of Mi based on maximum likelihood estimates  for the parameters . A lower AIC score means 𝜃i 𝜃𝑖
a better match between the model and the true distribution. The first term of the equation is a 
function of the model likelihood, and the second term accounts for the fact that models with 
more parameters tend to fit data better. This latter term is commonly called a “complexity 
penalty” in the literature. In the derivation of the AIC, it arises as a first-order correction that 
ensures the AIC is an unbiased estimator of the KL divergence when the true data generating 
distribution is inside or close to one of the models in the model set. When the true distribution is 
far from any of the models, the Takeuchi Information Criterion (TIC) provides a generalized 
approach using the same principles as the AIC, but it is unfortunately hard to calculate in 
practice (Burnham and Anderson 2002). For cases with small sample sizes relative to the number 
of model parameters (e.g., N=20 and k=5), there is a corrected version of the AIC, called the 
AICc, which tweaks the complexity penalty above (Burnham and Anderson 2002).

The key difference between the BIC and AIC is in their complexity penalty. While the 
AIC’s penalty stays the same for any sample size n, the BIC’s penalty grows logarithmically 
with n: 
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𝐵𝐼𝐶𝑖 = ―2ln (𝐿𝑖) + 𝑘𝑖ln (𝑛).
This greater penalty on complexity has the effect of tending to pick simpler models than the AIC 
because it amplifies the difference between models with different numbers of parameters. This 
effect has the virtue of making the BIC statistically consistent: when two models both contain the 
true distribution but differ in complexity, the BIC will pick the simpler model asymptotically. In 
contrast, the AIC will pick the more complex model with non-zero probability even as the 
sample size increases to infinity.

Despite their differences in how they penalize model complexity, the AIC and BIC both 
share the same underlying formula for statistical evidence: calculating the difference of scores 
between the best and second-best models. In other words, if the true data generating distribution 
is f(x) and we have two competing models g1(x) and g2(x), we can measure the evidence 
supporting g1 versus g2 by taking the difference between their AIC or BIC scores, denoted AIC 
and BIC. This is a generalization of the classical likelihood ratio (which is equivalent to the 
difference of log-likelihoods), and reduces mathematically to it in certain cases (Royall 1997). 
There is no general principled threshold at which one model is definitively better supported, but 
Burnham and Anderson (2002) suggested a common rule of thumb that assigns weak evidence 
when AIC > 2 and strong evidence when AIC > 10.

Two other conceptions of evidence are also relevant for our purposes: Akaike weights 
and severe testing. Both aim to say something more directly interpretable about the probability of 
making a correct or incorrect choice of model. Akaike weights are based on the AIC values for 
each model compared to the best-scoring model, and normalize how well any model performs 
relative to the candidate set as a whole. For a more detailed introduction and definition, see 
(Burnham and Anderson 2002). Several scientists, including Akaike himself, have argued that 
these weights can be interpreted as a model’s probability of being correct given the data, i.e. that 
it has the smallest KL divergence to the true distribution among the candidates (Akaike 1981; 
Burnham and Anderson 2002; Wagenmakers and Farrell 2004). Akaike proposed the weights 
serve as an approximation to a posterior model probability in a Bayesian context, but they have 
also been applied much more widely. In any case, treating a model’s Akaike weight as the 
probability the model is correct provides a very different way than AIC to understand the 
evidence for candidate models. If we select a model based on its weight exceeding some fixed 
threshold, e.g., 0.95, then we have implicitly relativized this threshold to the set of candidate 
models we are considering. However, this dependence on the candidate set drops out if we 
compare the ratio of Akaike weights for the best and second-best models, as Hopkins and 
Lidgard (2012) did in the example from paleobiology above.

Error statistics provides a third way of conceptualizing evidence for a model, in this case 
in terms of severe testing: “Data x0 in test T provide good evidence for inferring [hypothesis] H 
(just) to the extent that H passes severely with x0, i.e., to the extent that H would (very probably) 
not have survived the test so well were H false” (Mayo and Spanos 2006, 328). Instead of using 
the AIC to quantify the relative “closeness” of models to the true distribution, severity is based 
on the probability of making an incorrect choice between models during the selection procedure. 
In the simple setting of Neyman-Pearson testing, there are two types of error to consider: a false 
positive (type 1), where the null model is incorrectly rejected in favor of the alternative; and a 
false negative (type 2), where the alternative model is true but the null fails to be rejected. A 
severe test should minimally ensure that the probability of a false positive is low, but it ideally 
should also have a low probability of false negatives.
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Severe testing, Akaike weights, and AIC are not equivalent. For example, Spanos 
(2010) gives a simple example of selecting between two alternative regression models. In this 
setting, the decision procedure of selecting the model with the lowest AIC score can be translated 
into an F-test where we can compute the corresponding error probabilities analytically. The Type 
1 error probability turns out to be 0.18, considerably higher than conventional standard of 0.05 or 
smaller. The bigger problem, though, is that the same procedure (e.g., choose the model with the 
lowest AIC) will translate into potentially very different Type 1 and 2 errors if we change the 
model set, estimated model parameters, and sample size. While it’s possible to construct a local 
mapping between model selection decision thresholds relative to a particular target system, 
associated set of data, and candidate models (e.g., Bandyopadhyay and Boik 1999), no general 
mathematical description of this mapping exists across all such contexts. Moreover, the 
availability of such a general mapping would not eliminate actual differences in practice, as 
scientists using alternative procedures may not be able to agree on a single appropriate threshold. 
For example, Hunt et al. (2015) used a ratio threshold for Akaike weights that does not translate 
into conventionally acceptable alpha levels for error statistics (Cullan et al. 2020). What matters 
is that scientists’ disagreement about the appropriate effective threshold (even given a local 
mapping between AIC, BIC, etc.) can lead to conflicting conclusions about the best model.

5. Containing the true distribution

The applicability of the model selection methods we’ve described depends in part on a 
crucial fact about the set of candidate models: among all the distributions these models contain, 
is one of them the true one? Although this question is easy to state informally, giving a precise 
answer involves some considerable complications. In this section, we distinguish three senses in 
which a model “includes” or “contains” a distribution: 

1. A model contains multiple probability distributions in an abstract, mathematical sense
2. A model contains the true distribution
3. An infinite sequence of models contains a sequence of distributions converging on the 

true distribution
The second and third senses in particular will prove crucial to articulating how prior beliefs 
about the metaphysics of a phenomenon can inform the choice of a model selection method. 

Meaning 1 (abstract mathematical): a parametric probability model typically contains 
infinitely many probability distributions, indexed by unique combinations of parameter values. 
The distribution and model in this context are both abstract mathematical objects and are related 
by membership in the standard set theoretic sense. As such, they lack a semantic interpretation as 
referring to data-generating processes in the world.

Meaning 2 (finite model): This sense of a model “containing” a probability distribution 
requires us to link the model as a mathematical object to a data-generating process in the world. 
We will assume here that we have access to an arbitrarily large dataset drawn from independent 
and identically distributed (i.i.d.) random variables with continuous values. More concretely, we 
could exactly replicate an experimental setup as many times as we want to generate a dataset 
where each observation is not influenced by any others (independence), comes from the same 
probability distribution (identical distribution), and is represented by a real number (continuous-
valued).

In this context, we can define an empirical cumulative distribution using the observed 
data and examine how it behaves as the sample goes to infinity:
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𝐹𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖 = 1

𝐼(𝑋𝑖 ≤ 𝑥)

Given a sample size of n observations, denoted X1 … Xn,  counts up the number of 𝐹𝑛(𝑥)
observations with values less than or equal to x and assigns them each a probability of . The 

1
𝑛

function  inside the summation is an indicator variable that returns the value 1 when 𝐼(𝑋𝑖 ≤ 𝑥) 𝑋𝑖

. The function  therefore estimates how fast or slow the observed values stack up as a ≤ 𝑥 𝐹𝑛(𝑥)
function of x. Given our assumption that the random variables are i.i.d. and continuous-valued, 
we know that  converges to the true cumulative distribution function  as n goes to 𝐹𝑛(𝑥) 𝐹(𝑥)
infinity.

We can now define the true distribution to be the one on which the empirical cumulative 
distribution converges (in probability) as the sample size goes to infinity. To say that a finite set 
of models includes the true distribution is then to assert that some distribution contained by one 
of the models has an identical cumulative distribution to the one on which the empirical 
cumulative distribution function converges. One way to operationalize the notion of identical 
distributions is the KL divergence we introduced in Section 3. The model-specified distribution 
is then identical to the true distribution if the KL divergence between their cumulative 
distributions is zero. Qualitatively, this means they are perfectly interchangeable in terms of their 
predictive information content.

Meaning 3 (infinite models): In this case, we consider what it means for a countably 
infinite set of models to include a probability distribution. We will be interested in cases where 
we have a countably infinite sequence of models, such as regression polynomials or time series 
models, but the true distribution is not included in any finite subset of this sequence. 
Nonetheless, there can be a sense in which the infinite sequence of models comes “arbitrarily 
close” to the true distribution, much as a sequence of rational numbers can come arbitrarily close 
to an irrational real number. 

Let f be the true probability distribution and Mi be a countably infinite sequence of 
models for i from 1 to positive infinity. Then we can say that f is contained in the infinite model 
set Mi if and only if for any epsilon of KL divergence, there exists a distribution g in Mi such 𝜖 
that . We can also define what it means for a distribution to be contained in a finite 𝐾𝐿(𝑓,𝑔) ≤ 𝜖
subset of the Mi. Consider the limit of the empirical cumulative distribution as defined above. 
This limiting distribution F is contained in a finite subset of the Mi if and only if there exists a 
positive integer N such that  for some cumulative distribution GN of a probability 𝐾𝐿(𝐹,𝐺𝑁) = 0
distribution in model MN. In the case where no finite subset is adequate, the minimum KL 
divergence for all distributions in M1 to MN may get arbitrarily small as N increases to positive 
infinity, but it never equals zero.

6. Views on the candidate model set

In this section, we articulate four distinct views a scientist may take on the adequacy of the 
candidate model set with respect to including the true distribution. We limit our discussion to the 
typical scenario where a scientist aims to evaluate a finite set of candidate parametric models. 
We then show how these positions figure in justifying alternative understandings of the purpose 
of model selection and views on the correct choice of method.
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Building on the results of the previous section, we can distinguish four positions 
regarding the adequacy of a candidate model set as follows:

1. The true distribution is contained in the finite set of candidate models.
2. The true distribution is not contained in the finite candidate set, but there exists another 

finite model set that does include the true distribution.
3. The true distribution is not contained in any finite model set, but it is contained in a 

specifiable infinite model set.
4. The true distribution is not contained in any finite or infinite model set.

In trying to determine which view is correct for some situation, data can provide relevant 
empirical evidence for one option over the others. Misspecification testing, for instance, provides 
a basis for rejecting parametric models whose modeling assumptions are not well supported by 
the data. In the paleobiology example, Voje (2018) defined null hypothesis tests based on 
whether the data is consistent with fixed means, independent error residuals, and constant 
variance. If the test statistic is improbable according to the null model, this supports the claim the 
true distribution is not contained in the null model. 

For information-theoretic methods, a new tool called the parametricness index is able to 
quantify the extent to which the data single out one model as best (Liu and Yang 2011; Ding et 
al. 2018a). Given a countably infinite sequence of models, the parametricness index looks at how 
fast the best model improves with increasing sample size relative to models with one fewer 
parameter. Liu and Yang (2011) refer to a scenario as non-parametric if the best model continues 
to grow in complexity indefinitely as the sample size grows. In this case, they show that the 
parametricness index converges to one in probability. Alternatively, they refer to a scenario as 
parametric if the best model stabilizes even as the sample size grows to infinity. In this case, they 
show the parametricness index increases asymptotically to positive infinity, since the 
performance gap between the best and next-best model of smaller size continues to expand as the 
sample size increases. However, Liu and Yang treat cases as “effectively parametric” where one 
model is a stable best choice even though the true distribution is outside the candidate model. 
The parametricness index therefore doesn’t reliably discriminate between all four positions 
we’ve articulated.

The data may also fall short of supporting any definitive answer. Common scientific 
standards of evidence in this regard are conventional thresholds applied to a continuum. A 
misspecification test, for example, might return a p-value larger than the chosen significance 
threshold, e.g., a result of p = 0.06 when the chosen threshold was 0.05. Alternatively, the 
parametricness index might show intermediate levels of fluctuation in the models chosen by the 
BIC.3 These indeterminate situations leave room for individual judgment. Is the evidence for 
model adequacy strong enough to proceed with the goal of selecting the true model, or is the 
appropriate response to respecify the model set? Are the data sufficient to support “effective” 
convergence on the true model, or is it better to assume no model even approximately contains 
the true distribution? This gray zone permits researchers’ views on the relation of the candidate 
model set to the true process to influence how they quantify evidence.

7. How prior metaphysical beliefs enter in

3 The magnitude of the index also depends on two parameters, n and d, whose values depend on expert judgment 
about how “close” the parametric and nonparametric scenarios being compared are (Liu and Yang 2011, 2084). 
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What we need to show now is how prior metaphysical beliefs can reasonably inform a 
scientist’s choice of method. In particular, we are interested in views about whether nature is 
ultimately simple or complex as expressed in terms of what can be represented using a finite or 
infinite set of probability models. This section presents four contrasting positions on this point 
and shows how they map onto alternative methodological approaches using examples from the 
paleobiology case. The first two positions are grounded on the shared belief that nature is simple, 
but they differ more narrowly on the adequacy of the candidate model set at hand. The second 
two are both based on nature being complex but differ on the possibility of approximating this 
complexity.

1. Strong adequacy: The candidate finite model set contains the true distribution, or some 
coarse-grained function thereof (Position #1). In the paleobiology case, this approach 
treats the models as representing accurate coarse-grained descriptions of the actual 
probabilistic structure of the evolutionary processes driving the observed trait changes. 
Selecting the true finite model is possible. Misspecification testing is relevant and a high 
parametricness index is necessary given sufficient data. The true model is also 
theoretically optimal for predictive accuracy and simulating data, assuming sufficient 
data are available. 

2. Modest adequacy: The candidate finite model set doesn’t contain the true distribution (or 
a coarse-grained function of it), but it is possible to find another finite model that does 
(Position #2). In the paleobiology case, this approach treats the candidate models as 
adequate for classifying and simulating data as first-order approximations of the actual 
evolutionary processes at work. Selecting an approximately true finite model is possible 
if the differences between the model and true distribution aren’t relevant for further use in 
testing hypotheses. Misspecification testing is useful to help expand the candidate model 
set as needed in attempting to include the true model. Assuming one model is uniquely 
closest to the true distribution in KL divergence, a high parametricness index is necessary 
given sufficient data. The model minimizing KL divergence will be asymptotically 
optimal for minimizing predictive error, but this model may or may not be best for 
simulating data. Multiple interpretations of the “correct” model are therefore possible, 
given that the true distribution is not included in the candidate set. 

3. Modest instrumentalism: No finite model set exists that contains the true distribution, but 
it is possible to approximate the true distribution as the limiting case of an infinite set of 
candidate models (Position #3). In the paleobiology case, this approach treats the models 
as adequate for classifying and simulating first-order trends in the time series. Identifying 
a unique, approximately true finite model is not possible, since the best-fitting model will 
continue to change as the sample size goes to infinity. While misspecification testing will 
not uncover a true finite model, it is still relevant for showing that actual divergence 
between the best model and the true distribution is small enough for practical purposes. 
The parametricness index is expected to converge to 1, since the best-fitting model will 
not stabilize with more data. As with the modest adequacy view, multiple interpretations 
of “correct” are possible and will be optimal for different statistical aims.

4. Strong instrumentalism: No finite or infinite model set contains the true distribution 
(Position #4). In the paleobiology case, this approach treats the models as discriminating 
among different qualitative types of patterns in the time series but rejects their use for 
parametric simulation. Selecting a unique, approximately true finite model may or may 
not be possible, depending on the whether the infinite model set progressively approaches 
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the true distribution as model complexity increases. For the same reason, the best-fitting 
model may or may not continue to change as the sample size goes to infinity. 
Misspecification testing is not relevant, and the behavior of the parametricness index will 
depend on the relation of the true distribution to the infinite model set. As with modest 
adequacy and instrumentalism, many interpretations of “correct” are possible and will be 
optimal for different statistical aims. 
Note that all of these approaches can agree on the general existence of statistical patterns 

on spatial and temporal scales relevant to human interests. However, they disagree about whether 
and in what sense these patterns constitute strong evidence for a model’s truth. Both the modest 
adequacy and instrumentalist approaches, for example, are consistent with the best model 
providing an arbitrarily close fit to the true distribution as the sample size increases, but they 
differ on whether any finite parametric model we construct could ever be true. 

A quote from statistician David Cox nicely motivates both the strong and modest 
adequacy views: “For substantive purposes it is usually desirable that the model can be used 
fairly directly to simulate data. The essential idea is that if the investigator cannot use the model 
directly to simulate artificial data, how can ‘Nature’ have used anything like that method to 
generate real data?” (Cox 1990, 172). Parametric simulation is a common use for probability 
models,4 but its validity is doubtful unless we believe the model at least approximates the true 
distribution in relevant respects. For example, just as a finite Taylor series can approximate an 
infinite dimensional curve, so a finite regression or time series model may approximate an 
infinite dimensional distribution well enough for the purpose at hand. The strong and modest 
adequacy approaches in this regard both share the assumption that some finite model can be 
stated that contains the true distribution. They differ, though, about whether the true distribution 
is included in the model set under consideration by the researcher, and hence whether the correct 
model in the candidate set exactly represents the data generating process (strong view) or only 
approximately (modest view).

We can find a contrasting instrumentalist perspective in the work of ecologist David 
Anderson: “As a crutch, we can think of full reality as infinite dimensional; however, full reality 
is unlikely to be parameterized. Parameters are a construct useful in many science contexts, but 
many parts of full reality are not even parameterized. A ‘good’ model successfully separates 
information from ‘noise’ or noninformation in the data, but never fully represents truth” 
(Anderson 2008, 101). Aiming to identify the true finite model isn’t possible on his view, but 
there may still be a valid sense in which the correct model in terms of predictive accuracy is also 
an approximation to the true distribution. Ultimately, however, if “full reality is unlikely to be 
parameterized,” then a model could only be correct in the sense of being the best from the 
candidate set at predicting new observations drawn from the same process.

The strong and modest instrumentalist approaches agree in this regard on rejecting any 
one finite model as an adequate representation of the true distribution. They correspond to a view 
of models as “mere” tools for prediction with no necessary commitment to their representational 
accuracy. We can understand the strong approach as rejecting the representational adequacy of 
parametric models wholesale — reality is too complex for what can be expressed in even an 
infinite set of parametric models. The modest version instead endorses the position that the true 
distribution exceeds any finite parametric model, though it remains within our grasp as a limit 
expressible by an infinite model set. 

4 Indeed, it figures centrally in the method of Cullan et al. (2020) for the paleobiology case.
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In conclusion, when empirical uncertainty remains about which of these methodological 
approaches applies in a given situation, a researcher’s prior beliefs about the simplicity or 
complexity of nature relative to the available models can provide a relevant reason for choosing 
one model selection method over another based on its applicability according to the four 
positions we described.

8. The problem is unlikely to go away soon

No single model selection method serves equally well for all four views we identified on 
the adequacy of the candidate model set. In this section, we show why this context-sensitivity of 
methods — and hence the general scope of the problem of unequal evidence — is likely to 
persist in scientific practice. The central issue here is that the adequacy of the candidate models 
for a particular natural system also has implications for which statistical goals are sensible, and 
the model selection methods we’ve discussed also differ in their optimality for these alternative 
aims. Key mathematical results from statistical theory block the hope of finding one universal 
concept of evidence suitable for all purposes, regardless of candidate model adequacy. While 
science can always surprise us, it therefore appears there are good reasons to expect that a 
multiplicity of methods will persist whose application depends, at least in part, on one’s 
assessment of the adequacy the candidate model set. 

In particular, some general mathematical theorems prove necessary tradeoffs between the 
AIC and BIC for the goals of identifying the true model and maximizing predictive accuracy. A 
common way to quantify predictive accuracy is the Mean Squared Error (MSE) between the true 
parameter  and estimated parameter  produced in the model selection process,𝜃 𝜃𝑏

.𝑀𝑆𝐸(𝜃,𝜃𝑏) = 𝐸𝜃(𝜃𝑏 ―𝜃)2 = 𝑉𝑎𝑟𝜃(𝜃𝑏) + 𝐵𝑖𝑎𝑠2

The subscript  for the expectation and variance terms indicates they are computed using the true 𝜃
distribution. 

We will need to distinguish two ways of evaluating how a procedure’s predictive risk 
behaves with growing sample size (Yang 2007). First, we can measure how fast the procedure’s 
MSE decays for a particular true distribution and compare that rate to the performance of the best 
possible procedure relative to that true distribution. Yang (2007) calls this the “point-wise” 
behavior of the procedure because it is relativized to a single true distribution (i.e. one point in 
the space of possible distributions). For example, in a simple scenario where we have to choose 
between two regression models,  and , the space of possible 𝑌 = 𝜇 + 𝛽1𝑋 + 𝜖 𝑌 = 𝜇 + 𝜖
distributions is indexed by . The MSEs of the AIC and BIC are a function of the value of (𝜇,𝛽1)

 in the true distribution, since for values of  close to zero the two criteria will show different 𝛽1 𝛽1
tendencies to pick the larger or simpler model. When the true distribution is in the finite model 
set (View 1 from Section 6), the BIC is point-wise optimal in that for any particular true 
distribution, the BIC’s MSE will decay as fast as the best procedure in that scenario. However, 
when the true distribution is not in the finite candidate set (Views 2–4), the AIC is point-wise 
optimal while the BIC is not.

A second way to evaluate predictive risk is to consider how slowly a procedure’s MSE 
decays in the worst possible case, i.e. when the distribution with the largest possible MSE for 
that method happens to be true. We then compare this worst-case performance to the results of a 
procedure chosen to have the best worst-case result across all possible distributions (commonly 
known as a minimax procedure or minimax estimator). Yang (2007) calls this the “minimax” 
behavior of a procedure because we evaluate it relative to the whole space of possible 
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distributions and set of procedures. The AIC is minimax optimal when the true distribution is not 
included in any finite model set (Views 3–4), but the BIC is not minimax optimal in any 
scenario. 

The lingering question is whether it’s possible to design a single criterion that delivers 
both point-wise and minimax optimality regardless of which view about the candidate models is 
correct. This was shown to be impossible mathematically for deterministic criteria (i.e. whose 
complexity penalties are not random variables), but statisticians more recently have been 
pursuing an adaptive approach that blends the AIC and BIC stochastically (see Ding et al. 2018a 
for references). Yang and collaborators, for example, have developed a new approach called the 
Bridge Criterion that uses the BIC when it selects a single, stable model across resampling of the 
data and the AIC otherwise (Ding et al. 2018a). However, the Bridge Criterion only delivers 
point-wise optimality and not minimax optimality.5

Despite the merits of combining the AIC and BIC adaptively based on the data, a 
universal best criterion delivering all forms of optimality appears to be ruled out on mathematical 
grounds. If one adopts either instrumentalist view of the candidate models and prioritizes 
minimax optimality for prediction, then the AIC is still preferable to the BIC and Bridge 
Criterion. There’s also no definitive rule for choosing between the BIC or AIC in scenarios 
corresponding to Positions 2 or 3 when one is interested in picking an approximately true model, 
especially given that an adequate approximation is relative to purpose (e.g., precisely what 
features of the data generating process one wants to identify). Finally, if one prioritizes 
controlling error probabilities, then none of the AIC, BIC, or Bridge Criterion deliver reliable 
performance. 

8. Conclusion
The problem of unequal evidence represents a novel form of underdetermination with 

broad applicability to statistical model selection practices across the sciences. In the 
paleobiology case we considered, Gould and Eldgredge originally presented punctuated 
equilibrium as a gestalt change in what paleobiologists should see as signal versus noise in gaps 
in fossil data (Sepkoski 2012). Introducing advanced statistical modeling was supposed to bring 
new objectivity to the classification of fossil trends, since individual scientists frequently saw 
different processes at work behind the same data. This goal is undercut if model selection results 
turn out to depend on scientists’ prior beliefs about the natural system of interest. Our results 
open a new direction for investigating how complexity poses epistemic problems for science 
without necessarily invoking unique historical events, as has been a major focus of prior work in 
philosophy of the historical sciences (e.g., Tucker 1998, Currie 2018). 

Indeed, the model selection methods we’ve discussed are not limited to the historical 
sciences, and they only represent a small sample of the variety currently in use. This suggests the 
relevance of underdetermination for scientific practice is severely restricted if we believe it only 
matters when multiple theories are equally well supported by evidence. Scientists across many 
fields, including economics, ecology, psychology, and statistics, are developing their own 
typologies informing model selection practice based on the relation of candidate models to 
reality (Wagenmakers and Farrell 2004; Yang 2007; Clarke et al.. 2013; Aho et al. 2014; Ding et 
al. 2018b). This proliferation of typologies has the potential to magnify the problem, and an 

5 Asymptotic behaviors are not definitive for real-world cases, moreover. The performance ranking of information 
criteria can shift dramatically as the true parameters vary (Yang 2007).
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important direction would be to analyze how and when statistical methods can be made 
equivalent across the metaphysical positions we articulated above.

While the problem of unequal evidence represents a novel and important form of 
underdetermination in practice, it does not support a strong new argument for global anti-
realism. Note that the problem of unequal evidence arises precisely because a range of positive 
and negative views about the adequacy of the candidate models are defensible in a given context. 
This is hard to reconcile, for example, with Stanford’s (2006) globally anti-realist stance based 
the existence of unconceived alternatives. Nonetheless, the problem of unequal evidence 
represents an actual rather than hypothetical challenge for scientific practice, and both its 
generality and persistence are grounded in mathematically deep results from statistical theory. 
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Figure 1: Underdetermination arises in cases where prior metaphysical differences lead 
scientists to apply alternative conceptions of evidence and arrive at conflicting conclusions even 
for the same data and candidate models. 
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Figure 2: Sequences of measured traits from fossil populations sampled in successive 
sedimentary strata. The mean and variance of sampled traits provide an indication of the 
phenotypic step size, used in fitting the models. (A) Stasis: shell convexity (a shape measure) in 
the bivalve Chesapecten. (B) Random walk: shell width in the Mandarina, a land snail. 
Gradualism: shell shape in the foraminifera Contusotruncana. Figure modified from (Hunt 
2007).
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