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Introduction

Category theory (CT) is a remarkable, relatively young mathematical theory that

plays an important role in mathematics today. Its origin can be traced to the work

of Samuel Eilenberg1 and Saunders Mac Lane from 1945 (Eilenberg and Mac Lane,

1945). The importance of CT, apart from its relevance for mathematical logic and

philosophy of mathematics, extends to physics (see e.g. Abramsky and Coecke,

2008; Döring and Isham, 2011; Heller and Król, 2017; Isham and Butterfield, 1999),

computer science (see e.g. Pierce et al., 1991), and more general philosophy (see

e.g. Landry, 2018). CT in itself as a mathematical theory, in its applications and

philosophical aspects, creates a very extensive part of human knowledge.

Intuitionist logic (IL) and, to a lesser extent, paraconsistent logic (PL) are among

the best known and analyzed non-classical logics in the literature. Regardless of the

context of their origin, they have also appeared in recent times within the frame-

work of CT.2

The relationship between CT and mathematical logic is extensive and funda-

mental. Sufficiently rich categories have their own internal logic. An exceptional

1Samuel Eilenberg is related to the Polish thread in the development of CT, as he was a Polish
Jew born in Warsaw in 1913. There, he received his doctorate in mathematics at the University of
Warsaw. He was an important representative of the Warsaw school of mathematics. Later he was also
a member of the Bourbaki group. He was “widely known as Sammy, or even S2P2: ‘Smart Sammy the
Polish Prodigy’” (from the foreword by D. Eisenbud, Mac Lane’s Ph.D. student, in Mac Lane, 2005,
p. xi).

2The IL case is obvious, while as to PL’s relationship with CT see e.g. Estrada-González (2010,
2015b); James (1996); Mortensen (2003); Vasyukov (2000, 2017). We do not comment on these works
here, at this point we only want to show that such publications exist. Interestingly, Goodman, whose
work we shall discuss in more detail in sec. 2.3.3, writes that it was F.W. Lawvere, who “first sug-
gested to us that there must be a logic dual to the intuitionistic in which contradictions would not be
rejected” (Goodman, 1981, p. 119). Lawvere is the one who played a key role in the beginning of CT’s
relationship with logic and the foundations of mathematics, as Marquis notes: “it is . . . in the early
1960s that the connection with logic and the foundations of mathematics was made and it was mostly
the work of one person, namely Bill Lawvere” (Marquis, 2020, p. 71).

9



10 Introduction

role among them is occupied by the so-called toposes.3 The logic of toposes has its

own specificity, which we will discuss in more detail below. The standard view is

that the logic of toposes is IL, or more precisely the so-called intermediate logic.

In special cases, the logic of a topos may also be classical logic (CL). Topos theory

is an interesting and rich theory that goes far beyond logical applications. One of

the creators of toposes, A. Grothendieck, laureate of the Fields Medal, considered

topos theory to be a kind of generalization of topology, one of the most important

branches of mathematics. Toposes, by linking algebra, geometry, and logic at a deep

level, reveal their great unifying power, but they will be of interest to us especially

in the context of logic. CT, as well as its part, the topos theory, already have a very

extensive literature (see e.g. Awodey, 2010; Barr and Wells, 2005; Goldblatt, 2006;

Johnstone, 2014, 2002; MacLane and Moerdijk, 1994; McLarty, 1995; Simmons, 2011;

Smith, 2016). Relatively recently, some papers have suggested that the so-called co-

toposes (also called complementary toposes) may provide a suitable semantics for

PL, understood as dual to IL (see e.g. Mortensen, 1995, chapter 11 and Estrada-

González, 2010, 2015a, though we shall discuss these and other papers as well as

related topics in more detail later).

Our attitude

Our departure point is CT itself, its beauty and extensive development. It has orig-

inated from purely mathematical investigations in mathematics. CT has, however,

also contributed enormously to the development of logic itself. It is well known that

toposes are very closely connected with higher order intuitionistic logic, although

this connection should be studied carefully, because, as Colin McLarty pointed out,

“topos logic coincides with no intuitionist logic studied before toposes” (McLarty,

1995, p. vii).4 It is very important to note that toposes were not designed to have

this connection with IL. Although CT has interesting connections with philosophy

3We shall use this term, ‘toposes’, for the plural form of a ‘topos’, instead of sometimes used a
word ‘topoi’. We do so in face of the convincing argument in this respect in the footnote 4 in (McLarty,
1990).

4As a comment let us copy here a part of the footnote 2 of our paper (Stopa, 2020): In short,
higher-order intuitionistic logic of toposes agrees with traditional Heyting’s rules of inference for
connectives and quantifiers, but the disjunction and existence properties, which are a traditional part
of intuitionism, do not hold for toposes in general (see Mclarty, 1990, p. 154). Although toposes are
intrinsically connected with (higher-order) intuitionistic logic, they were not simply designed to agree
with it (see Mclarty, 1990, p. 152f).
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and logic, its origins are purely mathematical. Let us mention a significant quote

from Lambek and Scott: “Nothing could have been further from the minds of the

founders of topos theory than the philosophy of intuitionism” (Lambek and Scott,

1994, p. 125). It is interesting in itself that in the definition of an elementary topos

very little is assumed and many their unexpected and interesting properties are

discovered on the way. There are of course toposes whose logic is just classical or

one of the intermediate logics (ILs).5

Topos theory is sometimes considered as a generalization of Set Theory. How-

ever, as McLarty powerfully argues in his paper (McLarty, 1990), this is not the

right way to think about toposes. He writes: “The view that toposes originated as

generalized set theory is a figment of set theoretically educated common sense”

(McLarty, 1990, p. 351, abstract). Let us quote a longer passage from this paper, as

it is interesting also in other aspects (McLarty, 1990, p. 352):

Category theory arose from a complicated array of practical problems

in topology. Topos theory arose from Grothendieck’s work in geometry,

Tierney’s interest in topology and Lawvere’s interest in the foundations

of physics. The two subjects are typical in this regard. An important

mathematical concept will rarely arise from generalizing one earlier con-

cept. More often it will arise from attempts to unify, explain, or deal with

a mass of earlier concepts and problems. It becomes important because

it makes things easier, so that an accurate historical treatment would

begin at the hardest point.

Our attitude in the present work is somehow similar with respect to treating

toposes autonomously. We want to study some aspects of toposes in the context

of their connection with logic without assuming any prior philosophical or logical

convictions. We want to investigate the properties of toposes as certain mathemat-

ical ‘objects’. We want to allow ourselves to be guided by the mathematics, so to

speak. Therefore our investigations of some algebraic aspects of both IL and PL

from the categorical perspective do not indicate our philosophical positive atti-

5For simplicity, the abbreviation ‘ILs’ shall be used to denote intermediate logics, i.e. consistent
superintuitionistic logics, which are intermediate between IL and classical logic, including those on
boundaries. It can be understood less precisely as ‘intuitionistic logics’, but strictly speaking it means
intermediate logics.
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tude towards either intuitionistic ideas or inconsistencies in general. As IL is better

known and most of mathematicians are much more familiar with it than with PL

(if at all (s)he is familiar with either of them), our concern regarding especially PL

might be considered odd and asks for more clarification about our motivations.

As we mentioned above, our motivation is mathematical or more specifically alge-

braic. But if we were to give our philosophical attitude towards the inconsistencies

it would be similar to that expressed by Perzanowski (Perzanowski, 1999, p. 23):

Inconsistencies must be examined. Not prejudged. Nor worshipped as

idols, as in the case of most Hegelians (excluding Graham Priest and

other logical philosophers, I hope). Quite the contrary. We examine them

in order to find a remedy. In search of the understanding about their

sources, reasons and real consequences.

Some features of logic in toposes

Let us first emphasize that the logic of a given topos is not imposed from outside,

but results from the structure of the arrows of a topos.6 Every topos has its specific

structure of arrows which is connected with logic. This is beyond our control, we

can only discover it, describe it, and possibly use it somehow. Here we describe the

standard approach to logic in toposes which is a common knowledge in textbooks.

Later we shall argue that some arrows can be interpreted differently, or that they can

play different roles in different structures which may lead to some new applications

to logic, but first let us see just some examples of diversity and richness of the logical

aspects of toposes. Let us note only that these logical aspects of toposes are just a

portion of much wider logical aspects of CT in general.

First we observe that the logical operations can be described and even defined

as so-called adjoints to some basic operations. This applies also to universal and

existential quantifiers, which can be shown to be adjoints to the operation of sub-

stitution. We only mention very briefly these facts, but as Awodey comments “the

profound analysis of quantifiers as adjoints . . . subsumes what is perhaps the most

significant discovery of modern logic under a general notion that permeates mathe-

matics” (see Awodey, 1996, p. 235). Adjunctions or adjoint functors are really one of

6In this part we use excerpts from section 7 of our paper (written in Polish) (Stopa, 2018, p. 39ff).
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the greatest discoveries of CT, they are “the cornerstone of category theory” (Mar-

quis, 2021), and as it turned out they really permeate mathematics, and as we have

mentioned they also constitute the elementary logical operations. We only remark

that the whole ‘interaction’ between syntax and semantics is also described by ad-

joint functors (see e.g. Heller, 2018, 2021; Lambek and Scott, 1994; Lawvere, 1969).

There are many more results obtained so far in categorical approach to logic or

the so-called categorical logic, such as the hierarchy of categorical doctrines, sheaf

semantics, classifying topos of a theory, to mention just a few (see e.g. Bell, 2005,

2018; Marquis, 2021) and the bibliography therein). We do not intend to describe

in detail all the achievements of categorical logic, but we wanted to name at least a

few.

We now focus on toposes as semantics for propositional logic. Our current aim

is just to show some of the examples illustrating richness of topos semantics, there-

fore our exposition is illustrative and we do not define the notions we use. The key

role is played by the object called a subobject classifier (denoted as Ω) and arrows

connected with it. Assuming that the appropriate notion of validity in a topos is

known, we shall use the notation E � α to denote that the proposition α is valid

in the topos E . Topos semantics is connected with intermediate logics, that is con-

sistent superintuitionistic logics. The strongest of such logics is classical logic. This

can be written for any topos E as following inferences (written illustratively on a

meta-level)

(`IL α)→ (E � α)→ (`CL α),

where ‘`IL’, ‘`CL’ denote the deduction in IL and CL respectively (see Goldblatt,

2006, p. 143 and 186). In other words, all theorems of IL are tautologies of topos se-

mantics, and all tautologies of topos semantics are CL’s theorems. In particular, for

the topos Set (objects of which are standard sets and morphisms are set-functions),

Set-validity gives exactly the CL tautologies. More general, if a topos is bivalent, i.e.

its only truth-values (defined as global elements of Ω, i.e. arrows from a terminal

object, denoted as 1, to Ω) are true (>) and false (⊥), then the set of propositions

valid in it coincides with all tautologies of CL (Goldblatt, 2006, p. 143). There are

also non-bivalent toposes which have the same feature, e.g. Set2, which has four

truth values.
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Another collection of toposes whose tautologies are axiomatized by CL are the

so-called classical toposes, for which by definition [>,⊥] : 1+ 1→ Ω is an isomor-

phism. It turns out that another characterization of a classical topos requires it to

be a Boolean topos, i.e. for every object its subobjects form a Boolean algebra (for

claims of this and of the previous sentence see Goldblatt, 2006, p. 156f and 159f).

Some classical or Boolean toposes are bivalent but others are not. For example Set2

turns out to be classical but is not bivalent. There is also an example of a topos that

is bivalent although is not classical (this is the case for the topos of the so-called

M2-sets with appropriate arrows, where M2 is the smallest monoid that is not a

group, i.e. it is a two element algebra, which can be described as consisting of the

numbers 0 and 1, under multiplication) (see Goldblatt, 2006, p. 100ff and 122f). An

easy example of a topos that is neither bivalent nor Boolean is a topos Set→ of

set-functions (with appropriate arrows), which has three truth values. Let us note

that these two notions, being bivalent and being classical or Boolean, although are

different in general, coincide for the topos Set. This could be perhaps an example of

a certain kind of preciseness present in CT, that distinguishes between notions that

are otherwise identical. In general, it can be shown that any topos can be turned

into a Boolean one (by the so-called process of sheafification), and moreover any

Boolean topos can be turned into a bivalent one, such that there exists a logical

morphism between the original Boolean one and the bivalent (this is done by the

so-called filter-quotient construction) (for these results see MacLane and Moerdijk,

1994, p. 272, 274, 261).

A whole class of toposes can be given by noting that for any ‘small’ category

C, the so-called functor category SetC (of functors from C to Set as objects and

natural transformations between them as arrows) is a topos (for this result see

e.g. Goldblatt, 2006, p. 204), but a more general result is known where instead of

a topos Set above, any topos can be taken (see MacLane, 1986, p. 405). All the

above discussed toposes can be considered as SetC for appropriate C, which at least

partially shows how extensive this class of toposes is. Let us give one more example

of a topos of this type which is related to a certain intermediate logic known in the

literature as the LC logic, first studied by M. Dummett in (Dummett, 1959). This
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logic can be defined by adding to the IL-axioms the following classical tautology:

(α→ β) ∨ (β→ α).

Now, for any infinite linearly ordered poset P the set of propositions valid in the

topos SetP is just the LC logic. For such P we can take e.g. ω with appropriate poset

structure, which we shall denote in bold as ω. Thus we have (see Goldblatt, 2006,

p. 228)

Setω � α iff `LC α.

Another important class of toposes is a class of bundles of sets over the base

space, say I (for the construction of these toposes and their properties introduced

below see e.g. Goldblatt, 2006, p. 88ff and 141). For any fixed set I the topos of

bundles over this set, denoted as Bn(I), has the property that its truth values are in

a bijective correspondence with the power set of I, which can be written as

Bn(I)(1, Ω) ∼= P(I).

This means, inter alia, that for infinite I the set of truth values of such a topos is

infinite. At the same time it can be shown that topos validity in every such Bn(I)

is equivalent to Boolean algebra validity of (P(I),⊆), i.e. it gives precisely the CL

tautologies.

Another eminently important class of toposes are sheaves. Nota bene, “categories

of sheaves were the original examples of toposes” (Barr and Wells, 2005, p. 65). Their

importance for mathematics and connections with logic were studied extensively

(see e.g. Fourman et al., 1977; Ghilardi and Zawadowski, 2002; MacLane and Mo-

erdijk, 1994). We restrict ourselves to the sheaves of sets on a topological space, say

X, which in a sense can be considered as bundles with some additional topological

structures. We shall denote them as Sh(X), and the topology of X, i.e. the set of all

open subsets of X, by O(X). We note only one property that truth values in Sh(X)

are in a bijective correspondence with the set O(X) (cf. Goldblatt, 2006, p. 98, where

this topos is denoted as Top(X), and MacLane and Moerdijk, 1994, p. 73, (5)), i.e.

Sh(X)(1, Ω) ∼= O(X).
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It follows that the topos validity of Sh(X) is equivalent to Heyting algebra validity

of the algebra of open subsets (O(X),⊆) (Goldblatt, 2006, p. 186).

The above examples are particular cases of the general property of any topos,

namely that the topos validity is equivalent to the validity of a Heyting algebra of

its truth values (Goldblatt, 2006, p. 186), i.e. for any topos E and any proposition α

we have

E � α iff E(1, Ω) � α,

where the Heyting algebra structure on E(1, Ω) is here understood as an isomor-

phic translation of the Heyting algebra structure of Sub(1), with the poset structure

defined by factorization of appropriate monic arrows. This however will be dis-

cussed by us later in our work.

Let us conclude this part with a quotation from Johnstone on the connections

between CT and the famous proof of the independence of the Continuum Hypoth-

esis from the axioms of set theory, which shows also some aspects of the historical

development of topos theory (this comes from (Johnstone, 2014, p. 323f) but for im-

portant considerations about relations between topos theory, logic and set theory

see also chapter VI in (MacLane and Moerdijk, 1994)):

One of the most striking early applications of elementary topos theory

was to give a categorical proof that the Continuum Hypothesis is inde-

pendent of the axioms of set theory. This fact was first proved in 1963 by

P. J. Cohen [156];7 whilst categorical ideas are implicit in Cohen’s work,

the language of elementary topos theory was required to make the con-

nection explicit—and indeed the desire to do this was one of the main

driving forces behind the development of elementary topos theory by

Lawvere and Tierney.

The purpose of our work

As we have at least partially seen, the connections of toposes with IL or any inter-

mediate logic are many, diverse and moreover commonly known. From the alge-

braic point of view, these logics are connected with the so-called Heyting algebras.

More precisely, given a Heyting algebra and an appropriate notion of validity the
7Johnstone refers here to (Cohen, 1966).
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set of propositional formulas that are valid in it constitutes an intermediate logic,

and conversely, given any intermediate logic its Lindenbaum-Tarski algebra is a

Heyting algebra. We shall show that such an algebra can be considered as a certain

generalization of a Boolean algebra. Moreover we shall see that this generalization

can be performed differently, but in a parallel or symmetrical way, giving a struc-

ture dual to Heyting algebra which is a co-Heyting algebra. Therefore we have two

symmetrical generalizations of a Boolean structure, i.e. Heyting and co-Heyting al-

gebras, that are mutually dual (about these structures and dualities we write more

in section 3.1). This algebraic state of affairs poses a question about its counterpart

on the logical side in the context of algebraic logic. This leads us to PL, although as

we shall see the world of PLs8 is much more extensive than just the logics connected

with co-Heyting algebras.

In the context of CT or topos theory in particular, there have appeared quite

recently some proposals (see Mortensen, 1995, chapter 11; Estrada-González, 2010,

2015a,b; James, 1996; Mortensen, 2003) that suggest certain dualization of the logic

of a topos, changing it from IL or intermediate logic into some kind of PL. The

structures that emerge in this dualization process were labeled by these authors as

complemented-toposes (or co-toposes in short). If this process turned out to be valid

it would be highly fruitful as the connections of toposes with ILs are so manyfold.

We are now ready to formulate the purpose of this work, which is two-fold.

First, we analyze and compare the two types of logics: intuitionistic (paracomplete)

and paraconsistent. Second, we examine the validity of the notion of co-topos as

presented e.g. in (Mortensen, 1995, chapter 11), especially we scrutinize their dual-

ization process which supposedly, inter alia, transforms certain Heyting algebras of

the topos into co-Heyting ones.

Regarding our first goal, we investigate the two types of non-classical logics, ILs

and PLs. Heyting algebras and co-Heyting algebras are mutually dual, and the for-

mer are connected with ILs. However the connection of co-Heyting algebras with

PLs is different, as we shall see. In order to be able to compare these two types of

non-classical logics we want to better understand each of these groups of logics. We

portray each of these types, their different philosophical connections, variety and

8We shall use the abbreviation ‘PLs’ for ‘paraconsistent logics’, i.e. simply as the plural form of
PL. We shall define PLs in chapter 2, and PL means any of them in general.
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special features. IL has a very profound philosophical roots. Therefore, we investi-

gate these roots, focusing mainly on Brouwer and his philosophy of mathematics.

As is well known, a crucial role in his approach is played by the principle of ex-

cluded middle, and its rejection as a principle that universally holds. This principle

is thus of particular interest to us but we shall discuss also other aspects of his

intuitionistic beliefs such as, for example, the nature of continuum. We also present

some basic information about the syntactic and semantic aspects of intuitionistic

logic itself.

On the other hand PLs are more diverse than ILs because many ways of evading

explosive character of inconsistency have been proposed. We shall present some of

the most important PLs, but we are mostly focused on the PLs that are connected

with co-Heyting algebras, as this is our main concern in the context of topos theory

that we shall investigate in further part of the dissertation. In particular, we define

two types of logics related to co-Heying algebras, one of them can be called the

assertional logic and the other the logic preserving degrees of truth. The former is

not paraconsistent, while the latter is paraconsistent in general.

These considerations shall be undertaken in chapters 1 and 2.

Since ILs are closely related to Heyting algebras, and some PLs, the ones of

particular interest to us, are related to co-Heyting algebras, at the beginning of

chapter 3 we present both these structures quite thoroughly, emphasizing their mu-

tual duality. In doing so, we also make a sort of comparison between these logics,

analyzing their algebraic aspects. Regarding our second goal of this dissertation,

we shall first present important for our investigations claims of the authors devel-

oping the (alleged) notion of co-toposes. As we shall see, they propose to denote or

interpret certain arrow occurring in the definition of a topos, crucial for its logical

aspects, the so-called generic subobject, as false instead of the standard true. This

proposal opens a lot of questions. Is it just a denotation or is it an interpretation or

something else? If it is just a denotation then this process changes only a label and

it does not have any deeper importance as the entity in question is just what it is

no matter how we denote it. If it is an interpretation then what does it mean, and

can it be interpreted arbitrarily? We can go even further and ask: if it were possi-

ble to interpret this arrow as false, then what would be the consequences of this?
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Moreover, there is (supposedly—we shall come back to that) another equivalent

definition, that defines a topos without mentioning this arrow or the word ‘true’,

how would then these authors propose to change this definition in order to obtain

what they propose to get? We shall unfold these questions, make them clearer and

try to answer at least some of them.

As we shall see, the crucial part in the co-topos proposal is that certain Heyting

algebras become a co-Heyting ones. On a basis of the first of our goals this suggests

that certain type of PLs should be possible to be developed in this context. How-

ever, one should be careful when claiming that such a dualization applies easily to

all logical properties of a topos. One should be cautious especially about the ele-

mentary aspects of logic, that is about the quantifiers. We do not intend to examine

all the aspects of the alleged notion of co-topos and its paraconsistent features, but

through our investigations on the validity of a notion of co-topos we hope to con-

tribute to better understanding of a topos theory itself and, inter alia, its connections

with co-Heyting structures.

As will be discussed, the evaluation of the co-topos proposal is complex. It turns

out that the abstract structure of a topos itself does indeed allow for the possibility

of reversing the order on the corresponding Hom-sets, which thus acquire the struc-

ture of co-Heyting algebras that are, moreover, natural (in the strict sense, which

we clarify in chapter 3). This allows for consideration of propositional PLs based on

these structures in a topos. More important, however, is the question of examining

the level of elementary logic, which remains for us an open problem for further re-

search. Only these studies can allow for a comprehensive assessment of the validity

of the concept of a co-topos.





Chapter 1

Brouwer’s intuitionism and its

formalization

In this chapter we present Brouwer’s intuitionistic philosophy of mathematics and

its formalization made mainly by Heyting. In the first section we briefly present

Brouwer himself and a bit of a history of intuitionism. The next section deals with

his views on mathematics. We focus, among other things, on the role of mathe-

matical language, logic, the rejection of PEM, the notion of continuum, and some

special features of Brouwer’s philosophy of mathematics. Finally, we discuss the

formalization of his views in the form of intuitionistic logic. We present its syntac-

tic aspects and the so-called topological semantics. We also cite some basic theorems

concerning this logic.

The literature on Brouwer’s intuitionism is broad. Brouwer’s original writings

can be found in (Brouwer, 1975, 1976; Mancosu, 1998; van Heijenoort, 1967). The full

bibliography of Brouwer’s writings, made by D. van Dalen, can be found in (van

Atten et al., 2008, p. 343–390) (the older version is available online and can be found

in (van Dalen, 1997a)). There are a few very good entries on this subject in the Stan-

ford Encyclopedia of Philosophy: (Iemhoff, 2016; van Atten, 2017a,b). Especially, at

the end of (van Atten, 2017b), extensive Brouwer’s bibliography can be found with

some useful comments. Monographs on intuitionism or containing some exposi-

tion of it include: (Dummett, 2000; Heyting, 1971; Placek, 1999; Troelstra and van

Dalen, 1988a,b; van Atten et al., 2008). A very good and concise presentation of the

history of constructivism in the 20th century, with some exposition of intuitionistic

21
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logic and analysis, is given by (Troelstra, 2011) (we shall often refer to this paper in

this chapter).

1.1 L. E. J. Brouwer and his predecessors

Luitzen Egbertus Jan Brouwer (1881–1966) was a Dutch mathematician and philoso-

pher who is considered to be the founding father of intuitionism.9 He earned his

Ph.D. in 1907 from the University of Amsterdam. His doctoral thesis On the Foun-

dations of Mathematics (’Over de Grondslagen der Wiskunde’)10 (English translation

can be found in (Brouwer, 1975, p. 11–101)) was his first publication about the

philosophy and foundations of mathematics. His first years after his dissertation

(1909–1913) Brouwer spent very fruitfully working mainly in topology (as a part of

classical mathematics). In this area, he is still known for his theory of dimension and

his famous fixed point theorem (so called Brouwer’s fixed-point theorem), which is a

very important theorem in topology. During that time, in 1912, he was appointed

full professor extraordinarius at the Univeristy of Amsterdam in mathematics. On

that occasion he gave an inaugural lecture Intuitionisme en Formalisme, translated

into English as Intuitionism and Formalism (see Brouwer, 1975, p. 123–138)). Next

year he became full professor ordinarius, the position he held until 1951. At the end

of this period, during the years 1946–1951, Brouwer gave several lectures on intu-

itionism at the University of Cambridge, which were published posthumously as

(Brouwer, 1981). After retirement from academic work, in 1953, he still did a lec-

ture tour through the USA and Canada (i.a. he visited MIT, Princeton, where he

met Gödel, and Berkeley).

Quite naturally, Brouwer had predecessors in his constructive approach to math-

ematics. Constructivism emerged “in the final quarter of the 19th century, and may

be regarded as a reaction to the rapidly increasing use of highly abstract concepts

and methods of proof in mathematics, a trend exemplified by the works of R.

Dedekind and G. Cantor” (Troelstra, 2011, p. 150). One of the first fathers of con-

structivist attitude was L. Kronecker (1823–1891). He famously considered natural

numbers as given by God, and, in his opinion, “all other mathematical objects ought
9In this section we rely heavily on (van Atten, 2017b).

10We shall always refer to the English translations of the foreign works and only sometimes give
the original title.
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to be explained in terms of natural numbers (at least in algebra)” (Troelstra, 2011,

p. 151). He rejected the notion of infinite set as well as the set of irrational numbers.

Another important Brouwer’s predecessor was H. Poincaré (1854–1912). This

French scholar emphasized the role of intuition in mathematics, especially the in-

tuition of natural numbers. He considered the principle of induction for the nat-

ural numbers as a synthetic judgment a priori. Poincaré wanted also to develop

mathematics without impredicative definitions,11 which, according to him, were

the source of set-theoretic paradoxes12 (cf. Troelstra, 2011, p. 153f).

The others were the so-called French semi-intuitionists (in particular E. Borel,

H. Lebesgue, R. Baire) together with the Russian mathematician N. Luzin. Their

views have differed but they agreed that “even if mathematical objects exist inde-

pendently of the human mind, mathematics can only deal with such objects if we

can also attain them by mentally constructing them, i.e. have access to them by our

intuition; in practice, this means that they should be explicitly definable” (Troelstra,

2011, p. 154). We shall not describe in more detail these authors, but we note only

in connection with the name of French semi-intuitionists, that Brouwer himself, in

his above mentioned inaugural lecture from 1912, qualified their point of view as

intuitionism (to be exact, Brouwer mentioned intuitionism being “largely French”)

(see Brouwer, 1975, p. 124), but years later in his Cambridge lecture he was already

saying about “Pre-intuitionist School, mainly led by Poincaré, Borel and Lebesgue”

(Brouwer, 1981, p. 2).

Let us note finally H. Weyl (1885–1955). He rejected “the platonistic view of

mathematics prevalent in Cantorian set theory and Dedekind’s foundation of the

natural number concept” (Troelstra, 2011, p. 156). He has also formulated, appar-

ently independently of Poincaré and Russell, a program for predicative mathemat-

ics. Similarly to constructivistic approach, he wanted sets to be constructed from

below and not singled out from some previously existing totality, however, he ac-

cepted classical logic. For some time Weyl was convinced about the correctness of

11In Carnap’s words: “A definition is said to be ‘impredicative’ if it defines a concept in terms of a
totality to which the concept belongs” (Carnap, 1931, p. 47f).

12His standard example for impredicative definition leading to paradox was Richard’s paradox: “let E
be the totality of all real numbers given by infinite decimal fractions, definable in finitely many words.
E is clearly countable, so by a well known Cantor style diagonal argument we can define a real N
not in E. But N has been defined in finitely many words! However, Poincaré, adopting Richard’s
conclusion, points out that the definition of N as element of E refers to E itself and is therefore
impredicative” (Troelstra, 2011, p. 154). More on paradoxes can be found in (Łukowski, 2011).
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Brouwer’s intuitionism, but later he took a position outside either constructivism

or formalism (Troelstra, 2011, p. 156).

Let us now examine the Brouwer’s philosophy of mathematics, i.e. his intu-

itionism. He first presented his views in that matter in his doctoral dissertation

(Brouwer, 1975, p. 11–101) and later inter alia in the aforementioned lecture Intu-

itionism and Formalism (see Brouwer, 1975, p. 123–138) and in his Cambridge lectures

(Brouwer, 1981).

1.2 What is mathematics?

For Brouwer mathematics is the mind’s free activity of exact thinking. Thus, it

depends neither on any language, nor on formal manipulations of signs, nor on any

realm of external objects, and moreover it is superior to logic. Therefore we see, and

we shall see it somewhat clearer later, that Brouwer’s philosophy of mathematics—

intuitionism—differs from all the other standard philosophies: formalism, logicism,

and platonism. Van Atten aptly describes Brouwer approach writing

He thus strived to avoid the Scylla of platonism (with its epistemological

problems) and the Charybdis of formalism (with its poverty of content).

As, on Brouwer’s view, there is no determinant of mathematical truth

outside the activity of thinking, a proposition only becomes true when

the subject has experienced its truth (by having carried out an appro-

priate mental construction); similarly, a proposition only becomes false

when the subject has experienced its falsehood (by realizing that an ap-

propriate mental construction is not possible). (van Atten, 2017b, sec. 3)

Brouwer thus says “outside human thought there are no mathematical truths”

(Brouwer, 1981, p. 6). Brouwer’s motivation for intuitionism came from his gen-

eral philosophy and not from the desire to solve the paradoxes that were present

in the foundations of mathematics at that time, although intuitionism offers some

solutions to them (cf. van Atten, 2017b, sec. 4). When some consequences of his

philosophy turned out to be classically invalid, he was ready to accept wholeheart-

edly this turn of events. As we shall see, some parts of intuitionistic mathematics

are common with classical mathematics, but others indeed are not classically ac-
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ceptable or, looking from different perspective, exceed standard mathematics (es-

pecially the conception of the continuum). Intuitionism demands that mathematical

objects and arguments are constructive, but it also differs from most constructive

theories which are just part of classical mathematics.

In his Cambridge lectures Brouwer has introduced, as he himself called them,

two acts of intuitionism. These two acts “form the basis of Brouwer’s philosophy;

from these two acts alone Brouwer creates the realm of intuitionistic mathematics”

(Iemhoff, 2016, sec. 2.1.). About these acts Brouwer himself has commented that

“the first seems to lead to destructive and sterilizing consequences, but then the

second yields ample possibilities for new developments” (Brouwer, 1981, p. 4).

1.2.1 The first act, perception of time, and the role of mathematical lan-

guage

The first act was expressed by Brouwer in a following way:

Completely separating mathematics from mathematical language and

hence from the phenomena of language described by theoretical logic,

recognizing that intuitionistic mathematics is an essentially languageless

activity of the mind having its origin in the perception of a move of time.

This perception of a move of time may be described as the falling apart

of a life moment into two distinct things, one of which gives way to the

other, but is retained by memory. If the twoity thus born is divested of

all quality, it passes into the empty form of the common substratum of

all twoities. And it is this common substratum, this empty form, which

is the basic intuition of mathematics. (Brouwer, 1981, p. 4f)

First, let us make some remarks concerning the role of the perception of a move

of time. Van Atten notes: “as did Kant, Brouwer founds mathematics on a pure

intuition of time (but Brouwer rejects pure intuition of space)” (van Atten, 2017b,

sec. 4). We shall not consider in depth Brouwer’s considerations on that subject,

only let us just give a longer quotation from his lecture Intuitionism and Formalism

from 1912, which reveals moreover the creation of all finite ordinal numbers, the

smallest infinite ordinal ω, and also shows some aspects of his conception of the

continuum:



26 Chapter 1. Brouwer’s intuitionism and its formalization

This neo-intuitionism13 considers the falling apart of moments of life

into qualitatively different parts, to be reunited only while remaining

separated by time as the fundamental phenomenon of the human in-

tellect, passing by abstracting from its emotional content into the fun-

damental phenomenon of mathematical thinking, the intuition of the

bare two-oneness. This intuition of two-oneness, the basal intuition of

mathematics, creates not only the numbers one and two, but also all

finite ordinal numbers, inasmuch as one of the elements of the two-

oneness may be thought of as a new two-oneness, which process may

be repeated indefinitely; this gives rise still further to the smallest in-

finite ordinal number ω. Finally this basal intuition of mathematics, in

which the connected and the separate, the continuous and the discrete

are united, gives rise immediately to the intuition of the linear contin-

uum, i.e., of the “between,” which is not exhaustible by the interposition

of new units and which therefore can never be thought of as a mere col-

lection of units. (Brouwer, 1975, p. 127f)

The notion of continuum we shall consider later. Let us only note that a little later

Brouwer says that “the intuitionist recognizes only the existence of denumerable

sets” (Brouwer, 1975, p. 128). For him “the apriority of time does not only qualify

the properties of arithmetic as synthetic a priori judgments, but it does the same

for those of geometry” (Brouwer, 1975, p. 128).

Second, in the first act we can notice Brouwer’s position on the relation between

language (mainly mathematical) and mathematics. Mathematics is thus an activity

of the mind and, as Brouwer is saying a bit further, “language plays no part other

than that of an efficient, but never infallible or exact, technique for memorizing

mathematical constructions, and for communicating them to others, so that math-

ematical language by itself can never create new mathematical systems” (Brouwer,

1981, p. 5). By all this we see that Brouwer was clearly opposing the formalist

13Brouwer calls it neo-intuitionism in comparison with the (old or pre-) intuitionism from XIX c.
which was based also on the Kant’s apriority of space. He notes a bit earlier that “the most serious
blow for the Kantian theory was the discovery of non-euclidean geometry” and that this (old/pre-)
intuitionism “has recovered by abandoning Kant’s apriority of space but adhering the more resolutely
to the apriority of time” becoming, what he calls, neo-intuitionism (see Brouwer, 1975, p. 127). His
neo-intuitionism (at least in this his lecture) is what we consider as his (normal) intuitionism.
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philosophy of mathematics. For Brouwer, mathematical objects exists by (mental)

construction. It is far from enough to write certain non-contradictory axioms, to

prove the existence of some objects, or models, fulfilling them.

Correspondingly, Brouwer rejects also the foundational role of language de-

scribed by theoretical logic. Logic, in his framework, “systematizes certain patterns

in the linguistic recordings of our activities of mathematical construction” (van At-

ten, 2017a, sec. 2.1). It is therefore subordinate to mathematics. Brouwer is thus ev-

idently opposing the logicism. However, logic, when extracted form mathematical

reasoning, can in turn also be studied by mathematicians, in this way becoming the

metamathematics or, as Brouwer would call it, ‘mathematics of the second order’.

Accordingly to what have been said, parts of standard logic may correctly de-

scribe inferences that are valid from intuitionist’s point of view, but the question

arises whether following the principles of classical logic is always accompanied by

some languageless mathematical activity or construction, thus enabling us to use

logic for discovering new mathematical truths. Brouwer states that

briefly expressed, the answer is in the affirmative, as far as the princi-

ples of contradiction and syllogism are concerned, if one allows for the

inevitable inadequacy of language as a mode of description and commu-

nication. But with regard to the principle of the excluded third, except

in special cases, the answer is in the negative. (Brouwer, 1981, p. 5)

Now, it is not clear what Brouwer meant by “the principles of contradiction and

syllogism.” Van Dalen, the editor of Brouwer’s Cambridge lectures in intuitionism sug-

gests that “[i]t may safely be ventured that the inferences of intuitionistic logic

qualify equally well as the principles of contradiction and syllogism”14 (Brouwer,

1981, p. 95). We shall consider intuitionistic logic with greater attention later on, but

let us now note only that with an appropriate choice of axioms, intuitionistic logic

may be defined as a classical logic without the axiom of excluded middle.

This statement Brouwer has made in his Cambridge lecture, which took place

long after the time when the intuitionistic logic was formulated by A. Heyting, but

14This is the last sentence of van Dalen’s note, the previous are also worth mentioning: “Brouwer
did not go beyond this cautious and rather dated appraisal of the use of logic. His reluctance to
accept the conveniences of modern logic made him express himself here in colourful but rather
uninformative terms.”
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of course Brouwer had conceived this idea before Heyting’s work, at least already

in 1908 when he published his paper The Unreliability of the Logical Principles (see

Brouwer, 1975, p. 107–111). We can now see, at least in general, that intuitionistic

logic is in some accordance with Brouwer’s philosophy of mathematics, expressed

e.g. in the above quote of Brouwer.

As van Atten notes about aforementioned article: “in that paper, Brouwer draws

a consequence of his general view on logic that he had overlooked in his disserta-

tion”, namely that the principle of excluded middle (PEM) is not valid. Before,

however, we get to PEM let us make few notes about truth and falsity in intuition-

ism as well as the meaning of logical symbols, which we will need in discussing

PEM.

1.2.2 Truth, falsity and the meaning of logical symbols

As we have already mentioned at the beginning of this section, for intuitionists the

truth and falsity of a mathematical statement isn’t related to some objective state

of the world (as would platonists say), but to our knowledge about it. The truth

of a statement is related to an appropriate mental construction that proves it (the

proposition is made true by construction). The falsity, on the other hand, is related

to an appropriate mental construction that shows impossibility of any proof of that

statement (cf. Troelstra and van Dalen, 1988a, p. 4). Therefore, a statement might

become true or false in the course of time, while not being so before. In this sense,

intuitionism essentially depends on time.

Let us now say a few words about understanding negation in intuitionism. The

negation ¬p of p is true if p is false (which means that it has been shown that

from any hypothetical proof of p contradiction (falsum) can be derived), therefore

¬p is understood as p → ⊥, where ⊥ is an absurdity or contradiction. ⊥ has no

proof, and the notion of contradiction is to be regarded as a primitive (unexplained)

notion. If ¬p is true, we also say that p is refuted. Thus in this sense, negation always

has some positive meaning, it conveys a positive ability to show impossibility of any

proof. Naturally, it may be the case that neither can we show that p is true, nor that

p is false. This last note is crucial for considerations about PEM, as we shall see

below.
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The above meaning of negation as well as the meaning of others logical symbols

belong to the Brouwer-Heyting-Kolmogorov-interpretation (known also as BHK-

interpretation) or Proof Interpretation of intuitionistic logic, and it is nowadays its

standard explanation. The remaining logical symbols have the following explana-

tion (cf. Troelstra and van Dalen, 1988a, p. 9; Iemhoff, 2016):

(∧) A proof of p ∧ q is given by presenting a proof of p and a proof of q.

(∨) A proof of p ∨ q is given by presenting either a proof of p or a proof of q

(plus the stipulation that we want to regard the proof presented as evidence

for p ∨ q).

(→) A proof of p → q is a construction which permits us to transform any proof

of p into a proof of q.

(∀) A proof of ∀xp(x) is a construction which transforms every proof that d be-

longs to the domain D (where D is the intended range of the variable x) into

a proof of p(d).

(∃) A proof of ∃xp(x) is given by providing d ∈ D (where D is the intended range

of the variable x), and a proof of p(d).

This is of course a somewhat informal explanation, as the notion of construction

(as well as the notions “presenting” and “transformation”) are not formally defined,

but it corresponds to Brouwer’s intuitionistic ideas (an interesting analysis of the

historical development of the intuitionistic understanding of the logical symbols,

culminating in BHK-interpretation, is presented in (van Atten, 2017a)).

1.2.3 Principle of Excluded Middle

According to Brouwer the PEM does not universally hold (although at the begin-

ning, in his doctoral dissertation from 1907 he still considered PEM “as correct but

useless, interpreting p ∨ ¬p as ¬p → ¬p” (van Atten, 2017b, ch. 4)). He compares

the belief in the universal validity of it to such phenomena of the history of civi-

lization as “belief in the rationality of π, or in the rotation of the firmament about

the earth” (Brouwer, 1981, p. 7). As we have seen in the previous subsection, it is

possible that neither can we show that some statement, say p, is true, nor that it is
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false. In this case Brouwer would say that the assertion that p ∨ ¬p “is devoid of

sense” (cf. Brouwer, 1981, p. 6). This means that PEM does not hold in general in

intuitionism. This is of course closely connected with intuitionistic understanding

of the alternative (in order to prove p ∨ q we have to give a proof, either of p or of

q, see above).

When we cannot assert that p ∨ ¬p is true, this however does not imply, as we

have already seen, that p ∨ ¬p is false, i.e. that ¬(p ∨ ¬p) is true. As a matter of

fact, it can be proven that ¬¬(p∨¬p), from which it follows that ¬(p∨¬p) is false,

which in turn is equivalent to (p ∨ ¬p)→ ⊥ being false. This last statement means

that PEM, although in some cases might not be true, nevertheless never leads to

contradiction.

We have just said that it can be proven in intuitionism that ¬¬(p ∨ ¬p). At the

same time, we have shown, and soon we shall deal with it in more detail, that

not always can we assert that p ∨ ¬p is true. This fact, that from ¬¬PEM it does

not necessarily follow PEM is an example of the so-called strong double negation

law (¬¬p → p), which also does not hold in general in intuitionism. The close

connection between the PEM and the strong double negation law15 is reflected

in intuitionistic logic by the fact that adding either of them to its axioms give us

already the classical logic.

Let us go back to the examples of instances of PEM for which we cannot assert

truth. They are called “weak counterexamples” of PEM. Sometimes it is distin-

guished between “strong negation” of some statement, which is the true negation

connected with impossibility of proof, and “weak negation”, which means only that

for now neither we can show the truth nor the falsity of that statement. From this

distinction come the names of weak and strong counterexamples.

Before we show an instance of a weak counterexample, let us first note, that for

finite systems there are no undecidable problems, so we can always determine if a

given statement is true or false (also in the intuitionistic meaning). We can quote

Brouwer: “insofar as only finite discrete systems are introduced . . . the principium

tertii exclusi is reliable as a principle of reasoning” (Brouwer, 1975, p. 109), the same

15Let us note here that although we intuitively advocate for PEM, still at least in our language we
use the expression “I’m not saying no”, which not at all means “Yes”. Therefore, it seems that it is
not so obvious that for ordinary people the strong double negation law is always valid in everyday
speech.
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idea is presented in (Brouwer, 1981, p. 5f). Thus Brouwer considers PEM as a valid

principle for finite systems but in an unjustified way adopted for infinite systems

and thus for the whole mathematics16.

For infinite systems, it is possible that the mathematical statement is neither true

nor false. The simplest example, which is already the simplest instance of weak

counterexample, is every yet unsolved mathematical problem (e.g. the Goldbach

conjecture17). As we neither can show it to be true, nor show impossibility of any

proof, at least until now, we can assert neither that it is true nor that it is false.

Classically of course, we also know neither that e.g. Goldbach conjecture is true nor

that it is false, but because of the different meanings of the terms “true”, “false”,

and “or” (the logical alternative), we still do hold that ‘Goldbach conjecture is true

or it is false’.

As long as we have any unsolvable mathematical problem, we can use it, follow-

ing Brouwer, to construct furthers weak counterexamples to other classically valid

statements having the form of PEM in the following way.

Let P be some decidable property of natural numbers, for which ∀n∈N P(n) is

neither known to be true nor false (we base this exposition of weak counterexamples

on (Iemhoff, 2016, sec. 3.4), (Brouwer, 1981, p. 6f) and (van Atten, 2017b, supplement

“Weak Counterexamples”)). Decidable property means that for each n ∈ N it can

be decided whether or not n possesses the property P; e.g. P(n) can mean “2n + 4

is the sum of two primes”, and then ∀n∈N P(n) is the Goldbach conjecture. Now,

we define a sequence of rational numbers an in the following way:

an =


(−2)−n if ∀k≤n P(k),

(−2)−n0 if ¬P(n0) ∧ n0 ≤ n ∧ ∀k<n0 P(k).

This is a brief definition of a sequence which elements an are equal (−2)−n as long

as P(n) is true, and for the smallest natural number for which ¬P(n) is true, let it

16It is interesting to note Brouwer’s comment in footnote regarding finite and infinite systems.
After having noted about some investigation for finite systems that it can “in every case be made by
a machine or by a trained animal, it does not require the basic intuition of mathematics, living in a
human mind”, he continues ‘[b]ut with respect to questions regarding infinite sets the basic intuition
is indispensable; by disregarding this fact, Peano and Russell, Cantor and Bernstein have fallen into
errors” (Brouwer, 1975, footnote 2, p. 109).

17The so-called “strong” or “binary” Goldbach conjecture states that all positive even integers
greater or equal to 4 can be expressed as the sum of two primes.
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be n = n0, the sequence starts to be constant and equal (−2)−n0 . {an} is a Cauchy

sequence18 because for every n, any two members of the sequence after an lie within

the distance 2 · 2−n = 2−n+1. Therefore the sequence {an} converges and determines

a real number, say a.

From the construction of {an} it follows that we can assert a = 0 if and only

if we know that ∀n∈N P(n), which is equivalent to the validity of the Goldbach

conjecture. It follows also that we can assert a 6= 0 if and only if we know that

for some n it is ¬P(n), because then, if n0 were the smallest such n, the sequence

{an} for n ≥ n0 would be a constant sequence with value (−2)−n0 , as we have

already noticed. Let us call such a (hypothetical) number n0 the critical number. As

we neither can prove the Goldbach conjecture nor can we give a counterexample

for it, we can no longer assert in intuitionism that for every real number x, the PEM

in the form x = 0∨ x 6= 0 holds (because the number a defined above is real and we

do not know weather a = 0 or a 6= 0). Moreover, because we cannot demonstrate

neither the absurdity of critical number being an odd nor an even number, we also

cannot assert that for every real number x, it is x ≤ 0 ∨ x ≥ 0. Among others,

Brouwer constructed also weak counterexamples to the statements: (i) every set is

either finite or infinite, (ii) any two straight lines in the Euclidean plane are either

parallel, or coincide, or intersect, (iii) every infinite sequence of positive numbers

either converges or diverges (see van Atten, 2017a, sec. 3.2).

As we have seen, the PEM does not always hold in intuitionism, at least cur-

rently. The question is if this will always be the case. At this point, we can un-

derstand Brouwer saying that “the question of the validity of the principium tertii

exclusi is equivalent to the question whether unsolvable mathematical problems

can exist” (Brouwer, 1975, p. 109). Brouwer, moreover, states that as long as the

proposition: “every number is either finite or infinite”, is unproved, it remains un-

certain whether the problem: “Does the principium tertii exclusi hold in mathemat-

ics without exception?” is solvable (Brouwer, 1975, p. 110) and thus whether there

are unsolvable mathematical problems.

In the same paper, however, Brouwer wrote that “there is not a shred of a proof

for the conviction, which has sometimes been put forward [here he refers in a

18{bn} is a Cauchy sequence iff for any ε > 0 there is a natural number N such that for all j, k > N
it is |bj − bk| < ε.
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footnote to D. Hilbert’s paper] that there exist no unsolvable mathematical prob-

lems” (Brouwer, 1975, p. 109). As van Atten comments this passage in (van Atten,

2017a, sec. 2.5), Brouwer here “seems to overlook that, constructively, there is a

difference between the claim that every mathematical problem is solvable and the

weaker claim that there are no absolutely unsolvable problems.” If we accept that

the former is equivalent to PEM, then the latter is equivalent to ¬¬PEM, which,

unlikely to the first one, is always true in intuitionism. This seems to be really only

an oversight, because van Atten shows also Brouwer’s note from about the same

period, which has never been published, where Brouwer made a point that one

cannot ever demonstrate that a proposition can never be decided. Apparently then,

Brouwer might wanted to say that there is not a shred of a proof for the conviction

that every mathematical problem is solvable, although he regarded that there are

no absolutely unsolvable problems. As van Atten noted, “the explicit observation

that ¬¬(p∨¬p) means that no absolutely unsolvable problem can be indicated was

made [by Heyting in 1934]” (van Atten, 2017a, sec. 2.5).

We shall now consider the so-called strong counterexamples. We have already

mentioned that because ¬¬(p ∨ ¬p) is a tautology in intuitionistic propositional

logic, it cannot be proved that PEM is false, i.e. it cannot be proved that ¬(p ∨ ¬p).

However, some other statements that are sometimes considered to be of the form of

a negation of PEM, like e.g. ¬∀x ∈ R : (P(x) ∨ ¬P(x)) may, and have been proven

by Brouwer. They are called strong counterexamples (of PEM), because they not

only show that for some statement we cannot assert its truth (like in the case of weak

counterexamples), but they refute certain statements, although strictly speaking

they do not refute PEM in the form p ∨ ¬p.

As his first strong counterexample, Brouwer proved the following statement for

intuitionism:

¬∀x ∈ R : (x ∈ Q∨ x /∈ Q).

Later using the so-called creating subject method (about creating subject itself we

shall write below) Brouwer proved for instance also (see van Atten, 2017a, sec. 3.3;

or van Atten, 2017b, supplement “Strong Counterexamples”):

¬∀x ∈ R : (¬¬x < 0→ x < 0),
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and

¬∀x ∈ R : (x 6= 0→ (x < 0∨ x > 0)).

We do not intend here to go deeper into these issues, which are known in the litera-

ture. We only wanted to mention strong counterexamples as they can be considered

as one of Brouwer’s more important achievements.19

1.2.4 The second act, choice sequences and the continuum

As we have already mentioned, the mathematics based only on the first act of

intuitionism would be very limited, “in particular, . . . one might fear at this stage

that in intuitionism there would be no place for analysis” (Brouwer, 1981, p. 7), but

the second act of intuitionism opens “a much wider field of development, including

analysis and often exceeding the frontiers of classical mathematics” (Brouwer, 1981,

p. 8). We shall not study it in depth, but let us quote the following insightful passage

(see Brouwer, 1981, p. 8):

Admitting two ways of creating new mathematical entities: firstly in the

shape of more or less freely proceeding infinite sequences of mathemat-

ical entities previously acquired (so that, for example, infinite decimal

fractions having neither exact values20, nor any guarantee of ever get-

ting exact values are admitted); secondly in the shape of mathematical

species, i.e. properties supposable for mathematical entities previously

acquired, satisfying the condition that if they hold for a certain math-

ematical entity, they also hold for all mathematical entities which have

been defined to be ’equal’ to it, definitions of equality having to satisfy

the conditions of symmetry, reflexivity and transitivity.

Infinite sequences mentioned above, called also choice sequences, are the special

feature of Brouwer intuitionism. Van Atten summarizes:

The main use of choice sequences is the reconstruction of analysis; points

19In his preface to Brouwer’s Cambridge lectures van Dalen writes: “I think that it is safe to agree
that Brouwer’s two most spectacular performances in his foundational work, given the basic notions
(e.g. natural number, choice sequence), are the continuity theorem (involving continuity, bar induction,
etc.) and the strong counterexamples (involving the creative subject)” (Brouwer, 1981, p. ix).

20Here, van Dalen, the editor, gives a valuable comment: “By ’infinite decimal fractions having no
exact value’ Brouwer clearly means ’decimal fractions not given by a law’ ” (Brouwer, 1981, p. 95).
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on the continuum (real numbers) are identified with choice sequences

satisfying certain conditions. Choice sequences are collected together us-

ing a device called ‘spread’, which performs a function similar to that of

the Cantorian set in classical analysis, and initially, Brouwer even uses

the word ‘Menge’ (‘set’) for it. (van Atten, 2017b, sec. 4)

The presence of choice sequences distinguishes intuitionism from other con-

structive views on mathematics. Most of the constructive theories are in general

part of classical mathematics, but intuitionistic mathematics, as we soon shall see,

only partially overlap with classical mathematics (it does not have all of its theo-

rems, but has also others that are not classically valid).

Before proceeding further, let us note only, that although two acts of intuitionism

can be perceived in a more psychological way, which would also pose the problem

of intersubjectivity of mathematics, Brouwer did not consider it this way. He in-

troduced the idea of a creating subject (also known as creative subject), an idealized

mind in which mathematics takes place. It is not subject to limitations of space,

time, memory or even faulty arguments and thus also does not cause the problem

of intersubjectivity (cf. Iemhoff, 2016, sec. 2.2).21

We have already given examples of sentences that are true for classical con-

tinuum but false for intuitionistic. We have also mentioned that the statement

∀x∈R (x = 0 ∨ x 6= 0), which is obviously true of real numbers in classical mathe-

matics, is not true for intuitionistic continuum. Similar result can be shown for the

law of trichotomy, intermediate value theorem and many others classically valid

statements. In many cases however for such a statement another statement can be

given which is valid in intuitionism and classically equivalent to the original one

(cf. Iemhoff, 2016, sec. 3.4).

Probably the most known and important result showing the richness of the

intuitionistic continuum is the continuity theorem. It can be stated as: every total

function [0, 1] → R is uniformly continuous. This implies inter alia that the intu-

itionistic continuum is not decomposable, meaning that there are no non-empty

21In our opinion, this is an important and at least puzzling issue. If we do not introduce a creating
subject, intuitionism is hardly immune to accusation of being merely based on psychology and having
serious problems with e.g. intersubjectivity or erroneous arguments. On the other hand, by introduc-
ing creating subject, intuitionism may be consider to become closer to platonism and the question
then arises as to the relation between the mind of a given mathematician to the creating subject.
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spreads22 A and B such that A ∪ B = R and A ∩ B = ∅ (see van Atten, 2017b,

supplement “Strong Counterexamples”).

1.3 Formal intuitionistic logic

From considerations of a more historical-philosophical nature, we now turn to the

formalization of intuitionism in the form of intuitionistic logic (IL). However, it is

worth noting at the outset the problematic nature of this formalization itself. To

quote Heyting:

Intuitionistic mathematics is a mental activity, and for it every language,

including the formalistic one, is only a tool for communication. It is in

principle impossible to set up a system of formulas that would be equiv-

alent to intuitionistic mathematics, for the possibilities of thought cannot

be reduced to a finite number of rules set up in advance. (Heyting, 1930,

p. 42; English translation in Mancosu, 1998, p. 311; we cite after van

Atten, 2017a, sec. 4.4)

Let us add that although Heyting’s achievements in the field of formalizing intu-

itionistic logic are of great importance to logic itself, in the context of Brouwer’s

own ideas, Heyting would many years later write:

I regret that my name is known to-day mainly in connection with these

papers [his three papers from 1930], which were very imperfect and con-

tained many mistakes. They were of little help in the struggle to which

I devoted my life, namely a better understanding and appreciation of

Brouwer’s ideas. They diverted the attention from the underlying ideas

to the formal system itself. (Heyting, 1978, p. 15; we cite after van Atten,

2017a, sec. 4.4)

Our current goal, however, is to present the IL itself, regardless of its connections

with Brouwer’s philosophy.

22To understand this concept at least a little better let us quote Iemhoff: “A spread is the intuitionistic
analogue of a set, and captures the idea of infinite objects as ever growing and never finished. A
spread is essentially a countably branching tree labelled with natural numbers or other finite objects
and containing only infinite paths” (Iemhoff, 2016, sec. 3.6).
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1.3.1 Syntax

IL can be briefly described as classical logic (CL) with the omitted PEM or equiva-

lently with the omitted strong double negation law (in particular, the languages of

both logics and the rules of inference are the same). This means that after adding

any of these laws to the axioms of IL (in Hilbert style), we obtain CL (this applies

to both zero-order (sentences) and first-order (predicates) logic, respectively). For

a precise list of axioms, see, e.g., (van Dalen, 2002, p. 9) or axioms from I to XI

in (Goldblatt, 2006, p. 131). The deducibility relation, `, is defined in a standard

way (sometimes we add to this symbol a subscript denoting the logic within which

the given deduction is considered). The formalization of IL was also performed in

Gentzen style natural deduction. We do not deal with this formalization in more

detail here; natural deduction for IL (and a discussion of the system itself) can be

found, e.g., in (van Dalen, 1997b, 2002).

1.3.2 Semantics

The two-valued semantics of CL is not a suitable semantics for IL, in the sense of

satisfying the completeness theorem. This semantics is obviously sound but not

complete (if only because PEM is true in it, and it is not a theorem of IL).

The question naturally arises whether other many-valued semantics would not

be appropriate (viz. sound and complete) for IL. Gödel in his paper (Gödel, 1932)

showed that none of the n-valued semantics, for any n natural, satisfies this con-

dition for propositional IL. Incidentally, he also showed in this paper that there is

an infinite monotonically decreasing sequence of intermediate logics in strength

between CL and IL (zero order).

There are many semantics that are sound and complete with respect to IL (one

may consult, e.g., (Bezhanishvili and Holliday, 2019; Palmgren, 2009)). In the fol-

lowing, we only briefly discuss topological semantics.
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Topological semantics

The topological aspects of IL were discovered independently by Marshall Stone

(Stone, 1937) and Alfred Tarski (Tarski, 1938). Let (X,O(X)) be a topological space.23

Consider propositional IL first. Let P0 denote a set of propositional variables (or sen-

tence letters) and Fm(P0) a set of formulas (which in this case are just all sentences).

The role of logical values assigned to sentences will now be played by open sets

(elements of O(X)). Let us introduce the notation, JpKX, to denote the open set of

a topological space X assigned to the sentence p (to be precise, we should write

JpK(X,O(X)), v to denote not only the topology O(X) which can differ for the same

set X, but also to denote the valuation v : P0 → O(X); usually, however, we omit

even the subscript X). The role of truth is played by the entire set, so that J>K = X,

and the role of falsity is played by the empty set J⊥K = ∅. The assignment of open

sets to compound sentences in terms of the assignment given to atomic sentences

of P0 is given by (in other words, this gives as the way logical operations work in

this semantics)

Jp ∧ qK = JpK∩ JqK,

Jp ∨ qK = JpK∪ JqK,

Jp→ qK = Int(JpKc ∪ JqK),

J¬pK = Int(JpKc),

(1.1)

where Ac is the complement of the set (Ac ≡ X \ A), and Int(A) is the interior of the

set A (i.e. the largest open subset of the set A). Note that we can equivalently define

negation as ¬p = p→ ⊥. Using the equations (1.1) we uniquely extend (inductively

with respect to the complexity of the formula) the valuation P0 → O(X) to the

mapping Fm(P0) → O(X). Note that the above semantics is a generalization of the

classical two-valued semantics, since the latter corresponds to a topological space

consisting of a single point (then O = {∅, X} ≡ {0, 1}).

To extend the topological interpretation to first order IL, suppose that the cor-

23In a large part of this exposition of a topological semantics we rely heavily on (van Dalen, 2002,
p. 23ff).
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responding domain D is given and define:

J∃xϕ(x)K =
⋃
{Jϕ(a)K | a ∈ D},

J∀xϕ(x)K = Int
⋂
{Jϕ(a)K | a ∈ D}.

(1.2)

Let us introduce some standard definitions. We say that a formula α is true in a

topological space (X,O(X)), which is also denoted by �X α, if Jcl(α)KX = X for any

assignment of open sets to atomic sentences, where cl(α) is the universal closure of

α (for propositional logic ‘cl’ of course can be omitted). We say that a formula α is

true, which is denoted by � α, if α is true in every topological space. We say that a

formula α is a logical consequence of a set of formulas Γ in a topological space X, which

is denoted by Γ �X α, if Int
⋂{JβKX | β ∈ Γ} ⊆ JαKX for any assignment of open sets

to atomic sentences. Finally, we say that a formula α is a logical consequence of a set of

formulas Γ, which we denote by Γ � α, if Γ �X α for any topological space X.

We can now formulate a completeness theorem for IL and this semantics (which

we give without proof and assume the above notation):

Γ ` α iff Γ � α .

Let us see one example of using the above considerations to show the unde-

ducibility of some sentences.

Example. Consider the topological space (R,O(R)), with standard open sets of real

numbers. In some valuation, let p be assigned an open set R \ {0}. Then, J¬pK =

Int({0}) = ∅, so Jp ∨ ¬pK = R \ {0} 6= R. Hence, by virtue of the completeness

theorem, we get 0 p∨¬p. Similarly, in the situation under consideration, we obtain

J¬¬p→ pK = R \ {0} 6= R, and therefore 0 ¬¬p→ p.

The algebra of open sets of a topological space is a special case of a Heyting

algebra. We shall discuss this algebraic structure, as well as the dual structure of a

co-Heyting algebra, in more detail in chapter 3 (especially in sec. 3.1). Among other

things, we will show that both of these structures can be viewed as a generalization

of a Boolean algebra, which is known to be the Lindenbaum-Tarski algebra of CL.

Finally, we discuss some basic properties of IL. In the following IL0 denotes zero-

order IL, IL1 denotes first-order IL, and IL can be taken as any of these; analogously,
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we use the notation CL0 and CL1 with respect to CL. The following properties and

a number of others can be found e.g. in (Rasiowa and Sikorski, 1963; van Dalen,

2002):

• For any proposition p:

`CL0 p iff `IL0 ¬¬p,

`CL0 ¬p iff `IL0 ¬p.

• If p does not contain ∧, nor ¬ (alternatively→, nor ∨), then:

`CL0 p iff `IL0 p.

• The so-called disjunction property:

`IL α ∨ β iff (`IL α or `IL β).

• The so-called existence property:

`IL1 ∃xα(x) iff there exists a term t such that `IL1 α(t).

• IL0, like CL0, is decidable.

• IL1, like CL1, is undecidable.



Chapter 2

Paraconsistent logics

In this chapter, we introduce paraconsistent logics (PLs). First, we discuss some

of the motivations that may inspire the study of these logics. Second, we define

the basic notions needed to understand and discuss various PLs. Then, we present

and discuss some examples of PLs: (i) one of the first PLs, namely the Jaśkowski’s

discursive logic; (ii) the whole system of countably many PLs, the so-called da

Costa’s C-system; (iii) the PLs which are dual (in a specific way) to ILs and are

connected with co-Heyting algebras. In this last section, however, we also discuss

other logics related to co-Heyting algebras, which are not paraconsistent although

they are also dual in a certain way to ILs.

2.1 Some motivations

As we mentioned in the introduction, our main motivation to study PLs is their

alleged connection to ILs and topos theory through appropriate dualities. As we

shall see, some PLs are related to co-Heyting algebras, which are dual to Heyting

algebras (see sec. 3.1). As is well known, the latter, on the other hand, are directly

related to ILs and are commonly and intrinsically present in toposes.

However, as we will see in the next chapter, the presence of co-Heyting algebras

in toposes turns out to be more natural and common than is standardly believed.

In such a situation, a more in-depth understanding of PLs may prove valuable.

Yet PLs are also interesting in their own right, both from a purely formal point

of view and in terms of their possible applications to other areas of science (see e.g.

41
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Eva, 2015; Lambert, 2011; Tanaka et al., 2013). In this work, we do not explore possi-

ble applications for our formal research, all the more so it may be worth mentioning

at least some examples of additional motivations in this regard, in the context of

logics that can reliably deal with inconsistencies and their relationship to other re-

search. Let us quote Abramsky who writes: “rich field of phenomena in logic and

information, closely linked to key issues in the foundations of physics, arise at the

borders of paradox” (Abramsky, 2018, p. 282).

More precisely, in connection with logics based on co-Heyting algebras let us

quote Majid, who with great hope writes about some important issues in the context

of his project:

It has been argued by F. W. Lawvere24 and his school that this intersec-

tion d(A) = A∩ Ā is like the ‘boundary’ of the proposition, and, hence,

that these co-Heyting algebras are the ‘birth’ of geometry.25 . . . My long-

term programme at the birth of physics is to develop this geometrical

interpretation of co-intuitionistic logic further into the notion of metric

spaces and ultimately into Riemannian or pseudo-Riemannian geome-

try. (Majid, 2012, p. 125f)

2.2 Definition of paraconsistent logic

Paraconsistency is, unlike intuitionism, not connected with a separate position in

the philosophy of mathematics. One of its characteristics is its attitude to incon-

sistency. In CL the appearance of inconsistency has explosive consequences, from

contradiction everything follows. Paraconsistent logic (PL) emerged as an attempt

to protect inconsistencies from exploding, i.e. from implying anything. The fact that

some logicians developing PL wanted to allow the appearance of contradictions26

does not immediately mean that contradictions are welcome or even desirable. Our

attitude to inconsistency and our motivation to study PL and possible paraconsis-
24Majid cites here (Lawvere, 1989), but one may also consult the more accessible one connected

with this subject (Lawvere, 1991).
25By Ā Majid means in general an appropriate complement of A, in this case a co-Heyting negation.

We define this notion in sec. 3.1.
26When writing in an informal way, the words “inconsistency” and “contradiction” can be consid-

ered synonymous. In formal writing, however, inconsistency will be shortly defined, and the contra-
diction can be understood as a sentence from which a falsum can be infered (α is a contradiction iff
α ` ⊥).
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tent aspects of toposes has already been presented in the introduction, we recall

only that our primary motivation comes from mathematical inspiration related to a

better understanding of topos theory.

There are quite a few introductions to PL (see e.g. Akama and da Costa, 2016;

Carnielli et al., 2007; Priest, 2002; Priest et al., 2018). We do not need to present

PL in its fullness. Based on the texts just mentioned, we only give a very general

introduction to PL and describe some important examples in a little more detail. In

particular, we focus on PLs which arise in the context of dualization of IL and which

are based on algebraic structures dual to Heyting algebras, the so-called co-Heyting

algebras. Our further research in the next chapter is precisely related to the pres-

ence of these structures in toposes, so these logics are of particular importance for

our further considerations. If not stated otherwise we shall deal with propositional

calculus (zero order).

Any logical consequence relation, which we shall denote as ` (basically this

will denote the proof theoretic deduction, but in this chapter it could be either

proof theoretic or semantic), is called explosive if it satisfies the condition that for

any sentences α, β we have {α,∼α} ` β . Classical logic, but also most standard

non-classical logics (among them intuitionistic logic), are all explosive (cf. Priest

et al., 2018). Such logics are useless in any inconsistent context, as they lead to triv-

iality (everything follows). A logic is called paraconsistent if its logical consequence

relation is not explosive. This definition is weaker than sufficient27, “but an elegant

stronger definition is not at hand” (Priest, 2002, p. 288), and this one has become

the standard one.

A theory T is called inconsistent if for some formula α, it is T ` α and T ` ∼α. If

T is not inconsistent, it is called consistent. T is trivial if T ` α, for all α. Otherwise, T

is non-trivial. We can thus say that paraconsistent logics are those which can be used

as the basis for inconsistent but non-trivial theories. It is interesting to note that “a

paraconsistent logic need not itself have an inconsistent set28 of logical truths: most

do not” (Priest, 2002, p. 288 (in footnote 3)).

27E.g. there is a logic (Johansson’s minimal logic), which is paraconsistent according to this defini-
tion, but satisfies α,∼α ` ∼β (for any α and β), which is not really appropriate for the use (cf. Priest,
2002, p. 288).

28A set of propositions is inconsistent, if for some α, both α and ∼α belong to this set.
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2.3 Some history and various types of paraconsistent logics

We shall concentrate on the twentieth century history of PL, although some para-

consistent traces can be noticed in an earlier history of human thought (much more

extensive presentation of the history of PL can be found e.g. in Priest, 2002, pp. 292–

296). Akama and da Costa state that they believe “the history of paraconsistent logic

started in 1948” (Akama and da Costa, 2016, p. 9), when a Polish logician Stanisław

Jaśkowski proposed a PL called discursive (or discussive) logic (see Jaśkowski, 1948,

1949 (for the English translations of these see Jaśkowski, 1999a,b; in what follows

we shall refer to them)). Priest calls it “the first non-adjunctive paraconsistent logic”

(Priest, 2002, p. 295) (because he claims that simply the earliest PLs were given by

two Russians, Vasiliev and Orlov (Priest, 2002, p. 295)). Adjunction, in this context,

is a rule of inference, which from ` α, and ` β gives ` α ∧ β. “Discursive logic can

avoid explosion by prohibiting adjunction” (Akama and da Costa, 2016, p. 9). We

are going to take a closer look at this logic soon.

“An understanding of most paraconsistent logics can be obtained by looking

at the strategies employed in virtue of which ECQ [ex contradictione quodlibet, i.e.

from contradiction everything follows] fails” (Priest, 2002, p. 296). First we discuss

Jaśkowki’s discursive logic, which uses modified connectives. Secondly, we turn to

da Costa’s countably many PLs which use the strategy of non-truth-functionality

(see below). Finally, we consider logics connected with co-Heyting algebras, thus in

a certain way dual to ILs, some of which are paraconsistent.

2.3.1 Jaśkowski’s discussive logic

The name of this logic, discursive or discussive, comes from the idea of an attempt

to systematize in one logical system all the theses defended in some discussion. Ar-

guing people hold sometimes contradictory opinions. However, at the same time,

interlocutors do not accept all the existing sentences (theses). In this way, we may

regard the discursive logic as one of the PLs. Jaśkowski’s discursive logic, denoted

as D2, consists of propositional formulas built from language of classical logic en-

riched with the possibility operator ♦ of S5 modal logic. Let as see how Jaśkowski

himself writes about the context of the logical system in question and about the

connection with the modal operator of possibility. Such a system emerges e.g. when
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theses advanced by several participants in a discourse are combined into

single system, or if one person’s opinions are so pooled into one system

although that person is not sure whether the terms occurring in his

various theses are not slightly differentiated in their meanings. Let such

a system which canot be said to include theses that express opinions in

agreement with one another, be termed a discussive system. To bring out

the nature of the theses of such a system it would be proper to precede

each thesis by the reservation: ‘in accordance with the opinion of one of

the participants in the discussion’ or ‘for a certain admissible meaning of

the terms used’. Hence the joining of a thesis to a discussive system has

a different intuitive meaning than has assertion in an ordinary system.

Discussive assertion includes an implicit reservation of the kind specified

above, which — out of the logical operators so far introduced in this

paper — has its equivalent in possibility ♦. (Jaśkowski, 1999a, p. 43)

However, if we interpret every formula α as ‘it is possible that α’, i.e. ♦α, then

the modus ponens rule fails, as

♦(α→ β)→ (♦α→ ♦β)

is not a theorem in S5. “This is why in the search for a ‘logic of discussion’ the

prime task is to choose such a function which, when applied to discursive theses,

would play the role analogous to that which in ordinary systems is played by im-

plication” (Jaśkowski, 1999a, p. 44). Jaśkowski acknowledges that such a problem

has a number of solutions. He chooses, however, to define discussive implication as

α→d β := ♦α→ β,

and notes that “it may be read: ‘if it is possible that α, then β’, or, if applied to a

discourse, ‘if anyone states that α, then β’, or ‘if, for a certain admissible meaning

of the terms, α, then β’ (Jaśkowski, 1999a, p. 44) (where we changed each “p” into

“α”, and each “q” into “β”, as we use a different notation). Now, in a discussive
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system, knowing that α→d β, and α, we may infer that β, based on the fact that

♦(♦α→ β)→ (♦α→ ♦β)

is a theorem in S5. “Thus the rule of modus ponens may be applied to discussive

theses if discussive implication is used instead of ordinary implication” (Jaśkowski,

1999a, p. 44).

In his next paper (Jaśkowski, 1999b, cf. especially p. 57), Jaśkowski defines the

discussive conjunction ∧d as

α ∧d β := α ∧♦β.

In terms of this symbol, discussive equivalence may be defined as

α↔d β := (α→d β) ∧d (β→d α).

Let us only note (cf. Jaśkowski, 1999b, p. 58), that the law of the inconsistency for

the discussive conjunction is a theorem of D2:

`D2 ¬(α ∧d ¬α),

and the system does not explode, as

0D2 (α ∧d ¬α)→d β.

Moreover, as Perzanowski notes in his comment to this article’s translation, “D2 in

fact contains the full positive part of the classical logic” (Jaśkowski, 1999b, p. 58).

Akama and da Costa comment that “[d]iscursive logics are considered weak as

a paraconsistent logic, but they have some applications, e.g. logics for vagueness”

(Akama and da Costa, 2016, p. 10). Being based on modal logic, “it is classified as

the modal approach to paraconsistency” (Akama and da Costa, 2016, p. 9).

The above presentation of Jaśkowski’s discussive logic is very fragmented. We

just wanted to outline this approach. One can read more about this logic and pos-

sible variations on it in (Dunin-Kęplicz et al., 2018). A new axiomatizations of

Jaśkowski’s logic D2 were also proposed in (da Costa and Doria, 1995; Vasyukov,
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2001). For other references on Jaśkowski’s logic see also references in the above

literature.

2.3.2 Da Costa’s C-system

Some years later PLs were again proposed in doctoral dissertations, first by F. G.

Asenjo in Argentina in 1954, and then by Newton C. A. da Costa in Brazil in 1963.

“Asenjo proposed the first many-valued paraconsistent logic” (Priest, 2002, p. 295).

We shall concentrate for a while on da Costa’s contribution. He constructed for

the first time a whole hierarchical system of propositional PLs Ci (1 ≤ i ≤ ω) as

well as their first-order and higher-order extensions. His approach “is based on

the non-standard interpretation of negation” (Akama and da Costa, 2016, p. 9) and

employs “non-truth-functional account of [it]” (Priest, 2002, p. 303), thanks to which

he avoids explosion (triviality). We shall explain below more fully what non-truth-

functionality means.

C1 system

Let us first review C-system C1. The language of C1 has as the logical symbols: ∧,

∨,→, and ¬.↔ is defined as usual. It is useful to introduce a following shorthand

notation

α◦ ≡ ¬(α ∧ ¬α),

which can be read as ‘α is well-behaved’ (cf. Akama and da Costa, 2016, p. 10).

The Hilbert style definition of this system can be found in (Akama and da Costa,

2016, p. 11). It consists of the positive intuitionistic logic axioms extended by the

following axiom schemata for negation:

(1) α ∨ ¬α, (2.1)

(2) ¬¬α→ α, (2.2)

(3) β◦ →
(
(α→ β)→ ((α→ ¬β)→ ¬α)

)
, (2.3)

(4) (α◦ ∧ β◦)→ (α ∧ β)◦ ∧ (α ∨ β)◦ ∧ (α→ β)◦. (2.4)
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The only rule of reference is the modus ponens. All the logical symbols, except the

negation, have all properties of the classical positive logic (da Costa and Alves, 1977,

p. 622). If we add the principle of non-contradiction we get classical propositional

logic (cf. da Costa, 1974, theorem 3 on p. 499f). We note some schemata, among

others, which are not valid in C1 (cf. da Costa, 1974, theorem 2 on p. 499):

0C1 ¬(α ∧ ¬α),

0C1 α ∧ ¬α→ β.

Moreover, let us note that C1 is consistent (da Costa, 1974, theorem 6 on p. 500).

Da Costa defines also the strong negation of α as

¬?α := ¬α ∧ α◦.

It has all properties of the classical negation (da Costa, 1974, theorem 5 on p. 500).

We note only the following three:

`C1 α ∨ ¬?α,

`C1 ¬
?(α ∧ ¬?α),

`C1 α↔ ¬?¬?α.

A non-trivial logical system is said to be finitely trivializable if there is a formula

(not a schema) such that, adjoining it to the system as a new axiom, makes the

resulting system trivial. It may be shown that C1 is finitely trivializable, as each

formula of the type α ∧ ¬?α trivializes C1 (da Costa, 1974, theorem 7 on p. 500).

Cn and Cω systems

The da Costa C1 system can be extended to Cn for 1 < n ≤ ω (cf. the original paper

(da Costa, 1974) or (da Costa and Alves, 1977), rather than (Akama and da Costa,

2016), as in the latter there are some typos in these definitions). Let now, for 1 ≤ n,

αn denote α◦...◦ with ◦ taken n times, thus α1 is exactly the same as α◦. Let moreover,

for 1 ≤ n, α(n) denote α1 ∧ α2 ∧ . . . ∧ αn.

The Cn system (for 1 < n < ω) is defined in the same way as C1, except the
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axioms (axiom schemata) (3) and (4) in our notation (i.e. (2.3) and (2.4)), which are

replaced by the following:

(3′) β(n) →
(
(α→ β)→ ((α→ ¬β)→ ¬α)

)
, (2.5)

(4′) (α(n) ∧ β(n))→ (α ∧ β)(n) ∧ (α ∨ β)(n) ∧ (α→ β)(n). (2.6)

Cω is defined as C1 with neither axiom schema (3), nor (4) (i.e. (2.3) and (2.4))

at all. Let moreover C0 denote the classical propositional calculus (which we have

also denoted as CL).

Let us recall some theorems about Cn and Cω (for these and others see da Costa,

1974, p. 501):

• Every calculus belonging to the hierarchy Cn, for 0 ≤ n < ω, is finitely trivi-

alizable. Cω is not finitely trivializable.

• Every calculus of the hierarchy C0, C1, C2, . . . , Cω is strictly stronger than

those which follow it.

• Cn, for 0 ≤ n ≤ ω, are consistent.

• In Cn, for 1 ≤ n ≤ ω, we have:

0Cn ¬(α ∧ ¬α),

0Cn α ∧ ¬α→ β.

Semantics for Cn

Da Costa and Alves developed a two-valued semantics for Cn systems (see da Costa

and Alves, 1977). The authors note that it seems to them, that their “proposed

semantics for C1 agrees with some views of the young Łukasiewicz” (da Costa and

Alves, 1977, p. 622, see also therein for a reference to Łukasiewicz’s bibligraphy).

Let us first concentrate on C1. The proposed semantics will be sound and com-

plete, however, it has a very characteristic feature that “[t]he value of a valuation

v for an arbitrary formula is not in general determined by the values of v for the

propositional variables” (da Costa and Alves, 1977, p. 624). Such a semantics can

be called a non truth functional one. Because of this feature, the valuation is de-
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fined on te whole set of all formulas, which we denote as P. In what follows, the

symbols⇒ and⇔ will be used as an abbreviation of the meta-linguistic notions of

implication and equivalence.

A valuation of C1 is a function v : P → {0, 1} such that all the following condi-

tions are fulfilled:

(v1) v(α ∨ β) = 1 ⇔ v(α) = 1 or v(β) = 1,

(v2) v(α ∧ β) = 1 ⇔ v(α) = v(β) = 1,

(v3) v(α→ β) = 1 ⇔ v(α) = 0 or v(β) = 1,

(v4) v(α) = 0 ⇒ v(¬α) = 1,

(v5) v(¬¬α) = 1 ⇒ v(α) = 1,

(v6) v(β◦) = v(α→ β) = v(α→ ¬β) = 1 ⇒ v(α) = 0,

(v7) v(α◦) = v(β◦) = 1 ⇒ v((α ∧ β)◦) = v((α ∨ β)◦) = v((α→ β)◦) = 1.

Let us note that the conditions (v1), (v2), and (v3) are identical to respective con-

ditions for classical logic (CL). All the other conditions are not given by equivalence

and concern the negation symbol either on its own (conditions (v4) and (v5)), or in

connection with other logical symbols.

A formula α is said to be valid, which we denote also as � α, if for every valuation

v, v(α) = 1.

Thus defined semantics is sound and complete, i.e. we have (da Costa and Alves,

1977, p. 624)

� α ⇔ ` α .

Also, more generally, for any set Γ of formulas it holds that

Γ � α ⇔ Γ ` α .

Let us now note some of the properties of this semantics (we shall call α false

if v(α) = 0, and true otherwise). The condition (v4) implies that the negation of a

false formula is true, however negation of a true proposition can be either true or

false. Therefore, p and ¬p cannot be both false, although they can be both true (in

some valuation). Such a valuation for which there exists at least one formula α such
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that v(α) = v(¬α) = 1 is called singular (otherwise v is said to be normal). There are

singular valuations (as well as the normal ones). For the strong negation it can be

proved that v(α) = 1⇔ v(¬?α) = 0, as well as v(α) = 0⇔ v(¬?α) = 1.

In connection with the semantics for the system Cn let us quote (we change A

to α in accordance with our notation):

The extension of the semantics of C1 to the systems Cn, 1 ≤ n < ω,

is immediate. All definitions and theorems are the same, only with ev-

ident modifications as regards the strong negation (for example, ¬?α

becomes ¬(n)α, which is an abbreviation of ¬α ∧ α(n)), and the symbol ◦

(for example, α◦ becomes α(n)). (da Costa and Alves, 1977, p. 628)

We should mention an important drawback of the C-systems. A following gen-

eral comment on treating negation non-truth-functionally can be found in (Priest,

2002, p. 306): “It is a consequence of this that the substitutivity of provable equiv-

alents breaks down in general. For example, even though α is logically equivalent

to α ∧ α there is no guarantee that the negations of these formulas have the same

truth value in an interpretation.” He then gives a reference to (Urbas, 1989) for a

discussion of this issue for da Costa’s logics. Indeed, Urbas proves, for an appropri-

ate definition of intersubstitutivity of provable equivalents, that all the Cn systems,

for 1 ≤ n ≤ ω do not enjoy this property, and moreover that for 1 ≤ n < ω there

is no extension of any Cn which enjoys this property but which is weaker than CL

(see Urbas, 1989, theorems 1 and 10).

Our exposition of C-systems is of course very limited. We do not present here

many other developments such as the calculi with equality, modal calculi built

from Cn, the first-order and higher-order extensions of C-systems. One may consult

especially (da Costa, 1974) and (da Costa and Alves, 1977), for other developments

see e.g. (Osorio Galindo et al., 2016) and literature therein.

We note also that some papers have appeared on categorical semantics for da

Costa paraconsistent logics (see Vasyukov, 2000, 2017). They may provide an inter-

esting research area of applications of category theory to the semantics of da Costa

logics. These studies, however, do not coincide with the purpose of this paper,

therefore we do not analyze these papers, but only refer to them.
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2.3.3 Co-Heyting PL and other dual to intuitionistic logics

We turn to PLs closely connected with algebraic structures. We shall limit ourselves

to some aspects of the logics based on co-Heyting algebras. We assume here the

Reader’s familiarity with the co-Heyting structure and its duality to Heyting alge-

bra, otherwise we recommend first to read section 3.1, where the main definitions,

some intuitions, and basic knowledge are presented. This type of PLs is the most

significant for the research undertaken in this paper. Let us recall that if not stated

otherwise we are dealing with propositional calculus (zero order). We denote the

set of all propositional variables by P0, and the set of all propositions by P.

There are different ways to define logic using the appropriate algebraic struc-

ture. We do not intend here to make a full analysis of logics based on co-Heyting

algebras. In the following, we just want to present some results and show that while

some such logics are not paraconsistent, others have paraconsistent properties.

Let K be any non-empty class of co-Heyting algebras (or their reducts, depend-

ing on the language), and Γ ∪ {α} be any finite subset of P. For any appropriate

algebra A, a valuation v : P0 → A, is extended uniquely to a function v : P→ A by

the standard rules: v(∼α) = ¬v(α), etc. We can now define two types of logics:

• the logic L>K , which consequence relation we denote as `>K , is defined by (cf.

Font, 2016, p. 110, def. 3.5)29

Γ `>K α iff for every A ∈ K and for every valuation v : P0 → A,

if v(γ) = 1A for all γ ∈ Γ, then v(α) = 1A;

• the logic L≤K , which consequence relation we denote as `≤K , is the finitary (by

assumption) logic defined by (cf. Font, 2016, p. 428, def. 7.26)

Γ `≤K α iff for every A ∈ K, every a ∈ A, and for every valuation v : P0 → A,

if a ≤A v(γ) for all γ ∈ Γ, then a ≤A v(α),

where we assume that the partial order ≤A (we may also drop the subscript)

29We would like to thank Prof. T. Kowalski who helped us to clarify some of these issues, in
particular the main idea in the proof of the Proposition 1 below, and introduced us to the book
written by J. Font.
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on each algebra in K is the partial order corresponding to the lattice structure.

The logic L>K may be called the assertional logic of K, whereas L≤K may be called the

logic of order of K or the finitary logic that preserves degrees of truth with respect

to the class K.

Let us limit ourselves for a moment to a class K which has just one element

(and we shall also write `A instead of `{A}). The logic L≤A, for an algebra that is a

complete lattice (or at least complete meet-semilattice) can be equivalently defined

by the following condition (cf. Font, 2016, p. 188)

Γ `≤A α iff for every valuation v : P0 → A,
∧

v(Γ) ≤ v(α), (2.7)

where for Γ = ∅, formally we have
∧

∅ = max A. Thus the set of theorems of L>A
and of L≤A coincides (the same is true for L>K and L≤K for arbitrary K).

Let us now restrict ourselves to a logic with an alphabet whose logical symbols

are ∨,∧,∼ (at the beginning of this subsection we shall distinguish between the

logical symbol of negation ∼, its Heyting algebra counterpart operation ¬, and its

co-Heyting algebra counterpart operation ¬).

In a similar context (Mortensen, 1995, p. 103) and (James, 1996, p. 69f) define a

paraconsistent algebra as a bounded distributive30 lattice with a certain complement

operation ¬, defined by the condition

a ∨ b = 1 iff ¬a ≤ b.

This operation is, in our terminology from sec. 3.1, exactly the same as the ∨-

complement (the above condition is equivalent to the one in Definition 2 in sec. 3.1).

Therefore, according to our discussion in sec. 3.1, for a lattice to be a paraconsistent

algebra it is sufficient that it be a co-Heyting algebra (cf. also James, 1996, p. 70,

where a co-Heyting algebra is named ‘Brouwerian algebra’, and denoted as BrA).

For any paraconsistent algebra we have, inter alia, the following properties (see

30In his definition James neither assumes distributivity, nor proves it, but he uses it e.g. in the proofs
on p. 70f. As Mortensen assumes distributivity explicitly, we accept that it is a part of their definition
of paraconsistent algebra.
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e.g. Mortensen, 1995, p. 103)31:

a ∨ ¬a = 1, ¬¬a ≤ a,

¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) ≤ ¬a ∧ ¬b,

a ∧ ¬a 6= 0 (in general), but always: ¬(a ∧ ¬a) = 1.

(2.8)

From these algebraic properties we can trivially obtain appropriate logical the-

orems. For example, if K is any (non-empty) class of such paraconsistent algebras,

and α is any proposition, we get (the logics L>K and L≤K were defined for K being

any non-empty class of co-Heyting algebras or their reducts; we can either expand

these definitions for paraconsistent algebras or limit ourselves only to paraconsis-

tent algebras that are reducts of co-Heyting algebras)

`K α ∨∼α, `K ∼(α ∧∼α), where `K is either `>K or `≤K . (2.9)

Although the set of theorems of these logics coincide, their (possible) paraconsistent

properties are different. Below we shall examine this set of theorems more closely

for a certain class K, but for now let us consider the issue of the paraconsistent

properties of these logics in general.

Let us first consider the logic L>K . We can prove the following proposition

Proposition 1. If K is any non-empty class of paraconsistent algebras or of (∨,∧,∼)

reducts of co-Heyting algebras, and α, β are any propositions, then the logic L>K considered

above has the following property

α ∧∼α `>K β (equivalently {α,∼α} `>K β),

and thus it is explosive (i.e. not paraconsistent).

Proof. Take any algebra A ∈ K, and any valuation v : P0 → A. We assume moreover

that v(α ∧∼α) = 1A. From this we have (we drop the subscript ‘A’)

1 = v(α ∧∼α) = v(α) ∧ ¬v(α).
31In the cited book, one equality is written as an inequality, however, the change was made in the

errata.
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Now, because for any elements a, b ∈ A it is: a ∧ b = 1 iff a = 1 = b, we get

v(α) = 1, and ¬v(α) = 1.

From this we have 1 = ¬v(α) = ¬1 = 0. Now, because 0 ≤ v(β) ≤ 1, we thus get

v(β) = 1. The equivalency stated in the proposition (in parenthesis) is obvious, as

a ∧ b = 1 iff a = 1 = b.

We can also get this result by noting that although for any algebra from the class

under consideration a∧ ¬a 6= 0 (in general), it always holds that ¬(a∧ ¬a) = 1 (see

the last line in (2.8)), and thus a ∧ ¬a = 1 implies that 0 = 1, so it holds only for a

trivial algebra (i.e. the algebra with a one-element universe).

Let us now turn to L≤K . If K is any non-empty class of Boolean algebras (which

are, inter alia, paraconsistent algebras or (∨,∧,∼) reducts of co-Heyting algebras),

then of course for any propositions α, β

α ∧∼α `≤K β (equivalently {α,∼α} `≤K β).

However, we have the following proposition

Proposition 2. If K is any non-empty class of paraconsistent algebras or of (∨,∧,∼)

reducts of co-Heyting algebras, which has at least one algebra that is not Boolean, and p is

any variable (i.e. p ∈ P0), then there is a proposition β for which

p ∧∼p 0≤K β (equivalently {p,∼p} 0≤K β),

and thus the logic L≤K is paraconsistent (i.e. not explosive).

Proof. Let A ∈ K be an algebra from the assumptions that is not Boolean. This

means that there is a ∈ A such that a ∧ ¬a > 0, and thus there is a valuation

v : P0 → A such that v(p ∧ ∼p) = a ∧ ¬a > 0. But now, we can always find a

proposition β (e.g. β = ∼∼(q ∧ ∼q), for any variable q) such that v(β) = 0, and

thus a ∧ ¬a = v(p ∧ ∼p) � v(β). The equivalency stated in the proposition (in

parenthesis) is obvious, as a ≤ b ∧ c iff a ≤ b and a ≤ c.

As this was one of the starting points in our considerations, let us note that the
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consequence relation considered in (Mortensen, 1995, p. 104, case (1) for theorem-

hood) is the same as ours `≤A, for A a paraconsistent algebra (see (2.7)). Moreover,

the authors have noted the paraconsistent nature of this logic (although it should

be formally added that only if the given algebra is not a Boolean one).

We now turn to co-Heyting algebras and logics based on them, which have

the additional binary logical connective .−. This connective corresponds to the co-

Heyting algebra pseudo-difference operation denoted with the same sign (see Def-

initions 4 and 6 in sec. 3.1 and the subsequent considerations).

We start with referring some of the results obtained by Goodman in (Goodman,

1981). Incidentally, let us recall that, in the categorical context, it is significant, that

as Goodman mentions, it was Lawvere himself who first suggested to him “that

there must be a logic dual to the intuitionistic in which contradictions would not

be rejected” (Goodman, 1981, p. 119).

We begin with Goodman’s view on Heyting algebras and IL.32 In order to un-

derstand his views let us remind that every Heyting algebra is isomorphic to a

subalgebra of the algebra of open subsets of a topological space (see Rasiowa and

Sikorski, 1963, p. 140), and for such an algebra of open sets the Heyting implication

is defined by (3.9), i.e. A ⇒ B := Int((X \ A) ∪ B), which implies that the Heyt-

ing negation assumes the form ¬A = Int(X \ A). Now, Goodman comments on

this: “Thus we can always view a Heyting algebra as a lattice of sets with a rela-

tive pseudo-complement [i.e. the operation⇒] formed in such a way as to omit all

borderline cases, that is, all boundary points” (Goodman, 1981, p. 120). After some

further remarks he continues on the next page: “Intuitionistic logic is a weakening

of classical logic in a conservative direction. When in doubt, it refuses to commit

itself”. Eventually he writes that the conservative character of IL can be made pre-

cise by quoting a well-known theorem of Glivenko (Goodman cites (Rasiowa and

Sikorski, 1963, p. 409, Theorem IX.13.5)) that

if Γ `CL ∼α, then Γ `IL ∼α,

where Γ ∪ {α} is a set of IL sentences. Thus he writes: “the intuitionistic calculus

32In this subsection even when discussing Goodman’s or other people’s results we shall use basi-
cally our notation in order to be more consistent.
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affirms less than does the classical calculus, but it denies everything that the clas-

sical calculus denies” (Goodman, 1981, p. 121). This corresponds well with the fact

that

`IL α→ ∼∼α, but 0IL ∼∼α→ α.

He concludes this part by indicating that “Unsolved problems form one class of

mathematical statements which might indicate the existence of mathematical bor-

derline cases” (Goodman, 1981, p. 121).

We find it interesting to view IL and its algebraic aspects in an informal way

by considering this logic as a more conservative in nature than CL and omitting all

(possible) borderline cases. This is even more interesting when this way of looking

at logic can be extended to logic defined using co-Heyting algebras, which Good-

man does. He starts this part by indicating that another class of mathematical state-

ments, connected with borderline cases “of a rather different character[,] is formed

by the paradoxes” (Goodman, 1981, p. 121), and he mentions the Russell’s paradox.

Co-Heyting algebras, being dual to Heyting ones, have the dual properties, which

with respect to topological spaces correspond to the properties of closed subsets.

Inter alia, the pseudo-difference operation, .−, for a co-Heyting algebra of closed

sets becomes B .− A := Cl((X \ A) ∩ B) (see (3.10)), which implies the following

form of a co-Heyting negation: ¬A := Cl(X \ A). Goodman comments: “Thus we

can always view a Brouwerian algebra [i.e. co-Heyting algebra] as a lattice of sets

with a pseudo-difference formed in such a way as to include all borderline cases—

that is, all boundary points” (Goodman, 1981, p. 121). From this point of view, it

may be understandable that the paradoxes emerge since we have included all the

borderline cases.

From an algebraic point of view we could say that the logic defined using co-

Heyting algebras seems just as natural as the logic defined using Heyting algebras,

i.e. the IL (cf. Goodman, 1981, p. 121). Goodman names this new calculus “the anti-

intuitionistic propositional calculus” (Goodman, 1981, p. 121), but we shall use the

name ‘Dual to Intuitionistic Logic’, abbreviated as DIL after (James, 1996, p. 73).

As noted above, its language consists of binary propositional connectives: ∨,∧, .−,

which correspond to meet, join, and pseudo-difference operations in a co-Heyting

algebra (denoted alike). Goodman introduces also a zero-ary connective >, which



58 Chapter 2. Paraconsistent logics

denotes truth, and corresponds to the top element of the algebra. We also have a

unary negation connective, which is defined as ∼α := > .− α (thus it corresponds to

the co-Heyting negation ¬a := 1 .− a).

Goodman does not precisely define the consequence relation for any (finite) set

of premises. In the context of the L>K and L≤K logics defined above, Goodman takes

as a class K the class of all co-Heyting algebras. He gives an exact definition of the-

orems, which coincides with our definition and, as we already know, is common to

both of these logics. As part of the issue of theorems, he writes: “this characteriza-

tion [of theorems] does not give a calculus distinct from the classical propositional

calculus” (Goodman, 1981, p. 122). For Goodman proves the following theorem (see

Goodman, 1981, p. 122, we use our notation and terminology):

Theorem 1. Suppose α is a DIL-formula which is a tautology [i.e. a theorem of CL]. (That

is, α becomes a theorem of the classical propositional calculus when β .− γ is interpreted as

β ∧∼γ.) Suppose A is any co-Heyting algebra and v is any map from the atomic sentence

symbols into A. Then v(α) = 1.

Of course the theorem in the opposite direction is true as well: any DIL theorem

is a classical tautology, when every occurrence of β .− γ is interpreted as β ∧ ∼γ.

This follows from the fact that every Boolean algebra is a co-Heyting algebra with

a .− b := a∧ ¬b, and the Boolean complement is a co-Heyting negation (see sec. 3.1).

This shows that indeed the set of DIL theorems is not distinct form the classical

tautologies, however one should be careful here, because the logical connectives of

DIL are different than the ones of CL (DIL has the connective .−, but (currently) has

no implication—the issue of implication shall be discussed below).

Is DIL a PL? As long as we do not precisely define the consequence relations for

any (finite) set of premises, this question is incorrectly posed and has no definite

answer. However, since the reasoning in propositions 1 and 2 also apply to the

present situation, we already know that for the class K under consideration, L>K is

not paraconsistent and L≤K is paraconsistent.

In order to describe DIL theorems (for either of the two logics, and so in this con-

text we can talk about DIL without specifying which logic we mean) more clearly

and in closer connection with IL theorems, we introduce after (James, 1996, p. 73ff)

certain dualization procedure below. Also, to easier distinguish between the DIL



2.3. Some history and various types of paraconsistent logics 59

and IL languages, we start to use the signs of the algebraic operations also on the

level of languages, as respective logical connectives. We know that any co-Heyting

algebra is the lattice dual of some Heyting algebra and vice versa (see sec. 3.1 but

also e.g. James, 1996, p. 72). First we observe that there is a bijection between the set

of all propositions of the DIL language (which we shall denote as PDIL) and the set

of all propositions of the IL language (denoted as PIL). The bijection can be given

explicitly. For any α ∈ PIL, it is convenient to define αop ∈ PDIL recursively by the

following conditions33 (all α’s without upper index are from PIL, and all αop’s are

from PDIL)

(1) if α is an atomic sentence, then αop = α,

(2) if α = ¬α1, then αop = ¬(αop
1 ),

(3) if α = α1 ∧ α2, then αop = α
op
1 ∨ α

op
2 ,

(4) if α = α1 ∨ α2, then αop = α
op
1 ∧ α

op
2 ,

(5) if α = α1 ⇒ α2, then αop = α
op
2

.− α
op
1 .

From the bijectivity of this operation any DIL proposition can be uniquely writ-

ten in the form of αop for certain α ∈ PIL, thus we shall represent the set PDIL as

{αop
i , i ∈ I}, whereas PIL = {αi, i ∈ I}. We have also a bijection between the set of

all valuations v : PIL → A, for any Heyting algebra A and the set of all valuations

vop : PDIL → A, for its dual, the co-Heyting algebra, which we denote as A′. v

and vop coincide on the set of atomic propositions, and are extended uniquely to

the whole PIL and PDIL, respectively, by the standard conditions: v(¬α) = ¬v(α),

etc., and vop( ¬αop) = ¬vop(αop), etc. Due to the duality properties discussed at the

end of sec. 3.1, we have that v(α) = vop(αop), for any α, and remembering then

that the dual algebra has a reversed order, we have that v(α) = 1 iff vop(αop) = 0′,

where 0′ is the bottom element of A′ which is the same as the top element, 1, of A

(analogously, we shall denote the top element of A′ as 1′).

With these notations, let us remind that any proposition αop of DIL is a DIL

theorem, if for all valuations vop on every co-Heyting algebra A′ it is vop(αop) = 1′.

33This operation can be seen as arising from the * mapping of Czermak, and further developed by
Urbas (see Czermak, 1977, p. 472 and Urbas, 1996, p. 444, respectively).
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In this case we write `DIL αop. Analogously we denote an IL theorem α as `IL α

(which means that for all valuations v on every Heyting algebra A it is v(α) = 1).

James gives the following two theorems that characterize the set of DIL theorems

(see James, 1996, p. 75f) (we provide the proofs, based on his proofs, which may help

to better understand DIL):

Theorem 2. For any IL proposition α, if `IL α, then `DIL ¬αop.

Proof. Suppose `IL α. Then for any IL-valuation v we have v(α) = 1. Thus v(¬α) =

0. By the fact that v(α) = vop(αop), we get that vop( ¬αop) = 1′. Since there is no

co-Heyting algebra that is not the dual of a Heyting algebra, and no DIL-valuation

that is not the dual of an IL-valuation, we have `DIL ¬αop.

Theorem 3. For any IL proposition α, `IL ¬α if and only if `DIL αop.

Proof. Suppose `IL ¬α. This means that for any IL-valuation v, it is v(¬α) = 1.

For any element a of a Heyting algebra we have a ∧ ¬a = 0, so if ¬a = 1, then

a = 0. Thus we get that v(α) = 0. Therefore for any DIL-valuation vop we have

vop(αop) = 1′, so `DIL αop.

The proof of the ‘if’ part of the theorem goes analogously to the proof of the previ-

ous theorem.

We can now give a different proof, than the one given by Goodman, of his

important Theorem 1 (we base our proof on the reasoning in (Priest, 2002, p. 315)).

Proof of Theorem 1. As any DIL-formula can be written in the form αop, let us assume

that a DIL-formula αop is a tautology, i.e. `CL αop (in the sense specified in the

formulation of the theorem). By the duality property (strictly speaking we use the

so-called strong duality principle for Boolean algebras (see sec. 3.1, especially the

discussion in the footnote 38 and literature given there), we get from this that α is a

classical contradiction, i.e. we have `CL ∼α. Hence, by Glivenko’s theorem,34 we get

`IL ¬α, and thus by theorem 3, we have `DIL αop, which completes the proof.

James gives also a theorem, which says that for any well-formed DIL-sentence

αop it is

`DIL ¬(αop ∧ ¬αop),
34We mean the theorem which says that `CL ∼α if and only if `IL ¬α (see e.g. Rasiowa and Siko-

rski, 1963, p. 391, proposition 5.4).
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but this follows already from the last equality shown above in (2.8), and was men-

tioned in (2.9) (for a smaller language).

The implication

So far we have only considered the logics without implication. Goodman comments

on the fact of overlapping of DIL and CL theorems by writing that the divergence

between these two logics “must lie not in the theorems but, somehow, in the de-

ducibility relation” (Goodman, 1981, p. 122). It is well-known that in IL, as well as

in CL, β is deducible from α if and only if α ⇒ β is a theorem (for CL ⇒ = →). In

any Heyting algebra (i.e. inter alia in any Boolean algebra as well) a⇒ b = 1 if and

only if a ≤ b (for Boolean algebras a ⇒ b coincides with −a ∨ b). Goodman notes,

that in the DIL case “there is no analogue of implication” (Goodman, 1981, p. 122),

and proves the following theorem (as before, we use our notation and terminology)

Theorem 4. There does not exist a binary connective → definable in terms of ∧,∨, .−, T

such that for any co-Heyting algebra A and any map v from the atomic sentence symbols

into A, we have v(α→ β) = 1 if and only if v(α) ≤ v(β).

In order to axiomatize DIL, Goodman introduces a particular sequent calculus

system in the Gentzen style with only one formula on the left, and proves certain

completeness theorem for this system (see Goodman, 1981, p. 123). He does not cite

Czermak’s paper (Czermak, 1977), although it was Czermak who few years earlier

analyzed “the Gentzen’s calculus of sequents . . . [with] the restriction to sequents

whose antecedent contains at most one formula” (p. 471), and proved the following

theorem: “Each classically valid formula without existential quantifier and implica-

tion is derivable in DJ” (p. 473), where by DJ (“dual-intuitionistic calculus DJ”) he

calls the system obtained from Gentzen’s calculus by the above restriction.

Goodman also gives two “somewhat unreasonable possibilities” for implication,

namely that one could take α → β to be either ¬α ∨ β, or ¬(α .− β) (see Goodman,

1981, p. 124), and he analyzes some properties of the first of them. Let us observe

that the two coincide for Boolean algebras and are then equivalent to material im-

plication.

In connection with implication for our context of DIL, we add only that Priest

claims that “given any algebraic structure with top (>) and bottom (⊥) elements,
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the following conditions can always be used to define a conditional operator [we

use our notation]:

v(α→ β) =


> if v(α) ≤ v(β),

⊥ otherwise.
(2.10)

Though this particular conditional is not suitable for robust paraconsistent pur-

poses since it satisfies: α→ β, ¬(α→ β) � γ” (Priest, 2002, p. 327f).

The DIL logics L>K and L≤K (for K being the class of all co Heyting algebras) are

just two of many logics that can be considered to be dual to IL. We have considered

first of all the logic based on co-Heyting algebras, as it is most closely related to the

situation we will encounter in the context of toposes. Another approach to the du-

alization of IL comes from the modification of the Gentzen’s calculus of sequents.

We have noted already Czermak’s sequent calculus DJ. Another proposal in this

respect is offered by Urbas in (Urbas, 1996). He considers the sequent system LDJ,

which, unlike Czermak’s system, has the same connectives as Gentzen’s intuition-

istic sequent system LJ, but, like Czermak’s, is (at most) singular in the antecedent.

Urbas introduces also its extension LDJ
.−, which has the pseudo-difference operator

.− added. He proves several results and compares the different kinds of logics that

can be considered to be dual to IL. We do not provide a comprehensive overview

of the subject of logics dual to IL. Other literature on this and similar topics in-

cludes (Brunner and Carnielli, 2005; Goré, 2000; Kamide, 2003; Kamide and Wans-

ing, 2010; Priest, 2009; Rauszer, 1974a,b; Shramko, 2005). The issue of the duality

between intuitionism and paraconsistency has also been the subject of the Ph.D.

thesis (Queiroz, 1998), however, this paper is not available in English, as far as we

know.

We have not discussed the predicate calculus of PLs, but one may consult e.g.

(Goodman, 1981, p. 124ff; Priest, 2002, p. 329ff; and Goré, 2000; Kamide, 2003;

Kamide and Wansing, 2010; Urbas, 1996), where this subject is considered.



Chapter 3

Duality problem and its

implications

In this chapter, we investigate certain properties of toposes, crucial for the whole

work, and on this basis, we analyze the validity of the proposal to define the no-

tion of the so-called co-toposes. For this purpose, we first discuss the basic algebraic

structures, from the simpler ones up to the Heyting and co-Heyting algebras, which

are essential for our considerations, with particular emphasis on the relationship be-

tween the reversal of the order in these structures and their algebraic properties. We

also discuss the dualities between the corresponding structures. Then, we outline

briefly the claims of the authors who propose to introduce the notion of co-topos.

The intention to understand certain properties of toposes themselves, related to the

attempt to evaluate their proposals, was one of the main motivations for the re-

search undertaken in the present work. The analysis of these properties of toposes

and the related study of the relationship between certain two definitions of a topos

are the subject of the next section, which is central for the entire paper. We then ex-

amine the power objects and provide two very simple examples to help understand

the issues discussed. The chapter ends with conclusions and further comments.

63
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3.1 Heyting and co-Heyting algebras

In this section, we define basic notions that are essential for our further consid-

erations and give some intuitions standing behind them as well as some of their

properties. Especially, we introduce the structures of Heyting and co-Heyting al-

gebras. These notions, especially the Heyting algebra, are well-known and exten-

sively presented in the literature (see e.g. Balbes and Dwinger, 1974; Goldblatt,

2006; MacLane and Moerdijk, 1994; Rasiowa and Sikorski, 1963), therefore this ex-

position is only rudimentary. However, in our presentation we want to emphasize

that from the algebraic point of view Heyting and co-Heyting algebras may emerge

in a symmetrical way as certain generalizations of a Boolean algebra. In this way,

they are easily understood as mutually dual algebraic structures.

Boolean algebra, as a complemented distributive lattice, has the complement

operation (denoted as −) that satisfies two laws:

a ∧ (−a) = 0, (3.1a)

a ∨ (−a) = 1. (3.1b)

We can now weaken these laws and get certain generalizations of a complement

operation.35 For this purpose let us look at some intuitions behind this notion. First,

join and meet in any lattice can be considered as an abstract analogues of the union

and intersection of subsets of a fixed set X. The complement is then considered as

the complement of a subset, say A, which is at the same time the greatest subset of

X which is disjoint from A, and the least subset of X whose union with A gives the

whole X. If we use each of these two properties as a defining property of certain

quasi-complement operations in a lattice, we get two notions that in general do

not coincide. Let us first define them explicitly. In this exposition we shall use the

following notation: the calligraphic font for the whole algebraic structure (e.g. A),

and a normal font for its universe, i.e. the set on which the operations are defined

(e.g. A).

Definition 1. Suppose that a lattice A has the zero (the least) element, denoted

35In this exposition we rely heavily on (Rasiowa and Sikorski, 1963, p. 52ff).
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as 0. An element c ∈ A is said to be the ∧-complement (or pseudo-complement) of

an element a ∈ A if c is the greatest element such that a ∧ c = 0 (i.e. if it is the

greatest element in the set of all x ∈ A such that a ∧ x = 0). The ∧-complement of

an element a shall be denoted, if it exists, as ¬a (it should be noted though that the

same notation is sometimes being used for the (Boolean) complement).

Definition 2. Suppose that a lattice A has the one (the greatest) element, denoted

as 1. An element c ∈ A is said to be the ∨-complement of an element a ∈ A if c is

the least element such that a ∨ c = 1 (i.e. if it is the least element in the set of all

x ∈ A such that a ∨ x = 1). The ∨-complement of an element a shall be denoted, if

it exists, as ¬a.

If an element a ∈ A has simultaneously the ∧-complement ¬a and the ∨-

complement ¬a, then they are not, in general, equal, but if the lattice A is dis-

tributive, then it always holds that36

¬a ≤ ¬a.

If however they do coincide, i.e. ¬a = ¬a, then such an element is the (Boolean)

complement of an element a ∈ A, i.e. it can be denoted as −a, and fulfills both

equations (3.1). Conversely, for a distributive lattice, it follows that any (Boolean)

complement of an element a is at the same time both its ∧-complement and ∨-

complement. In the literature sometimes the same notation for ∧-complement and

(Boolean) complement is used.

We can further generalize and define the following operations.

Definition 3. Suppose that A is a lattice and a, b, c ∈ A. c is said to be the ∧-

complement (or pseudo-complement) of a relative to b if c is the greatest element such

that a ∧ c ≤ b (i.e. if it is the greatest element in the set of all x ∈ A such that

a ∧ x ≤ b). The ∧-complement of a relative to b shall be denoted, if it exists, as

a⇒ b.
36Note that in (James, 1996, p. 59) the inequality is erroneously in the opposite direction. Therefore

let us explicitly calculate: ¬a = ¬a ∧ 1 = ¬a ∧ (a ∨ ¬a) = (¬a ∧ a) ∨ (¬a ∧ ¬a) = 0 ∨ (¬a ∧ ¬a) =
¬a ∧ ¬a (see Rasiowa and Sikorski, 1963, p. 52; one can also cf. Goodman, 1981, p. 120).
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We note that, by definition, for every x ∈ A we have

x ≤ a⇒ b iff a ∧ x ≤ b. (3.2)

We note also that ∧-complement of a is a special case of this last notion, namely it

is a ∧-complement of a relative to 0, i.e. we have

¬a = a⇒ 0. (3.3)

Definition 4. Suppose that A is a lattice and a, b, c ∈ A. c is said to be the ∨-

complement of a relative to b (or pseudo-difference of b and a) if c is the least element

such that a ∨ c ≥ b (i.e. if it is the least element in the set of all x ∈ A such that

a ∨ x ≥ b). The ∨-complement of a relative to b (the pseudo-difference of b and a)

shall be denoted, if it exists, as a ⇐ b or equivalently, especially when named as

pseudo-difference, as b .− a.

We note that by definition, for every x ∈ A we have

x ≥ a⇐ b iff a ∨ x ≥ b. (3.4)

We note also that ∨-complement of a is the same as ∨-complement of a relative to

1 (pseudo-difference of 1 and a), i.e. we have

¬a = a⇐ 1 ≡ 1 .− a. (3.5)

Many properties of these operations can be found in the above mentioned lit-

erature (we follow mainly Rasiowa and Sikorski, 1963, p. 55ff). Let us only note a

tiny portion of them. Since a ∧ b ≤ b from (3.2) we get that

b ≤ a⇒ b,

provided a ⇒ b exists. The element a ⇒ b does not always exist. For example,

a⇒ a exists if and only if the lattice has the unit element 1. Then

a⇒ a = 1, and 1⇒ b = b.
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In this case, the order of a lattice can be characterized by the ⇒ operation because

we have

a ≤ b iff a⇒ b = 1.

Analogous dual properties for ⇐ can be obtained by the dualization, because

the operation ⇐ is dual to ⇒ (we shall clarify and expand these issues below).

However, let us pause for a moment to comment on the subject of dualities that

arise already in simpler structures.

Dualities

Let us start with a semilattice structure. Conceived algebraically, an abstract semi-

lattice is an algebraic structure consisting of a set, say S, with a binary operation

which is by definition associative, commutative, and idempotent. If there is in S

the identity element with respect to this operation, we say that the semilattice is

bounded. At the same time, from the order theoretic point of view, there is no semi-

lattice structure per se, but rather either a join-semilattice, when every two-element

subset (or equivalently every non-empty finite subset) has a join (i.e. the least up-

per bound or supremum), or a meet-semilattice when it has a meet (i.e. the greatest

lower bound or infimum). A bounded join-semilattice has by definition the least

element (also called minimum or bottom), and a bounded meet-semilattice has the

greatest element (maximum or top). We note that in both approaches sometimes

boundedness is already a part of the definition of an appropriate semi-lattice.

We emphasize the fact, that from an algebraic point of view, there is no dif-

ference between the (bounded) join-semilattice and (bounded, respectively) meet-

semilattice. Johnstone mentions that abstractly the categories of join-semilattices

and meet-semilattices “are of course the same category” (Johnstone, 2002, p. 472).

He continues, “but their forgetful functors to Poset are different”; this is so because

for a join-semilattice (S,∨) one defines a partial order on S by setting

a ≤ b if a ∨ b = b, (3.6)
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while for a meet-semilattice (S,∧) the partial order is defined by

a ≤ b if a ∧ b = a. (3.7)

However, let us repeat that the semilattice operation, say ?, is inter alia commutative,

so having a ? b = b ? a = a, the ‘choice’ of the direction of the order is the other

side of the ‘choice’ of weather ? is a join or meet operation, but these operations are

algebraically the same (or indistinguishable).

This means that from the order theoretic point of view, every join-semilattice is

a meet-semilattice in the inverse order, and vice versa. Because of this fact we call

these structures (mutually) dual.

Let us note however an apparent ‘inconsistency’ between an abstract algebraic

approach and the more concrete order theoretic. From the algebraic point of view

we have only an abstract semilattice operation. Let us take two semilattices (S, ?),

and (T, •), as well as a function f : S → T such that f (a ? b) = f (a) • f (b) (if the

semilattices are bounded we assume moreover that f preserves the identity ele-

ment). Such a function is called a homomorphism between these semilattices. How-

ever, if from the order theoretic point of view one of these semilattices ‘turned out’

to be a join-semilattice and the other a meet-semilattice, then in this approach f

could not be said to be a homomorphism, but an anti-homomorphism. We add

only that if f were a bijection, we would get, in this case, that abstract algebraic iso-

morphic semilattices may not be isomorphic from the order theoretic point of view,

but only anti-isomorphic; or to put it the other way, an anti-isomorphic, from the

order theoretic point of view, semilattices are isomorphic in the abstract algebraic

approach.

The situation is different with richer structures that have more operations. We

shall start with lattices. Let us recall that a lattice as a partially ordered set is both a

join- and a meet-semilattice with respect to the same partial order structure. From

an algebraic approach, on the other hand, the lattice is a structure (L,∨,∧), consist-

ing of a non-empty set L and two binary operations that are assumed to be commu-

tative, associative and such that the following, the so-called absorption, laws hold

for all elements a, b ∈ L:

a ∨ (a ∧ b) = a, (3.8a)
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a ∧ (a ∨ b) = a. (3.8b)

From this definition it follows that each of these operations are also idempotent,37

and thus both (L,∨) and (L,∧) are semilattices. The partial order can be defined

equivalently by using either of these operations, as in (3.6) or (3.7). It is a simple and

well-known fact, that the reversal of the order is equivalent to the interchanging of

the operations meet and join. The lattice homomorphism is a function that preserves

each of the two operations (as well as the top and bottom element if the lattice is

bounded).

We do not want to discuss the details of the abstract (universal algebra) ap-

proach to the algebraic structures and their connections. Let us only observe that

if the lattice operations are distinguished as ‘the first’ and ‘the second’, or join and

meet, as it is the case in the standard approach, this does not mean that every lat-

tice, say (L,∨,∧), and its dual, (L,∨′,∧′) with ∨′ = ∧ and ∧′ = ∨, are isomorphic.

At the same time however, from the algebraic point of view, the defining proper-

ties of these two operations are exactly the same or symmetrical (so to speak, these

operations are algebraically the same or indistinguishable). To put it differently, if

one gives us a set L with two binary, commutative, and associative operations, say

? and •, such that for every elements a, b ∈ L it is a ? (a • b) = a, and a • (a ? b) = a,

then the choice of which operation is join and which is meet, is arbitrary and it is

equivalent to choosing the direction of an order. We note only that the same applies

also to distributive lattices and Boolean algebras. For the latter, the conditions for

the complement operation, i.e. (3.1), could be written in the following manner in

terms of ?, and • without settling which is join or meet:

a ? (−a) = e•,

a • (−a) = e?,

where e• is a neutral element for the operation •, and analogously for the other

operation.

Due to the symmetrical character of the join and meet operations in a lattice,

the so-called duality principle for lattices holds: “every theorem proved for ∨ and ∧
37E.g. applying first (3.8b), and then using (3.8a) with appropriate b, we get a ∨ a = a ∨ (a ∧ (a ∨

b)) = a.
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remains true if ∨ and ∧ are replaced by ∧ and ∨, respectively” (see Rasiowa and

Sikorski, 1963, p. 36, where we have only changed the notation for join and meet; the

Reader interested in more detailed analysis of the duality principles for algebraic

structures may consult e.g. Balbes and Dwinger, 1974, p. 12). We should add that if

the proven expression contains explicitly also any sign of the set {0, 1,≤,≥}, then

apart from replacing ∨ and ∧ by ∧ and ∨, respectively, we have to replace also 0 by

1, 1 by 0, ≤ by ≥, and ≥ by ≤.38

Heyting and co-Heyting algebras

We are ready to define the Heyting and co-Heyting algebras. In the literature dif-

ferent names of these structures are present, e.g. Heyting algebras may be called

pseudo-Boolean algebras and co-Heyting ones—Brouwerian algebras (see below).

Definition 5. A lattice A is said to be a Heyting algebra if it has a bottom element

(also called “zero” and denoted by 0) and there exists ∧-complement (pseudo-

complement) of a relative to b, a⇒ b, for all a, b ∈ A.

In the context of Heyting algebras the ⇒ operation is also called a Heyting

implication. In order to have the most important information in one place, we copy

here (3.2), i.e. recall that by definition we have for every x ∈ A

x ≤ a⇒ b iff a ∧ x ≤ b. (3.2)

The pseudo-complement operation in a Heyting algebra exists for every element as

it was defined by means of Heyting implication in the following manner

¬a = a⇒ 0. (3.3)

In the context of Heyting algebras the pseudo-complement operation is also called

a Heyting negation.

38For an interested Reader we note only that using the notions defined for a precise statement of
the duality principles (cf. e.g. Balbes and Dwinger, 1974, p. 12 or McKinsey and Tarski, 1946, p. 159f),
some of the above considerations, and some new ones, can be stated as follows: the class of all lattices,
{(L,∨,∧)}, is π-weakly dual (or weakly dual under the permutation π), for π = (2, 1), therefore it
satisfies the weak duality principle with respect to π = (2, 1); this class is not (2, 1)-strongly dual;
the class of all Boolean algebras, considered either as structures (L,∨,∧) or (L,∨,∧,−) is π-strongly
dual (or strongly dual under the permutation π), for π = (2, 1) or π = (2, 1, 3), respectively, therefore
this class satisfies the strong duality principle with respect to this π.
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Moreover every Heyting algebra has also the one (top) element because

a⇒ a = 1.

One of the consequences of the existence of all relative pseudo-complements is that

every Heyting algebra is distributive (see e.g. Rasiowa and Sikorski, 1963, p. 59).39

Some basic properties of the operations⇒ and ¬ in Heyting algebras are collected

e.g. in (Rasiowa and Sikorski, 1963, p. 59ff), although the Reader should be careful

with the different notation that is used there.

Thus a Heyting algebra may be presented in short as the following algebraic

structure: A = (A,∨,∧,⇒,¬, 0, 1).

To give some examples let us first note that obviously every Boolean algebra is

a Heyting algebra with

a⇒ b = −a ∨ b,

and thus we have also ¬a = −a. This example, by the connection of Boolean alge-

bras with classical logic, shows some of the reasons for the notation of the relative

pseudo-complement and its name—‘Heyting implication’, as well as for the nota-

tion and name of the Heyting negation.

As we have already mentioned in chapter 1, another example of a Heyting alge-

bra, a very important one, is given by the algebra of open subsets of a topological

space. Take any topological space, say X, and let O(X) be the set of all the open

subsets of X. The operations on O(X) are defined as follows: join and meet are

just the union and intersection of sets, correspondingly; for Heyting implication we

have

A⇒ B := Int
(
(X \ A) ∪ B

)
, (3.9)

where Int is the interior operation and X \ A is the set difference of X and A, i.e.

the set complement of A. The bottom element is the empty set, and the top is the

39Precisely, to show that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), it is sufficient that just the following relative
pseudo-complement exists: a ⇒ ((a ∧ b) ∨ (a ∧ c)). We do not settle the issue weather the existence
of these relative pseudo-complements for any a, b, c implies the existence of all the relative pseudo-
complements.
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whole set X. The Heyting negation is thus given by

¬A := Int(X \ A).

This last example is typical for Heyting algebras, as it can be shown that every

Heyting algebra is isomorphic to a subalgebra of the algebra of open subsets of a

topological space (see Rasiowa and Sikorski, 1963, p. 140, where Heyting algebras

are called pseudo-Boolean).

Now let us move on to co-Heyting algebra, which is just the dual notion of

Heyting algebra, but let us present the full definition.

Definition 6. A lattice A is said to be a co-Heyting algebra if it has a top element

(also called “one” and denoted by 1) and there exists ∨-complement of a relative to

b (pseudo-difference of b and a), a⇐ b, for all a, b ∈ A.

In the context of co-Heyting algebras the⇐ operation is also called a co-implication.

Let us collect some important facts. By definition, we have for every x ∈ A

x ≥ a⇐ b iff a ∨ x ≥ b. (3.4)

The ∨-complement operation in a co-Heyting algebra exists for every element as it

was defined by means of co-implication in the following manner

¬a = a⇐ 1. (cf. 3.5)

In the context of co-Heyting algebras the ∨-complement operation is also called a

co-Heyting negation.

Every co-Heyting algebra has the zero (bottom) element because a⇐ a = 0 and

every such algebra is also distributive.40 Some basic properties of the operations⇐

and ¬in co-Heyting algebras can be obtained from the above mentioned properties

of Heyting operations by the process of dualization. We shall discuss the issue

of dualization shortly, but for this purpose it is enough to consult our footnote

40The explicit proof of the last assertion can be obtained by dualization of the proof of 11.1 in
(Rasiowa and Sikorski, 1963, p. 55), i.e. by literally exchanging every occurrence of each sign of the
sequence (⇒,∩,∪,6) by the sign of the same place in the following sequence (⇐,∨,∧,≥) (where
we have used our notation), and whenever there is a reference to equation ‘(1)’ in the proof, reference
to (3.4) should be used instead.
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40 with the addition that the sign that denotes there the unit element should be

changed to 0, and the sign that denotes there the zero should be changed to 1.

Some of the properties of co-Heyting algebras and their operations are also given

in (McKinsey and Tarski, 1946, p. 124f), where +, ·,¬ denotes in our notation the

operations ∨,∧, ¬, respectively, and b .− a = a ⇐ b, as was already mentioned

above.

Thus a co-Heyting algebra may be presented in short as the following algebraic

structure: A = (A,∨,∧,⇐, ¬, 0, 1).

To give some examples let us first note that obviously every Boolean algebra is

also a co-Heyting algebra with

a⇐ b = −a ∧ b,

and thus we have also ¬a = −a.

Recall that in any co-Heyting algebra we have introduced two notations: a ⇐ b

and b .− a (which denote the same element, i.e. b .− a ≡ a ⇐ b), and especially in

the latter case this element is called the pseudo-difference of b and a. We decided to

generally use the notation a⇐ b due to its similarity with the Heyting implication,

as these notions are mutually dual. However, for the purpose of interpretation it is

helpful to use for a moment the other notation. In any co-Heyting algebra we have,

inter alia, that b ≥ b .− a, b .− a = 0 iff b ≤ a (in particular b .− b = 0), and b .− 0 = b.

Moreover, as we have just seen, in Boolean algebra treated as a co-Heyting algebra

we have moreover that b .− a = b ∧ −a, and thus b .− a may be considered as a

lattice-theoretical generalization of the notion of difference of sets (cf. Rasiowa and

Sikorski, 1963, p. 58). This explains also the name ‘pseudo-difference’.

Analogously to the case of Heyting algebras, now for its dual, the co-Heyting

algebras, we have a very important example given by the algebra of certain subsets

of a topological space, this time it concerns the closed subsets. Take any topological

space, say X, and let O(X) be the set of all the closed subsets of X. The operations

on O(X) are defined as follows: join and meet are just the union and intersection

of sets, correspondingly; for co-Heyting implication we have

A⇐ B ≡ B .− A := Cl
(
(X \ A) ∩ B

)
, (3.10)
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where Cl is the closure operation and X \ A, as previously, is the set difference of

X and A, i.e. the set complement of A. As previously, the bottom element is the

empty set, and the top is the whole set X. The co-Heyting negation is thus given by

¬A := Cl(X \ A).

This last example is typical for co-Heyting algebras, as it can be shown that every

co-Heyting algebra is isomorphic to a subalgebra of the algebra of closed subsets of

a topological space (see McKinsey and Tarski, 1946, p. 134, Theorem 1.19, where co-

Heyting algebras are called Brouwerian algebras; for the last assertion cf. Definition

1.1 on p. 124 therein with our Definition 6).

Dualities—continuation

Let us continue for a moment our considerations about algebraic structures in the

abstract approach. Here we just want to observe that the above considerations that

do not distinguish between the two operations of a lattice, because they are defined

in a fully symmetrical way, is still possible in a certain way with respect to Heyting

and co-Heyting algebras. Let us first note that the reversal of the order in a Heyting

algebra A = (A,∨,∧,⇒,¬, 0, 1) changes it into the following co-Heyting algebra

A′ = (A′ = A,∨′ = ∧,∧′ = ∨,⇐′=⇒, ¬′ = ¬, 0′ = 1, 1′ = 0). This is easily seen

if we recall that the reversal of the order in a lattice exchanges the join and meet

operations, and thus for the case of Heyting implication and co-implication we only

need to compare the defining conditions, i.e. (3.2) and (3.4). Similarly, we get the

result for the negations by comparing (3.3) and (3.5). In order to conceive Heyting

algebras in a purely algebraic approach we note that the Heyting implication can

be defined equationally, without mentioning at all the order structure on a lattice

(see MacLane and Moerdijk, 1994, Prop. 3 on p. 54). Therefore, similarly to our

considerations with respect to lattices, let us only observe that it is obviously not

the case that every Heyting algebra, say A = (A,∨,∧,⇒,¬, 0, 1), and its dual, the

co-Heyting algebra A′ defined as above, are isomorphic. At the same time however,

from the algebraic point of view, the defining properties of their operations are

fully symmetrical. To put it differently, if one gives us a set A with two binary,

commutative, and associative operations, say ?, and •, such that for every elements
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a, b ∈ A it is a ? (a • b) = a, and a • (a ? b) = a, and such that there exist neutral

elements for each of them, let us denote them as e? and e• (so far this gives us

the bounded lattice structure), and moreover there is a third binary operation, let

us denote it as ⇑, which satisfies the following identities for any a, b, c ∈ A (cf.

equations (12), (13), and (14) in MacLane and Moerdijk, 1994, p. 54)

a ⇑ a = e?,

a ? (a ⇑ b) = a ? b, b ? (a ⇑ b) = b,

a ⇑ (b ? c) = (a ⇑ b) ? (a ⇑ c),

then the choice weather this structure is a Heyting algebra (if ? = ∧, • = ∨, e? = 1,

e• = 0, and ⇑ = ⇒) or a co-Heyting algebra (with dual operations and elements,

i.e. if ? = ∨, • = ∧, e? = 0, e• = 1, and ⇑ = ⇐) is arbitrary, and it is the other side

of the choice of the direction of the order.

Our goal in this section was primarily to introduce the basic concepts and show

the relationship between certain properties and the order defined on a given alge-

braic structure. We have also discussed relevant dualities related to these issues.

Finally, we emphasize that although our approach to the algebraic structures dis-

cussed in this section was based on standard Set Theory, there is also a correspond-

ing approach to at least some of these issues within Category Theory. This approach

is not directly needed by us in this paper, therefore we only mention it and refer

to literature, such as e.g. (Wood, 2004; Marquis, 2009, chapter 6; Awodey, 2010, for

Heyting algebras see sec. 6.3).

3.2 Introduction to the alleged co-toposes and motivations

We do not intend to fully present the approach of some authors that write about the

so-called co-toposes (complemented toposes), nor to discuss the content of all the

papers concerning this subject.41 Their work however was an important motivation

for our investigations, therefore it seems useful to describe their approach in a little

more detail.
41In this section we use parts of our papers (Stopa, 2020) and (Stopa, 2018) (the latter after our

translation from Polish).
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As far as we know, the first definition of a co-topos appeared in (Mortensen,

1995, chapter 11)—this is suggested in (James, 1996, p. 80)—written together with

Peter Lavers. After that publication there appeared subsequent papers dealing with

co-toposes, see e.g. (Estrada-González, 2010, 2015a,b; James, 1996; Mortensen, 2003).

Let us first see what the motivations for co-toposes are. The logic of toposes is

known to be intuitionistic logic (IL), although one should be careful with such a

simplification because, as we have noted already in the introduction, Colin McLarty

pointed out: “topos logic coincides with no intuitionist logic studied before toposes”

(see McLarty, 1995, p. vii).42 In one of the approaches, a topos is considered as a

generalization of a topological space. As we already know, the algebra of open sets

(of any topological space) is the Heyting algebra and therefore it forms a semantics

for IL (cf. Stone, 1937; Tarski, 1938 on topological interpretation of IL). However, a

topology can be equivalently specified by the family of closed sets. Incidentally, it

is closure operation and closed sets, rather than interior operation and open sets,

that were first analyzed: McKinsey and Tarski first considered closure algebra as

an algebra of topology (see McKinsey and Tarski, 1944, 1946) and the first general

and explicit definition of a sheaf on a space was described by Leray in terms of the

closed sets of that space (cf. MacLane and Moerdijk, 1994, p. 1).

In this context we can better understand Mortensen’s motivation when he writes

(see Mortensen, 1995, p. 102):

Specifying a topological space by its closed sets is as natural as specify-

ing it by its open sets. So it would seem odd that topos theory should

be associated with open sets rather than closed sets. Yet this is what

would be the case if open set logic were the natural propositional logic

of toposes. At any rate, there should be a simple ‘topological’ transfor-

mation of the theory of toposes, which stands to closed sets and their

logic, as topos theory does to open sets and intuitionism. Furthermore,

the logic of closed sets is paraconsistent.

Mortensen gives the following definition of a complement-classifier (see Mortensen,

1995, p. 104f, we keep exactly the same wording, changing only F to false, a to A,

and b to X in order to standardize the notation in this work):

42We have commented on this in footnote 4.
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A complement-classifier for a category E with terminal object 1, is an object

Ω together with an arrow false : 1→ Ω satisfying the condition that for

every monic arrow f : A X there exists a unique arrow χ f such that

A X

1 Ω

f

! χ f

false

is a pullback. χ f is the complement-character of f .

Then it is stated what a complement-topos is (we quote from Mortensen, 1995, p. 105):

An (elementary) complement-topos is a category with initial and terminal

objects, pullbacks, pushouts, exponentiation, and a complement classi-

fier.

In what follows, we shall use the term complement-topos (or in short co-topos)

meaning the notion as it is described above by Mortensen (the same notion is also

used in e.g. Estrada-González, 2010, 2015a). As an example of a different definition

of a co-topos see e.g. (Angot-Pellissier, 2015), where “cotopos” is considered as ‘a

closed co-Cartesian category with quotient classifier” (p. 189), which seems to be

a different notion, although the author suggests he is considering the same notion

and makes reference to unpublished work by James and Mortensen.

Let us first show some of the consequences of such a definition (cf. e.g. Estrada-

González, 2010; Mortensen, 1995), assuming for a moment its validity. Having the

complement-classifier false : 1→ Ω (which will be denoted also as ⊥), they define,

by analogy with the standard approach,

true ≡ > = χ01
, (3.11)

where 01 is the only, and always existing, arrow from the initial object, 0, to the

terminal object, 1, which is a monomorphism. The logical connectives are also de-

fined by analogy with the standard approach43, but we have to take into account

that now χ f is the complement-characteristic arrow. We have therefore (we use the

43I assume the Reader’s familiarity with the standard definition of logical connectives in a topos,
which can be found in e.g. (Goldblatt, 2006, p. 139).
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same symbols for denoting the logical connectives and for corresponding arrows

that represent the logical operations on truth-values):

¬ := χ> ,

∨ := χ〈⊥,⊥〉 ,

∧ := χIm[〈⊥Ω,idΩ〉,〈idΩ,⊥Ω〉] ,

.− := χe ,

where 〈 f , g〉 is the product arrow of f and g (with respect to the projections π1, π2

on its first and second factor, respectively), [ f , g] is the co-product arrow of f and

g (with respect to the standard injections), Im f is an image of f , i.e. the monic of

the epi-monic factorization (which, in a topos, exists for any arrow), ⊥Ω = ⊥◦!Ω

(!Ω is the only arrow Ω → 1), and e is the equalizer of ∨ and π1.44 Therefore, in

the process of such a dualization: (i) conjunction and disjunction interchange, and

(ii) in place of implication we get the pseudo-difference.

As a result
(
E(X, Ω),v

)
changes the order, so it becomes a co-Heyting alge-

bra.45 (Sub(X),⊆
)

remains a Heyting algebra, as it depends only on the factor-

ization of the appropriate arrows and thus is independent of the (complement-)

classifier. In this way,
(
Sub(X),⊆

)
and

(
E(X, Ω),v

)
are no longer isomorphic

44Mortensen and Lavers define conjunction without writing “Im” in front of square brackets (see
Mortensen, 1995, p. 106). They do not give an explicit definition of an arrow of the form [ f , g], but
it is commonly assumed that this is just a co-product arrow of the arrows f and g (these authors
also repeatedly cite (Goldblatt, 2006), who likewise defines this notation). If this is also their under-
standing of this notation, then their definition of conjunction is incorrect. We shall describe it for
toposes, but in this respect, their approach to co-toposes is analogous to the one in toposes. Not
only in a general topos one has to take the image of an arrow (i.e. the monic of the epi-monic fac-
torization), but even for a topos Set, for which the authors give comparisons, the co-product arrow
itself, [〈>Ω, idΩ〉 , 〈idΩ,>Ω〉], is not a monic arrow (in short, if only because it is a function from a 4
element set 2 + 2 and takes only 3 different values). But the (anti)-characteristic morphisms are de-
fined only for monic arrows. The same error seems to be present in (Mortensen, 2003, p. 261). Worse
yet, Estrada-González in (Estrada-González, 2010) has the same error in presenting both the topos
and the co-topos cases (see Estrada-González, 2010, p. 29 and 34), however, he introduces further
errors in both of these places when he writes that the product arrow is taken for the arrows true
and idΩ (we give just one example), for which one cannot even construct the product arrow as their
domains are different (the terminal object and Ω, respectively). In his next paper (Estrada-González,
2015a), he has the image ‘Im’, but still suggests constructing the same erroneous product arrows
(see Estrada-González, 2015a, p. 388 for toposes, and p. 404 for co-toposes). The same situation is in
(Estrada-González, 2015b, p. 288). At first, we have not noticed these errors and copied them from
someplace, so they are also present in our paper (Stopa, 2020, p. 116), although this concerns only the
product arrows and not the image of the co-product.

45We sometimes refer to a set or poset as an algebra without giving a complete record of the
relevant operations defining it. This is an obvious abbreviation used when it is clear what operations
are involved.
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Heyting algebras. The arrow ⊥, the one distinguished (up to isomorphism) by the

complement-classifier, which is a generic subobject, is now the lowest element of(
E(1, Ω),v

)
.

Let us recall briefly how the topos semantics for propositional logic is defined.

The essential part is common to the standard and the current approach. We denote

as previously the set of all propositional variables by P0, and the set of all propo-

sitions by P. As is well known, the global elements of Ω, i.e. the arrows 1 → Ω,

are truth-values. Thus the collection of all the truth-values of a given topos can be

written as E(1, Ω). By E -evaluation we call any function v : P0 → E(1, Ω).

Using the action of logical operations as arrows Ω → Ω (for ¬) or Ω ×Ω →

Ω (for binary logical symbols), we extend uniquely (analogically to the standard

procedure in logical semantics, i.e. inductively with respect to the complexity of

the formula) E -evaluation v to the valuation v : P → E(1, Ω), for any proposition

of the whole set P, by the following standard conditions:

v(¬α) = ¬ ◦ v(α),
1 Ω

Ω

v(α)

v(¬α)
¬ ,

v(α ∧ β) = ∧ ◦ 〈v(α), v(β)〉 ,

1

Ω Ω×Ω Ω

Ω

v(α∧β)

v(α)

〈v(α),v(β)〉

v(β)

π1 π2

∧

.

Analogously for other binary logical operations. We now define topos validity in

the standard way. We say that the proposition α is E -valid, denoted E � α, if for

every E -valuation v, v(α) = > : 1 → Ω. The link between topos semantics and

algebraic semantics of the algebra of truth-values Hom(1, Ω) is direct, namely (see

Goldblatt, 2006, p. 186)

E � α iff
(
E(1, Ω),v

)
� α. (3.12)
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In standard topos theory the algebra (denoted briefly as a poset) (E(1, Ω),v)

is isomorphic to
(
Sub(1),⊆

)
. But now in the co-toposes, as we have already men-

tioned, the order of
(
E(X, Ω),v

)
is reversed, and thus these algebras become co-

Heyting. By that means, based on (3.12), we obtain a different set of tautologies

(E -valid sentences).

Let us analyze one example, for which we use the subscript “S” for the notation

of standard toposes and no subscript for the present case of co-toposes. Because the

definition of a co-topos, in comparison with the one of a topos, assumes the same

properties for certain arrows, but gives only different names (or interpretations) to

them, we have that e.g. the arrow ⊥ defined as χ01 in a standard topos (i.e. ⊥S, in

our current notation), is the same as > defined in (3.11), and thus we have ⊥S = >.

The situation is analogous for the other arrows. Now, for any (standard) topos E

we have:

E �S ∼ (α∧ ∼ α) .

In IL we have: if ∼ β = 1, then β = 0 (but not vice versa). Thus for all E -evaluations

we have trivially (assuming, for convenience, that α is an atomic sentence and val-

uations vS and v coincide (on atomic sentences))

vS(α∧ ∼ α) = ⊥S

= ∧S ◦ 〈vS(α),¬S ◦ vS(α)〉

= ∨ ◦ 〈v(α),¬ ◦ v(α)〉

= v(α∨ ∼ α)

= > .

This means that for any co-topos we would have E � α∨ ∼ α . This result, as well

as the whole analysis, is essentially just the application of the Theorem 3 in sec. 2.3,

and its proof, for that particular sentence in the case of co-topos semantics.

At the level of definition, a co-topos differs from a topos only by a complement-

classifier. Thus this latter notion deserves a more thorough examination. The defi-

nition of the complement-classifier compared to the one of the subobject classifier

raises serious doubts as to its correctness. Let us put these two definitions side by

side:
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A complement-classifier for a category

E with a terminal object 1, is an object

Ω together with an arrow false : 1 → Ω

satisfying the condition that for every

monic arrow f : A X there exists a

unique arrow χ f : X → Ω such that

A X

1 Ω

f

! χ f

false

is a pullback.

A subobject classifier for a category E

with a terminal object 1, is an object Ω

together with an arrow true : 1 → Ω

satisfying the condition that for every

monic arrow f : A X there exists a

unique arrow χ f : X → Ω such that

A X

1 Ω

f

! χ f

true

is a pullback.

It is evident that the two definitions use different labels for the corresponding

‘mathematical objects’ having identical properties. However, nothing important in

mathematics can depend on notation itself. If anything valuable is occurring here,

then it involves a different level than mathematics itself or it should be possible

to translate these issues into the level of mathematics. Soon we shall analyze in

detail the notion of subobject classifier, including the role of the distinguished arrow

true in it. This will allow us to better understand this notion and the intentions of

the authors proposing to introduce the notion of a complement-classifier and, in a

further step, a co-topos. Thanks to this, we will also be able to better evaluate their

approach.

In this context of choosing between labeling this distinguished arrow as true or

false, and thus possibly also in the context of this different level than mathemat-

ics itself, Estrada-González in his paper (Estrada-González, 2015a)46 writes about

“Skolemization of the (equational) formula describing the (bare) subobject classi-

fier” (Estrada-González, 2015a, p. 381, but see also p. 401, and 414). By “(bare)

subobject classifier” he means a subobject classifier with the distinguished arrow

denoted neither as true, nor as false, but just using some meaningless label (he uses

ν) (cf. Estrada-González, 2015a, p. 380). We are not going to present his approach in

detail here, nor are we going to discuss at this point the relationship between this

46Incidentally, this paper has so many (mathematical) typos that one is wondering if anyone re-
sponsible for the publication had read it. Therefore, we warn the potential Reader to be vigilant.
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approach and our further considerations. We just wanted to mention his approach,

which was part of the motivation behind our work. We shall come back to these

issues briefly after presenting our results.

The following questions arise from the above considerations, to which we will

try to find answers: (i) what are the connections, if any, between naming the arrow

as true or false and its other mathematical properties, or to put it another way, what

is the mathematical meaning, if any, of giving a given name to that arrow? (ii) to

what extent the properties of this arrow are determined by the entire structure of

the (co-)topos? (iii) given that there is another definition of a topos that does not

refer at all to the subobject classifier or the arrow it distinguishes (see MacLane and

Moerdijk, 1994, p. 161f) (in the next section we quote this definition and analyze it),

what would the proposed change in the definition of a topos, which is to constitute

the definition of a co-topos, amount to in this case?

The first two of these questions seem to concern issues important to the topos

theory itself, regardless of the co-topos proposal. Therefore, we hope that our fur-

ther considerations may contribute not only to clarifying the issue of a possible

co-topos but also to a better understanding of the structure of a topos itself.

3.3 Interpretation of a generic subobject

Let us consider two definitions of a topos. The first one is given on p. 161f in

(MacLane and Moerdijk, 1994), and the second on p. 163 therein (we only slightly

change the text or notation, and skip some comments). We copy them in full detail

as we shall work with them and compare both of them.

Definition 7. A topos E is a category with all finite limits, equipped with an object

Ω, with a function P which assigns to each object B of E an object PB of E , and, for

each object A of E , with two isomorphisms, each natural in A

SubE (A) ∼= HomE (A, Ω), (3.13)

HomE (B× A, Ω) ∼= HomE (A, PB). (3.14)
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Definition 8. A topos is a category E with

(i) A pullback for every diagram X B Y;

(ii) A terminal object 1;

(iii) An object Ω and a monic arrow true : 1 Ω such that for any monic m : S B

there is a unique arrow χm : B → Ω in E for which the following square is a

pullback:

S 1

B Ω .

!

m true

χm

(iv) An object PB and an arrow ∈B: B× PB → Ω, to each object B, such that for

every arrow f : B× A→ Ω there is a unique arrow g : A→ PB for which the

following diagram commutes:

B× A Ω

B× PB Ω .

f

idB×g

∈B

It is important for our study to see the connection between these two definitions.

It is well known that having all finite limits (the finite completeness) is equivalent

to having a terminal object and a pullback for any ‘corner’ (cf. e.g. Smith, 2016,

theorem 52 on p. 81), so the beginning of the first definition is equivalent to parts

(i) and (ii) of the second. Let us then examine now the consequences of the natural

isomorphism (3.13) in the first definition.47

Sub can be understood in general as a contravariant functor between some cate-

gory with pullbacks and the category Set. However, here we shall consider Sub as a

covariant functor between a topos E op, and Set. It is defined in the following way:

Sub : E op −→ Set

X 7−→ Sub(X)

(g : X → Y) 7−→
(
Sub(g) : Sub(Y) 3 m 7→ m′ ∈ Sub(X)

)
,

47Substantial part of this section is taken from our previous work (Stopa, 2020).
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where for m : S Y, m′ is defined by pulling m back along g, i.e.

S′ S

X Y .

m′
y

m

g

(3.15)

For E = Set we have S′ = g−1[S], so this works as taking the inverse image, and

thus Sub(g) is denoted, also in a general case, as g−1. It may be denoted as well

as g∗, especially in a more general case of a pullback functor (or a change-of-base

functor).

Let us recall that representability of some functor means that it is naturally

isomorphic to some Hom-functor. Thus, the natural isomorphism of (3.13) can now

be stated equivalently by saying that the functor Sub is representable, with Ω being

the representing object. Let us denote the natural isomorphism going from the

functor Sub to Hom(−, Ω) as θ. It is an isomorphism, so there exists its inverse, θ−1,

which is also a natural isomorphism. We can picture θ−1 as

E op Set .

Hom(−,Ω)

Sub

θ−1o (3.16)

θ−1 is one of the natural transformations between Hom(−, Ω) and Sub. Let us denote

the set of all such natural transformations as Nat
(
Hom(−, Ω), Sub

)
. Now, from the

Yoneda lemma we know that

Nat
(
Hom(−, Ω), Sub

) ∼= Sub(Ω) ,

and that every natural transformation α from Hom(−, Ω) to Sub is completely de-

termined by an element of Sub(Ω) (i.e. by a subobject of Ω), which is αΩ(idΩ).

Namely, for any object X of E , a component αX is an arrow between sets Hom(X, Ω)

and Sub(X), and its action on any arrow g : X → Ω is given by

αX(g) = Sub(g)
(
αΩ(idΩ)

)
,
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where Sub(g) is an arrow in Set between Sub(Ω) and Sub(X), which takes a monic,

say Ω0 Ω, and by pulling it back along g gives another monic, some A X,

given by the pullback
A Ω0

X Ω .

y

g

αΩ(idΩ) is a subobject of Ω. However, it can be shown that if α is a natural isomor-

phism (and not just any natural transformation), then αΩ(idΩ) is not any subobject

of Ω, but precisely a global element of it, i.e. an arrow 1 → Ω (see e.g. MacLane

and Moerdijk, 1994, part of the proof on p. 33f).

Now, let us repeat that from the representability of Sub (see (3.13)) we know that

among all natural transformations {α} there is at least one that is actually a natural

isomorphism, which we have denoted as θ−1 (see (3.16)). We now know that such

θ−1 is completely determined by θ−1
Ω (idΩ), a global element of Ω, which we shall

denote as η : 1 → Ω. In this way, for any object X we have an isomorphism (a bi-

jection) θ−1
X between Hom(X, Ω) and Sub(X) given by a pullback (to have standard

notation, we may now denote the arrow from Sub(X) as f , and the corresponding

arrow from Hom(X, Ω) as χ f )

A 1

X Ω .

!

f
y

η

χ f

This is precisely the bijection between characteristic morphisms and subobjects

as is assumed in the definition of a subobject classifier, however, for the time be-

ing, we know nothing about the arrow η : 1 → Ω except what was stated above.

Therefore, we prefer to keep the general label for it, say η, instead of the name true,

which is present in all definitions of a subobject classifier. We shall come later to

the role this arrow plays in any topos.

We thus propose to define a subobject classifier in a usual way except that the

distinguished arrow (also called a universal element of the functor Sub or a generic

subobject) should be labeled η instead of true, in order to emphasize that it is any

arrow that satisfies the required conditions and its role (as true or a different arrow)
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is to be discovered. The usual definition, by labeling the arrow as true may suggest

that this arrow has to fulfill some other requirements. We shall address this issue

later on. For the convenience of the Reader we copy here the full definition.

Definition 9. If C is a category with finite limits, then a subobject classifier for C is

an object Ω together with an arrow η : 1→ Ω such that for every monic f : A X

there is a unique arrow χ f : X → Ω which makes the following diagram a pullback

A 1

X Ω .

!

f
y

η

χ f

We have thus seen that assuming natural isomorphism, as in (3.13), we get a

subobject classifier. These two are in fact equivalent as the following proposition

states (cf. Proposition 1 on p. 33 in MacLane and Moerdijk, 1994):

Proposition 3. A category C with finite limits and small Hom-sets has a subobject classifier

if and only if there is an object Ω and an isomorphism

θX : SubC(X) ∼= HomC(X, Ω), natural for X ∈ C. (3.17)

When this holds, C is well-powered.

We have already proved the “if” part above. The whole proof in (MacLane and

Moerdijk, 1994, p. 33f) is carried out for a subobject classifier defined with true in-

stead of our η, but this proof shows that for the authors of the book the name true

does not mean anything more (at least at this point) than our η (nothing more is

proved, but at the same time the arrow is denoted as true). On the basis of this

proposition we say that having a subobject classifier is equivalent to functor Sub

being representable, and thus requirement of (3.13) is equivalent to having a sub-

object classifier. A category C is said to be well-powered when SubC(X) is isomorphic

to a small set for all X. In the above proposition, since Hom-sets are all small, the

bijection (3.17) entails that C is well-powered.

In order to further explore the natural isomorphism (3.13), let us first consider

the set Sub(A) (in any topos, for any object A). It is well known that any such set
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can be considered as a partially ordered set with the order defined by factorization

(see e.g. Goldblatt, 2006, p. 76f).48

Furthermore, Sub(A) can be considered as a lattice, or even a Heyting algebra

(see e.g. Proposition. 3 in MacLane and Moerdijk, 1994, p. 186f about the lattice

structure, and Theorem 1 (External) in MacLane and Moerdijk, 1994, p. 201 about

the whole Heyting algebra structure). We do not present here the details of these

constructions as they are a common knowledge in topos theory. We note only that

this structure is natural in A, in the sense that the pullback along any morphism

h : A → B (as in (3.15)) induces a map h−1 ≡ Sub(h) (it may be considered as a

pullback functor) which is a homomorphism of Heyting algebras (and, inter alia, of

posets).

Let us make a trivial remark, which will help us to understand our further

considerations. There is a freedom to define the poset (or algebra) structure on

sets Sub(A) in any appropriate way, but the one described above has the following

properties: it generalizes the structure of subsets inclusion for ordinary sets, it is

based on the operations inherently present in any topos such like pullbacks or co-

products, and moreover is natural in the sense that it is preserved under a pullback

functor (as we have mentioned above). Let us moreover emphasize that the Heyting

algebra structure of any Sub(A) is independent of the subobject classifier and of any

interpretation of the arrow η : 1→ Ω.

We now want to explore a little more closely the natural isomorphism (3.17).

Let us repeat that this natural isomorphism is completely determined through the

Yoneda lemma, by η : 1 → Ω, so fixing any such appropriate η (i.e. a subobject

classifier) determines the whole correspondence (natural and iso) between subob-

jects of any object and their characteristic morphisms from that object to Ω. By the

very definition, as discussed above, the characteristic morphism idΩ corresponds

to η : 1 → Ω (as a subobject of Ω). But η : 1 → Ω can be considered also as a

characteristic morphism which classifies certain subobject of a terminal object. An

easy exercise of computing a pullback of η back along η itself shows that η as a

48In short, for two subobjects [ f ] and [g], taken as appropriate equivalence classes of monics with
codomain A, the order is defined by [ f ] ⊆ [g] iff f ⊆ g iff f factors through g. Given f : X A and
g : Y A, we say that f factors through g if there is h : X → Y, such that f = g ◦ h (such h is in
fact a monic too). The definition of the order can be shown to be independent of the choice of the
representatives of the equivalence classes.
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characteristic morphism corresponds to the maximal subobject of 1 (top element in

the poset or algebra of Sub(1)), i.e. id1.

To see what is the characteristic morphism for the maximal subobject of any

object, say X, which is idX, we can consider the following diagram (!X denotes the

only arrow from an object X to a terminal one):

X 1 1

X 1 Ω .

!X

idX

y
id1

!1

y
η

!X η=χid1

The right square is a pullback because η : 1 → Ω is a subobject classifier, and

the left one is constructed by pulling id1 back along !X, which gives us idX (e.g.

because Sub(!X) preserves the Heyting algebra structure, and thus, inter alia, the top

element goes to the other top element). By the pullback lemma (cf. e.g. Goldblatt,

2006, p. 67), the outer rectangle is a pullback, and thus χidX = η◦!X.

Let us summarize these simple observations:

Sub(X) Hom(X, Ω)

for X = Ω η : 1→ Ω idΩ

for X = 1 id1 η : 1→ Ω

for any X idX η◦!X

(3.18)

So far in our explorations of the natural isomorphism (3.13), which from now

on, in accordance with (3.16) and (3.17), we shall be denoting as θ, we have seen how

it is equivalent to having a subobject classifier, and we have shown some particular

examples of the correspondence between certain subobjects and Hom–arrows being

their characteristic morphisms. Moreover we have seen how each set Sub(A) has

a Heyting algebra structure that generalizes the one in Set, is natural in A, and is

defined by operations inherently present in every topos.

Assuming, as in (3.13), that θA is an isomorphism between sets Sub(A) and

Hom(A, Ω), which is natural in A, we underline that it does not imply anything

about the poset or algebraic structure on sets Hom(A, Ω). This isomorphism may

be extended into an isomorphism of appropriate structures, like isomorphism of

posets or Heyting algebras, but, at least in principle, there is a freedom to de-
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fine such structures in any other, correct way. As this seems to be crucial to our

considerations let us now explore some possible options in this subject and their

consequences.

First, we consider the poset structure. The standard option is the one mentioned

above, namely to transfer isomorphically the structure form Sub(A) to Hom(A, Ω)

(for any A) by the natural isomorphism between them as sets. In this approach we

extend the isomorphism of sets into an isomorphism of appropriate structures. This

is the standard way of doing this, therefore we shall not discuss this as it is textbook

knowledge.

However, we want to consider now another option, namely to reverse the order

on Hom–sets, i.e. to transfer the structure form Sub(A) to Hom(A, Ω) (for any A)

anti-isomorphically. Why such a choice could be of any importance and worth our

attention? As we shall see, this is closely connected with the role played by the η

arrow. In the standard approach, when the structure is transferred isomorphically,

η is the maximal element in the poset or Heyting algebra structure of Hom(1, Ω),

because, as it was shown above, it always corresponds to the maximal subobject

of a terminal object, i.e. to id1. However, sometimes certain specific choices of a

subobject classifiers may suggest that η could play a different role than a maximal

element. For example, when working in the universe of set theory and taking at

first the simplest topos Set, any two element set with any of its global elements is a

subobject classifier. If we take

η : 1 = {?} 3 ? 7→ 0 ∈ Ω = {0, 1},

then the subobjects are classified by characteristic morphisms which are, from the

set theory point of view, anti-characteristic functions on sets. Thus the maximal

subobject (the whole set) is classified by a function identically equal to zero. If one

would like to stick to the order in which 0 < 1, then this suggests that such a

function should be the smallest in appropriate set of functions (on particular set).

This particular situation makes us reflect on the possible roles that η could play, and

therefore to ask about different possible choices of the structure on sets Hom(A, Ω).

This is also closely connected with the approach present in the already mentioned

papers on co-toposes (see e.g. Estrada-González, 2010; Mortensen, 1995), where it
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is suggested to assume that η plays the role of a false arrow. At this moment we are

not commenting on such an approach, we just wanted to give some reasons why it

might be interesting and worth to examine such an option.

Let us consider a general case of any topos E . We write precisely, what it means

that the isomorphism (3.13) is natural. We assume that (3.13) holds (which we

showed to be equivalent to say that E has a subobject classifier). We take the nota-

tion as in (3.17) but with A instead of X. The naturality condition means that for

any h : B→ A the following diagram commutes:

Sub(A) Sub(B)

Hom(A, Ω) Hom(B, Ω) .

θA o

Sub(h)≡h−1

θBo

Hom(h,Ω)=_◦h

(3.19)

The corners of this diagram are just sets. We know already that h−1 is a ho-

momorphism of posets. On Hom(A, Ω) we do not have yet any defined structure.

Nothing prevents us to define the structure on Hom(A, Ω) in an anti-isomorphic

way in comparison with the structure on Sub(A). Thus defined structure is also

natural in A, in the sense that, the morphism Hom(h, Ω) = _ ◦ h becomes also in

this case a homomorphism of posets. This is easily seen from the diagram (3.19)

with θA (for any A) being isomorphism of sets but anti-isomorphism of posets, and

h−1 being homomorphism of posets. We can check this directly as follows.

Let us therefore assume that a natural isomorphism (of sets) θA in (3.17) is an

anti-isomorphism of posets (for any A):

θA :
(
Sub(A),⊆

) ∼= (Hom(A, Ω),w
)
,

i.e.

g ⊆ f ⇐⇒ θA( f ) v θA(g). (3.20)

We shall show that Hom(h, Ω) is (still) a homomorphism of posets. We know that

h−1 is a homomorphism of posets, so we get

g ⊆ f =⇒ h−1(g) ⊆ h−1( f ). (3.21)
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Now, from (3.21) and (3.20) (taken with A = B and appropriate subobjects) we get

g ⊆ f =⇒ θB(h−1( f )) v θB(h−1(g)),

but from (3.19) we have that θB ◦ h−1 = Hom(h, Ω) ◦ θA, and so we get

g ⊆ f =⇒ Hom(h, Ω)(θA( f )) v Hom(h, Ω)(θA(g)). (3.22)

Finally, from (3.20) and (3.22) we get

θA( f ) v θA(g) =⇒ Hom(h, Ω)(θA( f )) v Hom(h, Ω)(θA(g)),

which means that Hom(h, Ω) is also (together with h−1) a homomorphism of posets,

while θA is an anti-isomorphism of posets. Thus, let us repeat, also in this case, the

poset structure on Hom(A, Ω) is natural in A, and obviously the poset structure

does not change the sets to be naturally isomorphic to Set(A) as stated by (3.13).

Turning to the Heyting algebra structure, we shall follow the reasoning in (MacLane

and Moerdijk, 1994, p. 188), however, we have to be very cautious because there it

is assumed from the very beginning that η = true (see the definition of a topos on

p. 163), which from the algebraic point of view means, as we shall also see, that η

it the top element of the structure on Hom(1, Ω).

Let us go back to a general situation. We take any topos E , with η : 1 → Ω a

subobject classifier, and we assume that we have already defined a Heyting algebra

structure on each Sub(A) as was mentioned above. Let us repeat that this structure

is natural in A in the sense that the pullback along any morphism h : B→ A induces

a map h−1 of Heyting algebras (i.e. preserving the Heyting algebra structure).

Let us first focus on the meet operation. Let S, T be any two subobjects of the

object A. Since h−1 preserves the meet operation (the intersection of subobjects) we

have

h−1(S ∩ T) = h−1(S) ∩ h−1(T).

To be more precise, and have more consistency with the subsequent notation, we

write

h−1(S ∩A T) = h−1(S) ∩B h−1(T). (3.23)
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This is equivalent to say that the meet operation on subobjects

∩A : Sub(A)× Sub(A)→ Sub(A)

is natural in A. We can check it by drawing the naturality square for it:

Sub(A)× Sub(A) Sub(A)

Sub(B)× Sub(B) Sub(B) .

h−1×h−1

∩A

h−1

∩B

If we take any pair of subobjects of A, say (S, T) in the top-left corner, then going

right and then down gives us h−1(S ∩A T), while going first down and then right

gives h−1(S) ∩B h−1(T), so the commutativity of the diagram means exactly (3.23).

Now comes the key point. Under the natural isomorphism (3.13) we obtain

certain operation on sets Hom(A, Ω), which we denote for the time being as ♦A,

making the following diagram commute:

Sub(A)× Sub(A) Sub(A)

Hom(A, Ω)×Hom(A, Ω)

Hom(A, Ω×Ω) Hom(A, Ω) .

θA×θA o

∩A

θAo

o

♦A

(3.24)

We underline the fact that from this definition it does not necessarily follow

that ♦A is the meet operation on Hom(A, Ω), despite having already fixed Ω and

the natural iso θ. Let us check some of the properties this operation has. First of

all, it is natural in A. This fact is quite evident by its definition, and by the fact

that ∩A is natural in A. If however one would like to check it directly, we note that

the naturality of ♦A means that for any h : B → A, the following diagram should
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commute

Hom(A, Ω×Ω) Hom(A, Ω)

Hom(B, Ω×Ω) Hom(B, Ω) .

Hom(h,Ω×Ω)=_◦h

♦A

Hom(h,Ω)=_◦h

♦B

(3.25)

It is indeed the case as one can easily check by chasing the following diagram

(where we omit the labels of the iso arrows), knowing also that ∩A is natural in A

(so the roof commutes)

Sub(B)× Sub(B) Sub(B)

Sub(A)× Sub(A) Sub(A)

Hom(B, Ω×Ω) Hom(B, Ω)

Hom(A, Ω×Ω) Hom(A, Ω) .

o

∩B

o
∩A

h−1×h−1

h−1

♦Bo

♦A

_◦h
_◦h

o

Since ♦A is natural in A, by the Yoneda lemma it follows that it is fully deter-

mined by its action on the identity idΩ×Ω. We can see it by taking A = Ω×Ω in

(3.25) and applying the functions to the element idΩ×Ω of Hom(Ω×Ω, Ω×Ω) in

the upper-left corner obtaining

idΩ×Ω ♦Ω×Ω(idΩ×Ω)

h ♦B(h) = ♦Ω×Ω(idΩ×Ω) ◦ h ,

_◦h

♦Ω×Ω

_◦h

♦B

where h : B → Ω ×Ω (any such arrow). From this, because B is any object (and

thus we can freely rename it), we get the desired action of ♦A on any arrow h : A→

Ω×Ω expressed by means of

♦Ω×Ω(idΩ×Ω) ≡ ♦ : Ω×Ω→ Ω, (3.26)
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via composition, i.e.

♦A : Hom(A, Ω×Ω) 3 (h : A→ Ω×Ω) ♦A(h) = ♦ ◦ h ∈ Hom(A, Ω).

(3.27)

This means that if the subobjects S and T of A have characteristic maps s, t : A→ Ω

(accordingly), and thus 〈s, t〉 : A → Ω × Ω, then the subobject S ∩A T of A has

characteristic map

A Ω×Ω Ω,
〈s,t〉 ♦

which we may write shortly as s♦ t.

The arrow ♦ defined in (3.26) is a certain internal operation on Ω. At this point,

Mac Lane and Moerdijk, having true instead of η, and denoting our ♦ as
∧

, state

that
∧

is called "the internal meet operation; it makes (Ω,
∧

, true : 1 → Ω) into an

internal meet semilattice object in the topos" (MacLane and Moerdijk, 1994, p. 188).

In our approach however, as we consider a more general case and allow that the

natural isomorphism of sets, θ, may not be an isomorphism of appropriate struc-

tures of sets, we want to permit at least an anti-isomorphic correspondence between

Sub(A) and Hom(A, Ω) (for any A), and therefore we now check some of the prop-

erties of the operation ♦ in this case.

We recall after (MacLane and Moerdijk, 1994, p. 198), that a lattice object L (for

its definition cf. e.g. the same page of the cited textbook) has a zero and one (or

bottom element ⊥ and a top element >), when there are arrows

> : 1→ L, ⊥ : 1→ L,

which for any arrow x : L → L satisfy the identities (
∧

is the lattice meet and
∨

is

the join)

x
∨
⊥ = x, x

∧
> = x. (3.28)

This means that both of the following diagrams commute

L L× 1 L× L L,

idL

∼ idL×⊥
∨

(3.29a)
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L L× 1 L× L L.

idL

∼ idL×>
∧

(3.29b)

In order to see that (3.29) gives (3.28) (and we shall use some of these detailed

considerations later), we note that the first equation of (3.28) is an abbreviation for

saying that the following diagram commutes

L L× 1 L× L L.

x

∼ x×⊥
∨

We get this from (3.29a) by composing first with x : L→ L in the following manner

L L L× 1 L× L L.x

idL

∼ idL×⊥
∨

The iso arrow between L and L× 1 is 〈idL, !L〉, and we have

(idL ×⊥) ◦ 〈idL, !L〉 ◦ x = (idL ×⊥) ◦ 〈idL ◦ x, !L ◦ x〉 = (idL ×⊥) ◦ 〈x, !L〉

= 〈idL ◦ x,⊥◦!L〉 = 〈x,⊥◦!L〉 .

This is precisely what we get by composing the iso arrow between L and L× 1 with

the arrow x×⊥. Analogous considerations apply to >.

In our case, we consider the diagram

Ω Ω× 1 Ω×Ω Ω.

idΩ

∼ idΩ×η ♦ (3.30)

In order to check if it commutes we use the fact that the operation ♦ on characteristic

morphisms corresponds to the meet operation on corresponding subobjects, and for

the moment we denote as k a corresponding subobject of a characteristic morphism

k (i.e. k = χk). We have

♦ ◦ (idΩ × η) ◦ 〈idΩ, !Ω〉 = ♦ ◦ 〈idΩ, η◦!Ω〉 = χidΩ ∩Ω (η◦!Ω) = χη ∩Ω idΩ = χη = idΩ,
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where we have used three times the information from the table (3.18). This shows

that the diagram (3.30) indeed commutes. We may write this fact in an abbreviated

form as

x♦ η = x, for any x : Ω→ Ω.

From this we get an important result that η is a neutral element with respect

to the operation ♦. Thus, having in mind that ♦ corresponds to the meet operation

on subobjects via natural isomorphism θ of sets, we have that if θ is moreover an

isomorphism of appropriate structures then η is a top element and ♦ is a lattice

meet (η = >, ♦ =
∧

), i.e. (Ω,♦, η) is then an internal bounded meet semilattice

object in the topos. If, however, θ is an anti-isomorphism of appropriate structures,

then η is a bottom element and ♦ is a lattice join (η = ⊥, ♦ =
∨

), i.e. (Ω,♦, η) is

then an internal bounded join semilattice object in the topos.

This concerns the internal semilattice structure on the Ω object. Later we shall

consider some further internal structure on Ω, but now we go back to the structure

on Hom-sets. As we have already seen, the operation ♦ on Ω determines uniquely

the action of ♦A on Hom(A, Ω) for any A (cf. (3.27)). Analogously to the situation

with Ω, let us repeat that fixing the natural isomorphism θA of sets does not yet

determine what kind of operation ♦A is. From now on, we focus only on the two

possible options, the one where θ is also an isomorphism of appropriate structures,

and the other where it is an anti-isomorphism of these structures. The former case

is standard and well known. In the latter case the poset structure on Hom-sets is

reversed, and the meet operation on subobjects corresponds to the join operation

on characteristic morphisms (♦A becomes
∨

A), which however is still a natural

operation in the sense that (3.25) commutes. This means also that Hom(h, Ω) =

_ ◦ h preserves the join semilattice structure on Hom(A, Ω) (cf. analogously (3.23)

and the discussion in the subsequent paragraph, which, in short, shows how in

such cases naturality of a certain operation is equivalent to the preservation of that

operation). We can write down this fact in a simplified form, in both cases of θ,

for any two elements of Hom(A, Ω), which are always of the form χ f , χg, for some

f , g ∈ Sub(A), as follows

Hom(h, Ω)(χ f ♦A χg) =
(
Hom(h, Ω)(χ f )

)
♦B
(
Hom(h, Ω)(χg)

)
.
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So far we have discussed the poset structures and the meet/join semilattice

structures. The analogous considerations apply to the whole lattice structure as

well as to the (co-)Heyting algebra structure. Namely, in the case that θ is an iso-

morphism of appropriate structures we get the standard result, but in the case that

it is an anti-isomorphism of the appropriate structures, which is also an admissible

possibility as we have already discussed, the result is somewhat new. The hitherto

results may be summed up by the three theorems below.

The first theorem below summarizes the algebraic structure on sets of subob-

jects and its natural character (cf. MacLane and Moerdijk, 1994, p. 201, Theorem 1

(External), but we have used our notation and the conditional character depending

on the definition of the operations):

Theorem 5. For any object A in a topos, if we define the poset structure and other op-

erations as in the above considerations, then the poset Sub(A) of subobjects of A has the

structure of a Heyting algebra. This structure is natural in A in the sense that the pullback

along any morphism h : B → A induces a map h−1 : Sub(A) → Sub(B), which is a

homomorphism of Heyting algebras.

The next theorem states the standard situation of algebraic structures on Hom-

sets and the internal structure of Ω known from textbooks (cf. e.g. MacLane and

Moerdijk, 1994, p. 201, Theorem 1 (Internal), but we have limited the thesis, used

our notation and emphasized the conditional character depending on the way the

algebraic structure is transferred):

Theorem 6. If, in addition to the assumption of the previous theorem, we assume that the

natural isomorphism between sets θA, for any A, as in (3.13) (for the assumed direction

of that arrow cf. (3.19)), is also an isomorphism of the appropriate structures of Sub(A)

and Hom(A, Ω), then each Hom(A, Ω), for any A, becomes also a Heyting algebra with

the operations transferred from Sub(A) as in (3.24). Every such operation (the meet, the

join, and the Heyting implication (relative pseudo-complementation)) is natural in A, and

Hom(h, Ω) = _ ◦ h, for any h : B → A, preserves every such operation, as well as the

Heyting zero (bottom) element, which means that Hom(h, Ω) becomes a homomorphism of

Heyting algebras. From the naturality of these operations, by the Yoneda lemma, we get that

each such operation is fully determined by its action on the identity, idΩ×Ω, via composition
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(cf. (3.26) and (3.27)). In this way we get then that Ω is a Heyting algebra object (internal

Heyting algebra).

The last theorem presents our key results obtained so far:

Theorem 7. If, in addition to the assumption of the theorem 5, we assume that the nat-

ural isomorphism between sets θA, for any A, as in (3.13) is an anti-isomorphism of the

appropriate structures of Sub(A) and Hom(A, Ω), then each Hom(A, Ω), for any A, be-

comes a co-Heyting algebra, with its zero (bottom) element corresponding to the one (top)

element of Sub(A) (i.e. to the idA), its meet operation corresponding to the join on Sub(A)

(i.e. ∪A), its join operation corresponding to the meet on Sub(A) (i.e. ∩A), and its pseudo-

difference corresponding to the Heyting implication on Sub(A) (for the exemplary case of

the co-Heyting join operation cf. (3.24) with ♦A being the co-Heyting join in this case).

Every such co-Heyting operation is still natural in A, and Hom(h, Ω) = _ ◦ h, for any

h : B → A, preserves every such operation, as well as the co-Heyting zero element, which

means that Hom(h, Ω) becomes a homomorphism of co-Heyting algebras. From the natu-

rality of these operations, by the Yoneda lemma, we get that each such operation is fully

determined by its action on the identity, idΩ×Ω, via composition (cf. (3.26) and (3.27)). In

this way we get then that Ω is a co-Heyting algebra object (internal co-Heyting algebra).

Different internal algebras and partial orders

It is a standard situation that on the same set, e.g. Hom(A, Ω), we can define differ-

ent algebraic structures. It is well known that if one has a Heyting algebra structure

on a set, then just by reversing the order one obtains a co-Heyting algebra. Yet it

is not trivial that the co-Heyting structure on Hom(A, Ω) is also natural in A, with

Hom(h, Ω) = _ ◦ h being a homomorphism of co-Heyting algebras. One can how-

ever wonder if there should not be just one internal structure on Ω. We answer that

the two internal structures, Heyting and co-Heyting, may be considered as being

connected with different internal partial orders.

Let us recall (see e.g. MacLane and Moerdijk, 1994, p. 199) that for an internal

lattice L, we define a subobject ≤L of L× L as the equalizer

≤L L× L L,e
∧
π1
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where
∧

is a lattice meet, and π1 is the projection on the first factor. Then (L,≤L) is

an internal partial order (or internal poset). This comes from the fact that the order

relation for a poset can be defined by

x ≤ y iff x
∧

y = x.

In the case of a Heyting structure on Hom(A, Ω), we have already shown that

(Ω,♦, η) is then an internal bounded meet semilattice object. Thus the internal

partial order with respect to which Ω is a Heyting algebra object is the following

≤Ω Ω×Ω Ω.e ♦

π1

In the case of a co-Heyting structure on Hom(A, Ω), we have also shown that

(Ω,♦, η) is an internal bounded join semilattice object. Thus if we want to point out

the internal partial order with respect to which Ω is a co-Heyting algebra object,

we either have to use the other arrow that is now the lattice meet, or, if we want to

stick to the ♦ arrow, we could remind ourselves that the order relation on a poset

can equivalently be defined by

x ≤ y iff x
∨

y = y,

and so we get

�Ω Ω×Ω Ω.e ♦

π2

This partial order is the reverse of the previous one.

To sum up, we observe that for both cases of internal Heyting and co-Heyting

structures, if we consider a Heyting algebra to be a relatively pseudo-complemented

bounded lattice and a co-Heyting algebra to be its dual with respect to the change

of the order, then Ω as a Heyting algebra object or a co-Heyting algebra object has

exactly the same arrows, but they play different roles in these structures (inter alia

respectively: η is one or zero, ♦ is meet or join). In this way, we can understand how

the same object Ω with appropriate arrows may be an internal Heyting algebra

or an internal co-Heyting algebra, not being, in general, a bi-Heyting. Thus the

situation with the Heyting and co-Heyting internal structures of Ω is similar to the
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presence of one of these structures on a set if and only if the other is present (in the

sense of the possibility of reversing the order and obtaining the other structure).

3.4 Power objects

So far we have discussed the first isomorphism defining the topos in the Definition

7, i.e. the (3.13). Let us now examine the second natural isomorphism in this defi-

nition, i.e. (3.14) (for any fixed B, naturally in A), which for convenience we copy

here:

HomE (B× A, Ω) ∼= HomE (A, PB). (3.14)

This natural isomorphism, which we shall denote as σ,49 and the two functors

that are naturally isomorphic can be depicted as follows

E op Set .

Hom(−, PB)

Hom(B×−, Ω)

σo

The first functor, Hom (−, PB), is a standard Hom-functor, and the second is a com-

position of the (B×−) functor and a Hom-functor. It works in the following way

Hom (B×−, Ω) : E op −→ Set

A 7−→ Hom(B× A, Ω)

f 7−→ Hom(B× f , Ω) = _ ◦ (idB × f ).

As before, we apply the Yoneda lemma, and denoting the arrow from Hom(B ×

PB, Ω) as

ζB ≡ σPB(idPB) : B× PB→ Ω,

we find that the whole σ is fully determined by ζB. Namely, for any A, and any

49As this is an isomorphism we could denote it as σ−1 instead of σ, which would be more consistent
with the previous notation, but having this freedom, for some reason, we prefer to do it the way we
did.
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g ∈ Hom(A, PB) we have

σA(g) = Hom(B× g, Ω)(ζB) = ζB ◦ (idB × g). (3.31)

As σ is a natural isomorphism, we know that the correspondence between Hom(A, PB)

and Hom(B× A, Ω), for any A, is bijective. Thus for every arrow f : B× A → Ω

there is a unique arrow g : A → PB, such that σA(g) = f for which (3.31) holds,

which means that the following diagram commutes

B× A

Ω .

B× PB

f

idB×g

ζB

In this way, starting from (3.14), we have derived part (iv) of the Definition 8 (with

ζB instead of ∈B; we comment on that difference in notation below). Let us note,

that the object PB with the arrow ζB, for any B, is by definition the exponential of

Ω by B, i.e. PB = ΩB, and ζB is the evaluation arrow.

In (MacLane and Moerdijk, 1994, p. 163) the arrow σPB(idPB) is denoted as ∈B

(see also our Definition 8 above). The reason for this notation is connected with the

issue of denoting the arrow θ−1
Ω (idΩ) ≡ η as true. To be consistent, since we had

changed the notation true into η, we changed also the notation ∈B into some other,

less meaningful, i.e. ζB.

Now, let us proceed with the algebraic structure on Hom(A, PB). We have al-

ready discussed in detail the issue of transferring the algebraic structure from

Sub(A) to Hom(A, Ω). Almost the same considerations apply now to the natural

isomorphism (3.14). The isomorphism between Hom(B × A, Ω) and Hom(A, PB),

which is natural in A,50 does not have to be the isomorphism of the appropriate

structures on these sets. As previously, we may follow the exposition in (MacLane

and Moerdijk, 1994, p. 188ff), having in mind that η does not have to be the top

element, i.e. true, and thus the structure can be transferred at least in one of the

two ways, that is isomorphically and anti-isomorphically (from now on, we limit

50Incidentally, these sets can also be isomorphic naturally in B, but first P, as a function on objects,
has to be properly extended to the functor P : E op → E (see MacLane and Moerdijk, 1994, p. 162f).
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ourselves to one of these two options). Thus, we get that Hom(A, PB) is either a

Heyting or co-Heyting algebra.

Let us show only one diagram connected with the meet operation on subobjects:

Sub(B× A)× Sub(B× A) Sub(B× A)

Hom(B× A, Ω)×Hom(B× A, Ω) Hom(B× A, Ω)

Hom(A, PB)×Hom(A, PB)

Hom(A, PB× PB) Hom(A, PB) .

θB×A×θB×A o

∩B×A

θB×Ao

σ−1
A ×σ−1

A o

σ−1
Ao

o

♦(PB)
A

Depending on the poset structure on Hom(A, PB) the operation ♦(PB)
A becomes ei-

ther lattice meet or join.

Moreover, since the operation ∩B×A is natural in A (see MacLane and Moerdijk,

1994, p. 188), we have that ♦(PB)
A is also natural in A. Thus just like in the previous

situation, we get that ♦(PB)
A is, by Yoneda lemma, fully determined by means of

♦(PB)
PB×PB(idPB×PB) ≡ ♦(PB) : PB× PB→ PB,

via composition. Following the analogous steps as in the case of the internal struc-

ture of Ω, we get that PB, for any B, is either an internal Heyting or co-Heyting

algebra (Heyting or co-Heyting object).

3.5 Simple examples

Let us repeat that our hitherto argument says that reversal of the order on the

level of Hom-sets or power objects with respect to the sets of subobjects is always

possible. The following examples show only that in certain cases such a reversal

of the order may be “expected” or regarded as “suitable”. This state of affairs is

strictly connected with Set Theory. For Category Theory what matters is the struc-

ture of the arrows, and to put it simple, anything isomorphic is equally good. The
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basic notions such as every limit or co-limit (that is, inter alia, terminal and initial

objects, products and co-products, pullbacks and pushouts) are defined only up to

(a unique) isomorphism. The same applies to a subobject classifier, which is also de-

fined up to (a unique) isomorphism, but different isomorphic subobject classifiers

may be chosen for particular cases.

We have already mentioned the trivial case of the topos Set, where as a generic

subobject we can take

η : 1 = {?} 3 ? 7→ 0 ∈ Ω = {0, 1}.

This choice together with the standard order where 0 < 1 suggests that the order on

the set of characteristic functions (which in this case are precisely anti-characteristic

functions), i.e. the order on a set Hom(A, Ω), should be reversed with respect to

the order on Sub(A) (otherwise the function identically equal to zero would be the

top element). This case however is very special, as the topos Set is Boolean, and so

the reversal of the order is done on the Boolean algebra Hom(A, Ω), and thus does

not change the type of the algebra, although interchanges the join with the meet

operations and top with bottom.

Let us consider now the topos Set→, which is the category of set functions and

appropriate arrows between them (see e.g. Goldblatt, 2006, p. 34, 86ff). It is neither

Boolean, nor bivalent. The subobject classifier is usually chosen in the following

way (cf. Goldblatt, 2006, p. 87):

Ω = t :
{

0, 1
2 , 1
}
→ {0, 1}, with t(0) = 0, t

( 1
2

)
= t(1) = 1,

and η ≡ > : 1→ Ω is defined as the pair 〈t′,>Set〉 as in

{0}
{

0, 1
2 , 1
}

{0} {0, 1} ,

t′

id{0} t

>Set

where >Set(0) = t′(0) = 1, and thus making the diagram commute.

This topos has three truth values. The other two are > 1
2
≡ 〈t′′,>Set〉, with

t′′(0) = 1
2 , and ⊥ ≡ 〈t′′′,⊥Set〉, with ⊥Set(0) = t′′′(0) = 0. The only nontrivial
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automorphism for this Ω is
〈

a, id{0,1}
〉

as in

{
0, 1

2 , 1
} {

0, 1
2 , 1
}

{0, 1} {0, 1} ,

a

t t

id{0,1}

with a(0) = 0, a( 1
2 ) = 1, a(1) = 1

2 , thus it only exchanges 1 with 1
2 in the domain

of Ω. This means that we can take as a subobject classifier the same Ω but with > 1
2

instead of >. However, this also means that we cannot take as a subobject classifier

the same Ω with ⊥. In this case one may ask weather there is any situation that

would make the reversal of the order to be “expected” or more “suitable”. We can

easily achieve this by taking the following subobject classifier (of course all the

subobject classifiers are isomorphic with each other):

Ω′ = f :
{

0, 1
2 , 1
}
→ {0, 1}, with f (0) = f

( 1
2

)
= 0, f (1) = 1,

and η′ : 1→ Ω′ defined as the pair 〈 f ′,⊥Set〉 as in

{0}
{

0, 1
2 , 1
}

{0} {0, 1} ,

f ′

id{0} f

⊥Set

where ⊥Set(0) = f ′(0) = 0, and thus making the diagram commute. Let us observe

that as functions ⊥ ≡ 〈t′′′,⊥Set〉 is the same as 〈 f ′,⊥Set〉, but the first is an arrow

1→ Ω, while the second is 1→ Ω′.

3.6 Conclusions and comments

We have analyzed the relationship between the two definitions of a topos (Defini-

tions 7 and 8).51 It is now clear that if the two definitions are to be equivalent, then

in the second one, in the context of a subobject classifier, there should be a neutral

label denoting the generic subobject, e.g. η, or if the label true appears there instead,

it carries no additional assumptions.

51In this section we use parts of our paper (Stopa, 2020).
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Furthermore, we have shown that the natural isomorphism (3.13) leaves some

freedom in defining the algebraic structure on Hom(A, Ω) (for any A), even if we

want it to be natural in A. To put it differently, this natural isomorphism does not

imply that the only way to define an algebraic structures on Hom(A, Ω), natural

in A, is by the isomorphism of the algebraic structure on Sub(A). If one would

like to stipulate the structure of a Heyting algebra on Hom(A, Ω), then one must

additionally assume that η is the top element of the algebra defined on Hom(1, Ω).

On the other hand, if one assumes that η is the bottom element of this algebra,

then one obtains the co-Heyting algebras on Hom(A, Ω), which are also natural in

A, and the natural isomorphism will be an anti-isomorphism between the algebras

on Sub(A) and Hom(A, Ω). In this way, we obtained a connection between labeling

η as true or false and the role of this arrow in the Hom(1, Ω) algebra, and through

naturality also in any Hom(A, Ω) (where one has to compose this arrow first with

!A : A→ 1).

Let us repeat once again, as this is one of the most important clarifications re-

sulting from our considerations: if the labeling of η as true in the definition of a

topos is not supposed to be any additional requirement as to the property of this

arrow, then the algebraic structure on Hom(A, Ω) is not uniquely determined by

the definition of a topos. However, if the labeling of η as true is meant to imply

a demand that this arrow be a top element in the algebra on Hom(1, Ω), and thus

the structure of Heyting algebra is transferred isomorphically via natural isomor-

phism from Sub(A) to Hom(A, Ω), then the Definition 8 of a topos with such an

understanding of the name true is not strictly equivalent to the Definition 7, since

the latter has no such demand in it as to the role of the arrow η (understood in

this context as a global element of Ω, which uniquely determines the whole natural

transformation by the Yoneda lemma (see the beginning of the sec. 3.3)).

The Theorem 1 (Internal) in (MacLane and Moerdijk, 1994, p. 201) may suggest

that the generic subobject always plays the role of the top element in Hom(1, Ω), and

that Ω is always an internal Heyting algebra. In the face of these results, the opinion

that “To dualize, simply rename T [True] with F [False], and relabel the classifier

arrow chif as chi-barf” (Mortensen, 2003, p. 259) seems wrong, since the above

mentioned theorem suggests that no matter how we label the generic subobject, it
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always plays the role of a top element in Hom(1, Ω).

This theorem is not written in a form stating its assumptions explicitly. If these

assumptions are satisfied, then it certainly implies that the generic subobject plays

the role of the top element in Hom(1, Ω), and that Ω is an internal Heyting algebra.

However, if these assumptions are not satisfied, then obviously the theorem need

not hold. Therefore, it was necessary first to show that the theorem relies on the

assumption that η is a top element of Hom(1, Ω), an assumption that might be

present in Definition 8 (if denoting η as true in this definition is meant to assume

that property, although as we have noted, it is not clear what is meant by this

notation), but which is not present in or follows from Definition 7. Only in the light

of these results can it be admitted that the claim that η = false is permissible, at least

if understood merely as a claim that this arrow is a bottom element in Hom(1, Ω).

As far as we know, the above considerations are not described in the literature.

However, we strongly emphasize that it seems to us that extending the natural

isomorphism (3.13) to an anti-isomorphism of appropriate algebras, instead to an

isomorphism of these structures, is in the context of broader applications of the

topos theory a ‘risky and questionable move’. In particular, this can lead to serious

problems when first-order and higher-order logics are concerned, and also perhaps

when it comes to the question of implication even for zero-order logics. A number

of key properties of toposes (in particular for logical applications) that have been

proved when taking η = true may no longer hold if η = false. Therefore, further

consequences of such an assumption must be carefully examined. However, from

a purely algebraic point of view, the very Definition 7 of a topos permits both

cases. The present work demonstrates this possibility, without prejudging its further

consequences.
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Intuitionistic logic (IL) and paraconsistent logics (PLs) are well known and have

been studied independently of category theory (CT). However, the connections of

CT with various logics are extensive. Among many categories that have their own

internal logic, toposes play a special role through their relationship with intuition-

istic higher order logic.

As we have already mentioned, the algebraic counterpart of IL (exactly its

Lindenbaum-Tarski algebra) is a Heyting algebra. Such structures appear natu-

rally in toposes. However, several papers have appeared in recent times, most no-

tably (Mortensen, 1995, chapter 11; Estrada-González, 2010; James, 1996; Mortensen,

2003), which suggest that by making certain changes in the definition or the inter-

pretation of a topos, one can obtain the so-called complementary-topos (co-topos

for short), in which in place of some Heyting algebras, co-Heyting algebras, dual

to them, appear. In this way, these authors suggest, the logic of co-toposes becomes

paraconsistent. This proposal, however, seems problematic for a number of reasons.

This raises two issues that we have addressed in this work: 1) the relation be-

tween IL and PL; 2) the validity of the notion of co-topos and the possible relation

of co-toposes to toposes.

In connection with the first goal, we have presented both types of logics in a little

more detail (basically only their zero order, since further analyzes also concerned

only propositional logic in toposes). Since IL is historically related to Brouwer’s

intuitionism in his philosophy of mathematics, we have also presented his basic

views on this matter (chapter 1). Within PLs, we have discussed primarily, though

not exclusively, those logics that are related to the structures of co-Heyting algebras

(chapter 2). Among other things, we have shown that a certain type of logics based

on co-Heyting algebras do not have paraconsistent properties, but it is possible to

107
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define another type of logics based on these algebras that are paraconsistent in

general. We discussed the relationship between ILs and PLs primarily through the

analysis of the properties of Heyting and co-Heyting algebras which constitute the

algebraic aspects of ILs and some of the PLs.

At the beginning of chapter 3, we showed how both types of algebras can be

derived as a kind of symmetric generalization of a Boolean algebra. This manifests

itself in the fact that these algebras are dual to each other, in the sense that when

the order is reversed, one becomes the other. We have also shown that, from a

purely algebraic point of view, a set with the corresponding operations satisfying

certain properties can be viewed as either a Heyting algebra, or a co-Heyting one,

depending on the interpretation of these operations or, equivalently, depending

on the order defined on this set. This duality plays an important role in further

considerations.

In connection with the second goal, we first presented some of the more im-

portant proposals made in the aforementioned papers on co-toposes. These works

have provided an important motivation for our investigations. In these papers, let

us recall, a co-topos is defined as a Cartesian closed category with a complement-

classifier (instead of a subobject classifier). A complement-classifier, in turn, is de-

fined identically, with respect to assumed properties, to a subobject classifier having

only different labels, most notably false instead of true (and moreover a different la-

bel for characteristic morphism now called anti-characteristic morphism).52 The im-

portant question is whether these labels carry any additional meaning, or whether

they are meaningless and merely make it easier to refer to certain “objects” possess-

ing the given properties. This question applies to both the notion of co-topos and

topos. If these were only signs without any meaning, then these two concepts were

essentially indistinguishable, while if they were meaningful, the question arises as

to whether the change that the concept of co-topos brings does not lead to contra-

diction or at least some problems. This state of affairs has necessitated a clarification

of the relevant concepts and consideration of the correctness of the definition of a

co-topos.

Consider for the moment the concept of a topos. Our analysis in chapter 3

52Both definitions have been presented side by side on p. 81.
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showed that if the two definitions of a topos given there (definitions 7 and 8) are to

be equivalent, then the label true, which occurs in the latter, carries no additional

meaning. The generic subobject to which this label applies, and which we have

therefore begun to denote by neutral η, is always related to the top element of

the algebra defined on Sub(1) (we assume that the definition of Heyting algebras

associated with subobjects is not in doubt), precisely it follows that η = χid1 .

The correspondence between subobjects and characteristic morphisms, i.e. be-

tween Sub(A) and Hom(A, Ω) (for any A), is not only bijective, but there is the

so-called natural isomorphism between them:

θA : Sub(A) ∼= Hom(A, Ω), natural in A.

This is the case both in the context of Definition 7, where this natural isomorphism

is directly assumed, and in the context of Definition 8, since the existence of a

subobject classifier entails such a natural isomorphism (cf. proposition 3 in sec. 3.3).

On Sub(A), the structure of Heyting algebra is defined in a standard way, using

only the “operations” present in the topos, such as factorization of subobjects, pull-

backs, etc. The Heyting algebra structure on Sub(A) is accepted without reserva-

tion also by authors of the papers on co-toposes. However, the question of algebraic

structure on Hom(A, Ω) arises. The natural isomorphism θA is more than just a bi-

jection between sets, but it does not imply an isomorphism of the corresponding

algebraic structures. This fact is often overlooked.

Thus, it turns out that despite the presence of a natural isomorphism, there re-

mains some freedom to define the algebraic structure on Hom(A, Ω). The standard

approach assumes that on these sets we also have a Heyting algebra structure iso-

morphic to that on Sub(A). Then it can be proved that Ω is an internal Heyting

algebra and on Hom(A, Ω) we have trivially the same Heyting algebra operations

which are present on Sub(A). Usually, these facts are given as a theorem arising

directly from the topos definition. However, it is worth emphasizing that there is

a certain additional non-trivial choice at the beginning of such a state of affairs, as

long as we assume in this context only the presence of a natural isomorphism or the

existence of a subobject classifier. This choice can be enforced by demanding that

the generic subobject be the top element of this algebra. If this is understood by
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denoting this arrow by true, as in Definition 8, then the topos so understood does

indeed have the relevant properties, such as the Heyting structure on Hom(A, Ω),

Ω being an internal Heyting algebra, and others.

In the context of the theorem saying that Hom(A, Ω) has a structure of a Heyting

algebra, and Ω is a Heyting algebra object (cf. Theorem 1 (Internal) in MacLane

and Moerdijk, 1994, p. 201), it seemed that the co-topos proposal was illegitimate.

It is only by showing that this theorem is based on the additional assumption that

η = top = true, that it opens up the possibility of assuming that η = bottom = false,

and thus allows for considering the category understood as a co-topos. We have also

shown that then the algebraic structure on Hom(A, Ω) will be a co-Heyting algebra,

which will also be natural in A, and Ω will be an internal co-Heyting algebra. Then

θA, without ceasing to be the natural isomorphism, is the anti-isomorphism of the

corresponding algebraic structures.

Thus, if denoting a generic subobject by true (in short η = true) means that

this arrow should be the top element in the algebra defined on Hom(A, Ω), then

Definitions 7 and 8 are not equivalent. In this situation, Definition 7 is broader and

allows η to be either true (topos) or false (co-topos). On the other hand, if denoting

η as true, e.g. in the Definition 8, does not imply a choice of a particular place of

η in the order on Hom(A, Ω), then these two definitions are equivalent, allow both

options, and do not explicitly define the algebraic structure on Hom(A, Ω). As far

as we know, the above considerations are not described as such in literature.

It is worth emphasizing that since η through the natural isomorphism θ1 is

related to id1 and thus to the top element of Sub(1) (η = χid1), interpreting it as true

and defining the order on Hom(1, Ω) so that η plays the role of the top element in it,

seems more appropriate. Formally, from a purely algebraic point of view, reversing

the order on Hom-sets is permissible, but the consequences of such a choice should

be carefully examined, as most of the theorems concerning various properties of

toposes have been proved with the assumption that η = true. In particular, it seems

crucial to investigate the relevant properties related to quantifiers, especially Beck-

Chevalley conditions, which in the context of logical properties of toposes can be

briefly understood as meaning that substitution commutes with quantification.

In addition to the aforementioned open problems for further investigations, an-
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other research problem may be the further analysis of toposes in which co-Heyting

structures appear not by inversion of Heyting algebras, but exist side by side with

them, forming the so-called bi-Heyting algebras. Such structures are interesting

from the point of view of logics based on them, since they combine properties of

intermediate logics and logics dual to them. Since Lawvere’s paper (Lawvere, 1991)

it is known that a vast class of toposes exhibit the co-Heyting structure of subobjects

(and therefore bi-Heyting, as subobjects always have the structure of Heyting alge-

bra). In this paper he pointed out that “In any presheaf topos (and more generally

any essential subtopos of a presheaf topos), the lattice of all subobjects of any given

object is . . . [an] example of a co-Heyting algebra” (Lawvere, 1991, p. 280). Reyes

and Zolfaghari in (Reyes and Zolfaghari, 1996) pursued this line of reasoning. They

proved the above Lawvere’s assertion and introduced a new approach to the modal

operators based on bi-Heyting structures.

It seems, therefore, that the relationship of intuitionistic logic and paraconsistent

logic in the categorical approach is a research project which, although it has been

developed for some time, still hides much to be discovered.
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