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Abstract
A classic analytic approach to biological phenomena seeks to
refine definitions until classes are sufficiently homogenous to
support prediction and explanation, but this approach founders
on cases where a single process produces objects with sim-
ilar forms but heterogeneous behaviors. I introduce object
spaces as a tool to tackle this challenging diversity of bio-
logical objects in terms of causal processes with well-defined
formal properties. Object spaces have three primary compo-
nents: (1) a combinatorial biological process such as protein
synthesis that generates objects with parts that are modular,
independent, and organized according to an invariant syntax;
(2) a notion of “distance” that relates the objects according
to rules of change over time as found in nature or useful for
algorithms; (3) mapping functions defined on the space that
map its objects to other spaces or apply an evaluative crite-
rion to measure an important quality, such as parsimony or
biochemical function. Once defined, an object space can be
used to represent and simulate the dynamics of phenomena
on multiple scales; it can also be used as a tool for predicting
higher-order properties of the objects, including stitching to-
gether series of causal processes. Object spaces are the basis
for a strategy of theorizing, discovery, and analysis in biology:
as heuristic idealizations of biology, they help us transform in-
choate, intractable problems into articulated, well-structured
ones. Developing an object space is a research strategy with a
long, successful history under many other names, and it offers
a unifying but not overreaching approach to biological theory.
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Not all causes are equal. A primary challenge for biology is to
identify the causes of important phenomena, but studying the
causes separately often produces disconnected models of var-
ied form, scope, and utility. One might wonder, then, whether
a more cohesive and general theory is possible for biology?
No grand unified theory or quantum Standard Model seems
appropriate to evolution’s complexity and exceptionalism. A
different approach, however, proceeds under the perspective of
understanding the simultaneous diversity and common origin
of life in terms of a number of causal processes that com-
binatorially assemble a small alphabet of parts into a large
set of products. These combinatorial processes thread together
the otherwise baffling variety of biological objects, such as
proteins, species, and organs, because all processes share a
common formal structure. I introduce the term object space
to refer to a combinatorial process, the set of possible objects
it can produce, and the analytical tools we have for study-
ing the objects’ behavior. Developing an object space is a
research strategy with a long, successful history under many
other names, and it offers a unifying but not overreaching
approach to biological theory.

A common alternative theoretical approach hypothesizes
that biology is structured in hierarchical levels: lowest are
molecules, then moving upward are organelles, cells, organs,
organisms, ecosystems, etc. A general theory for a given level
would model the logic of that level’s constituents’ interactions
and their causal connections with other levels. Even within
the level’s hypothesis, however, there are substantial problems
that arise from the heterogeneity of supposedly similar objects.
Accommodating various objects that are all on the same level
in one theory can prove intractable. For instance, there may
be little theoretical structure shared between models of desert,
rainforest, and tidal pool ecosystems. Alternatively, a single
model for all cells may founder on how some cells cannot live
on their own, others move in and out of communities, and still
others always stay independent.

Such heterogeneity often provokes the strategy of reex-
amining a confounding object type for possible reclassification
into several new, more homogenous categories. This analytic
strategy is classic and proven, but as with all strategies, it suc-
ceeds only under particular conditions. One problematic situ-
ation occurs when the objects have little in common once they
exist but come about through a shared mode of generation. In
this case, a single class is still justified, but models of behavior
alone will produce isolated, even contradictory, results. This
case therefore deserves a complementary strategy, which also
has an illustrious history but has not yet been fully articulated.

This alternative strategy seeks to discover how the objects
are assembled modularly through a common combinatorial
process. When appropriate, this strategy uncovers the organi-
zation of the assembly process and thereby provides a recipe
for generating theoretical knowledge of all of the process’

possible products and their properties. Considered all together,
the results are what we can call an object space.

Common types of object spaces in biology include se-
quence space for DNA, RNA, and proteins; the space of possi-
ble phylogenetic trees; morphospace; the conformation space
of protein bond angles; and the interaction network space for
enzymes or genes. As is clear, these examples have provided
important tools for analysis and prediction, but to date their
shared conceptual underpinnings have received relatively little
attention.

Three main properties define object spaces. First, the com-
mon combinatorial process generates objects whose parts are
modular, independent, and organized by an invariant syntax.
Second, the space defined by all possible products of the pro-
cess and its syntax often also carries rules for dynamic change
over time as found in nature or used by algorithms. Third,
functions defined on the space map it to other spaces or ap-
ply evaluative criteria to measure a desired quality, such as
parsimony or biochemical function. In other words, the com-
binatorial process generates a set of objects with ordered parts,
the notion of change implies a sense of “distance,” and map-
ping functions establish a relation between different kinds of
objects. Stadler et al. (2001) give an excellent exposition of
mathematical forms of distance appropriate to mappings be-
tween genotype and phenotype space for RNA molecules, and
Mitteroecker and Hutteger (2009) discuss the geometries and
limitations of Euclidean distance intuitions for morphological
spaces.

A good summary of object spaces’ usefulness is that they
help us to articulate well-structured problems. Simon (1973)
listed several requisites to make a problem straightforward,
including a test for proposed solutions, a representation for
the initial, final, and intermediate system states, and rules for
how to change between states. Any object space provides a
powerful range of well-structured problems; for example, pro-
tein sequence alignments require that sequence comparison be
a well-structured problem. Simon goes further to argue that
even ill-structured problems, such as designing a new house,
can be tackled by decomposing the problem into many well-
structured problems and combining the results using heuristic
methods. The problem-solving model he describes suggests
that developing our knowledge of object spaces can provide a
cohesive and general strategy for studying the complexity of
biological phenomena.

Two Examples: Sequences and Phylogenetic Trees

Before we address the three qualities of object spaces, two
historical examples merit further detail. The history of their
introduction and justification can illuminate how to apply a
similar strategy in the future. Also, the examples can serve
as concrete examples of the three qualities to be discussed.
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Figure 1.
A hypothetical, 4-dimensional sequence space where each position can be
0 or 1. The space is a hypercube with sequences on each corner and edges
representing the action of flipping a position’s value (Kauffman 1993).

It is impossible to do justice to their science and history in
such a short space, so I will only sketch a couple of the most
important aspects.

Both sequence and phylogenetic tree space share their
origins in the discovery of DNA and Crick’s (1958) paradig-
matic exposition of the Central Dogma. The Dogma’s main
tenet—that information only flows outward from DNA to pro-
teins and not in reverse—justified the expectation that know-
ing an organism’s DNA should largely determine everything
else about it. The breaking of the genetic code in the mid
1960s made clear how cells synthesize proteins from DNA:
Every three DNA nucleotides translate into one amino acid,
and the 64 sets of three nucleotides map redundantly to the
20 amino acid types. Two more discoveries—that ribosomes
synthesize proteins linearly one amino acid at a time, and that
many proteins fold on their own in solution—combined with
the Central Dogma and the genetic code to justify efforts to
predict the structure and function of proteins from their DNA
sequence alone.

The coining of sequence space followed shortly (Maynard
Smith 1970; Kauffman 1993). There are at least two defini-
tions of sequence space, but the most common one is defined
for DNA as follows: DNA molecules can be represented as a
linear, ordered sequence of nucleotides A, C, G, and T. Each
nucleotide position in the sequence corresponds to a dimen-
sion in the space, so a sequence that is N positions long im-
plies an N-dimensional space. Since each dimension has four
possible states, there are 4 × N points total, so each point rep-
resents a sequence of N nucleotides. The high dimensionality
of sequence spaces make visualizing them difficult—a typical
feature of object spaces—but Figure 1 represents a space for a
hypothetical sequence of length 4 with two states 0 and 1 for
each dimension.

One major use for sequence spaces is to represent evo-
lutionary change as DNA mutations move genes from one
point to another. Zuckerkandl and Pauling (1965: 98) claimed
a major advance for evolutionary theory when they proposed
chemical paleogenetics as the comparison of DNA sequences
that descended from a common ancestor. They argued that
evolution could be represented as a phylogenetic tree whose
nodes were DNA sequences, and that the new representation
was superior because both causation and form coincided in
DNA:

In order to accept the special importance of the analysis of informa-
tional macromolecules, it is sufficient to subscribe to the following
propositions: (a) The level of biological integration that contains the
greatest concentration of “causal factors” will further our understand-
ing of life more than any other. (b) A concentration of information is a
concentration of “causal factors.” (c) The largest concentration of in-
formation present in an organism, and perhaps also the largest amount
of information, and the only organically transmissible information, is
in its semantides [i.e., DNA, RNA, and proteins]. (Zuckerkandl and
Pauling 1965: 98)

This argument of their seminal paper in phylogenetics and
molecular biology highlights the connection we will see below
between common combinatorial processes and the existence
of a general representation for an object space.

Zuckerkandl and Pauling (1965) clearly advocated a ge-
netic reductionist strategy, and it is important to pause and
emphasize that my conception of object spaces requires no re-
ductionist commitment. There are at least three senses in which
object spaces are an open-minded strategy. (1) Developing an
object space is a heuristic, in Wimsatt’s (2007) sense of a rea-
sonable plan without formal guarantees of success given the
large uncertainties at work. (2) Object spaces depend on em-
pirical evidence to characterize the combinatorial process, and
not on a priori reasoning. (3) Object spaces match the flexibil-
ity of evolution’s constant differentiation and radical change.
Using object spaces will likely remain closer to the heuristic
of designing a new house by decomposing it into solvable sub-
problems instead of applying a deductive framework of laws.
Moreover, although many of the spaces listed as examples are
molecular in focus, morphospace and phenograms in quanti-
tative taxonomy indicate the broad, nondogmatic potential of
object spaces.

Returning to phylogenetic tree space, Zuckerkandl and
Pauling (1965) helped initiate decades of research aimed at
inferring the history of evolution by sampling a number of
DNA sequences and applying an evaluative criterion to de-
cide which phylogenetic tree best explained the observed se-
quences. Phylogenetic trees are diagrams that represent the
branching process of evolution: over time, the ancestral pop-
ulations, represented by the higher nodes in the tree, branch
downward into descendant sequences, ultimately forming the
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Figure 2.
Two phylogenetic trees of DNA sequences related by switching the positions
of taxa 2 and 3. Shaded squares mark historically inferred mutations, and dark
lines underneath nucleotides indicate which amino acids changed since the
most recent common ancestor. Note that switching the taxa in tree A decreases
the number of inferred mutations.

bottom-most nodes observable today. Phylogenetic trees vary
in two main dimensions given a fixed number of sequences:
where branching events occur in the tree, and where sequences
are located on the nodes. There is no easy way to visualize all
the trees at once in “space,” so typically the possibilities are
simply listed side by side (see Figure 2).

We should pause to note that although the focus of this
discussion is the common structure of object spaces on a high
level of abstraction, in practice scientists would relate to object
spaces differently depending on how concretely they work with
the represented objects. A scientist working to predict protein
structures from sequences will work mainly with the models
that link these two spaces, not the more abstract properties
of spaces themselves, which remain in the background. A
scientist studying a regulatory mechanism will rarely need
even the great generality of sequence space because only a
handful of mutations of that sequence are relevant. This article
will be helpful to more concrete problems mainly when they
can be solved by generalizing upward instead of gathering
more detail.

The Combinatorial Process

A combinatorial process joins together a small number of kinds
of modules in a particular order to generate a set of products

many orders of magnitude larger in size. Examples of combi-
natorial processes can involve physically concrete mechanisms
such as protein synthesis, or abstract mechanisms such as the
branching process of speciation in evolutionary trees. In the
former case, the process generates a physical object out of
other physical objects; in the latter evolution, as we under-
stand, it generates phylogenetic trees as historical facts out of
branching and mutation events. The most important property
of a combinatorial process is that its products can be repre-
sented as parts combined using a single syntax. The syntaxes
of protein sequences and phylogenetic trees are straightfor-
ward: Amino acids form an ordered list without branches
or loops, and trees are nested hierarchical pairs without
cycles.

Some combinatorial processes are sufficiently vague as
to impose no relative ordering on their components, result-
ing in a degenerate object space. Degeneracy is a term from
physics (not a pejorative) meaning that no relative ordering
differentiates the space’s dimensions, which therefore can be
interchanged without changing the objects’ properties. Degen-
eracy occurs in two major cases: in the first, “realist” case the
combinatorial process itself imposes no relative order, so that
the objects’ syntax is merely an unordered list of properties;
in the second, “nominalist” case, we presume that an ordered,
generative process exists but we describe it in terms not as-
sumed to reflect the process’s true structure. The first case is
common for object spaces in physics, such as the state space
of a gas where its pressure, temperature, and volume are in-
variant when the velocities or locations of any two molecules
are exchanged.

The second case is common when we know more about
the end states of a causal process than how it actually hap-
pens. David Raup’s theoretical morphospace for invertebrate
coiled shells (the kind you find on a beach) is a good biological
example. Raup and others developed a mathematical formula
with four parameters that could generate the range of pos-
sible shell geometries (Raup 1966). Defining the parameters
as the axes of the morphospace, Raup examined which parts
nature had left unoccupied and why. Raup’s formulas model
only the macroscopic aspects of shell growth, and the model’s
abstract parameters do not correspond directly to factors in
the developmental process. The morphospace is degenerate
because the presumed developmental process does not nec-
essarily correspond to the parameters in the abstract growth
“process” of the formula and therefore imposes no syntac-
tical ordering on them. So this second form of degenerate
object space lacks a realistic alphabet but still presumes exist-
ing characters that combine in a structured way to produce the
observed morphology. Brakefield and Roskam’s (2006) recent
work on empirical morphospaces offers another example that
is closely tied to investigating the underlying developmental
processes.
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A hallmark of non-degenerate object spaces is that their
syntax renders the space impenetrable to classical laws and
abstract models, and instead requires computational heuris-
tics. The need for computational methods is linked to the diffi-
culty of formulating universal biological laws, but some object
spaces in physics and chemistry also show similar complexity.
Thus, while we can study the generation of small- to medium-
sized atoms from subatomic particles using differential equa-
tions, the space of all molecules produced by combining a
few chemical reaction mechanisms exceeds our mathemati-
cal abilities. The problems are complex because the objects’
higher-order properties depend sensitively on the states of its
constituent parts on the local, intermediate, and global scales.
Mutating a single amino acid may stop a protein from folding,
while changing the protein’s net charge can disrupt its func-
tion as a binding agent. Stadler et al. (2001) have developed
a topological and statistical perspective that characterizes the
intra-dependencies of RNA sequences using rigorous mathe-
matical terminology.

Rules of Motion and Invariance

With the combinatorial process and the resulting syntax de-
fined, there are two major classes of problems that object
spaces help to tackle. The first concerns dynamics and algo-
rithmic methods that depend on rules of motion in object space.
The second, addressed in the next section, concerns prediction
and analysis using functions defined on the space that map it
to other spaces.

Sequence space is a good example for defining motion in
object spaces and their theoretical interest for modeling evo-
lutionary dynamics. A few general mechanisms cover most of
the ways sequences change over time: one DNA nucleotide is
replaced by a different one, a nucleotide is inserted or deleted,
or whole groups may be changed by recombination or in-
version. These mechanisms define rules for moving between
sequences and imply a range of possible distance measures.
One common measure is edit distance, which simply counts
the number of moves needed to get from sequence A to se-
quence B. More sophisticated distance measures incorporate
redundancies in the genetic code and empirical observations
about varying amino acid replacement frequencies.

As an aside, the existence of multiple distance measures
should indicate that many ways of measuring relative loca-
tion could apply to a single combinatorial process. In fact,
many spaces are defined by mathematically weaker notions of
nearness or neighborhood, so even a traditional idea of Eu-
clidean distance is not essential to a space. In general, the
context of the biological situation will define the appropriate
notion of distance, and this contextual aspect of object spaces
is another reason biology does not lend itself to universal bio-
logical laws. In a sense, organisms use the spaces to represent

their environment, and it would be backwards for us to use the
spaces to represent all organisms.

Continuing on, if we assign a rate to motion in se-
quence space, we can then study the dynamics of popula-
tions of sequences—the molecular clock hypothesis states that
nucleotide mutations occur at a constant rate. While origi-
nally the hypothesis claimed a common rate for all organ-
isms, it is now typically limited to short periods of time with
slow environmental change or gradual evolution. Nonethe-
less, the hypothesis is a basic tool for modeling genetic
evolution.

Adding time to object spaces produces one of its most use-
ful aspects: simulation. For sequence space, we can simulate
branching events in a phylogenetic tree by populating the space
with sequences that mutate, reproduce, and die. Alternatively,
Raup and Gould (1974) used a simulation of randomly gener-
ated evolutionary trees to test if seemingly selected characters
may be indistinguishable from noise.

Dynamic modeling in object spaces can also represent
multiscale phenomena. In sequence space, we can simultane-
ously model events for individuals, genetic drift and selection
in populations, and the generation of higher taxa as popula-
tions diverge. Although each of these phenomena has received
attention and theorization individually, they can be studied
jointly in sequence space. Researchers are currently develop-
ing another example of multiscale dynamics with gene interac-
tion networks. As more expression data and genomes become
available, we can model the fluctuating interactions of genes
across whole cells and even mutualistic communities of bac-
teria (Stolyar et al. 2007). Object spaces therefore facilitate
theorization across classic “levels” of phenomena.

Often, however, we may want to abstract away the de-
tails of nature, either to simulate a process faster or to un-
derstand which factors matter. For example, protein folding
poses a frustrating challenge to biophysicists: In nature, pro-
teins usually fold in microseconds, yet even simplified sim-
ulations take hours, days, or months depending on the prob-
lem. Instead of mimicking nature, biophysicists often rotate
whole segments of the protein at once in order to better sam-
ple conformation space or sometimes replace each amino
acid in the model with a large spherical particle for easier
analysis.

Even these rules of motion are connected to natural pro-
cesses, but for some purposes, we may simply want to best sat-
isfy some criterion. Because the total space is usually too large
to search exhaustively (the number of objects grows exponen-
tially with each new part added), one must apply heuristics.
Many heuristic methods work by guessing initially at a best ob-
ject in the space and then iteratively improving this according
to search rules. (Imagine guessing tree A in Figure 2 and then
swapping taxa 2 and 3 to minimize the number of mutations.)
Their search methods do not happen in nature; rather, the
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artificial rules of motion only optimize the evaluative criterion
efficiently.

Mapping Functions

The second major use for an object space relates it to other
spaces or theoretical concepts via a mapping function (see
Stadler et al. 2001 for the mapping of genotypic space to phe-
notypic space). Mapping one space to another is a way of join-
ing together two combinatorial processes: mapping sequence
space to protein conformation space, i.e., the protein-folding
problem, combines protein synthesis and folding. In addition,
simulating the dynamics of objects may depend on determining
their behavior with a governing evaluative function. Evaluative
functions express a criterion in the form of a model or formula
that maps each position in the space to a number representing
how well it satisfies the criterion. In the multiscale simulation
of evolution mentioned above, the evaluative function defines
the fitness of each object at that time, creating a landscape in
the space within which the sequences move. In sum, mapping
functions can transform one space into another or map a given
space onto the real numbers for the purposes of simulation or
evaluation.

Mapping functions complement the unifying capabilities
for biological theory of multiscale dynamics. Multiscale dy-
namics represent multiple processes in one object space, and
mapping functions connect object spaces to other spaces or
theoretical concepts. For examples of mapping functions, one
need only look to much of the current research in compu-
tational biology, molecular biology, and bioinformatics that
focuses on how one kind of object becomes another: How
does a protein sequence determine its structure? How does a
structure determine its function? How do interacting structures
determine biochemical networks and reaction rates?

A potential benefit of object spaces as a research strategy
is an increasing ability to articulate formally the contribu-
tion of the environment to biological processes. Object spaces
complement ongoing efforts at theorizing causal or informa-
tional environmental contributions as being on par with genes
(Griffiths and Gray 1994; Oyama 2000). The possibility of
combining multiple object spaces, whether consecutively by
mapping, perspectivally via scaling, or in parallel using stand-
alone models, holds the promise of uniting multiple phenom-
ena with radically different representations under a single,
integrated computational framework (Stein 2008).

Conclusion

As a research strategy, developing object spaces can be orga-
nized by their three main qualities. The first step is identifying
a causal process that combines a relatively small number of
components into a larger object of combinatorial complexity.

The process should allow variation in the organization of parts
in the object while obeying a fixed syntax. Next, try to find rules
of motion or relations of distance that describe how the objects
vary over time, e.g., mutating genes in sequence space. Finally,
uncovering selective forces or further downstream causal pro-
cesses allows one to define mapping functions on the space
that either transform the objects into objects in another space
(e.g., sequences into folded proteins) or evaluate them by some
criterion (e.g., fitness or enzymatic rate for a given chemical
mechanism). Once defined, an object space can be used to rep-
resent and simulate the dynamics of phenomena on multiple
scales; it can also be used as a tool for predicting higher-
order properties of the objects, including mapping the given
space to one that follows it in a larger causal process. Research
to uncover and develop object spaces in biology has proven
very successful, and much current research fits well under that
heading.

Object spaces are integral to the study of biological pro-
cesses. They help transform what initially appears impossible
into a tractable problem subject to well-known heuristics and
methods. Simon’s (1973) characterization of how an architect
tackles designing a new house is appropriate to describe how
biologists tackle explaining the complex traits exhibited by any
organism: even if the problem is ill-structured and admits no
direct solution, it can still be decomposed into well-structured
subproblems whose answers are recombined to approximate
the original whole. Object spaces offer a multitude of well-
structured problem spaces for the big questions in biology,
and while they will not render biology well structured overall,
they deserve a central place in biological theory.
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