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Modular architectures and informational encapsulation: A dilemma 

Dustin R. Stokes and Vincent Bergeron1 

Abstract 

Amongst philosophers and cognitive scientists, modularity remains a popular choice for an 

architecture of the human mind, primarily because of the supposed explanatory value of this 

approach. Modular architectures can vary both with respect to the strength of the notion of 

modularity and the scope of the modularity of mind. We propose a dilemma for these 

modularity approaches, no matter how they vary along these two dimensions. First, if a 

modular architecture commits to the informational encapsulation of modules, as it is the case 

for modularity theories of perception, then modules are on this account impenetrable. 

However, we argue that there are genuine cases of the cognitive penetrability of perception 

and that these cases challenge any strong, encapsulated modular architecture of perception. 

Second, many recent massive modularity theories weaken the strength of the notion of 

module, while broadening the scope of modularity. These theories do not require any robust 

informational encapsulation, and thus avoid the incompatibility with cognitive penetrability. 

However, the weakened commitment to informational encapsulation greatly weakens the 

explanatory force of the approach and, ultimately, is conceptually at odds with the core of 

modularity. 

 

 

Amongst philosophers and cognitive scientists, modularity remains a popular choice for 

theorizing the human mind at some broad level of architecture. Jerry Fodor (1983), who 

was influential in establishing the concept of a module, writes: “One day . . . Merrill 

Garrett made what seems to me to be the deepest remark that I have yet heard about the 

psychological mechanisms that mediate the perception of speech. ‘What you have to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This work was thoroughly collaborative and the paper thoroughly co-authored—the order of authors 
was chosen randomly. 
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remember about parsing is that basically it’s a reflex.’” (Dedication). Reflexes are quick, 

inflexible, involuntary responses to stimuli, and Fodorian modules are like reflexes. In 

its most general form, the modularity hypothesis consists in viewing the human mind, 

or at least part of it, as a configuration of quick specialized mental mechanisms, or 

subsystems, that are dissociable, and that typically operate over a distinct domain of 

information. 

There are compelling theoretical and empirical motivations for this approach. 

Theoretically, modularity nicely accommodates adaptationist and other evolutionary 

explanations of mental phenomena. It also provides materials for a simple explanation of 

important empirical data, including a wide range of behavioural dissociations, as well as 

the speed and robustness of processing enjoyed by the human mind. Most broadly, 

modularity provides an intuitive framework for characterizing the relations between 

brain structures and particular perceptual and cognitive functions.  

Although it is sometimes misrepresented as doing precisely this, Fodor’s pioneering 

discussion of the concept did not involve a definition of ‘module’. (Fodor 1983; see also 

Coltheart 1999). Fodor did, however, provide a list of properties symptomatic of 

modules. Fodorian modules are typically domain specific, hardwired, computationally 

autonomous, informationally encapsulated, fast, and their operation is mandatory. It is 

noteworthy how much of this characterization follows the reflex metaphor. Domain-

specificity parallels the singularity of the stimulus that sets off a reflex; autonomy, 

mandatoriness, hardwiring, and encapsulation mirror the standard reflex-arc model. 

Fodor maintains that “The notion of modularity ought to admit of degrees” (Fodor 1983: 

37), and that “if a psychological system has most of the modularity properties, then it is 

very likely to have all of them” (Fodor 1983: 137). Importantly, Fodor claimed only that 

input systems are modular. His primary subject matter was perceptual systems, but he 
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also made the case for systems devoted to low-level linguistic decoding. Higher-level 

conceptual or cognitive systems, then, are not modular on Fodor’s general architecture. 

Commitments with respect to Fodor’s original analysis of modularity vary. Several 

modularity theorists take domain-specificity to be definitive of modularity (Coltheart 

1999). Fewer require innate specificity, even if related explanations and arguments often 

invoke evolutionary considerations. Others maintain that modules are informationally 

encapsulated and computationally autonomous (e.g. Farah 1994.)2 Recent theorists have 

extended the modularity thesis beyond Fodor’s input systems. It is common among 

evolutionary psychologists to endorse some version of what Dan Sperber (1994) has 

called the massive modularity thesis. The general hypothesis states that all, or nearly all, 

of the mind is modular, and modules have been postulated to account for cognitive 

capacities as diverse as theory of mind, face recognition, cheating detection, reading, 

and a variety of social understanding abilities.  

Our suggestion is that informational encapsulation is essential to a distinctive, non-

trivial modularity theory. As it will be understood here, if a module m is 

informationally encapsulated then m cannot, during the course of its processing, access 

or compute over information found in other components of the overall system. As such, 

an encapsulated module m is impenetrable with respect to the other components of the 

system, since the processing of m is insensitive to (and so does not compute over) the 

information available elsewhere in the system (Pylyshyn 1980). This basic analysis of 

modularity is important to any substantive modular account of the mind because it 

constitutes the foundation of modularity in so far as modules are, in a sense to be 

explained later, dissociable systems.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 In at least two places, Fodor himself explicitly states that “informational encapsulation is an essential 
property of modular systems” (Fodor 1985: 3; see also 1983: 71). Elsewhere, however, he is less clear on 
his commitment regarding the same claim.  
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In this respect, modularity—understood as a general approach to theorizing the 

architecture of the human mind—faces a dilemma that hinges on the commitment to 

informational encapsulation. On the one hand, a commitment to informational 

encapsulation, as made by modularity theories of perception, is inconsistent with the 

cognitive penetration of perceptual experience. And, we argue, there are genuine cases 

of the cognitive penetrability of perception. On the other hand, as recent modularity 

theorists have done, one might weaken the notion of module so as not to require 

informational encapsulation. (Relatedly, one might interpret literally Fodor’s comment 

that the “notion of modularity ought to admit of degrees” (1983: 37) and thereby, 

focusing just on the property of encapsulation, take any system to be modular to the 

degree that it is partly but not wholly encapsulated.) The result, however, is an account 

that undermines one of the central motivations for modular strategies and, more 

fundamentally, that may not be consistent with the conceptual core of the very notion 

of modularity.  

The first horn challenges strong, encapsulated modularity: any modularity approach 

that includes a commitment to informational encapsulation. The second horn challenges 

massive modularity, which broadens the scope of modularity but weakens the notion of 

modularity so as not to require informational encapsulation. Either way, modularity—as 

an approach to the study of mental architecture—is significantly challenged. 

 

I. Informationally encapsulated modules: Cognitive penetrability and the challenge for 

encapsulated modularity 

  

Both encapsulated and unencapsulated modularity theorists take perceptual systems 

to be modular. What exactly this claim amounts to varies from theorist to theorist, and 

indeed sometimes within the writings of the same theorist. As discussed a few 
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paragraphs below, Pylyshyn (1999) shifts between talk of “early visual processing” and 

“perception”. And Fodor’s initial 1983 analysis focuses on Input Systems, while later he 

speaks consistently of modular “perceptual systems” (Fodor 1985). Perhaps one way to 

bridge this apparent gap is to note how Fodor himself characterizes input systems. For 

vision, he identifies “mechanisms for color perception, for the analysis of shape, and for 

the analysis of three-dimensional spatial relations” plus “task-specific ‘higher-level’ 

systems concerned with the visual guidance of bodily motions and the recognition of 

faces of conspecifics” (1983:47). If we accept at face value this characterization of visual 

input systems, and these systems are supposed to be modular, then this is to identify 

much of visual perceptual systems as modular. Indeed, many theories of vision would 

take Fodor’s list to capture all of vision proper. Accordingly, the target for this horn of 

the dilemma is any approach that identifies a large portion of the architecture of 

perception as modular. Pylyshyn and Fodor very plausibly fit this description.  

If perceptual modules are informationally encapsulated, then at the very least, they 

are not penetrable by the information or processing of higher-level cognitive systems. 

Most theorists seem to take the concepts ‘informational encapsulation’ and ‘cognitive 

impenetrability’ to be co-extensive, if not equivalent—Fodor in fact originally argued 

for the encapsulation of modular systems by arguing against claims about the cognitive 

penetrability of those systems (Fodor 1983: 73-86). The following discussion requires 

only the assumption that informational encapsulation of perceptual modules entails 

cognitive impenetrability (with no commitment to the opposite entailment).  

On this account, then, perceptual processing is not influenced by cognitive states like 

belief or desire. Evidence of this influence—that is, of the cognitive penetration of 

perception—thus threatens any modularity theory that includes a commitment to 

informational encapsulation of perceptual modules.  
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It will be useful here to offer some clarifications. First, distinguish perceptual 

experience from higher-level cognitive and affective states and processes like belief, 

judgement, desire, emotion, and so on. Perceptual experience, whatever else one says 

about it, is characterized by phenomenal character or content and depends non-trivially 

on one or more sensory organ. Philosophers debate how to draw the line between 

perception and cognition. The only point that need be granted here is that there are 

clear cases of perceptual states and clear cases of cognitive states. So there are visual 

experiences, auditory experiences, olfactory experiences, and so on; and these can be 

distinguished from states like belief and processes like decision making.3 

Second, distinguish the cognitive penetration of perceptual experience from the 

cognitive penetration of perceptual processing. The former concerns some difference in 

the phenomenal content or character of a perceptual experience, where this difference 

depends non-trivially upon some cognitive state or processing in the system. The latter 

only concerns some cognitive effect on perception at the level of processing. The fact 

that perceptual processing at some stage is cognitively penetrated does not, by itself, 

entail the cognitive penetration of experience. Experience may depend on a wider class 

of processing and, in principle, the cognitive influences on perceptual processing (at 

some particular stage or other) may not ultimately influence conscious experience. 

Moreover, some aspects of perceptual processing may not give rise to a conscious 

experience but rather, for example, to the sub-personal guidance of motor performance. 

However, cognitive penetration of perceptual experience does entail cognitive 

penetration of perceptual processing at some level. There is much to be said here. The 

only assumption we need regarding the relation between perceptual experience and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 So to be clear, and to foreshadow some of the discussion to come, we make no claim that perception and 
cognition are indistinguishable or perfectly continuous (so we do not advocate the ‘continuity thesis’ that 
is sometimes, perhaps wrongly, attributed to Jerome Bruner and New Look Psychology). Indeed, the very 
notion of cognitive penetration seems to presuppose some perception/cognition distinction, even if no one 
knows exactly how to mark that distinction.    
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perceptual processing is this. Whether one takes experience to be identified with, 

constituted by, supervenient upon, or the output of perceptual processes, a difference 

in perceptual experience implies a difference in perceptual process. This will be 

generally true—albeit for different reasons—no matter how one’s metaphysics of mind 

varies according to these alternatives. So if experience is penetrated, then information 

relevant to cognitive systems, or the processing of cognitive systems, directly influences 

the processing of perceptual systems. It is this entailment relation that is important for 

the criticism offered below.4 

One final point: Although the cognitive penetration of experience entails the 

penetration of processing at some stage, the cognitive penetration of experience is 

compatible with the cognitive impenetrability of processing at some stage or even most 

(but not all) stages. This point is instructive: one cannot argue from the alleged fact that 

some particular perceptual module is impenetrable to the claim that perception broadly 

or perceptual experience (in that modality) is impenetrable. Zenon Pylyshyn, for 

instance, argues that “early vision” is not penetrable by cognition (Pylyshyn 1999). 

Pylyshyn’s empirical claim about early visual processing, even if true, is insufficient to 

support the thesis that perception is cognitively impenetrable. Indeed, Pylyshyn admits 

that the output of this component of the visual system, as he and most theorists 

understand it, does not (alone) determine perceptual experience. His defence of 

cognitive impenetrability is thus consistent with the cognitive penetrability of 

perception; one might accept that the computations performed by the early visual 

system are impenetrable by cognitive states but maintain that perceptual processing is 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 It might be added here that if one makes a distinction between descriptive vision and motion-guiding 
vision (this is one terminological way of marking the distinction, see Matthen 2005), then these claims all 
concern descriptive vision. Accordingly, an effect on perceptual experience is an effect on descriptive 
vision which—according to a dominant theory in cognitive neuroscience—is plausibly an effect on 
processing in the neural pathway known as the ventral stream (see Milner and Goodale 1992, 1995).  
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penetrated elsewhere such that the resulting perceptual experience is causally 

dependent upon cognition5 

Although there is ample evidence for “top-down” processing in the brain—where 

information is exchanged between various areas of the cortex, including those areas 

believed to process higher-level or conceptual information—current neuroscience lacks 

an uncontroversial mapping from conceptual mental states (like belief) onto brain 

structures. And some such mapping would be necessary for neuroscience to provide a 

verdict on the actuality of cognitive penetration.6 Consequently, empirical evidence for 

cognitive penetration must be obtained at the behavioural or psychological level, rather 

than merely the neurological level. Predictably, there are a number of possible 

alternative interpretations of this data, and so the inference structure is abductive. 

Critics of cognitive penetrability appeal to these alternative interpretations as better 

explaining alleged cases of cognitive penetration. We identify four such general 

skeptical strategies. With these strategies in hand, a working definition of cognitive 

penetration can be devised, in hopes of isolating the target phenomenon in a way 

agreeable to both sides of the debate.  

First, for some experimental and/or anecdotal cases, critics claim that what is affected 

by the subject’s cognitive states is the subject’s memory rather than her perceptual 

experience. Subjects recall the stimulus to be some way as a result of some other 

cognitive state, and report a memory of the stimulus rather than a perceptual 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 A number of critics have questioned Pylyshyn’s conclusions in this general way (Bermudez 1999; 
Macpherson 2012; Moore 1999; Noë and Thompson 1999). It is also worth noting that Pylyshyn’s 
empirical claim can be challenged (see Boynton 2005; Kamitani and Tong 2005).  
6 Some have argued that evidence for reentrant neural pathways is evidence for cognitive penetration 
(Churchland 1988; 1989). Others have argued against this line of reasoning (Fodor 1988; Gilman 1991; 
Raftopoulos 2001). For purposes of this discussion, we simply assume that the neurological evidence is 
presently insufficient to count in either direction.   
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experience. This evidences cognitive penetration of cognition, and this is 

uncontroversial. Call this the memory interpretation.7  

A second strategy is the attention-shift interpretation. This interpretation maintains 

that in some of the cases in question, cognitive states of the experimental subjects cause 

a shift in attention, generally involving some overt action, which then results in the 

change in perceptual experience. This is no different in kind, critics urge, from an 

ordinary perceptual scenario where one, for example, has some belief about one’s 

environment and this belief causes some action, which in turn results in a changed 

perceptual experience. This familiar cognitive-behavioural dynamic is important to 

everyday life, but unless cognitive penetration is trivially rampant, this is not cognitive 

penetration. Cases involving shifts of attention, this interpretation suggests, are to be 

treated similarly: these scenarios lack an appropriate internal connection, and so there is 

nothing in this causal chain to properly call ‘penetration’ (see Pylyshyn 1999: 343).8 

Third, critics have suggested that experimental subjects have only a cognitively 

influenced judgement of the perceived stimulus, while the perceptual experience of the 

stimulus remains unaffected. Thus different reports of the experimental subjects versus 

the control subjects in particular studies indicate differences in judgement, not 

perception. Call this the judgement interpretation.9 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 For one example, see McCurdy 1956. Note also that if memory is factive as some have argued 
(Williamson 2002), then the memory-interpretation amounts to something like a quasi-memory 
interpretation.  
8 Fodor also appeals to this general response in his debate with Paul Churchland on the theory-ladenness 
of perception/observation (see Fodor 1988; Churchland 1988; see also Fodor 1983). Note also that both 
Fodor and Pylyshyn focus on intentionally caused shifts in attention, and offer little if any discussion of 
sub-personal attentional mechanisms. Accordingly, the attention-shift interpretation is described here in 
the way that it is given by the relevant critics. It remains an open question, and one very much in need of 
further discussion, how evidence for non-intentional attentional effects on perception bears on questions 
about cognitive penetration. For some related discussion, see Connolly (forthcoming), Mole (forthcoming), 
Stokes (2014). 
9 For additional discussion of these and other strategies for the cognitive impenetrability theorist, see 
Macpherson 2012; Stokes 2012, 2013.  
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Finally, an intra-perceptual interpretation claims that some of the evidenced effects are 

not cognitive ones but instead occur as adjustments or adaptations within the 

perceptual system. There are many ways to develop this alternative. One might claim 

that certain types of stimuli are such that the human perceptual system is appropriately 

“tuned” so as to represent these objects more quickly or in some enhanced way. These 

effects would not be learned, but would instead be artefacts of the evolution of human 

sensory systems. Or one might claim that a subject acquires a non-cognitive association 

with the stimulus type, and this association affects how perceptual information 

regarding tokens of this type are processed and/or how one acts in response to the 

stimulus. Or one may argue that sensory systems are sufficiently plastic to “learn” new 

ways to process sensory information, perhaps for some adaptive advantage.10  

Differences to one side, the thread common to these interpretations is that some cases 

may be better explained by changes in the sensory system that do not depend upon 

background cognitive states.  

Grant that if any alleged case of cognitive penetration can be interpreted in one of 

these alternative ways, then the critics are correct: it is not a genuine case of cognitive 

penetration of experience. We can then define cognitive penetration so as to rule out 

these interpretations, and ask if any case plausibly meets the definition. If the answer is 

‘yes’, then the critics must secure some alternative interpretation to deflect the case/s. 

Here, following Stokes (2013), is such a definition: 

 

(CP) A perceptual experience E is cognitively penetrated if and only if (1) E is 

causally dependent upon some cognitive state C and (2) the causal link between E 

and C is internal and mental. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Against Churchland’s appeal to subjects’ adjustment to inverting lens as evidence for diachronic 
cognitive penetration, Fodor appeals to an intra-perceptual interpretation (see Fodor 1988: 193). For a 
more recent use of this kind of interpretation, see Deroy (2013), who analyzes some of the research also 
discussed below.  
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The definition requires a few qualifications. First, clause (2) says that if an 

unscreened internal cause involves a cognitive state—that is, the causal chain runs from 

experience back to a belief, desire, or some other cognitive state without deviating from 

internal mental processes—then the perception depends (internally) upon a cognitive 

state.11  

Second, (CP) excludes obviously non-genuine cases of cognitive penetration.  For 

example, a desire to see the symphony, coupled with a true belief about the location of 

the symphony, may result in a perceptual experience of the symphony. But this should 

not count as an instance of cognitive penetration of experience, else the concept 

‘cognitive penetration’ becomes trivial. (CP) delivers the appropriate result. In cases like 

this, a cognitive state (or some cognitive states) motivates an action (or set of actions) 

which eventually results in the relevant experience.  The perceptual experience thus 

causally depends upon the relevant cognitive state/s. Clause (2) ensures, however, that 

this is not an instance of cognitive penetration, since the cognitive state (or states) is 

screened from being internally, causally efficacious: the cognitive state causes an 

(external) action which eventually results in the experience.12  

Importantly, a perceptual experience that satisfies this definition cannot be 

interpreted in any of the four ways described above. Clause (1) of (CP) rules out the 

memory, judgement, and intra-perceptual interpretation, since it requires a cognitive 

influence on perception, rather than just an influence on some other cognitive state in the 

system or an intra-sensory adjustment. Clause (2) of (CP) rules out the attention-shift 

interpretation (in a way that parodies treatment of the symphony example just above), 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 The preferred notion of causation is of little matter so long as the internal causal dependence is 
maintained. For example, one could characterize the causal relation counterfactually or probabilistically.  
One should also note that C is a non-sufficient cause of E. There are other relevant causal factors.  
12 In this way, CP is consistent with other recently proposed definitions of cognitive penetrability: 
Macpherson 2012; Siegel 2011; Wu 2013.  
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since it requires a non-externally mediated causal link between the cognitive state and 

the perceptual experience. The question now becomes: are there any experimental cases 

that satisfy (CP)? We now consider two sets of studies that strongly suggest that the 

answer is ‘yes’, preceded by some relevant historical background.  

Both sets of studies to be discussed are importantly informed by experimental work 

in the 1940s and 50s, identified now with the New Look movement in psychology. New 

Look psychology was important both for its explicit opposition to its behaviourist 

predecessors—contra behaviourism, the New Look argued that the proper explananda 

of psychology include internal mental states and processes—and for the way it made 

that opposition—the New Look theorized perceptual experience as an active 

construction of representations of the environment, substantially informed by the 

perceiver’s expectations, needs, values, desires, and other higher-level mental states. 

This last feature of the theory is often described as tantamount to denouncing the 

perception/cognition distinction: perception and cognition are entirely “continuous”. 

And although the pioneering new look psychologist, Jerome Bruner, explicitly rejected 

this characterization (see Bruner 1957), it led largely to a dismissal of New Look 

theorizing. But this dismissal is unfortunately overstated, and much has been and still 

can be learned from New Look studies.13   

In what is probably the most famous as well as the initiating study for New Look, 

Jerome Bruner and C.C. Goodman (1947) employed a methodology that stands the best 

chance of isolating cognitive effects on perception. Experimental subjects were asked to 

estimate the size of currently visually perceived coins (held in one hand) by adjusting a 

the circumference of a small patch of light positioned six inches to the right of the 

grasped coin. In these studies, experimental subjects systematically overestimated the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 See Balcetis and Dunning 2006, Stokes 2012, 2013, and van Ulzen 2008 for brief historical discussions of 
the rise and fall of the New Look movement, as well as (discussion of) new studies in the New Look spirit. 
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size of the coins, and this effect was more pronounced for poor subjects by comparison 

to rich subjects.14  

Crucial to disarming the alternative skeptical interpretations is the online nature of 

Bruner and Goodman’s experimental procedure. Many recent studies in psychology are 

suggestive of cognitive penetration15, but the most convincing studies follow some of 

Bruner and Goodman’s basic methods. We now present two such sets of studies—the 

first on colour perception of natural and artificial objects, the second on the influence of 

racial categories on visual experience.  

In a recent study, Thorsten Hansen and colleagues tested colour perception of objects 

with high “colour diagnositicity”, objects the concepts of which are partly constituted 

by a distinctive colour concept: YELLOW for bananas, RED for strawberries, ORANGE 

for carrots, and so on (Hansen et al 2006). The procedure involved the presentation, on a 

computer monitor, of digital photographs of natural fruits/vegetables, presented in their 

typical colour, set against a uniformly grey background. The subject’s task was to 

adjust the fruit image to what she judged to be a neutral (achromatic) grey. What in fact 

happens is that subjects adjust the image past achromatic grey and into the opponent 

colour range (e.g. adjusting a banana image past grey into the bluish hue). The 

researchers describe this as the memory colour effect. The researchers quantify this effect 

with a memory colour index (MCI), which in simplest terms provides a measure of the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 A number of theorists were critical of particular details and the broad scope of the New Look approach 
(Klein, Schlesigner, and Meister 1951; Carter and Schooler 1949; Lysak and Gilchrist 1955). These critics 
challenged some of the strongest New Look claims, and by simply acquiring evidence for cases where 
cognition apparently fails to affect perception. But this evidence fails to undermine the more modest 
implication that cognition sometimes influences perception in the relevant ways. Moreover, the Bruner 
and Goodman 1947 results have been broadly replicated by a number of similar studies at least insofar as 
these studies all evidence some higher-level effect on perceptual experience. See Bruner and Postman 
1948; Postman, Bruner, and McGinnies 1948; Bruner, Postman, and Rodrigues 1951; Dukes and Bevan 
1952; Bruner and Rodrigues 1953; Bruner and Minturn 1955; Blum 1957; Holzkamp and Perlwitz 1966.  
15 For example, each of the following studies present data that may be plausibly explained in terms of 
cognitive penetration: Balcetis and Dunning 2006, 2010; Payne 2001, 2005; Stefanuci and Proffitt 2008, 
2009; Witt and Dorsch 2009. However, the experimental controls in these studies are such that the results 
could also be plausibly explained in terms of one (or more) of the mentioned alternative interpretations.  
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achromatic adjustment, towards the colour typical of the stimulus object (negative 

index) or away from it into the opponent hue range (positive index), relative to the 

typical colourfulness of the object. So for example, for a banana, the MCI is the ratio of 

the distance of shift past the perceiver’s grey point into the bluish hue range to the 

distance of the shift from the typical yellow of the banana to the grey point, (with both 

of these distances measured along the same axis of typical adjustment for subjects).16 For 

all of the experimental conditions, the MCI ranges from +4 to +13%, with a mean effect 

of +8.23%. As the researchers clarify, this quantification corresponds to an effect that is 

approximately three to five times above the threshold of discrimination. As a control, 

subjects perform the same task with uniformly coloured discs, and there is no memory 

colour effect: subjects adjust the discs to achromatic grey with perfect accuracy. We 

should emphasize that in this study (and those discussed immediately below), the task 

was clearly perceptual and online. Subjects took as much time as they felt necessary to 

make the adjustments, thus making adjustments to the perceptual stimuli in real time. 

This case plausibly meets definition (CP). As the researchers hypothesize, a 

fruit/vegetable image, say a banana, still appears yellow to the subject at the point of 

achromatic grey. This hypothesis explains the fact that the subject adjusts the image 

into the bluish range, to compensate for the residual yellow, and then reports the fruit 

to be grey (when in fact it is slightly blue). This colour experience seems to depend, in a 

direct way, upon beliefs or conceptual associations with the relevant fruit/vegetable 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 More specifically, the researchers clarify the calculation of the MCI as it is used in all three of the colour 
perception studies discussed here, as follows. “For the MCI the achromatic adjustments are projected on 
the axis of the typical adjustments that leads through the subjective grey point. The distance of this 
projection from the subjective grey point measures how strong the shift along this axis was. For the MCI 
this measure is divided by the length, i.e. the saturation, of the typical adjustment. In this way, the MCI 
represents the ratio of achromatic shift relative to the colourfulness of the typical colour. The sign (+/–) of 
the MCI reflects the direction in which the adjustment is shifted away from the subjective grey point. A 
positive MCI indicates an achromatic adjustment opposite to the typical adjustment. A negative MCI 
implies, contrary to the memory colour effect, that there is a shift of the achromatic adjustments towards 
the same direction as the typical adjustments. The MCI has been calculated separately for each participant 
using their subjective grey point” (Witzel et al 2011: 37). 
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objects. Because the testing procedure involves online adjustment of the target stimuli 

itself, the memory interpretation is not appropriate. For similar reasons, the attention-

shift interpretation fails: there is no plausible explanation whereby subjects, in 

experimental but not control conditions, execute overt (or covert) attention to get the 

relevant effects.17 And the judgement interpretation would require that, as the subject 

visually inspects and adjusts the target stimulus, she veridically perceives the stimulus 

(e.g. a banana image as slightly blue) but then reports a judgement that it is perfectly 

grey. So she sees the stimulus accurately but reports it erroneously. And this error has 

to be explained in a way that current (veridical) perception is bypassed or ignored as 

informing the subject’s report, in spite of the task being an explicitly perceptual one. 

This looks much less plausible than an explanation where a non-veridical experience, 

itself causally dependent on background cognitive states, causes a judgement and report 

that the target is perfect grey (when it, the banana image for example, is in fact 

objectively, slightly blue). Here the report is erroneous—as the data make clear—but 

the error in report is explained by perceptual error, and the perceptual error is 

explained by cognitive penetration.  

It is useful to briefly consider a possible rejoinder from the cognitive impenetrability 

theorist. She might respond by invoking instances where perception and judgment do 

come apart in just this way. So, for example, although one sees the Müller-Lyer lines as 

being of different lengths, one believes (if one knows the illusion) that the lines are of 

the same length. And indeed one cannot manage to see them accurately in spite of this 

background knowledge (Fodor 1983, 1985, 1988; Pylyshyn 1999). So, the critic would 

argue, a consistent mismatch between simultaneous experience and judgment is not so 

uncommon, and perhaps these experimental subjects can be explained similarly. 

However, the subjects in these experiments are importantly different from standard 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 This is by contrast, for example, with Fodor’s favoured explanation of the way one can shift, by 
attentional changes, one’s experience of the Necker cube or the duck-rabbit. See Fodor 1988: 190. 
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perceivers of the Müller-Lyer and other such illusions. When one judges and reports 

that the Müller-Lyer lines are of the same length, one bases this report not on current 

perceptual experience, but on knowledge of the illusion. The subjects in the Hansen et 

al 2006 studies (like those in Bruner and Goodman’s 1947 studies) are different in this 

regard: they intend for their report to be one of what they presently see. Indeed, if 

asked, the subjects would certainly confirm that their report—that the image is perfect 

grey—is based on what they see. To treat these subjects like perceivers of the Müller-

Lyer illusion requires that they are systematically mistaken about this: the subjects are 

not reporting on the basis of what they see. 

What finally of the intra-perceptual interpretation? One might worry, that since the 

target stimuli are all natural objects, the memory colour effect is symptomatic of hard-

wired sensitivities of the human perceptual system. An enhanced perceptual sensitivity 

to ripe fruit and vegetables would plausibly be an evolutionary advantage for humans. 

And so granting that subjects still see the banana image as slightly yellow even when it 

is objectively grey, one might argue that this is best explained by facts about human 

perceptual processing and how it has evolved, without any needed appeal to cognition. 

This interpretation may appear even more plausible in the light of a second study 

performed by some of the same researchers, where the memory colour effect was most 

pronounced for realistic images of fruits/vegetables (e.g. those depicting texture) and 

mostly absent for mere fruit/vegetable outline shapes (Olkonnen et al 2008).18  

However, this interpretation is easily dispelled by a more recent study (Witzel et al 

2011). These studies involve artificial, human-made objects as stimuli. In a preliminary 

study, the researchers identify artificial objects with maximal colour diagnosticity, the 

blue Smurf, the Pink Panther, the red Coca-Cola logo, a green ping pong table, and so 

on. Images of these objects are then included in an experiment where the task is the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18 See Deroy 2103 for an analysis that partly focuses on the Olkonnen et al 2008 study.  
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same as the above two studies, plus a few additional controls. Target objects are initially 

presented in a random colour (e.g. a fire extinguisher might appear as blue rather than 

its typical red colour) against a uniformly grey background, and subjects then adjust 

the object to what they perceive to be achromatic grey. Additionally, control objects 

that typically vary in colour (e.g. a sock) and control objects that are typically 

achromatic (e.g. a golf ball) are presented in a random colour where the task is the same. 

Under these conditions, there is no evident effect for control objects, and a significant 

effect for colour diagnostic objects. The mean MCI for fourteen colour diagnostic stimuli 

was +3.31%, with a high of +10.3% (for the blue Nivea tin). Just as in the earlier 

studies, the results provide strong evidence for a cognitive effect on perceptual 

experience. And importantly, the intra-perceptual interpretation is less compelling in 

the face of this most recent study. One version of the intra-perceptual explanation 

clearly does not apply: there is no story to be told about an evolved perceptual 

sensitivity to cartoon icons or soda logos. The opponent might attempt to maintain that 

“pure” perceptual associations are at work in these phenomena, denying any operative 

cognitive learning. One further reason to doubt this explanation is that these effects are 

culturally-variant.19 And so, among the relevant population/s, images of smurfs, for 

example, are imbued with a range of semantic content. This factor lends additional 

plausibility to the effect being a cognitive one: subjects learn (and sometimes differently 

in different places) what colours and other features are typical of artificial objects. This is 

hardly conclusive, but as stated above, current empirical data is insufficient to 

determine some of the explanatory decisions here. Absent some further method of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19 In their initial study to identify colour diagnosticity for artificial objects, which was performed in 
Germany, Witzel et al (2011) found that some stereotypically German images were highly colour 
diagnostic (as measured by reaction time and accuracy of typical colour identification)—for example the 
orange Die Maus (a German television character), the yellow German mailbox, the yellow (German-made) 
UHU glue tube. But some non-German objects were not sufficiently colour diagnostic (relative to German 
subjects)—for example, the yellow Ferrari symbol and the red Soviet flag. These researchers did not run 
the study using these non-colour diagnostic (relative to German subjects) objects, but presumably if they 
had, any memory colour effect would have been insignificant at best.  
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adjudication, we maintain that it is most plausible that subjects’ beliefs or conceptual 

associations about these artificial kinds of objects (by contrast to pure, non-cognitive 

colour associations) affect colour experience of (images of) those objects.     

Next consider a recent study on racial stereotypes and face perception (Levin and 

Banaji 2006). In Experiment 1, subjects were presented, on a computer monitor, with 

realistic greyscale images of male faces with features stereotypical of either black or 

white persons (with hair removed). The task was to match the luminance of an 

adjustable greyscale face to the target face (in some conditions the adjustable face was of 

the same racial prototype as the target, and in others of the opposite racial prototype). 

Although the luminance of the two target prototypes was (objectively) identical, 

subjects consistently adjusted to a lighter grey for the stereotypical white faces and to a 

darker grey for the stereotypical black faces (in both mixed-race and same-race 

conditions).20  

In Experiment 2, Levin and Banaji first, in a preliminary study, created a racially 

ambiguous face by morphing a range of prototypical black and white-face features, and 

then confirmed the ambiguity of the face by appeal to racial classification results across 

15 subjects. On an instruction screen, the ambiguous face (call this ‘BW’) was then 

paired with either an unambiguously white face (call this ‘W’) or an unambiguously 

black face (call this ‘B’). And in each condition, both faces were labelled, either ‘Black’ 

or ‘White’. So for example, when paired with an unambiguously white face, the 

ambiguous face (BW) was labelled ‘Black’ and the unambiguous white face (W), labelled 

‘White’. Taking this condition as our example—Levin and and Banaji call this the 

“BW/W condition”—the task phase proceeded as follows. Subjects were presented with 

a series of trials, where each trial involved either the ambiguous face (i.e. the one 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 More specifically, for example, with a black-face prototype as target, subjects adjusted a white-face 
prototype to 4.65 levels darker (out of 256 possible greyscale levels for the computer monitor) than a 
white-face prototype target (where, again, both targets are of identical luminance levels).  
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labelled ‘Black’ in the instruction phase of the BW/W condition) or the unambiguous 

white face (labelled ‘White’ in the instruction phase), both of identical luminance, 

coupled with an adjustable rectangular region of uniform grey. The task in each trial 

was to adjust the grey report patch to match the face simultaneously perceived. Result: 

the racially ambiguous face is reported in a way that strongly correlates with the 

semantic labelling prime. So, in the BW/W condition, the lightness report for the 

ambiguous (‘black’-labelled BW) face was .465 levels darker (than the objective 

luminance of the target) and 17.85 levels lighter for the unambiguous (‘white’-labelled 

W) white face. And here is perhaps the most striking result: when the same ambiguous 

face BW is labelled ‘White’ (in the opposite “B/BW condition”) the report for BW is 

15.95 levels lighter. So: present a face identical both with respect to luminance and 

facial features, but change the label from ‘Black’ to ‘White’, and the reported match 

goes from .465 levels darker to 15.95 levels lighter (than the objective luminance of the 

ambiguous face)(2006: 505-6).21 This is not an effect explained just by optics or (intra-) 

perceptual features; the linguistic label is clearly playing an operative role in the 

subject’s perceptual experience.  

To conclude discussion of this final set of studies, consider the remaining alternative 

interpretations. The Levin and Banaji results are not well-explained by memory since 

this study involves online perceptual matching tasks. Nor is there any reason to think 

that overt shifts in attention are explanatory of the effects.22 Thus both the memory and 

attention-shift interpretations fail to apply. What about the judgement interpretation? 

Considering Experiment 2, this interpretation would require that a subject, upon 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 See footnote 19 for clarification regarding the grey measures. 
22 In fact, the researchers devise a third experiment explicitly devoted to discounting an explanation 
where attention is drawn to facial contours (e.g. of the stereotypical black face) in a way that explains the 
perceptual differences that appear in the results. They construct greyscale line drawings—with either 
white lines or black lines providing the facial outlines, but with no other shading of facial features—of 
the white and black prototypes. The results are relevantly the same and statistically significant: subjects 
choose darker samples for the black prototype faces and lighter samples for the white prototype faces. See 
Levin and Banaji 2006: 506-8. 
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confirming her report and moving to another trial, has veridical experiences of the 

target face and the report region of grey—for example, where the grey report region 

would appear as (on average) 15.95 levels lighter than the simultaneously perceived 

(‘white’-labelled) ambiguous face. But then somehow the subject, in spite of perceiving 

this difference, judges and reports the face and report region as matching. This is far 

less plausible than the opposing cognitive penetrability thesis. The best explanation, 

here and above, is that the subject is having a non-veridical experience. She sees the 

prototypical white and prototypical black face as lighter and darker, respectively, and 

in Experiment 2, this effect is exaggerated by a linguistic labelling prime. The non-

veridical experience is a result of penetrating cognitive states, in this case, racial 

stereotypes or beliefs.23  

 Summarizing, there are crucial methodological features common to all of these  

sets of studies. First, in all experiments, subjects must perform online perceptual tasks. 

Thus the target stimulus—a coin, a Smurf image, a greyscale face—is present and 

perceivable while the subject makes her report. One might understand this as a way of 

extending a now familiar methodological approach in current philosophy of perception, 

namely, the method of phenomenal contrast (Siegel 2007). In this context, the method 

specifies that the apparent contrast between two distinct perceptual phenomena be 

explained abuctively—by inference to the hypothesis that best explains the contrast. 

Because in these experiments perceptual experience is online and available for 

perceptual report, explanations in terms of memory look dubious. And the attention-

shift interpretation would require substantial differences in active attention between 

control and experimental subjects, and this simply doesn’t show up. Second, the 

method for reporting involves some direct kind of manipulation, either of the target 

stimulus itself or of some match disc or region. It is this methodology that, coupled with 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 Macpherson 2012 briefly discusses both Hansen et al 2006 and Levin and Banaji 2006. She also provides 
a detailed analysis of an earlier study on colour perception, Delk and Filenbaum 1965.  
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the online methodology, disarms the judgment interpretation. (Compare: Many other 

experiments use verbal reports of some kind. And a task involving a verbal report—for 

example, providing a numerical estimate of the distance of a perceived object—opens 

space for judgement about perception and, in turn, encourages the judgement 

interpretation.) Finally, the stimuli used in these studies are all ones about which we 

learn and form beliefs, desires, and other cognitive states. It is this methodology that, at 

least partly, disarms the intra-perceptual interpretation.24 As a point of methodology, we 

prescribe that any experimental attempts to test for cognitive penetration should 

employ, at minimum, this combination of features. And this approach can be traced 

back to Bruner and Goodman’s important work of over 60 years ago.    

Now, what does all of this imply for a strong modularity theory, any theory that 

commits to informationally encapsulated perceptual modules? If the above discussion is 

successful, then the standard alternative strategies fail to deflect the discussed cases as 

genuine evidence for the cognitive penetration of perception. In each case, whether it is 

a desire, value, belief, or some other higher-level mental state, there is evidently some 

cognitive state (internally) influencing experience.25 These cases are best described as 

meeting the conditions of (CP). And therefore, as we will now argue, perceptual systems 

are not informationally encapsulated.  

Recall that perceptual systems are paradigms for modular systems. And recall further 

that if one is an encapsulated modularity theorist, then one commits to the informational 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
24 Recall that because the inference method here is abductive, to “disarm” an hypothesis means, at best, to 
render the hypothesis highly implausible and, at least, to show that the hypothesis is less plausible than 
competing alternatives, all things considered.   
25 As one anonymous reviewer notes, a number of questions about the relevant background cognitive 
state remain insufficiently answered in existing literature. For example, it is not made clear whether the 
influencing cognitive state must be an occurrent mental state. And must the effect be synchronic or may 
it take place diachronically? We agree that these are important questions. However, note that for our 
purposes, the answers don’t matter. So long as the background state is cognitive and has an effect on 
perceptual processing (and thereby experience), then that state can be occurrent or non-occurrent, and 
the effect synchronic or diachronic. In other words, if a phenomenon meets the conditions specified by 
CP, then such a phenomenon will count against informational encapsulation no matter the answer to these 
other questions.  
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encapsulation of modules. The informational encapsulation of perceptual modules 

entails cognitive impenetrability. Finally, the cognitive penetration of perceptual 

experience entails, at some level, the cognitive penetration of perceptual processing. 

Therefore, any legitimate case of the cognitive penetration of experience undermines the 

alleged informational encapsulation of the relevant perceptual systems, and in turn 

challenges any theoretical architecture of those systems that commits to informational 

encapsulation as necessary for modules. 

Here, finally, is the first horn of the dilemma for modular architectures of the mind. 

There are legitimate cases of the cognitive penetration of experience. We have defended 

two sets of studies against the relevant alternative interpretations. And so perceptual 

systems—in these cases vision—are not informationally encapsulated. Any modularity 

hypothesis about the architecture of perceptual systems that commits to the necessity of 

informational encapsulation (and by implication: cognitive impenetrability) for 

modularity is therefore threatened.  

To clarify our critique, it is useful to briefly consider a hypothetical defence for the 

encapsulated modularity theorist in response to this first horn of the dilemma. Our 

suggestion is not that perception (or vision, more specifically) is, as it were, 

unencapsulated through-and-through. As discussed above, the entailment relations 

between the cognitive penetration of perceptual experience and the cognitive 

penetration of perceptual processing would not support this last inference. So, the 

modularity theorist might retort, the penetration of experience is compatible with the 

impenetrability (and thus encapsulation) of some (but not all) components or systems in 

perceptual processing, which means that some components of perceptual systems may 

be strongly modular.26  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26 We thank XXXX for pressing us to consider this reply for modularity theory. 
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Reply: the fact that some aspects of perceptual processing can be explained by 

encapsulated modularity does nothing to save a modular approach to theorizing the 

architecture of perception. For example, feature detecting components like groups of 

simple and complex cells in the primary visual cortex are likely encapsulated, as are 

many other neural circuits and low-level components in the overall visual system. In 

fact, it may be that certain sub-systems in vision—for example, Pylyshyn’s early 

vision—are encapsulated in spite of the penetration of visual experience. This would be 

to maintain the commitment to informational encapsulation and thus a strong notion of 

‘module’. But note that the scope of modularity on such a view, that is, the kinds of 

systems to which the conceptual framework can be successfully applied, is significantly 

weakened. Such a modularity theorist can only claim that some of the visual system is 

modular and, importantly, cannot claim that vision is, generally, modular. This last 

claim is inconsistent with genuine cases of cognitive penetration. 

It is important, moreover, not to overemphasize a characterization of (perceptual) 

modularity as concerning only perceptual processing. This is because an interest in 

mental architecture is guided not merely by goals of psychological modelling. Another 

crucial issue of relevance is epistemic: a modularity theory of perception promises a 

preferable epistemology, one where perceptual systems rapidly deliver perceptual 

representations in a way not prone (or less prone) to errors introduced by the cognitive 

agent. As Fodor puts the point, the “function of perception is to deliver to thought a 

representation of the world.” And since here the goal is to represent “[n]ot the distant 

past, not the distant future and not…what is very far away…it is understandable that 

perception should be performed by fast, mandatory, encapsulated, etc. systems…” 

(Fodor 1985: 5; emphasis added). The systems in question are sub-personal modules, but 

the representations they provide or give rise to are personal-level experiences. (Fodor’s 

fondness for citing the Muller-Lyer and other “persistent” illusions as examples of 
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cognitive impenetrability further highlights this point.) Given the epistemic role that 

such representations are supposed to serve, and the supposed epistemic advantage of 

modular perceptual systems, the modularity theorist should be no happier with 

evidence for penetrated experience than he is with evidence for unencapsulated 

perceptual processing. In short, a central motivation for modular perceptual systems 

entails a concern with perceptual experience.27      

Where does this leave the view? The claim that some individual low-level circuits are 

encapsulated and thus strongly modular is largely uncontroversial among cognitive 

scientists. And the claim that some sub-systems in perception are strongly modular is 

insufficient to support the claim that the general structure of perception (or, more 

specifically, vision) is strongly modular. In turn, these weakened claims are insufficient 

to secure the putative epistemic benefit of modular perceptual systems. In short, one 

cannot save a modular architecture of perception by appeal to encapsulated perceptual 

components or sub-systems. To do so would be to opt for strength of modules over 

scope, in turn undermining the modularity hypothesis as an architecture of perceptual 

systems.      

 

 

II. Informationally unencapsulated modules: A challenge for the massive modularity 

hypothesis 

 

A number of recent theorists have weakened the notion of modularity with respect to 

Fodor’s original characterization and, in particular, with respect to informational 

encapsulation. This change in the notion of modularity tends to accompany a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
27 Fodor makes similar suggestions elsewhere; see, for example, his discussion of “perceptual 
identifications” (1983: 68-71). And Pylyshyn (1980) makes similar commitments, claiming that the 
reliability of perception requires cognitive impenetrability. For further discussion of the epistemic 
consequences of cognitive penetrability, see Lyons 2011; Siegel 2012, 2013; Stokes 2012, 2013. 
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broadening of the scope of modular theories. Thus, massive modularity theorists take 

much if not the whole of the human mind to be modular, including higher level 

conceptual and cognitive systems. If, as we have argued in the previous section, 

informational encapsulation is too strict a requirement on the modularity of perception, 

then it makes sense to not require it of higher-level cognitive systems (Sperber 2001 is a 

notable exception). Weakening modularity in this way, however, comes with significant 

costs to any modular account of cognition. First, it greatly weakens the explanatory 

value of modular architectures. Second, it threatens the internal coherence of 

modularity theories. 

Peter Carruthers, a massive modularity theorist, argues that  

 

if a thesis of massive mental modularity is to be even remotely plausible, then by 

‘module’ we cannot mean ‘Fodor-module’. In particular, the properties of having 

proprietary transducers, shallow outputs, fast processing, significant innateness 

or innate channelling, and encapsulation will very likely have to be struck out. 

(Carruthers 2006: 12; emphasis added.)  

 

According to Carruthers, massive modularists should expect most (if not all) central 

cognitive modules to be unencapsulated. He writes: 

 

…even where a system has been designed to focus on and process a particular 

domain of inputs, one might expect that in the course of its normal processing it 

might need to query a range of other systems for information of other sorts. 

(Carruthers 2006: 10).  

 



	
   26	
  

In other words, an unencapsulated module, in order to perform its task, will often need 

to compute over information that is processed and made available by other systems. For 

example, the mind-reading system “may need to query a whole range of other systems 

for information relevant to solving the task in hand” (Carruthers 2006: 11).  

Evolutionary psychologists, many of whom subscribe to the massive modularity 

hypothesis, also tend to argue for (or assume) the compatibility of modularity with 

unencapsulation28. Hagen (2005) explicitly states what is often implicitly assumed in this 

field: 

 

Why, except when processing speed or perhaps robustness is exceptionally 

important, should modules not have access to data in other modules? Most 

modules should communicate readily with numerous (though by no means all) 

other modules when performing their functions, including querying the 

databases of selected modules (163).   

 

Any such modularity theorist thus claims that systems, like the mind-reading system, 

can be modular in spite of being informationally unencapsulated. As Carruthers 

suggests, this might be a necessary adjustment of a general modular architecture for the 

simple reason that anything stronger is implausible.  

One main theoretical advantage of, and indeed motivation for, proposing modular 

architectures is that they explain behavioural (or task) dissociations. A cognitive task A 

is said to be dissociated from cognitive task B when some individuals are observed who 

show a significant deficit with respect to A in the absence of a corresponding deficit in 

B. A and B are said to be doubly dissociated when, in addition, we observe individuals 

in whom B is significantly impaired without a corresponding deficit in A. Double 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 Sperber (2001) is a notable exception to the view that the plausibility of massive modularity entails 
giving up the encapsulation requirement. 
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dissociations are taken as evidence of modularity because cognitive modules are, in the 

weakest sense, dissociable (or separately modifiable) functional components (Carruthers 

2006, Sternberg 2001, 2011, Shallice & Cooper 2011)29, and cognitive architectures 

composed of dissociable systems do produce behavioral double dissociations if damaged 

in different ways (Coltheart 2001). 

To see this, suppose that two cognitive systems A and B are dissociable because A 

has a subsystem Sa that B doesn’t have and B has a subsystem Sb that A doesn’t have. If 

Sa is damaged while B is left intact, we should expect performance on behavioral task Ta 

(which depends on A) to be impaired while performance on behavioral task Tb (which 

depends on B) not to be impaired. Similarly, if Sb is damaged and A is left intact, then we 

should expect performance on behavioral task Tb (which depends on B) to be impaired 

while performance on behavioral task Ta (which depends on A) not to be impaired. 

Consider, for example, the double dissociation between face recognition and object 

recognition—i.e. observing patients with intact visual object recognition but impaired 

face recognition (De Renzi & Di Pellegrino 1998), and patients with intact face 

recognition but impaired visual object recognition (Rumiati & Humphreys 1997). These 

findings suggest that the system used to recognize faces is not identical to the system 

used to recognize objects, and that each of the two systems has at least one subsystem 

that the other doesn’t have30. This, in turn, suggests that the face recognition and object 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
29 Carruthers (2006) states that “in the weakest sense, a module can just be something like: a dissociable 
functional component”, and that “understood in this weak way, the thesis of massive modularity would... 
predict that the components should be separately modifiable” (p.2). Sternberg (2011) provides the 
following definition of cognitive module: “two sub-processes A and B of a complex process (mental or 
neural) are modules if and only if each can be changed independently of the other” (p. 159). It is worth 
mentioning that modules have also been minimally conceived as domain specific systems (e.g. Coltheart 
1999 defines ‘module’ as “a cognitive system whose application is domain specific”, p. 118). Interestingly, 
however, both Sternberg and Coltheart have argued that domain specificity implies separate modifiability 
(Coltheart 2011, Sternberg 2011). 	
  
30 It would not, however, be reasonable to infer from this behavioral double dissociation that the face 
recognition and visual object recognition systems are completely distinct (or disjoint, see Lyons [2003]), 
since the two systems evidently share some of their subsystems (e.g. the subsystems responsible for low-
level visual feature analysis).   
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recognition systems are dissociable, or in other words, that the architecture of visual 

recognition is modular (Coltheart 1999). 

This reasoning from dissociation data to modularity—call it the functional modularity 

inference (Bergeron 2007)—has been central to the development of modern 

neuropsychology (Shallice 1988, Vallar 2000). In the last thirty years, philosophers and 

cognitive scientists have refined concepts of dissociation and narrowed the scope of the 

inference, and there is an emerging consensus among proponents of this approach that 

the reasoning should be understood as an inference to the best explanation (Coltheart 

2001, Davies 2010, Shallice 1988). As we just saw, behavioral double dissociations 

naturally occur when modular architectures are damaged in different ways, so one can 

infer the existence of cognitive modules from a behavioral double dissociation on the 

grounds that modularity best explains this kind of data.  

The legitimacy of inferring dissociable systems (or modules) from double dissociation 

data is very much a matter of debate (Coltheart 2001, Davies 2010, Dunn & Kirsner 1988, 

Juola, & Plunkett 2000, Machery 2012; Plaut 1995, Van Orden, Pennington, & Stone 

2001). However, grant for the moment that the inference is generally sound. We then 

want to question whether an inference to the best explanation is supported when 

modules are assumed to be unencapsulated.   

Let us suppose, then, as the weakened modularity theory we’re considering does, 

that modules are not encapsulated. Suppose, for example, that the alleged face 

recognition and object recognition modules are not encapsulated, that they both often 

need to compute over information made available by other systems in order to perform 

their tasks.31 This means that a double dissociation between face and object recognition 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
31 Strictly, a cognitive system could be unencapsulated with respect to a whole range of systems and 
never have to compute over information made available by any of them. However, this is more of a 
conceptual possibility than an empirically plausible one, since it is hard to see why evolution or 
development would invest in building the relevant connections (so that the system can have access to 
whatever information these other systems make available) if these are never used.  
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could easily occur even if both alleged modules remained intact (i.e. were not damaged). 

This would happen if damage occurs (in patient 1) to any of the systems that the face 

recognition module needs to access, or to the connections between the face recognition 

module and any of these systems, and damage occurs (in patient 2) to any of the systems 

that the object recognition module needs to access, or to the connections between the 

object recognition module and any of these systems.  

What this shows is that if modules are unencapsulated, there are a lot more ways to 

obtain a double dissociation between face and object recognition than by separately 

damaging (or modifying) the face recognition and object recognition systems. In fact, it 

shows that a double dissociation between face and object recognition could easily occur 

even if both functions are produced by a single system—face recognition fails when the 

system cannot access certain systems and object recognition fails when the system 

cannot access certain other systems. Thus, if we assume that cognitive modules are 

unencapsulated, observing a behavioral double dissociation can hardly be taken as 

strong evidence for the existence of dissociable systems. Put in terms of the functional 

modularity inference, since it is the assumed dissociability of cognitive modules that is 

supposed to explain behavioral double dissociation data, an appeal to unencapsulated 

modularity does not best explain such data.32  

By contrast, behavioral double dissociations are adequately explained by 

encapsulated modularity. Importantly, if modules are informationally encapsulated, 

their normal functioning does not thereby depend on information made available by 

other systems (other than their proprietary inputs of course). Thus, a behavioral double 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
32 The alleged theory of mind module is another case where unencapsulated modularity might not best 
explain behavioural dissociations between mind reading and other cognitive capacities. See Gerrans and 
Stone (2008) for a discussion of this case. 
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dissociation does, in this case, strongly suggest that two different systems have been 

separately damaged.33  

This point about the explanatory weakness of unencapsulated modularity is worth 

further emphasis, since it reveals that, and in fact may be partly explained by the fact 

that, there is conceptual tension between the notions of unencapsulation and 

modularity. 

 To see this, recall that modules are, at the very least, dissociable systems. This 

minimal conception of modularity is what gives the functional modularity inference its 

theoretical force (see also Robbins 2013). Behavioral double dissociations are explained 

by modular architectures—and thus suggest the existence of dissociable systems—since 

cognitive architectures composed of dissociable systems give rise to behavioral double 

dissociations when damaged in different ways. We agree that a minimal notion of 

modularity should include dissociability, since without it the modular approach would 

seem to reduce to functional decomposition (see e.g. Barrett and Kurzban 2006 for a 

view of modularity that boils down to functional specificity; see also Cowie 2008 and 

Wilson 2008). And functional decomposition—understanding the mind in terms of 

functional components and sub-components—is uncontroversial as an approach, except 

perhaps in some connectionist quarters (more on this later). 

 Stated most generally, there is conceptual tension between the notions of 

unencapsulation and dissociability (at the level of systems) because the two properties 

work in opposite directions. The more unencapsulated a cognitive system is, the more 

likely it is that it will need to compute over information made available from other 

systems, and therefore the less likely it is that this system will be dissociable from these 

other systems. We now argue that this conceptual tension raises doubts about the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
33 This is not to say, however, that encapsulated modularity is the only plausible explanation of a double 
dissociation. Even with encapsulated modularity, the functional modularity inference remains abductive 
(Shallice 1988, Coltheart 2001).  
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overall soundness of (weak) modular theorizing that go beyond the use of the functional 

modularity inference in cognitive (neuro)psychological research.  

 On the one hand, two cognitive systems A and B are dissociable if B can be damaged 

(or modified) without affecting A’s functions, and A can be damaged (or modified) 

without affecting B’s functions.  

 On the other hand, if A is unencapsulated relative to B and A needs to compute over 

information made available by B in order to perform its task, then B cannot be damaged 

(or modified) without affecting A’s functions, so A and B are not dissociable.  

 Of course, A can be unencapsulated relative to B and not need to compute over 

information made available by B when performing a particular task at hand. Thus the 

claim is not that unencapsulation is incompatible with dissociability. Rather, the claim is 

that the more unencapsulated systems are in a given cognitive architecture, the more 

likely it is that these systems will need to compute over information made available by 

other systems (recall footnote 30), and so the less likely it is that dissociability will be a 

general characteristic of this architecture. That is, the less likely it is that the 

architecture will be (massively) modular. 

 To illustrate this, consider a cognitive architecture composed of several 

unencapsulated systems.34 For any such architecture, there might exist some systems A 

and B that can be dissociated by disrupting some of their respective parts X and Y, such 

that disrupting X will not disrupt B, but will disrupt A and several other systems (e.g. 

C, D, E...) that need to access information provided by X, and disrupting Y will not 

disrupt A, but will disrupt B and several other systems (e.g. D, E, F...) that need to 

access information provided by Y. So, even though we might find some specific pairs of 

systems that are functionally dissociable (here A and B), dissociability does not appear 

to be a general characteristic of this largely unencapsulated architecture. But this is 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
34 It does not matter here whether the systems share some parts.	
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exactly one of the core claims of massive modularity.  

 Here’s a more concrete illustration. Consider a team of software developers 

responsible for creating an app for a smart phone. Each member of the team has a 

specific task to do, for example, building the database, creating the graphic interface, 

programming, integrating the app with the phone’s operating system, app security, and 

so on. Each member must communicate frequently with several other members to make 

sure that the component they are working on will be compatible with other 

components, so as to ensure that the app will run smoothly. In a sense, then, we can say 

that each member of the team is unencapsulated relative to (several) other members; 

each must obtain specific information from other members (through regular meetings 

and one-to-one consultations) in order to accomplish her task. What this means, in turn, 

is that if a team member fails to perform her task according to plan (say, she falls behind 

schedule, makes a last minute change, or withdraws from the project), this would likely 

have a negative impact on several other members’ ability to accomplish their tasks, so 

each member’s task is likely not dissociable from other members’ tasks.  

 Nonetheless, we may imagine ways in which a part of a task carried out by one 

member might be dissociable from a part of a task carried out by another member.  

For example, suppose the app is a fitness app (designed to help users know how much 

calories they burn while engaging in different physical activities) and that the person 

responsible for building the database needs to figure out which kinds of physical 

activity will be made available and for each of these what the typical energy 

consumption is. Suppose further that the person responsible for the app’s security needs 

to make sure that users will have the option of turning off the location services feature. 

Surely, these particular subtasks could be carried out completely independently of each 

other and would therefore dissociate (failure to add the locations services option would 

not affect, for example, the decision to add brisk walking as one of the activities, and 



	
   33	
  

vice versa). We would not, however, want to say that task dissociability is one of the 

core features of the team’s overall software development project.   

 The main intuition behind the massive modularity hypothesis is that large complex 

systems must be decomposable into distinct functional components. We share this 

intuition, since it might be the only way to build systems capable of performing 

complex tasks reliably (Simon 1969, Marr 1976, Carruthers 2006). However, the 

building of such systems—whether by a human designer, or in the course of natural 

evolution or normal development—does not require that the systems’ components be 

dissociable (see e.g. Bergeron, forthcoming, for a notion of functional independence that 

does not require dissociability.) What our argument shows is that when such systems 

are assembled from unencapsulated functional components, we cannot generally expect 

these components to be dissociable. To put it differently, what our analysis suggests is 

that the functional decomposition of large complex systems into unencapsulated 

functional components cannot generally rely on the notion of dissociability, but must 

rely instead on other forms of functional separability or functional individuation. A 

return to Fodor’s original argument against the modularity of central systems (i.e. 

against massive modularity) may help further clarify this point.    

 Fodor, as discussed above, characterizes the specialization of perceptual systems 

within the strong (encapsulated) modularity framework. According to this approach, 

individual brain areas can be ascribed specific perceptual functions when they 

constitute “domain-specific computational systems characterized by informational 

encapsulation, high speed, restricted access, neural specificity, and the rest.” (Fodor 

1983: 101). It is when brain areas can be characterized in this way that, according to 

Fodor, we should expect to find stable (i.e. lawful) relationships between structure and 

function. Or, to put it differently, we should expect to find stable relationships between 

particular brain areas and specific cognitive functions when brain areas can perform 
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their computational functions independently of other brain areas (by virtue of being 

encapsulated).  

 By contrast, Fodor was much less optimistic about the prospect of finding stable 

structure-function relationships in the case of unencapsulated computational systems.  

 

Consider, by contrast, [unencapsulated] systems, where more or less any 

subsystem may want to talk to any other at more or less any time. In this case, 

you’d expect the neuroanatomy to be relatively diffuse. At the limit, you might 

as well have a random net, with each computational subsystem connected, 

directly or indirectly, with every other; a kind of wiring in which you get a 

minimum of stable correspondence between neuroanatomical form and 

psychological function. (Fodor, 1983: 118).    

 

On Fodor’s model, you get neural specificity, and thus stable structure-function 

relationship, only when cognitive systems perform their computations autonomously 

and locally. In the case of unencapsulated systems, the computational and informational 

resources needed to perform the task at hand are distributed across a wide range of 

systems, which is why (according to Fodor) we should not generally expect to find 

stable correspondence between unencapsulated computational systems and specific 

cognitive functions.  

 Our claim is considerably weaker than Fodor’s. We do not claim that encapsulation is 

a requirement for the successful functional decomposition and modelling of cognitive 

systems. Rather, we’ve argued that the tension between the notions of unencapsulation 

and dissociability makes it unlikely that cognitive systems (e.g. the visual recognition 

system, the working memory system) can generally be assembled from unencapsulated 

and dissociable functional components. And since cognitive modules can plausibly be 
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minimally conceived as dissociable functional components, we doubt that modular 

theorizing is the right approach to the functional decomposition and modelling of such 

systems.  

 This, finally, is the second horn of our proposed dilemma, challenging modularity 

theorists that expand the scope of modularity by weakening the strength of modules so 

as not to require informational encapsulation. Weakening modularity to this degree 

greatly weakens the explanatory value of modular architectures, which in turn greatly 

weakens the functional modularity inference that is so frequently used in cognitive 

(neuro)psychological research. Second, the claim that cognitive systems could be 

composed (massively) of unencapsulated systems is at odds with the core idea behind 

modular theorizing, that is, the idea that modules are dissociable functional components. 

These two points are related in the following way. As we argue above, unencapsulation 

and dissociability work in opposite directions. And so the less encapsulated systems are 

the weaker the inference from behavioral dissociations to modularity (qua 

dissociability). As the unencapsulated computations posited increase, so do the range of 

possible explanations for a given set of behavioral dissociation data.  

 Recall further that this weakened modularity may be partly motivated by—in 

addition to broadened scope—acknowledgement of the apparent failure of encapsulated 

modularity to explain various perceptual phenomena. This was the first horn of our 

dilemma: perceptual systems are not well explained as encapsulated modules (or systems 

of encapsulated modules) if perception is cognitively penetrated. And there is 

compelling empirical evidence for phenomena best explained by cognitive penetration. 

*** 

 This concludes our proposed dilemma for modular approaches to theorizing the 

architecture of the human mind. Strong, encapsulated modularity approaches are 

challenged by the first horn; weakened (but broadened) unencapsulated modularity 
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approaches are challenged by the second horn. Either way, modularity is significantly 

challenged as an empirical strategy for studying the mind. As we have argued, 

informational encapsulation seems essential to a substantive and empirically well-

motivated modularity, while at the same time implausible in the face of a variety of 

evidence for unencapsulation in perceptual and cognitive systems.  
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