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Leibniz on Number Systems 
 

Abstract 

This chapter examines the pioneering work of Gottfried Wilhelm Leibniz (1646-1716) on 

various number systems, in particular binary, which he independently invented in the mid-to-

late 1670s, and hexadecimal, which he invented in 1679. The chapter begins with the oft-

debated question of who may have influenced Leibniz’s invention of binary, though as none 

of the proposed candidates is plausible I suggest a different hypothesis, that Leibniz initially 

developed binary notation as a tool to assist his investigations in mathematical problems that 

were exercising him at the time, namely those concerning the divisibility of composite 

numbers, primality, and perfect numbers. The chapter then explores Leibniz’s development 

of binary, his little-known work on binary fractions and expansions, his use of binary as a 

symbol for creation in his philosophical-theology, and his response to the suggestion that 

there was a correlation between binary numeration and the hexagrams of the ancient Chinese 

divinatory text, the Yijing. The chapter then focuses on Leibniz’s work on other number 

systems, in particular his invention and exploration of hexadecimal as well as his work on 

duodecimal. The chapter concludes by revealing a hitherto unknown practical application of 

binary that Leibniz devised in the last year of his life. 

 

Introduction 

Although the German polymath Gottfried Wilhelm Leibniz (1646–1716) made original 

contributions to a wide range of disciplines, such as law, philosophy, politics, languages, and 

many areas of science, his fame and renown have always rested principally on his pioneering 

mathematical work, in particular his independent invention of the calculus in 1675. Another 

of his enduring mathematical contributions was his invention of the binary number system, 

the basis for today’s world of digital 

computing and communications. In this 

system, which uses only two digits—0 

and 1—every position starting from the right represents a successive power of 2, such that the 

rightmost place is the 2
0
 (or 1’s) column, the next-rightmost place the 2

1
 (or 2’s column) and 

so on. While Leibniz had a particular fascination with binary, his work on nondecimal 

number systems covered all the bases, or at least bases 2–16. Particularly notable is his 

invention of base 16, or “hexadecimal” in modern parlance (Leibniz called it “sedecimal” and 

“sedenary”), another number system used in modern computing. 

 Despite the proliferation of nondecimal weights, measures, and currencies in the 

seventeenth century, the idea of exploring nondecimal number bases, as opposed to tallying 

systems, was not commonplace. While counting in fives, twelves, or twenties was well 

understood and widely practiced, the idea of counting in bases 5, 12, or 20 was not. The 

modern idea of a base as a positional numbering system was still coalescing. But it was 

glimpsed by a few. Indeed, the binary number system was independently invented at least 

three times in the seventeenth century: by Thomas Hariot (1560–1621) near the turn of the 

century (see Strickland 2023c), by Juan Caramuel y Lobkowitz (1606–1682) in 1670, and 

again by Leibniz c.1677–1678. Moreover, Erhard Weigel (1625–1699) proposed the 

quaternary or base-4 number system in 1673, and Joshua Jordaine vigorously defended the 

duodecimal or base 12 system in 1687 (see Weigel 1673 and Jordaine 1687). But if Leibniz’s 

willingness to explore nondecimal number systems was not entirely unprecedented in the 

seventeenth century, the depth of his explorations was. He wrote in excess of a hundred 

manuscripts on binary, and at least as many more in which binary is mentioned alongside 

other matters. There are manuscripts dealing with other nondecimal bases too. Of these 

riches, Leibniz chose to publish just a single paper in his lifetime: “Explanation of Binary 

128’s 64’s 32’s 16’s 8’s 4’s 2’s 1’s 
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Arithmetic,” which appeared in 1705. This was enough to bind his name to the binary system 

in the centuries that followed, such that it was often incorrectly stated that he was its sole 

inventor. But of the three mathematicians who had devised binary in the seventeenth century, 

only Leibniz would influence the future development of base 2 and its eventual adoption by 

early computer engineers (see Strickland and Lewis 2022, 16–21): Hariot’s manuscripts on 

binary arithmetic remained unknown until the 1920s (see Morley 1922) and have been 

published only in the last decade, while Caramuel y Lobkowitz’s book was widely 

overlooked, being cited more in catalogues of book collections than in the work of other 

mathematicians. 

Leibniz’s decision not to publish more of his work on nondecimal number systems 

limited his impact; he is not, for example, generally given credit for the invention of base 16 

(an honour usually given to the nineteenth-century Swedish-American engineer John 

Nystrom; see Knuth 1998, 202). Even today, more than 300 years after Leibniz’s death, the 

vast majority of his writings on binary and other nondecimal number systems remains 

unpublished. As a consequence, many of the texts cited in this chapter are unpublished 

manuscripts. Since these are not generally accessible, I have quoted from them liberally. 

Given that the full depth of Leibniz’s writings on binary and other nondecimal number 

systems remains to be explored, the account of them in this chapter will necessarily be 

incomplete but nevertheless should go some way towards showing the depth of Leibniz’s 

engagement with nondecimal number systems. 

 The plan of this chapter is as follows. Section 1 takes up the oft-debated question of 

who may have influenced Leibniz’s invention of binary. As none of the proposed candidates 

is plausible, I turn in section 2 to the question of why Leibniz invented binary, considering 

both his own answer and a rather different one suggested by his earliest writings on the 

subject. Section 3 concerns Leibniz’s subsequent development of binary, in particular his 

methods for converting decimal to binary and for performing the four basic arithmetic 

operations in base 2, as well as his ideas for binary calculating machines and his fascination 

with the periodic recurrence of digits of the numbers of different arithmetic and geometric 

sequences expressed in binary. Section 4 focuses on Leibniz’s little-known work on binary 

fractions and expansions, and his hope that these would throw light on irrationals and 

transcendental quantities. In section 5, I outline the symbolic use of binary in Leibniz’s 

philosophy, where 1 and 0 are envisaged as analogues of God and nothingness, such that 

binary numeration is seen as a representation of the theologically orthodox doctrine of 

creation ex nihilo. Having learned of Leibniz’s binary system, a Jesuit missionary in China, 

Joachim Bouvet (1656–1730), suggested a correlation between binary numeration and the 

hexagrams of the ancient Chinese divinatory text, the Yijing. This correlation—and Leibniz’s 

enthusiastic reaction thereto—is the subject of section 6. In section 7, I turn to Leibniz’s 

invention and exploration of base 16, or sedecimal, while section 8 concerns Leibniz’s work 

on other nondecimal number systems, in particular bases 4 and 12. The chapter concludes 

with an account of a hitherto unknown practical application of binary that Leibniz devised in 

the last year of his life. Let us begin, then, with Leibniz’s potential influences. 

 

1. Who Influenced Leibniz? 

The question of who influenced Leibniz’s invention of binary has been often asked, and just 

as often has been answered inadequately. Four candidates have been proposed: John Napier 

(1550–1617), Francis Bacon (1561–1626), Erhard Weigel, and Juan Caramuel y Lobkowitz.
1
 

While none of these suggestions is tenable, examining them is worthwhile for the light it 

                                                 
1
 See for example Couturat (1901, 473); Zacher (1973, 9–33); Tropfke (1980, 12); Ingaliso (2017, 111–112). 
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sheds on seventeenth-century exploration of different number bases and of ways to simplify 

calculation. 

 In 1617, Napier published his “location arithmetic” which employed a form of binary 

reckoning based on the powers of 2 geometric sequence—1, 2, 4, 8, 16, 32, 64 etc.—carried 

out on a chessboard. The successive powers of 2, identified by letters from the classic Latin 

alphabet (so no j, u, or w) and then the Greek letters, are given in the margins. When 

multiplying two numbers, each had to be decomposed into its respective powers of 2, e.g. 37 

into 32, 4, and 1, with these then converted into letters which determined where counters 

would be placed on the board. By moving the counters according to fixed rules, one could 

carry out the multiplication sum without effort, aside from having to reconstruct the product 

by adding up its various powers of 2, the form in which the answer was given (see Napier 

1617, 115–154). 

 Napier’s binary reckoning was shortly followed by a form of binary information code. 

In 1623, Bacon published his De dignitate et augmentis scientiarum [On the Dignity and 

Advancement of the Sciences] which contained a description of a cipher employing a biliteral 

alphabet, where, aaaaa = A, aaaab = B, aaaba = C, aaabb = D etc. Bacon (1623, 279) believed 

these cipher-characters opened the way for people to express their thoughts “by objects which 

may be presented to sight or hearing, provided those objects are capable of a twofold 

difference only, as by bells, trumpets, torches, the report of muskets, and any other things 

whatsoever.” The suggestion was not pursued, but the principle survives in the binary code 

used in the Braille reading system and in the ASCII (American Standard Code for 

Information Interchange) character table. 

The first publication of binary notation for numbers occurred almost fifty years after 

Bacon. In his Mathesis biceps of 1670, Caramuel y Lobkowitz included brief chapters on 

bases 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 60, in each case providing a table of numbers, details of 

who (if anyone) had used that system, and examples of how each number is embedded or 

reflected in the natural or supernatural world (Caramuel y Lobkowitz 1670, XLV–LXI). In 

the chapter entitled “On Binary Arithmetic,” he presents a table using 0 and the letter a to 

form the sequence of numbers up to 32 expressed in binary (for example, in his notation, 17 

is a00a). Despite the chapter title, no attempt is made to show how arithmetic would work in 

base 2; as such, Caramuel y Lobkowitz did not venture beyond binary notation. 

 However, a fully developed nondecimal number system, complete with arithmetic 

algorithms, was not long in coming. In 1673, Weigel published Tetractys, a small book in 

which he advocated for the widespread adoption of the quaternary, or base-4 system, loosely 

inspired by the Pythagorean tetrad, a triangular figure with four rows of 1, 2, 3, and 4 points 

respectively. In a relatively detailed treatment, Weigel (1673, 16–23) outlines methods of 

performing all four arithmetic operations in base 4, as well as methods for the extraction of 

square and cube roots. 

 It is easy to see why the ideas of many of these thinkers have been considered as a 

possible influence on Leibniz’s invention of binary, since all share structural features with the 

binary number system. But as superficially tempting as it might be to consider one or more of 

these thinkers as Leibniz’s influence, there is no evidence that any of them were, and good 

reason to think that two of them were not. Manuscript evidence indicates that Leibniz became 

aware of Weigel’s quaternary system only in 1683 (see A VI 4, 1162–1163), too late for it to 

have influenced his development of binary, while there is evidence that Leibniz never saw 

Caramuel y Lobkowitz’s Mathesis biceps at all.
2
 As for Napier and Bacon, Leibniz knew of 

their work, but did not mention it in connection with binary. It was unlikely he was 

                                                 
2
 In 1711, decades after devising binary and only five years before his death, Leibniz (1768, V: 418) wrote: 

“Regarding Caramuel’s Mathesis biceps [Old] and New, for which he asks ten thalers, I am unable to judge well 

because I have not yet seen it, and I fear it may contain vain subtleties, which is not unusual for Caramuel.” 
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influenced by either. The similarities between Bacon’s biliteral alphabet and the binary 

number system might be obvious to us, as we are in a position of being able to compare both, 

but to a seventeenth-century mind knowing only the former there would have been little 

reason to think of the latter, as the biliteral alphabet hardly suggests or implies a positional 

number system employing two digits. Indeed, Bacon’s biliteral alphabet is sufficiently 

different from a binary number system in both form and function that the passage from one to 

the other would have required an enormous leap of imagination, almost on a par with that 

required to arrive at binary from any of the routine examples of duality or twoness with 

which Leibniz would have been familiar, such as matter and spirit, good and evil, light and 

dark. As for the specific powers of 2 geometric sequence used by Napier, this was a common 

feature of mathematical works: Adam Ries (1529, n.p., chapter “Progressio”) referred to it as 

the progression “in which one number exceeds another twofold”; Peter Ramus (1599, 177) 

called it the “subduple ratio,” while Marin Mersenne (1644, n.p., “preface”) dubbed it the 

“double progression” (Leibniz’s own term was “double geometric progression”). In many 

cases, the sequence was used in case studies of how to sum portions of progressions (see, for 

example, Schott 1658, 636), a staple part of the medieval and early modern mathematical 

curriculum. But some mathematicians went further. Michael Stifel (1544, 237, cf. 31), for 

example, treated the sequence as an object of study in its own right, observing that addition 

and subtraction in the arithmetic sequence of natural numbers correspond to multiplication 

and division in the powers of 2 geometric sequence: 

 

Whatever the arithmetic progression does by addition and subtraction, such are the 

things the geometric progression does by multiplication and division... 

0. 1. 2. 3. 4. 5. 6. 7. 8. 

1. 2. 4. 8. 16. 32. 64. 128. 256. 

 

Moreover, as we shall see in the next section, the powers of 2 geometric sequence was also 

the cornerstone of seventeenth-century investigations into both prime and perfect numbers, 

and some of Leibniz’s earliest writings involving binary are on those subjects. The sequence 

was also well known to assayers, who routinely used weights in the proportion 1:2:4:8..., in 

order to weigh money and metals with as few weights as possible, as Leibniz often noted 

(Strickland and Lewis 2022, 130, 139, 195, 202). Accordingly, as the powers of 2 geometric 

sequence was in sufficiently wide use by mathematicians and assayers, Leibniz is no more 

likely to have drawn it from Napier than anyone else. 

 Since no plausible case can be made for thinking that any of the aforementioned 

thinkers influenced Leibniz’s invention of binary, and there are no other likely candidates, we 

ought to be open to the idea that “who influenced Leibniz?” might be the wrong question to 

ask. A better question would be: why did he invent it? There are two ways to answer this 

question: either by looking at Leibniz’s own answer to it, or by looking at his earliest 

manuscripts on binary and seeing how it was used. In the next section, we shall do both. 

 

2. Early Writings on Binary 

In his own ex post facto narrative, written decades after his invention of binary, Leibniz 

claimed that it was conscious reflection on other nondecimal number systems that led him to 

think of binary, as “the simplest and most natural” base (Strickland and Lewis 2022, 138). He 

sometimes identified the duodecimal and the quaternary as these other nondecimal bases. 

While there is no evidence that he paid any attention to the quaternary system prior to 

encountering Weigel’s defence of it in 1683 (see A VI 4, 1162–1163), there is one early 

writing in which Leibniz treats binary as an alternative to duodecimal: a manuscript entitled 

“Thesaurus mathematicus” [Mathematical Thesaurus], probably written in either 1678 or 
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1679. In this text, Leibniz works through various topics in arithmetic, geometry, and 

mechanics; near the end, he outlines how positional notation works in the decimal and 

duodecimal number systems before identifying binary as an alternative: 

 

From this outline it is clear that only these ten digits are needed: 0, 1, 2, 3, 4, 5, 6, 7, 

8, 9. Those in the first position signify the equivalent number of 1s, namely no 1s, one 

1, two 1s, three, four, five, six, seven, eight, nine 1s. Those in the second position 

signify the equivalent number of 10s, that is, 1s taken ten times; in the third position, 

the equivalent number of 100s, that is, 10s taken ten times, or the squares of 10; in the 

fourth position, the equivalent number of 1000s, that is, 100s taken ten times, or the 

cubes of 10, and so on. And in place of 10 one would be able to put any other number, 

for example, 12. For just as when the base a is 10, the square a
2
 signifies 100 and the 

cube a
3
 signifies 1000, so when a is 12, a

2
 will be 12 times 12, that is, 144, and a

3
 will 

be 12 times 144. But on this method, instead of the digits mentioned above—0, 1 etc. 

9—two new digits would be needed in addition, one which would represent ten, the 

other which would represent eleven; but [the digits] 10 would signify twelve, and 100 

would signify one hundred and forty four. And there are some who prefer to use this 

method of calculating over the common method, because 12 can be divided by 2, 3, 4, 

and 6; in addition, a calculation is completed with fewer digits. But the difference is 

not so great as to be worth abandoning the decimal progression. If anyone should 

want to use the binary progression, he would not need any digits except 0 and 1... But 

the calculation would be longer, albeit easier. (LH 35, 1, 25 Bl. 3v) 

 

This is the only writing from the 1670s in which Leibniz mentions both binary and 

duodecimal. And his remarks in it do not support his later narrative that he devised binary 

after reflecting upon duodecimal; rather, binary is simply presented as an alternative to bases 

10 and 12. Moreover, at the time of writing this manuscript, Leibniz must have developed a 

good understanding of binary already, given his remarks about the length and ease of 

calculations in base 2. Quite how good his understanding was at the time is unclear: in a 

marginal comment, Leibniz added, “We shall say more things about the binary progression 

below,” though this promise is not fulfilled and the manuscript contains nothing further on 

the subject. 

 The lack of supporting evidence is one good reason to be cautious about Leibniz’s ex 

post facto narrative. A second reason is that the narrative presents his invention of binary as 

detached from and independent of the other mathematical problems with which he was 

dealing at the time, as though binary emerged sine contextu, in what can only be described as 

a eureka moment. As little more can be said about Leibniz’s narrative, let us consider an 

alternative hypothesis, that Leibniz’s invention of binary—or at least binary notation—

occurred in response to his work on three problems that exercised him in the mid-to-late 

1670s, namely: devising methods and formulae to determine the divisibility of composite 

numbers, primality, and perfect numbers.
3
 This hypothesis not only has the virtue of showing 

that binary developed in response to and as an aid for mathematical work with which he was 

already engaged, but is also supported by manuscript evidence. To illustrate, we shall 

consider three manuscripts, all written c.1677–1678, featuring some of Leibniz’s earliest uses 

of binary notation. At the heart of all three manuscripts is the powers of 2 geometric 

sequence, which was at the forefront of Leibniz’s mind at the time because of his 

investigations into the problems of number composition and primality. In the late 1670s, 

                                                 
3
 This work yielded his first publication in mathematics in February 1678, namely the short journal article “A 

new observation about the way of testing whether a number is prime”; see Leibniz 1678/http://www.leibniz-

translations.com/prime.htm For details of Leibniz’s work on primes, see Mahnke (1912–1913). 

http://www.leibniz-translations.com/prime.htm
http://www.leibniz-translations.com/prime.htm
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these would lead him to formulate and prove the primality test known as Fermat’s little 

theorem: 2
n–1

 – 1 ≡ 0 (mod n).
4
 On his way to that, Leibniz investigated numbers of the form 

2
n
 – 1 (these would later be dubbed “Mersenne numbers”), as for example in the first of our 

three early manuscripts, a series of remarks about the divisibility of numbers written on the 

back of an envelope probably in 1678. Leibniz begins by stating the formulae 2
n
 – 1, 3

n
 – 2, 

4
n
 – 3 etc.: 

 

Every number exactly divides any number of the double geometric progression 

diminished by one. 

Every number exactly divides any number of the triple geometric progression 

diminished by one or two. 

Every number exactly divides any number of the quadruple geometric progression 

diminished by one or two or three. 

And so on ad infinitum. 

 

(To the first statement, Leibniz later added: “false, except about a prime [number].”) The 

manuscript continues: 

 

The numbers of any geometric progression can be expressed generally thus: 1, 10, 

100, 1000, 10000 etc. Putting 10 means either 2 for the double [geometric 

progression] or 3 for the triple [geometric progression] etc. Therefore the numbers of 

the double geometric progression diminished by one can be expressed thus: 1 or 11 or 

111 or 1111 etc. 

And of the triple [geometric progression] thus: 2 or 22 or 222 etc. 

And of the quadruple [geometric progression] thus: 3 or 33 or 333 etc. 

And of the decuple [geometric progression] thus: 9 or 99 or 999 etc. (LH 35, 12, 2 Bl. 

4r) 

 

Here, Leibniz uses binary numeration as an alternative way of expressing the numbers of a 

base (or “geometric progression”), noting that the numbers 1, 10, 100, 1000, 10000 etc. have 

different values depending on which base one is using.
5
 His use of binary here is purely 

illustrative and binary plays no further role in his analysis (in the rest of the manuscript, 

Leibniz concerns himself with devising a method to determine which decimal number ending 

...991 to ...999 is divisible by 17). 

                                                 
4
 In the manuscript entitled “Formarum reductio ad simplices,” written 12 September 1680: “Therefore, 2

z–1
 – 1 

will be divisible by z, if z is prime” (LH 35, 3 A 4 Bl. 14r). During these investigations, Leibniz also glimpsed 

Wilson’s theorem: (n – 2)! ≡ 1 (mod n), or in Leibniz’s words: “The product of continuous [integers] up to the 

number which anteprecedes the given integer, when divided by the given integer, leaves 1, if the given integer is 

prime. If the given integer is derivative, it will leave a number which, since it has a common measure with the 

given integer, is greater than one” (LH 35 3 B 11 Bl. 21r). However, when testing his articulation of the 

theorem, Leibniz made a miscalculation that led him to add the false statement “(or the complement of 1)” after 

“leaves 1.” 
5
 In a slightly later manuscript, from 1679 (LH 35, 8, 30 Bl. 148), Leibniz again uses binary notation to illustrate 

his (still immature) formulation of a prime number theorem, namely 2
n
 – 1: “Let  = 111111,  = 1111, ♀ = 

111, ♂ = 11.  = ♀A,  = ♂B. Now ♀ and ♂ are prime among themselves, because their exponents are such, 

that is, their indices, or the numbers 2 and 3. Therefore A and B are not prime among themselves and 

necessarily will become A = ♂C and B = ♀C, and will become  = ♀♂C. Z
z
 – 1 is divisible by Z if Z is prime, 

and I have demonstrated this as follows: 2
2
 – 1 by 3 and 2

4
 – 1 by 5, therefore 1111 is divisible by 5 and 11 by 3 

and 111111 by 7. But 11111 cannot be divided by 6, for since 11 can be divided by 3, 11111 and 11 have a 

common divisor, yet they are prime among themselves. And hence we have the sought-for demonstration of a 

reciprocal property of a prime number.” 



7 

 

 The second manuscript deals with a related matter: perfect numbers, that is, positive 

integers that are equal to the sum of their divisors (including 1 but excluding the number 

itself), such as 6 (= 3 + 2 + 1) and 28 (= 14 + 7 + 4 + 2 + 1). From the time of Euclid, 

investigations in this area of number theory have concentrated upon the powers of 2 

geometric sequence, since Euclid’s theorem of generating perfect numbers (or rather, even 

perfect numbers) is this: “if any number of numbers are set out successively in a double 

proportion [starting] from one, until the whole sum becomes prime, and this sum multiplied 

into the last [number] makes some number, then the [number] made will be perfect.”
6
 That is, 

if 2
n
 − 1 is prime, then 2

n−1
(2

n
 − 1) is perfect. Leibniz was reminded of this theorem when 

reading a 1678 dissertation on perfect numbers by Johann Wilhelm Pauli (1658–1723), who 

had used Roman letters to stand for the numbers of the powers of 2 geometric sequence in 

order to investigate the parts of perfect numbers via a sort of rudimentary algebraic calculus. 

Upon reading Pauli’s book, Leibniz copied out Euclid’s theorem then illustrated it in binary 

notation: “If 111 is prime, 11100 (that is, 111 by 100) is perfect (assuming 10, 100, 1000 are 

2, 4, 8), production of the same thing by a different route” (LH 35 3 B 17, Bl. 2r). There is no 

indication here of Leibniz using binary notation to compute unknown perfect numbers, nor 

would that have been a realistic prospect in any case: the first five perfect numbers are 6, 28, 

496, 8128, and 33550336, so using binary notation to represent any except the first two 

would obviously require unmanageably long strings of digits.
7
 

 Given the central role of powers of 2 in Leibniz’s work on number composition, 

primes, and perfect numbers in the mid-to-late 1670s, it is easy to see why binary notation 

would have appealed to him. Take, for example, the number 7 expressed in binary: 111. A 

striking feature of this notation is that it displays the component powers of 2, as there is a 1 in 

the 4’s position, a 1 in the 2’s position, and a 1 in the 1’s position. Thus the binary value 111 

is not just an alternative way of writing the decimal number 7, it’s one that shows the three 

calculation steps—(1 × 2
2
) + (1 × 2

1
) + (1 × 2

0
), that is, 4 + 2 + 1—required to produce the 

number through powers of 2. In this vein, in 1686 Leibniz claimed that binary numeration is 

more perfect than decimal because in decimal there is no way to demonstrate from the digits 

3 and 9 that 3 × 3 = 9, whereas in binary it is apparent (with a little working out) that 11 × 11 

= 1001 (A VI 4, 800). And in the 1690s, when Leibniz started to provide detailed accounts of 

binary to some of his mathematician correspondents, he often made the point that a unique 

feature of binary notation is that it shows how any number can be represented as the sum of 

distinct powers of 2 (see for example A II 3, 452; Strickland and Lewis 2022, 111; 195). 

Moreover, binary notation is convenient for expressing the numbers of the powers of 

2 geometric sequence because these always consists in a 1 followed by 0s, e.g. 2 = 10, 4 = 

100, 8 = 1000 etc. And as Leibniz acknowledged in the first of our three early manuscripts 

above, binary notation is just as convenient for expressing the values of the Mersenne 

numbers, 2
n
 – 1, because these always consist in 1s with no 0s, e.g. 2

1
 – 1 = 1; 2

2
 – 1 = 11; 2

3
 

– 1 = 111 etc.
8
 (In contemporary terminology, every Mersenne number is a binary repunit.) 

Therefore, binary numeration serves as a very convenient and very informative shorthand if 

one is working with various powers of 2, or the values of 2
n
 – 1, especially for the lower 

values thereof, the very ones Leibniz tended to favour when illustrating his formulae. 

                                                 
6
 Euclid, Elements, IX.36. That is, if p is a positive integer and 2

p
 – 1 is prime, then 2

p-1 
(2

p
 − 1) is perfect. 

7
 Perhaps because of this, in another manuscript on the subject, probably written in 1678, Leibniz sought to 

demonstrate perfect numbers using a mixture of binary numeration and algebra based thereon (so unrelated to 

Pauli’s algebra), eventually reaching the conclusion “2
2z+1

 – 2
z
 will be a perfect number if 2

z+1
 – 1 is prime. 

Likewise, 2
z–1 

 – 1 will be divisible by z, if z is prime” (LH 35, 3 B 17 Bl. 1). 
8
 Leibniz explicitly acknowledged these features, at least in the 1680s onwards. For example: “The very last 

digits of a number of the double geometric progression can be easily obtained like this: if 1 is subtracted from it, 

then it is written in binary: etc.1111111, that is, 1 + 2 + 4 + 8 + 16 + 32 etc.” (LH 35, 3 B 11 Bl. 10r; cf. LH 35, 

8, 30 Bl. 75; LH 35, 13, 3 Bl. 33; LH 35, 15, 5 Bl. 10r; LH 35, 3 B 5 Bl. 51r). 
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 And indeed, in our third manuscript, entitled “Calculus” [Calculation], written 

sometime after 1676 (but probably before 1680), Leibniz uses binary notation as one of the 

various ways of expressing the powers of 2. In this manuscript, Leibniz outlines elementary 

arithmetic terms and operations, and when he comes to “powers” he offers this: 

 

Powers. bb is b
2
, bbb is b

3
 etc. b

r
b

z
 is b

r+z
, thus b

2
b

3
 is b

2+3
, that is, b

5
. 

1 

b
0
 

1 

 

1 

2 

b
1
 

b 

 

10 

4 

b
2
 

bb 

 

100 

8 

b
3
 

bbb 

b
2
b 

1000 

16 

b
4
 

b
3
b 

b
2
b

2
 

10000 

32 

b
5
 

 

b
3
b

2
 

100000 

64 

b
6
 

b
3·2

 

b
3
b

3
 

1000000 

128 

b
7
 

b
4+3

 

b
4
b

3
 

10000000 

256 

b
8
 

 

 

100000000 

(LH 35, 4 11 Bl. 8r)
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The three manuscripts surveyed share a number of notable features. First, while binary 

notation may be present in all three, binary arithmetic is not; instead, Leibniz performs all his 

arithmetic in decimal or algebra. Second, binary notation is used for illustration rather than 

for calculation. These common features suggest that at the time of writing these three 

manuscripts, Leibniz was not thinking beyond the notation, and this in turn would support the 

hypothesis that he developed this notation as a tool to assist his investigations in 

mathematical problems that were exercising him at the time.
10

 Of course, given the difficulty 

in dating Leibniz’s earliest writings on binary with great accuracy,
11

 the hypothesis just 

sketched about binary’s origins must remain speculative. But the three manuscripts are 

probably among his earliest writings on binary, predating the developed treatment in his 

earliest dated writing on the subject, “On the Binary Progression,” written 15 March 1679 (on 

the Julian calendar, 25 March 1679 on the Gregorian). 

 As for when Leibniz invented binary, a precise date is difficult to fix, but the three 

early manuscripts outlined above were probably written in 1677 or 1678. He was certainly in 

possession of the idea of a binary progression, i.e. base 2, no later than February 1678, the 

date he wrote on a manuscript in which he floated the idea of working with various 

nondecimal number systems, including binary. The manuscript begins with Leibniz giving 

himself instructions: “Attend to other progressions, such as nines, eights, etc., starting from 

the lowest—twos, threes, and so on going upwards—for thus only then will a progression be 

apparent and even the method of confirmation, which otherwise will be difficult to procure 

from decimal alone” (LH 35, 3 A 24 Bl. 6r).
12

 (He subsequently struck this passage out and 

the rest of the manuscript concerns the reduction of fractions to decimal numbers.) An earlier 

date for the invention of binary is possible, since another manuscript containing a table of the 

numbers 0–8 in binary along with a few simple binary sums has been dated to October 1674 

(see Strickland and Lewis 2022, 30). However, the material in binary—written in a different 

ink from the rest of the contents—was probably added later, though how much later is not 

known. Hence on the question of dating the invention of binary, two hypotheses may be 

formed: first, that Leibniz invented binary in 1674 or thereabouts, but did no further work on 

it or with it for another three or four years, or second, that he invented it in 1677 or early 

1678. 

 

                                                 
9
 A similar table is found in other manuscripts, such as LH 35, 4, 11 Bl. 10r, though this was likely written in 

1681. 
10

 Another writing in this vein is printed in Strickland and Lewis (2022, 41–43). 
11

 Leibniz did not affix a date to them, and the paper contains no watermarks that could be used to determine a 

dating, so they have to be dated using internal evidence. 
12

 Leibniz also refers to “the binary progression, where only ones and 0 express a number,” in a manuscript on 

the construction of a universal language, tentatively dated to February 1678 (A VI 4, 68). 
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3. The Development of Binary 

Although Leibniz probably invented binary notation in response to, and as an illustrative aid 

for his work on divisibility, primes, and perfect numbers, it did not take him long to develop a 

full-blown base-2 number system. The evidence suggests this occurred in stages rather than 

all at once. There are many manuscripts containing rudimentary explorations of binary, such 

as tables of numbers and simple sums, sometimes scrawled in the margins of manuscripts on 

non-mathematical topics (for an example of which, see Strickland and Lewis 2022, 4). In his 

earliest dated writing on binary, “On the Binary Progression,” written 15/25 March 1679, 

Leibniz outlined algorithms for conversion between decimal and binary notation and for 

addition, subtraction, multiplication, and division in binary numerals. He also devised a 

binary algebra in order to work out the square of a 6-digit number and to extract square roots 

(Strickland and Lewis 2022, 48–59). Similar ground is covered in later systematic treatments, 

such as “Essay on a New Science of Numbers” from 1701, and “On Binary” from 1705 (see 

Strickland and Lewis 2022, 138–144, 206–212). Rather than attempt to plot the steps of 

Leibniz’s increasing facility with binary, I shall focus on his methods for converting decimal 

to binary along with the algorithms for the four arithmetic operations, his attempts to 

mechanize binary calculation, and his investigations into the periodicity of arithmetic 

progressions expressed in binary. 

 Leibniz’s original method for converting decimal numbers to binary was to 

start with a given number, for example 47, then successively halve it, at each step 

noting whether 0 or 1 remains (see Strickland and Lewis 2022, 50). When the 

process is finished, the digits can written in a row, where the bottommost digit is 

the leftmost, and the topmost digit the rightmost, i.e. in the 1s position: 101111. 

Leibniz later devised a variation of this method, whereby one arranges the 

successive halves of the given decimal number in columns and then simply writes 

a 1 underneath an odd number and a 0 underneath an even number to get the 

binary equivalent: 

 

1
 

2
 

5
 

1
0
 

2
1
 

4
2
 

8
5
 

1
7
1

 

3
4
3

 

 

1 0 1 0 1 0 1 1 1 343 

 (LBr 705, 69r) 

 

 The algorithms Leibniz developed for the four basic arithmetic operations are 

straightforward. He claimed that to perform these operations, one need know only the 

following: 

 

For addition, 0 plus 0 is 0. And 0 plus 1 is 1, and 1 plus 1 is 10. 

For subtraction, 0 minus 0 is 0, 1 minus 0 is 1, and 1 minus 1 is 0. 

For multiplication, only this: 0 times 0 is 0, 0 times 1 is 0, and 1 times 0 is 0, and 1 

times 1 is 1. 

For division, I have 1 in 1 once, and I have 0 in 0 once. (Strickland and Lewis 2022, 

92) 

 

Typical examples given were: 

  

47  

23 1 

11 1 

5 1 

2 1 

1 0 

 1 
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        Addition         Subtraction 

 

    1001 9  + 11011 + 27 

  11000 24  – 10011  – 19 

. .         1000      8 

100001 33 

 

Multiplication        Division 

 

    11 3                  

    11 3    33 100001       

    11           3        

  11              

.  .     11        1011 

1001 9  

(Strickland and Lewis 2002, 96–97) 

 

Note here that the dots in the examples of multiplication and addition indicate a carry of 1. 

Note also that the example of division follows the so-called “galley” method, popular in 

Europe in the seventeenth and eighteenth centuries. 

Leibniz later devised a shortcut when adding multiple numbers, such as:  

 

        1 

      11 

    100 

  1001 

  1011 

11100  (example simplified from Strickland and Lewis 2022, 140) 

 

The first column on the right has four 1s, but instead of making two carries to the second 

column as per the standard algorithm, Leibniz realized that one could instead make a single 

carry to the third column (see Strickland and Lewis 2022, 140, 146, 208–209). When dealing 

with subtraction, Leibniz also anticipated the two’s complement operation, where x – y is 

computed by determining the two’s complement of y, i.e. the number that when added to y 

gives 0: 

 

It should also be noted that for the subtrahend number, its complement [up] to 100000 

etc. can be placed, and then subtraction is not needed but only addition... As, for 

example: 

The subtrahend is         11 0101 

Supposing it should be subtracted from  100 0000 

It is evident that this gives      00 1011 

For if you add this:         11 0101 

It gives us      100 0000 

(Strickland and Lewis 2022, 51) 

 

During his early explorations of binary, Leibniz envisaged the mechanization of the four 

basic arithmetic operations, jotting down ideas for binary calculating machines of two 

different designs. The first was based on his decimal calculating machine that he had had 

built in 1673 (though it never worked properly). Instead of being driven by a series of 
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cylinders with nine teeth, as per his decimal machine, the binary version 

was envisaged as having cylinders with four teeth, each alternately 

designated as 0 or 1, so that “one revolution will cause two carries” 

(Strickland and Lewis 2022, 45). Leibniz acknowledged  that, with this 

machine, “the greatest difficulty is to convert a binary number into an 

ordinary one or vice versa” (Strickland and Lewis 2022, 45), but from his 

description it is clear that he envisaged conversion going only one way, for 

while the machine’s user would enter the sum in decimal, the result would 

be given in binary (for more details on this machine’s design, see 

Mackensen 1974). The second proposed binary machine, conceived as carrying out only the 

operation of multiplication, is described in “On the Binary Progression.” This design is of a 

sliding box or carriage with shutters on the underside that can be set open or closed, the 

whole contraption sitting atop various fixed channels representing the columns of a binary 

number. If a shutter is set open then a ball is released into the channel below it, and the box is 

then moved by an unspecified mechanism from one channel to the next, dropping a ball into 

the channel below if the shutter is open and nothing if not. The process is repeated for each 

bit of the multiplier, and if a channel accumulates two balls, another unspecified mechanism 

passes one of these to the next channel on the left while the other is removed (Strickland and 

Lewis 2022, 52). Although Leibniz’s description of this machine lacks detail, and it is 

doubtful he would have been able to have had it constructed, from his sketchy outline a 

functional replica was built in 2003/4 (see Stein et al 2006). 

 While Leibniz certainly enjoyed a flirtation with mechanization during his exploration 

of binary, his true infatuation was with arithmetic and geometric progressions, on account of 

the recurring periods of the individual digits being significantly shorter in binary than in 

decimal. Take, for example, the sequence of square numbers: 1, 4, 9, 16, 25, 36 etc. In  

decimal numeration, the last digit of the successive square numbers recurs periodically: 1, 4, 

9, 6, 5, 6, 9, 4, 1, 0; switch to binary numeration and the period of the last digit of successive 

square numbers is drastically reduced to just two terms: 0, 1 (see right). The other columns 

are periodic too: leaving aside the second column, which consists only of 0s, the third column 

has the period 0010, the fourth 0001 0100 etc. Leibniz’s hope was that working with the 

shorter periods in binary notation would make it easier to determine formation laws for the 

periods, making it possible to calculate any term of a periodic sequence. 

 From the late 1670s onwards, Leibniz intermittently investigated column periodicity 

in binary, filling many dozens of manuscript pages, often using algebraic terms to stand for 

period-sequences or even entire columns. To assist his efforts further, he occasionally devised 

new notation, though it was often abandoned immediately afterwards after it failed to produce 

the desired breakthrough. In 1699, he introduced the parenthetical term (b) to signify logical 

complement, calling it “anti-b,” “so that if b is 1 then (b) is 0; and if b is 0 then (b) is 1” (LH 

35, 3 B 6 Bl. 1r). Two years later, he devised the notation a    b, which 

 

signifies the digit which is produced from the digits a + b added into one in the same 

column. For example, if a is 0 and b is 0, a    b will be 0. If a is 0 and b is 1, or the 

other way around, a    b will be 1; if a is 1 and b is 1, a    b will be 0, for a + b is 10, 

where the 1 is carried into the next column (LH 35, 3 B 5 Bl. 87). 

 

So stated, Leibniz’s a    b clearly anticipates the boolean exclusive-or operator ⊕. 

 Despite his efforts, the anticipated number-theoretic rewards of investigating column 

periodicity eluded Leibniz. He did, however, have some successes. In 1698, he observed that 

in the natural and triangular numbers, the first half of any period is always the complement of 

the second half, such that if the first half is 0000, then the second half will be 1111 (LH 35, 3 

0  0000000  

1  0000001  

4  0000100  

9  0001001  

16  0010000  

25  0011001  

36  0100100  

49  0110001  
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B 5, Bl. 10). And in 1701, he established that if two or more periodic sequences are added 

together, the resulting sequence will itself be periodic, its period determined by the periods of 

the two or more generating sequences (Strickland and Lewis 2022, 158–160). When Leibniz 

began to provide details of the binary system to mathematicians from the late 1690s onwards, 

much of the information he provided was about column periodicity (see for example A II 3, 

450–452; Strickland and Lewis 2002, 111, 122–124, 128–130). His hope was that others 

would assist in the investigations for which he had little time himself, but there were few 

takers. The exceptions were Theobald Overbeck (1672–1719), who corresponded with 

Leibniz about column periodicity from 1709 onwards (see LBr 705 Bl. 23–26, 71–73; LH 35, 

15, 5 Bl. 10–11), and Pierre Dangicourt (1664–1727), who at Leibniz’s behest published an 

essay entitled “On the Periods of Columns in a Binary-Expressed Sequence of Numbers of an 

Arithmetic Progression” in 1710 (see Dangicourt 1710). 

 

4. Binary Fractions and Expansions 

While the majority of Leibniz’s writings on binary focused on integers, he also explored 

binary fractions and their expansions, especially but not exclusively in the late 1670s and 

early 1680s. Leibniz quickly discovered that just like decimal fractions, binary fractions are 

either terminating, i.e. expanding to a finite number of digits, or repeating or recurrent, i.e. 

expanding to infinity, with a finite set of digits (the repetend, or period) repeating forever. For 

example: 

 
Decimal fraction Binary equivalent Binary expansion 

 

 
 

 

  
 

0.1 

 

 
 

 

   
 

0.       

 

 
 

 

   
 

0.01 

 

 
 

 

   
 

              

 

Leibniz’s preferred method for working out binary expansions was the galley method 

(mentioned above in relation to division in integers), but this often proved challenging. In one 

manuscript (LH 35, 13 2 B Bl. 155), Leibniz focuses on the binary expansions of the decimal 

fractions 
 

  
 and 

 

  
. While he gets the correct result—0.            —for the former, for 

the latter he first gets the incorrect result 0.0000111 (which is in fact the binary expansion for 
 

   
) before arriving at the correct 0.         on the second attempt. In another manuscript, 

two out of seven attempted binary expansions arrive at the wrong result: for the expansion of 
 

 
 Leibniz gets 0.001 (which is the expansion for 

 

 
), while for 

 

 
 he gets 0.00101, which is the 

expansion for 
 

  
 (see Strickland and Lewis 2022, 62). Such mistakes are common in 

Leibniz’s use of the galley method to determine binary expansions, and perhaps for this 

reason he developed various other methods, of which I shall mention two.
13

 

The first is found in a manuscript from c.1679, where Leibniz describes an algorithm 

for finding the repetend in the binary expansion of those reciprocals whose denominator is 

odd, and this with “no need for actual division”: 

 

  

                                                 
13

 A third is outlined in Strickland and Lewis (2022, 40n2). 



13 

 

Take, for example, the fraction 
 

 
, expressed in binary as 

 

   
. 

Add 1 to the numerator = 1001. 

Take half of this = 100; this number serves as the “constant multiplier.” 

The last digit of the period is always 1, so write 1. 

Multiply this by the constant multiplier: 100 × 1 = 100. Write 0 as the penultimate digit of the 

period, and carry the remaining 10. 

Multiply the last digit obtained—0—by the constant multiplier: 100 × 0 = 0. To this, add the 

carry of 10: 0 + 10 = 10. Write 0 as the antepenultimate digit of the period, and carry the 

remaining 1. 

Multiply the last digit obtained—0—by the constant multiplier: 100 × 0 = 0. To this, add the 

carry of 1: 0 + 1 = 1. So write 1. Since the remainder is now 0, the digit just obtained is the 

last one of the next iteration of the repetend (see LH 35, 3 B 3 Bl. 12r). 

 

As the algorithm reveals that the period is 001, the binary expansion of 
 

   
 is 0.   . After 

obtaining this result, Leibniz seeks to confirm it using the galley method of division, but as if 

trying to demonstrate the need for the alternative method just sketched, his calculation goes 

awry and he comes up with 0.    instead. 

 A second method for working out binary expansions comes from a manuscript written 

in 1680 (LH 35, 3 B, 5 Bl. 89). Here, Leibniz seeks to multiply known binary expansions to 

determine a new one. Beginning by multiplying the binary expansions of 
 

 
 and 

 

 
 to determine 

the binary expansion of 
 

  
, Leibniz multiplies 0.     by 0.   and ends up with 0.        , 

triumphantly proclaiming “Therefore, two periodic sequences have been added into one,” 

before realizing the calculation has gone astray (as 
 

  
 in fact expands to 0.    ). In a second 

attempt, Leibniz first computes the binary expansion of 
 

 
, namely 0.      , then tries to 

reach the same result by multiplying the binary expansion of 
 

 
 by itself. This time he gets the 

correct result, stopping at 0.000111000111. 

 Some of Leibniz’s earliest explorations with binary fractions and expansions concern 

irrationals. In “On the Binary Progression,” he computes the first digits of     , getting the 

result 1.011010100...2. In order to confirm his result, Leibniz then multiplies that number by 

itself, obtaining the value 01.111111111110100, noting that as the infinite numeral 

[0].1111111... represents 1, so 1.1111111 represents 2 (Strickland and Lewis 2022, 58). In 

another manuscript, probably from 1680, he repeats the process, this time obtaining several 

more digits of     : 1.0110111101 (LH 35, 8, 30 Bl. 125v). The aim of such exercises was 

not to find a periodic sequence of digits—Leibniz was well aware that irrationals did not have 

such
14
—but to show that irrationals could be “determined as far as possible” through binary 

(Strickland and Lewis 2022, 54). His hope was to find “laws of sequences which not only 

seem not to have a period but also really do not have one. Such are those which correspond to 

irrationals. For not all laws of sequences are periods” (LH 35, 13 3 Bl. 33r). 

 In a similar vein, Leibniz hoped that binary could offer insight into transcendent 

quantities, most notably the alternating converging series that now bears his name: 
 

 
 – 

 

 
 + 

 

 
 – 

 

 
 + 

 

 
 – 

 

  
 + 

 

  
 – 

 

  
 + 

 

  
 – 

 

  
 etc. The series, discovered in 1674, was the key result of his 

investigation into the classic problem of squaring the circle, that is, determining the area of a 

circle enclosed by a 1×1 square. After discovering  the series in 1674, Leibniz  for a time 

                                                 
14

 Although in one early writing he exclaims that binary will be “remarkable for periodic progressions in 

expressible quantities which are not whole or rational” (Strickland and Lewis 2022, 32). 
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entertained hopes that it might prove to have a finite sum (as some infinite series of 

reciprocals do, for example that of triangular numbers 
 

 
 + 

 

 
 + 

 

 
 + 

 

  
 + 

 

  
 etc. sums to 2) but 

these had dissipated by the time he had invented binary. Nevertheless, he believed that 

investigating the periodicity of these fractions in binary could yield a rule that would enable 

one to continue the expansion of the digits of π: “Having obtained the period from a given 

number, one will also obtain the method of expressing by a certain rule the sequence of digits 

expressing the size of a circle, that is, 
 

 
   

 

 
  + 

 

 
   

 

 
 + 

 

 
 etc.” (Strickland and Lewis 2002, 

59). As such a rule eluded him, in August 1680 Leibniz tried out a different approach in a 

manuscript entitled “Attempted Expression of the Circle in Binary Progression” (Strickland 

and Lewis 2022, 61–62). Here, Leibniz considers the powers of     geometric sequence 

namely: 1, 
 

 
, 
 

 
, 
 

 
, 
 

  
, 
 

  
, 
 

  
 etc. (unhelpfully also called “binary progression”), comparing 

various terms of this sequence with sequences of terms from his circle formula. However, a 

calculation error early in the process led him to incorrectly conclude that 
 

 
 + 

 

 
 is greater than 

the area of the circle (which, if true, would make π less than 3). Failing to spot the mistake, 

which subsequently gets compounded, Leibniz eventually gave up.
15

 

 In the last twenty years of his life, Leibniz outlined binary notation and arithmetic to 

many of his mathematician correspondents, but he was not similarly forthcoming about his 

work on binary fractions and expansions, electing to keep this to himself. However, he did 

suggest to a few correspondents the idea of exploring π using binary. In 1704, Leibniz 

informed Jakob Hermann (1678–1733) of his hope that a rule would be found to enable the 

digits of π to be computed, describing this as something “we will obtain more easily through 

binary” (GM IV 266), though he did not elaborate on this remark. The following year he 

made the same suggestion to Jacob Bernoulli (1655–1705), who took the bait and presented 

Leibniz with an 118-digit binary representation of the first 36 decimal digits of π: 

 

111100100000010011111101100110001101101101100110000100111100100101100

1010110110110101000110111001010100000001111010000
 
 
 

 

There are a number of problems with this result. First, Bernoulli, apparently not realizing the 

significance of the radix point, simply converted the integer 

314159265358979323846264338327950288 into binary, rather than the fraction 
                                    

                                    
, so did not express π in binary at all. Second, his 118-

digit binary number is actually equal to the integer 

314159265358979323846264338327929808, which is short by 20480, indicating that he 

dropped some bits in his calculation (for more details, see Knuth 1983, 238). Bernoulli did at 

least get one thing right, noting of his binary number that “no period of digits is apparent 

here, nor any law of the progression” (GM III/1, 97). In his response, which made no mention 

of Bernoulli’s errors, Leibniz clung to the view that the law of progression of π was simply 

hidden and probably more easy to detect in binary than in decimal (GM III/1, 101). 

 

5. Binary and Philosophy 

Leibniz’s faith in the illuminatory power of binary is nowhere more evident than in his use of 

it in philosophical theology. In 1694/5, when sketching notes on one of Weigel’s books, 

Leibniz devised an analogy between the representation of all numbers by 1 and 0 and the 

theologically orthodox idea of creation ex nihilo, that is, the creation of all things out of 

nothing by God. Treating God as the analogue of 1 and nothingness as the analogue of 0, 

                                                 
15

 For further details of Leibniz’s work on the binary expression of his circle formula, see Strickland (2023a). 
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Leibniz took the origination of all numbers from 1 and 0 in binary as a reflection of the 

doctrine that all created things originate from God and nothingness. This analogy would play 

a pivotal role in Leibniz’s willingness to inform correspondents about binary from 1696 

onwards (and as we shall see in section 6, this in turn played a pivotal role in his decision to 

publish an essay on binary in 1705). 

To understand Leibniz’s binary-creation analogy, note that in his metaphysics, all 

created beings contain the same perfections as God (namely, power, wisdom, goodness), 

albeit not to the same degree, because, as created beings, they have limitations or privations. 

In this sense, all created beings originate both from God, the source or principle of their 

perfections, and from nothingness, the source or principle of their privations or imperfections. 

Hence: 

 

According to the binary [progression], all numbers are expressed by the digits 0 and 1 

alone, by unity and nothing, a remarkable analogy of the origin of created things from 

God and nothing, with creatures having their own perfections from pure, positive 

actuality, or God, and their imperfections or limits from the negative, or nothing 

(Strickland and Lewis 2022, 85). 

 

Such remarks can easily be read as saying that created things are literally composed of two 

distinct but seemingly mutually exclusive elements, such that it is difficult to see how they 

could co-exist in one and the same being. Leibniz clarifies: 

 

there are in him [God] three primacies: power, knowledge and will; the result of these 

is the operation or creature, which is varied according to the different combinations of 

unity and zero; or rather of the positive with the privative, for the privative is nothing 

other than limits, and there are limits everywhere in a creature, just as there are points 

everywhere in the line. However, a creature is something more than limits, because it 

has received some perfection or power from God, just as the line is more than points. 

For ultimately the point (the end of the line) is nothing more than the negation of the 

progress beyond which it ends. (Leibniz 2006, 39)
16

 

 

Leibniz thus envisaged the creation of something from nothing as involving God divesting a 

finite portion of his essence to the creature and then stopping, the stopping point marking the 

limit of the creature. As such, Leibniz should not be understood as claiming that nothingness 

is an element of the creation process; rather, the reference to nothingness is a poetic way of 

referring to a limit, the idea that a creature contains some of God’s essence but not all. A 

created thing should not be construed as literally a mixture of God’s essence and nothingness, 

but rather as a finite instantiation (or dilution) of the former.
17

 

 Clarifying the analogy in this way does not prevent it from being inapt, however. In 

binary numeration, all numbers are composed from two elements (0 and 1) by compounding 

them in ever longer strings, whereas Leibniz envisaged all created things arising from God 

through an entirely different process, in which God divests some of his own essence to a 

creature, so that in terms of essence, or perfection, each creature is greater than nothingness 

                                                 
16

 Also: “Without doubt boundaries or limits are of the essence of creatures, but limits are something privative 

and consist in the denial of further progress.” Leibniz (2006, 38), cf. A I 15, 369; Leibniz (2006, 102–103); 

Strickland (2014, 22). 
17

 Or as he puts it in a manuscript written perhaps in 1695 or possibly in 1702, “things are educed from God’s 

active power—as Julius Scaliger said—rather than from passive nothing. My invention of the composition of 

numbers from 0 and 1 would wonderfully support this doctrine” (LH 4, 3, 5e Bl. 5). See Scaliger (1557, fols. 

16–17). 
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but less than God, i.e. it has the same qualities as God but not to the same degree as God. 

Because of this, it would make more sense to say that all created things are analogues of 

binary fractions, each having a unique expression of their perfection and limitations in the 

same way that all fractional numbers between 0 and 1 are uniquely expressed in binary. 

Leibniz did not frame his analogy in this way, however. 

Once the binary-creation analogy had been devised, Leibniz quickly recognized its 

philosophical value. It next appeared in December 1695, in the middle of a brief sketch of a 

planned book entitled Theodicy, envisaged as a defence of God’s justice in response to the 

world’s evil. The sketch reveals Leibniz’s belief that the binary-creation analogy could help 

explain why created beings are liable to sin, i.e. because, by virtue of being limited, they fall 

short in the perfections of power, wisdom, and goodness: 

 

New studies: concerning the original imperfection of creatures before sin, from which 

the cause of sin is to be sought. All things are good but nothing is absolutely perfect. 

Concerning the composition of things from perfection and limitation, i.e. from action 

and privation, and concerning the origin of things from God and nothing, in which 

concerns the origin of numbers from 1 and 0, i.e. from unity and nothing. (LH 1, 6, 2 

Bl. 20r/http://www.leibniz-translations.com/theodicaea.htm)
18

 

 

With the binary-creation analogy now envisaged as a key part of his philosophical theology, 

Leibniz sought to promulgate both it and the number system on which it was based. In early 

May 1696, he discussed it with Rudolph August, Duke of Brunswick and Lüneburg (1627–

1704). The duke’s warm reception of the analogy prompted Leibniz to pitch the idea of 

commemorating it on a medal, to be struck at the duke’s command. Various designs were 

sketched (for which see Strickland and Lewis 2022, 103), but the duke decided to 

commemorate the binary-creation analogy in a different way: by commissioning three wax 

seals (for which see Strickland and Lewis 2022, 106). 

 Believing that the binary-creation analogy had the potential to make the Christian 

doctrine of creation ex nihilo intelligible and even plausible to non-Christians, Leibniz 

communicated it—with attendant details of the mathematics of binary—to two Jesuit 

missionaries in China, Claudio Filippo Grimaldi (1638–1712) in 1697 and Joachim Bouvet in 

1701 (see Strickland and Lewis 2022, 108–115, 126–134). While the former did not respond, 

the latter famously suggested a correlation between Leibniz’s binary numeration and the 

sixty-four hexagrams of the ancient Chinese divinatory text, the Yijing (or Book of Changes), 

a suggestion that would prompt Leibniz to go public with his invention. 

 

6. Binary and The Yijing 
The Yijing consists of sixty-four individually-named hexagrams, each accompanied by a 

short, enigmatic essay. The hexagrams themselves consist of six stacked horizontal lines, 

each line being either unbroken (representing yang) or broken (representing yin). From these 

two elements, arranged in all possible groupings of six, emerge the sixty-four hexagrams. 

Bouvet had been a student of the Yijing for many years before he learned of Leibniz’s binary 

arithmetic, and had already suspected that it somehow encapsulated “a numerary 

metaphysics” that, when properly deciphered, would reveal the perfected science of the 

ancient Chinese (A I 20, 573). Upon learning of Leibniz’s binary arithmetic, Bouvet 

hypothesized that the hexagrams had been intended as a binary number system. 

                                                 
18

 When Leibniz did come to write the Theodicy more than a decade later, the binary-creation analogy was not 

mentioned. The Theodicy was published in 1710. See Leibniz (1985). 

http://www.leibniz-translations.com/theodicaea.htm
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 To see what Bouvet saw, and thus to understand his hypothesis, we need to consider 

the hexagram-sequence he sent to Leibniz. This is the so-called “Fuxi sequence,” named after 

the mythical Chinese philosopher-emperor traditionally believed to be the author of the 

Yijing. The first sixteen hexagrams of the Fuxi sequence are: 

 

䷁ ䷖ ䷇ ䷓ ䷏ ䷢ ䷬ ䷋ ䷎ ䷳ ䷦ ䷴ ䷽ ䷷ ䷞ ䷠ 
 

Let’s start with the component lines of each hexagram. Bouvet equated—albeit without 

justification—the broken line with 0 and the unbroken line with 1. If we replace the lines 

with binary digits in the way Bouvet suggested, the hexagrams are converted thus: 

 

0
0

0
0

0
0
 

0
0

0
0

0
1
 

0
0

0
0

1
0
 

0
0

0
0

1
1
 

0
0

0
1

0
0
 

0
0

0
1

0
1
 

0
0

0
1

1
0
 

0
0

0
1

1
1
 

0
0

1
0

0
0
 

0
0

1
0

0
1
 

0
0

1
0

1
0
 

0
0

1
0

1
1
 

0
0

1
1

0
0
 

0
0

1
1

0
1
 

0
0

1
1

1
0
 

0
0

1
1

1
1
 

 

Rotating the digits 90º clockwise gives us the decimal numbers 0–15 in binary notation. From 

this it is clear that Bouvet read each hexagram from the bottom line upward, such that he took 

the bottom line to represent the leftmost digit (32’s place) of a six-digit number in binary, the 

next line up to represent the leftmost-but-one digit (16’s place) and so on, such that the 

hexagram ䷬ would be equivalent to 000110 in binary (6 in decimal). 

 Various problems have been noted both with Bouvet’s approach to reading the 

hexagrams and with his hypothesis more broadly (see Zacher 1973, 112; Zhonglian 2000; 

Swetz 2003, 288–289; Sypniewski 2005). Here it will be sufficient to mention just one, 

namely that the sequence of hexagrams upon which Bouvet based his hypothesis—the so-

called “Fuxi sequence”—is a relatively modern rearrangement (by the eleventh century 

philosopher Shao Yong) of a much older and more traditional sequence, namely the King 

Wen sequence. Bouvet neglected to mention this to Leibniz, though as a long-time student of 

the Yijing, he would at least have been aware of the King Wen sequence. Bouvet’s omission 

is problematic because while the arrangement of hexagrams in the Fuxi sequence may 

support the idea that the hexagrams were intended as a binary number system, that of the 

King Wen sequence does not. The first sixteen hexagrams of the King Wen sequence are: 

 

䷀ ䷁   ䷂ ䷃   ䷄ ䷅   ䷆ ䷇   ䷈ ䷉   ䷊ ䷋   ䷌ ䷍   ䷎ ䷏ 
 

Here, there is no prospect of seeing an orderly sequence of numbers expressed in binary. If 

we again take an unbroken line to be 1 and an unbroken line to be 0, and thus treat each 

hexagram as representing a number expressed in binary, the order of numbers in the King 

Wen sequence would be 63, 0, 34, 17, 58, 23, 16, 2, 59, 55, 56, 7, 47, 61, 8, and 4. Little 

wonder that Leibniz, seduced by Bouvet’s hypothesis of a correlation with binary arithmetic, 

concluded that the King Wen sequence—which he had seen in a Latin book about Confucius 

(namely Intorcetta  et al 1689, xliv)—was a scrambling of the true order (Strickland and 

Lewis 2022, 187).
19

 

 Leibniz was so intoxicated by the idea of his binary system being the key to 

deciphering an ancient Chinese enigma that he related Bouvet’s hypothesis to many of his 

                                                 
19

 There are other sequences of hexagrams apart from the two mentioned already, such as the Eight Palaces 

sequence, which predates the Fuxi sequence. These sequences have elicited many studies of their structure, 

interrelation, and history, though such matters are outside of the scope of this chapter. 
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correspondents, even informing Pope Clement XI (see A I 23, 353). Bouvet’s hypothesis also 

prompted Leibniz to go public with the binary system at long last. Days after receiving 

Bouvet’s letter, Leibniz wrote a short paper, “Explanation of Binary Arithmetic,” in which he 

outlined binary numeration and arithmetic as well as Bouvet’s hypothesis (Strickland and 

Lewis 2022, 195–197).
20

 The paper was read at the Académie Royale des Sciences in Paris, 

and published in its annual periodical for 1703 (though the volume did not appear until 1705). 

This paper was the only one of Leibniz’s hundreds of writings on binary to be published in 

his lifetime. 

 

7. Sedecimal 

Leibniz’s “Explanation of binary arithmetic” is also notable for containing the first published 

reference to base 16, though this is often overlooked. Leibniz’s experiments with base 16 in 

fact began in 1679, giving him clear priority over the English schoolmaster Thomas Wright 

Hill (1763–1851) and the Swedish-American engineer John Nystrom (1825–1885), both of 

whom independently reinvented it in the nineteenth century (see Hill 1850, Nystrom 1862, 

1863).
21

 Initially, Leibniz’s term for base 16 was “sedecimal,” though on occasion he called it 

“sedenary” (the former means “sixteen,” the latter “sixteen-fold,” or “in sixteens”). He 

devised no fewer than six different forms of notation for sedecimal. In his first writing on the 

subject (Strickland and Lewis 2022, 64–68), he used the Roman letters m, n, p, q, r, and s for 

the six extra digits, before abandoning them in favour of the six Aretinian syllables ut, re, mi, 

fa, sol, and la, abbreviated to u, r, m, f, s, and ℓ. By combining these syllables with the 

German words for numbers, he created an entirely new set of terms for values expressed in 

sedecimal. For example, “utzwanzig,” a combination of the syllable “ut,” standing for 10, and 

the German word “zwanzig,” which traditionally meant 20 but was repurposed by Leibniz to 

stand for 32, was Leibniz’s term for the decimal number 42 expressed sedecimally. 

 Leibniz’s later experiments with sedecimal notation were more elaborate. In one 

manuscript, he stacked dots and dashes, using a dot for each 0 bit and a dash for each 1 bit, 

with the most significant bit at the top and the least significant bit at the bottom: 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

• – – 

• 

– 

– 

– 

• 

• 

– 

• 

– 

– 

– 

• 

– 

– 

– 

– 

• 

• 

• 

– 

• 

• 

– 

– 

• 

– 

• 

– 

• 

– 

– 

– 

– 

• 

• 

– 

– 

• 

– 

– 

– 

– 

• 

– 

– 

– 

– 

– • 

(Strickland and Lewis 2022, 70) 

 

A further set of novel sedecimal digits were scrawled on the back of an envelope c.1682. This 

time he starts with a concave-up semicircle to denote 0, a concave-down semi-circle to 

denote 1, and then modifies these characters to create the remaining digits: 

 

                                                 
20

 For more information on Bouvet’s hypothesis and Leibniz’s reaction thereto, see Kempe (2022, 141–174). 
21

 For more information about the history of base 16, and Leibniz’s place therein, see Strickland and Jones 

(2023). 
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(Strickland and Lewis 2022, 78) 

 

The accompanying descriptions (or instructions) indicate that Leibniz based each digit on 

Roman letters, either single or joined-up, with some of them being “bicaudate,” that is, 

extended by a tail on either side, and others “antecaudate,” that is, extended by a tail on the 

left-hand side alone. 

Almost twenty years later, Leibniz devised yet another form of sedecimal notation, 

with the characters loosely based on the Roman letters i, u, and w, some extended with one or 

two right-hand tails: 

 

0  8  
1  9  
2  10  
3  11  
4  12  
5  13  
6  14  
7  15  

(Strickland and Lewis 2022, 130) 

 

Leibniz’s sixth and final form of notation for sedecimal appears in a manuscript featuring a 

table of decimal numbers 0–40 represented in every base from 2 to 16 (LH 35, 3 B 11 Bl. 

11v). Here Leibniz uses the Arabic numerals 0–9 and lower-case Roman letters a, b, c, d, e, 

and f for the six extra digits, anticipating the modern convention, which employs the same six 

letters, usually in upper-case. 

 Shortly after having invented base 16, Leibniz arrived at the view that while binary is 

for theory, sedecimal is for practice (Strickland and Lewis 2022, 70). Thereafter, he 

occasionally suggested that sedecimal would be the ideal choice if practice were to be 

changed. To justify this, he used what may be termed an argument from economy, namely 

that as values expressed in sedecimal are shorter than those expressed in decimal, sedecimal 

is more convenient. The argument is illustrated only in his very first writing on sedecimal, 

where he converts the decimal number 1679 (representing the date of writing) into the 

sedecimal number 68ℓ (equivalent to 68F in modern notation), leading him to conclude: 

“From this it is apparent that sedecimal expressions are much shorter” (Strickland and Lewis 

2022, 64). Subsequent conversions, such as 10000 to 271016 and 100000 to 186u016, secure 

the point that sedecimal expressions tend to be shorter than decimal, though Leibniz’s 

conclusion that they are “much shorter” is difficult to draw from the examples he gave, each 

of which compact the expression by a single digit.
22

 Nevertheless, he continued to use the 

argument from economy to support the practical advantage of sedecimal, most notably in his 

published essay “Explanation of Binary Arithmetic,” where he noted in passing that decimal 

                                                 
22

 The same conversion of 100000 to 186u016 is also found in a contemporaneous text: LH 35, 8, 30 Bl. 148r. 
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has an advantage over binary because its numbers are not as long, but “if we were 

accustomed to proceed by twelves or sixteens, there would be even more benefit” (Strickland 

and Lewis 2022, 196). Hill and Nystrom, later advocates of base 16, also used the argument 

from economy, but both believed the chief advantage of base 16 lay in the fact that 16 

allowed for more convenient bisections of the sort that were routinely required in shops and 

trade, an argument Leibniz himself did not articulate (though he could not have been unaware 

of it, since in the passage from “Thesaurus mathematicus” quoted in section 2 above, he 

noted that an advantage of duodecimal is that it allows for divisions by 2, 3, 4, and 6). 

Moreover, while these later advocates of base 16 envisaged and argued for a wholesale 

switch away from decimal, with weights, measures, coinage and (in the case of Nystrom) 

even the day and the year being divided into 16 units, Leibniz’s own preference for sedecimal 

did not extend beyond wistful thinking about reforming “practice” without indicating how far 

this should go. Consequently his advocacy of base 16 was neither forthright nor vociferous, 

as Hill and Nystrom’s would be, and Leibniz conceded that since decimal was so widely 

accepted, we should be satisfied with it (Strickland and Lewis 2022, 85). 

 

8. Other Nondecimal Number Systems 

Leibniz’s flirtation with sedecimal shows that his engagement with nondecimal number 

systems was not exhausted by binary, even if that was his predominant focus. But in contrast 

to his writings on binary, Leibniz’s writings on other nondecimal systems are occasional, 

scattered, and unsystematic. I have already mentioned Leibniz’s 1703 sketch of table of 

decimal numbers 0–40 represented in every base from 2–16 (LH 35, 3 B 11 Bl. 11v). The 

table may have been intended as a ready reckoner of sorts, and no doubt came in useful as 

such when in the same year he sought to apply his formulation of Fermat’s little theorem, 2
n–1

 

– 1, in various other number bases, such as the septenary, octonary, and nonary (LH 35, 3 B 

11 Bl. 9–10). However, such ventures outside of decimal and binary were rare, and aside 

from binary (and to a lesser extent, sedecimal), most of Leibniz’s other references to 

nondecimal number systems were to bases 4 and 12. 

References to base 4 start to appear in Leibniz’s writings from 1683 when he read 

Weigel’s Tetractyn. Leibniz made brief reading notes on Weigel’s book; these consist mostly 

of verbatim reproductions of Weigel’s reasons for thinking four the most natural base, but 

conclude with a cryptic assessment that refers to bases 2, 3 and 8: “I think the binary is best 

absolutely, the ternary in planes, and the octonary in solids” (A VI 4, 1163). In critical 

reading notes on another of Weigel’s books in which the quaternary system is outlined, 

Leibniz offers this assessment: 

 

As far as quaternary arithmetic is concerned, I think that if anything were to be 

changed in practice, it would be to use the duodecimal or sedecimal instead of the 

decimal, for the larger the numbers used by a progression, the more convenient the 

calculation... As for theory and the discovery of extraordinary truths in arithmetic, 

which may likewise be very useful for practice, I think that not only should the 

quaternary be preferred to the decimal, but also that preferable to the quaternary in 

turn is the binary, which is the most perfect of all, nor does it suppose anything but 

instead completely resolves numbers. (Strickland and Lewis 2022, 85) 

 

This is as close as Leibniz came to a comparison of the relative merits of the binary and 

quaternary systems. Thereafter, he often mentioned Weigel’s advocacy of base 4, but 

invariably in passing when writing about binary (see for example Zacher 1973, 353; 

Strickland and Lewis 2022, 110). It would be fair to say that he had little interest in the 
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quaternary system itself, opting to mention it only as a pretext for discussing and extolling the 

merits of binary. 

 To some extent the same is true of the duodecimal system which, like Weigel’s 

quaternary, is often mentioned in passing in the preamble when Leibniz outlines binary to a 

correspondent for the first time (see for example Zacher 1973, 353; Strickland and Lewis 

2022, 110). However, Leibniz’s engagement with duodecimal goes back further and is 

occasionally deeper. The earliest mention of duodecimal in Leibniz’s writings is in a preface 

he wrote in 1670 to an edition of the writings of the Italian humanist Marius Nizolius (1498–

1576). There he considers the view of those who would have it that truth depends upon the 

definitions of terms, and definitions of terms in turn upon the human mind (in other words, 

that truth is arbitrary). To this, Leibniz (1969, 128) responds: “In arithmetic, and in other 

disciplines as well, truths remain the same even if notations are changed, and it does not 

matter whether a decimal or a duodecimal number system is used.” Unfortunately, Leibniz 

does not reveal where he had learned about duodecimal, though his use of it suggests he 

thought it was sufficiently well known that educated readers would be able to understand his 

argument. 

 Other early writings hint at explorations of duodecimal. In a manuscript written 

around 1678, Leibniz noted that if the duodecimal system were used, the arithmetic checking 

method known as casting out nines “could become the proof by casting out elevens” (LH 35, 

4, 13 Bl. 21). In the spring of 1680, Leibniz met the Dutch mathematician Johann Jakob 

Ferguson (1630–1706), and must have mentioned both binary and duodecimal to him, as in 

the scratch paper upon which both recorded their ideas, Leibniz wrote out a table showing the 

values of the decimal numbers 0–8 in binary, and a set of duodecimal digits, with the two 

extra digits given as ~ and  (A III 3, 137). (In passing it should be noted that on the same 

scratch paper Leibniz also worked out 
 

 
 in base 11: “

 

 
 = 

            

         
”; A III 3, 138). And in 

August of 1680, Leibniz noted: “It is well known that all fractions can be expressed by an 

infinite sequence of integers of a certain progression, for example, the decimal, or even the 

duodecimal, or the one I prefer overall, the binary” (LH 35, 13, 3 Bl. 33). The remainder of 

this manuscript is concerned with binary fractions, but given the confidence of his remark 

here, it is likely that he had already undertaken some investigation of duodecimal fractions. If 

he had, his work on that remains to be discovered. 

 Leibniz often claimed that some people had preferred duodecimal to decimal, but it is 

not certain who he had in mind. In a manuscript from 1712, he claimed that a proponent of 

duodecimal had been identified by the German mathematician Daniel Schwenter (1585–

1636): “In the German Deliciae mathematicae , someone is reported to have given preference 

to the duodecimal progression, in which eleven digits will be needed, namely 0, 1, 2, 3, 4, 5, 

6, 7, 8, 9, δ, ε, where δ is 10 and ε is 11” (LBr 705 Bl. 93r).
23

 Having identified an unnamed  

proponent of duodecimal, Leibniz proceeds to describe algorithms for converting decimal 

numbers into duodecimal: 

 

Lay out the twelvefolds: 1, 12, 144, 1728, 20736 etc. Now, the aforementioned 

number, 1712,
24

 is to be expressed duodecimally. The largest of the twelvefolds lower 

than 1712 itself, namely 144, is subtracted as many times as possible, that is, it [i.e. 

the number 1712] is divided by 144; the quotient will be 11, or ε. The remainder is 

                                                 
23

 Leibniz is probably thinking of Schwenter’s Deliciae physico-mathematicae [The Charms of Physico-

Mathematics] of 1636, which was posthumously revised and expanded by Georg Philipp Harsdörffer (1607–

1658) in 1651 and again in 1653. However, as far as I have been able to tell, in none of those works is there any 

mention of duodecimal, let alone any report of anyone endorsing it. 
24

 Leibniz actually wrote “1728” but this is clearly a mistake as his example uses 1712. 
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128, and that is divided by the next lowest twelvefold, 12, and the quotient will be 11 

with a remainder of 6. And 1712 will be εε6 = 6 + ε ×12 + ε. However, if anyone 

wants to accomplish this without the list of twelvefolds, divide the number 1712 by 

12, then divide the quotient, 142, by 12; the quotient, 11, cannot likewise be divided 

by 12, therefore the largest twelvefold is 12 × 12 or 144, by which 1712 is divided to 

produce 11 with a remainder of 128. Divide this [remainder] in turn by 12 to produce 

11 with a remainder of 6. This [remainder] cannot be divided by 12, therefore 1712 = 

6 + 11 × 12 + 11 × 144 = εε6 (LBr 705 Bl. 93r).
25

 

 

This passage represents Leibniz’s deepest engagement with duodecimal aside from a single 

manuscript exclusively devoted to it, probably written in 1695 (LH 35, 12 1 Bl. 

40r/Strickland 2022). That manuscript begins with the observation that, in the decimal 

system, the digital root (that is, the digit sum) of multiples of nine is always nine, e.g. 9 × 3 = 

27, and 2 + 7 = 9. Leibniz then generalizes this to any number base, or “progression,” 

supposing that for any base n, the digital root of multiples of n – 1 is always n – 1. He 

illustrates this in duodecimal, showing that the digital root of any multiple of 11 is always 11, 

or rather, since he here uses the Greek letters χ and φ for 10 and 11 respectively, any multiple 

of φ is always φ. To secure the point, Leibniz draws a large table of duodecimal numbers in 

which his “new notation” for duodecimal is shown alongside the “old meaning” (i.e. the 

decimal equivalents). 

 

9. Conclusion 
The depth as well as the breadth of Leibniz’s explorations of nondecimal number systems is 

quite remarkable in itself, and even more so against the backdrop of a widespread lack of 

interest in—and awareness of—such systems among the mathematicians of his time. This 

backdrop no doubt contributed to Leibniz’s unwillingness to go public with many of the ideas 

discussed in this chapter, most of which were groundbreaking at the time. However, it is 

worth noting that he saw fit to publish only a tiny fraction of what he wrote in any field; his 

writings on nondecimal number systems were no exception in that regard. 

 Leibniz never gave up his hope that binary would help unlock the innermost secrets of 

numbers. Success eluded his efforts. Yet while he cleaved fast to the belief that binary would 

eventually prove to be an invaluable tool for number-theoretic investigations, he did not 

dismiss the possibility of practical applications 

altogether. Indeed, in 1716, the last year of his 

life, he hit upon an innovative application of 

binary that has remained unknown till now. In a 

single-page manuscript (LBr 916 Bl. 44r), 

Leibniz sketched out a plan for a tactile clock 

based on binary reckoning that would enable 

one to tell the time at night. His illustration 

shows a single hour hand that moves around the 

clock face. Between each numeral and the 

centre is a row of four points, each of which is 

either hollow (represented by an empty circle) 

or bumpy (represented by a filled circle). 

Hollow points denote 0, and bumpy points 

denote 1 if they occur in the first position, 2 in 

                                                 
25

 After this example, Leibniz turned to the quaternary system, efficiently sketching out the steps required to 

convert the decimal value 1712 to 1223004 (LBr 705 Bl. 93r). He then did the same with binary, before turning 

to the periodicity of columns in binary. 
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the second, 4 in the third, and 8 in the fourth, with positions being counted from the centre 

outwards to the edge. The idea is that you feel for where the hand points, then trace your 

finger from the tip of the hour hand down towards the centre and then further down along the 

same line until you encounter a row of four points, which are then read by touch. Hence in 

the diagram, a is 0, b is 0, c is 1, and d is 1, and since c and d are in the third and fourth 

positions, they denote 4 and 8 respectively. Add them together, and one knows that the time 

is 12 o’ clock. 

A casual glance at the clock face will reveal a mismatch between numerals and binary 

representations, as the row of holes and bumps leading from each numeral to the centre 

contains the binary representation not of that numeral, but of the one on the opposite side of 

the clock (e.g. the row between the numeral 7 and the centre is ooowhich is the binary 

representation for 1, and vice versa). The reason for this, of course, is that the clock face isn’t 

meant to be seen, only touched—the row of dots one reads is the one directly opposite where 

the hour hand happens to be pointing, not the one that would be underneath the hand (which 

wouldn’t be accessible to touch anyway, because the hour hand would be over it). 

 Leibniz’s tactile clock is as simple as it is ingenious, and the idea is all the more 

remarkable because it precedes the cognate inventions of night writing and Braille by more 

than a century.
26

 In the manuscript, Leibniz says nothing about the clock’s mechanism, but 

this would have been easy enough for a horologer of the day to construct.
27

 Yet Leibniz 

appears not to have commissioned the clock, despite its potential to benefit not just those in 

ill-lit rooms at night but also the blind and visually impaired. Accordingly, his tactile binary 

clock is much like the majority of his other ideas about binary and other nondecimal number 

systems, in that it was destined only for the admiration of future generations rather than the 

benefit of his own. 
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 For further details of Leibniz's tactile binary clock, and an English translation of the manuscript, see 

Strickland (2023b). 
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 Leibniz himself had devised a spring-driven pocket watch in the mid-1670s, and continued to improve it even 

four decades later; see Leibniz 1675, and LH 38 Bl. 274–275. 
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