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Abstract

How do we ascribe subjective probability? In decision theory, this

question is often addressed by representation theorems, going back to

Ramsey (1926), which tell us how to define or measure subjective prob-

ability by observable preferences. However, standard representation

theorems make strong rationality assumptions, in particular expected

utility maximization. How do we ascribe subjective probability to

agents which do not satisfy these strong rationality assumptions? I

present a representation theorem with weak rationality assumptions

which can be used to define or measure subjective probability for

partly irrational agents.

1 Introduction

In philosophy, psychology and economics, we often ascribe subjective proba-

bility or credence to people. For example, we might say that Ann’s subjective

probability that it will rain tomorrow is .3. What is the basis for such as-

criptions of subjective probability?

If we want to find out Ann’s subjective probability that it will rain to-

morrow, one natural idea is to look at which bets Ann is willing to accept.

If I offer Ann a bet which pays one dollar if it rains tomorrow, how much is
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this bet worth to her? There is a long tradition in decision theory inspired

by this idea, going back to Ramsey (1926). In this tradition, we assume that

an agent satisfies certain principles of rationality and then define or measure

subjective probability in terms of preferences.1

But what if Ann does not satisfy the rationality assumptions required by

Ramsey? Ramsey assumes that the agent under consideration is an expected

utility maximizer and there are good reasons to doubt that real-life agents

maximize expected utility. Now perhaps this means that real-life agents

do not have any subjective probabilities or that we cannot measure them.

However, there is an alternative option: we can provide decision-theoretic

foundations for subjective probability with weaker rationality assumptions.

I introduce a representation theorem building on Savage (1972) and Krantz

et al. (1971) which connects subjective probability to preference with much

weaker rationality assumptions than standard representation theorems. In

particular, I allow agents to not maximize expected utility, to violate stochas-

tic dominance and to consider most options incomparable. The key idea is

to start with comparative probability judgments and to construct a unique

probability function which represents these comparative judgments. My rep-

resentation theorem has important philosophical upshots: it makes sense of

how we can ascribe precise subjective probability to partly irrational agents

and how decision theory can provide useful advice.

As suggested above, there are two ways of understanding the project

of grounding ascriptions of subjective probability in preferences. First, one

might attempt to define subjective probability in terms of preference. On

this view, to say that Ann’s subjective probability that it will rain tomorrow

is .3 just means that Ann is willing to accept certain bets. So ascriptions of

subjective probability are a ‘representational device’ to talk about something

more fundamental: Ann’s preferences. Let us call this view constructivism.

Second, one might think that while subjective probability is not reducible to

preference, we can measure subjective probability by observable preferences.

1Buchak (2017) calls this ‘interpretative decision theory’: we use decision-theoretic
principles to interpret an agent’s mental states in a process of ‘radical interpretation’
(Davidson 1973; Lewis 1974).
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Call this view realism. I will mostly remain neutral between constructivism

and realism. Like Ramsey’s approach, my representation theorem can be

interpreted as defining or measuring subjective probability in terms of pref-

erence. However, I will later suggest that the theorem naturally fits with

an intermediate position between constructivism and realism: comparative

probability is psychologically real but numerical probability functions are

merely ‘representational devices’ for talking about comparative probability.

Here is the plan. I start by introducing some terminology (2) and ex-

plain Ramsey’s method for measuring subjective probability (3). I discuss

some problems for Ramsey’s method (4). I introduce better foundations

for subjective probability (5) and explain how they overcome the problems

for Ramsey’s method (6). I finish by sketching two ideas suggested by the

representation theorem (7): the view that comparative probability is more

fundamental than numerical probability and a subjectivist version of the

classical interpretation of probability.

2 Set-up

We have a set Ω of states which describe the world apart from our agent’s

preferences and a σ-algebra F of subsets of Ω which are called events.2 For

any X ∈ F , we denote the relative complement of X in Ω by XC . We have

a set O of outcomes which contain everything our agent cares about.

Following Savage (1972), acts are functions from states to outcomes. An

act is finite-valued iff it only takes finitely many different outcomes. Our act

space A is the set of all finite-valued acts. This means that we can write

each act f ∈ A as {o1, E1; ...; on, En}, where events E1, ...., En are pairwise

disjoint sets and their union is Ω and for each Ei with 1 ≤ i ≤ n, oi is the

unique outcome oi ∈ O such that f(ω) = oi for all ω ∈ Ei.

I write ‘%’ for our agent’s preference ordering over acts, a binary relation

on A . The intended interpretation of f % g is that our agent weakly prefers

f to g. Strict preference (�) and indifference (∼) are defined in the usual

2A σ-algebra on Ω is a set of subsets of Ω which contains Ω and is closed under
complementation and countable unions.
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way.3 For each outcome o ∈ O, the constant act yielding o, written o, is the

act which assigns o to all ω ∈ Ω. I define, for any o, o′ ∈ O, o % o′ iff o % o′.

I use the term ‘option’ to talk about both acts and outcomes.

3 Ramsey’s Method

Ramsey (1926) proposes axioms on preferences which imply that our agent

is representable as expected utility maximizer.4 This means that there is

some probability function and utility function such that our agent always

prefers acts with higher expected utility.5 Ramsey then gives us a way to

construct or infer our agent’s utility function without already knowing our

agent’s probability function.

Once we have the utility function, Ramsey pins down the subjective

probability of any event E ∈ F as follows. First, we find three outcomes

b,m,w ∈ O (best, medium and worst) such that our agent strictly prefers

b over w and is indifferent between getting m for certain and a bet which

yields b if E happens and w otherwise:

b � w, (1)

m ∼ {b, E;w,EC}. (2)

Then we use the assumption that our agent maximizes expected utility to

infer that p(E) = u(m)−u(w)
u(b)−u(w)

.6 So for Ramsey, subjective probabilities are

betting odds. Since event E was arbitrary, we can use Ramsey’s method

to uniquely pin down the subjective probability of all events. Depending

3So f � g ⇐⇒ (f % g) ∧ ¬(g % f) and f ∼ g ⇐⇒ (f % g) ∧ (g % f).
4Jeffrey (1990, ch. 3) and Bradley (2004) reconstruct Ramsey’s reasoning. Ramsey

originally used a different framework which does not distinguish states and outcomes,
while I am reconstructing Ramsey’s reasoning in terms of the Savage framework.

5Relative to probability function p : F → [0, 1] and utility function u : O → R, the
expected utility of act f = {o1, E1; ....; on, En} is Eu,p(f) =

∑n
i=1 p(Ei)u(oi).

6Proof: since our agent maximizes expected utility, (1) and (2) entail that u(m) =
u(w) + p(E)(u(b) − u(w)). Therefore, u(m) − u(w) = p(E)(u(b) − u(w)), so p(E) =
u(m)−u(w)
u(b)−u(w) . The utility function is unique up to positive affine transformation so p(E) is

unique.
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on whether we accept constructivism or realism, we can think of this as a

definition of subjective probability in terms of preferences or as a way to

measure subjective probability by preferences.

Ramsey had a lasting influence on decision theory.7 Savage (1972) also

lays down axioms on the preference relation and proves a representation

theorem which shows that any agent obeying these axioms can be represented

as expected utility maximizer with a unique probability function. Many

of the problems for Ramsey’s approach I will discuss below generalize to

Savage’s representation theorem. However, as we will see later, the work of

Savage holds key insights for an alternative approach to measure subjective

probability.8

4 Problems for Ramsey

I now turn to explain why Ramsey’s method is not an adequate foundation

for subjective probability.

4.1 Strong Rationality Assumptions

Ramsey assumes that the agent under consideration is an expected utility

maximizer. However, there are good reasons to think that real-life agents are

not expected utility maximizers. Suppose you only care about money and

choose between the following two lotteries:9

1. One million dollars for certain.

2. 89 % chance of winning one million dollars, 10 % chance of winning

five million dollars, 1 % chance of winning nothing.

7Fishburn (1981) provides a great survey of decision theory after Ramsey. Misak (2020)
places Ramsey’s work in its broader intellectual context.

8Jeffrey (1990) develops a different framework for decision theory in which states, acts
and outcomes are all propositions. However, Jeffrey’s axioms do not pin down a unique
probability function.

9A lottery is a probability distribution over outcomes and can be realized by multiple
acts.
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You also choose between the following two lotteries:

3. 89 % chance of winning nothing, 11 % chance of winning one million

dollars.

4. 90 % chance of winning nothing, 10 % chance of winning five million

dollars.

If you strictly prefer (1) over (2) and (4) over (3), your preferences are

incompatible with expected utility maximization (Allais 1953).10 However,

real-life agents sometimes exhibit this pattern of preferences (Oliver 2003).

My point here is not that this pattern of preferences is rationally permissible,

as argued by Buchak (2013). Rather, my point is that real-life agents ap-

parently have such ‘Allais-preferences’. Therefore, we cannot use Ramsey’s

method to define or measure their subjective probabilities. However, it still

seems like such agents have subjective probabilities—after all, they are pre-

sumably using their subjective probabilities to reason that (1) is better than

(2) and (4) is better than (3). So Ramsey’s method is not a good foundation

for subjective probability. To make this vivid, imagine you find out that Ann

has the preferences described above. Should you conclude that Ann cannot

have any subjective probabilities or that there is no way for us to find out

what these probabilities are? I think not.

People also sometimes choose stochastically dominated options. Option A

stochastically dominates option B if for every outcome o ∈ O, the probability

that A yields an outcome weakly preferred to o is greater than or equal to the

probability that B yields an outcome weakly preferred to o. It is generally

agreed that you should:

Respect Stochastic Dominance. If f stochastically dominates

g, then f % g.

10If you strictly prefer (4) over (3), .1u($5 Million) > .11u($1 Million). So, adding
the same term on both sides, .1u($5 Million) + .89u($1 Million) > .11u($1 Million) +
.89u($1 Million), which means that .1u($5 Million) + .89u($1 Million) > u($1 Million).
But if you strictly prefer (1) over (2), u($1 Million) > .89u($1 Million) + .1u($5 Million).
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This principle follows from many normative decision theories, such as

expected utility theory, risk-weighted expected utility and others.11 However,

empirical studies show that people sometimes violate this principle. Consider

the following two lotteries:

5. 5% chance of $12, 5% chance of $14, 90% chance of $96.

6. 10% chance of $12, 5% chance of $90, 85% chance of $96.

It is not hard to see that (5) stochastically dominates (6).12 Nonethe-

less, in a study reported by Birnbaum and Navarrete (1998), most subjects

chose (6) over (5). This is presumably because they rely on quick but imper-

fect heuristics in their decision making. Again, my claim is not that these

preferences are rational but only that real-life agents have such preferences.

Therefore, we cannot use Ramsey’s method to define or measure their subjec-

tive probabilities. But again, while it might be irrational to have preferences

which violate stochastic dominance, such preferences do not seem to preclude

agents from having subjective probabilities.

Finally, people sometimes regard options as incomparable in value. Con-

sider, for example, the choice between a career as a doctor and a career as

a rock star. Both career choices can lead to a fulfilling and valuable life.

However, what makes them valuable is radically different. It is difficult to

see how one could compare the two options. Someone could reasonably think

that one is not better than the other but neither are they exactly equally

good (Chang 2002).

Incomparability arises both at the level of outcomes and acts. It is natural

to understand the career choice example in terms of incomparable outcomes.

In contrast, a second kind of incomparability might arise because it is too dif-

ficult to compare acts even if all of their outcomes are comparable. Suppose,

for example, that you like more money rather than less. When faced with

11Buchak (2013) and Tarsney (2020) defend stochastic dominance. Bader (2018) points
out the wide applicability of stochastic dominance reasoning even if outcomes are incom-
parable. Russell (forthcoming) discusses some problems arising in such a setting.

12Both lotteries are sure to pay at least $12. The probability of winning at least $14 is
95% in (5) and 90% in (6). The probability of winning at least $90 is 90% in (5) and (6).
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a choice between two complicated investment portfolios, you might nonethe-

less not have any preference between them because it is too difficult for you

to reason about the decision problem. Again, my claim is not that incom-

parability is rational, but merely that real-life agents sometimes have such

preferences.13

Expected utility theory has no room for incomparability. This is because

your utility function assigns a real number to each outcome and so renders

all outcomes comparable. Each act is ranked by its expected utility so all

acts are comparable as well. Since real-life agents sometimes regard both

outcomes and acts as incomparable, their preferences cannot be represented

as expected utility maximization. However, it is not plausible that incompa-

rability precludes agents from having subjective probabilities.

Here is the upshot. There are good reasons to think that real-life agents

are not expected utility maximizers. Therefore, we cannot use Ramsey’s

method to define or measure their subjective probabilities. Some might take

this as reason to embrace a kind of nihilism: such agents do not have sub-

jective probabilities or there is no way to measure what they are. A better

response is to provide foundations for subjective probability which apply even

to agents which fail to maximize expected utility, do not respect stochastic

dominance and consider some options incomparable. One might still think

that we should model the beliefs of real-life agents by something other than

precise probability functions. However, we can make room for irrational

preferences without giving up decision-theoretic foundations for precise sub-

jective probability.

4.2 No Useful Advice

The standard decision-theoretic advice is to maximize expected utility rel-

ative to your subjective probability function and utility function. For this

13Many have defended the stronger claim that incomparability can be rational. Joyce
(1999, p. 102) writes that ‘a decision maker can be perfectly rational even when her
preferences do not satisfy the completeness axiom’. Aumann (1962, p. 446) writes that ‘[o]f
all the axioms of utility theory, the completeness axiom is perhaps the most questionable’.
Similar points are made by Hare (2010), Bales, Cohen, and Handfield (2014), Schoenfield
(2014), Bader (2018), and Sen (2018).
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advice to be useful, we first need to figure out what your probability func-

tion is.14 However, if we define or measure your probability function on the

assumption that you maximize expected utility, the advice to maximize ex-

pected utility can never be useful. Therefore, decision theory cannot play

the role of giving useful advice.15

This puzzle arises on both constructivism and realism. For construc-

tivists, your probability function is defined in terms of preferences which

satisfy certain axioms. If you violate the axioms, you simply do not have a

probability function and the advice to maximize expected utility is meaning-

less. For realists, you might still have a probability function if you violate

the axioms. However, standard representation theorems give us no way to

infer what this probability function is, so we cannot use decision theory to

give useful advice.16

One reaction to this problem is to say that the only advice decision theory

provides is: ‘obey the axioms!’. On this view, decision theory is merely a

theory of consistency (Dreier 1996; Okasha 2016). While I have no knock-

down objection to this position, it is unattractive because it makes decision

theory largely irrelevant to non-ideal agents like us who are pretty much

guaranteed to violate some normative principle of decision making. It would

be better if we could make sense of how decision theory can provide useful

advice to partly irrational agents. As I will show, we can indeed make sense

of this, which considerably weakens the plausibility of this response.

14The same point applies to the utility function but I focus on subjective probability.
15Resnik (1987, p. 99) writes, about representation theorems in decision theory: ‘the

theorem can be applied only to those agents with a sufficiently rich preference structure;
and if they have such a structure, they will not need utility theory—because they will
already prefer what it would advise them to prefer’. Meacham and Weisberg (2011) and
Easwaran (2014) deploy similar arguments. Beck and Jahn (2021) also discuss the question
of how decision-theoretic models can provide useful advice.

16This puzzle also arises for non-standard decision theories such as risk-weighted ex-
pected utility theory (Buchak 2013) and weighted-linear utility theory (Bottomley and
Williamson forthcoming). On these theories, we also need an independent grasp on your
subjective probability function, your utility function and possibly other functions like your
risk function in order for the theory to provide useful advice.
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4.3 Dependence on Utility

Ramsey defines subjective probability as ratio of utilities. This requires a

very rich space of outcomes. For Ramsey, outcomes must allow for continuous

gradations of value.17 However, it seems like agents can have subjective

probabilities while not making such fine-grained distinctions of value. We

could even imagine agents who do not have a utility function at all but

merely an ordinal ranking of outcomes. For example, we can imagine an

agent which only distinguishes between two outcomes, GOOD and BAD.

Ramsey must deny that such an agent could have subjective probabilities or

that we can find out what they are. This seems implausible.

More broadly, Ramsey’s approach gives utility a certain kind of priority

over subjective probability. But you might think that subjective probabil-

ity is conceptually independent of utility. It would be great to disentangle

the assumptions needed to measure subjective probability from strong as-

sumptions about the structure of value, for example that the value of all

outcomes is comparable and that value can be measured by a real-valued

utility function. Such assumptions about value have seemed implausible to

many philosophers and it would be great to have foundations for subjective

probability which do not rely on them.

5 Better Foundations

We can provide better foundations for subjective probability. I introduce

and explain a representation theorem building on Savage (1972) and Krantz

et al. (1971) which yields a unique probability function representing our

agent’s beliefs on weak rationality assumptions. The key idea is to start

with comparative probability judgments and to construct a unique probability

function which represents these comparative judgments.

17For example, Fishburn (1981, p. 152) writes that in Ramsey’s approach, the set of
outcomes ‘must be infinite and give arbitrarily fine gradations in utility’.
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5.1 Comparative Probability

What does it mean to think that one event is more probable than another?

Savage (1972) proposes to define comparative probability judgments in terms

of certain kinds of preferences. Suppose our agent strictly prefers outcome b

over outcome w. Now the intuition is that our agent prefers the better prize

on the more probable event. So if our agent prefers the act {b,X;w,XC}
over {b, Y ;w, Y C}, this means that our agent believes that event X is at

least as likely as event Y , written X < Y . So we can use acts of the form

{b,X;w,XC}, where b � w, to define or infer our agent’s comparative prob-

ability judgments. Let us call these test acts.

We define the following relation < on F :

Definition 1. X < Y iff {b,X;w,XC} % {b, Y ;w, Y C} for some b, w ∈ O

with b � w.

Strict comparative probability (�) and indifference (≈) are defined in the

standard way.18

We can understand Savage’s proposal in two ways. For constructivists,

comparative probability reduces to preferences. (This is Savage’s own view.)

For realists, comparative probability does not reduce to preferences, but we

can use preferences to measure comparative probability judgments. The

core proposal of this paper is compatible with both ways of understanding

comparative probability. However, I think that realism about comparative

probability is ultimately more plausible and can tell a better story about

some of the axioms below. I will return to this issue later.

5.2 Axioms

The first axiom ensures that the comparative probability ordering does not

depend on our particular choice of outcomes:

18X � Y ⇐⇒ (X < Y ) ∧ ¬(Y < X) and X ≈ Y ⇐⇒ (X < Y ) ∧ (Y < X).
In a slight abuse of notation, I use the same symbol (�) for both strict preference and
strict comparative probability. This way to link comparative probability to preferences is
standard (Fishburn 1986; Icard 2016).
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Outcome Independence. For all X, Y ∈ F , if {b,X;w,XC} %
{b, Y ;w, Y C} for some b, w ∈ O such that b � w, then {b,X;w,XC} %
{b, Y ;w, Y C} for all b, w ∈ O such that b � w.

You would violate this axiom if you prefer to bet one dollar on event X

rather than event Y but you also prefer to bet two dollars on Y rather than

X. In this case, we cannot elicit stable comparative probability judgments

from your preferences.

The next axiom demands that our agent is not indifferent among all

outcomes:

Non-Degeneracy. There are outcomes b, w ∈ O with b � w.

What is the status of this axiom? Does the existence of subjective probability

really require that you are not indifferent between all outcomes? Eriksson and

Hájek (2007) point out that we can imagine a Zen monk who is indifferent

between all outcomes but nonetheless has subjective probabilities. Thus,

there are problems with Non-Degeneracy understood along constructivist

lines. However, if we are realists, we can accept Non-Degeneracy as a

condition under which we can measure comparative probability. The Zen

monk might have subjective probabilities, but if they are really indifferent

among everything, there is simply no way for us to find out what these

subjective probabilities are. So we can think of this axiom as a structure

axiom which ensures that preferences are rich enough to measure subjective

probability.19

Here is the third axiom:

Restricted Ordering. The relation % restricted to test acts

with the same outcomes is complete and transitive. This means

for any b, w ∈ O with b � w, for all X, Y ∈ F we have either

{b,X;w,XC} % {b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}.20

19Joyce (1999, p. 82) distinguishes structure axioms and rationality axioms.
20Two test acts with different outcomes needn’t be comparable if the outcomes them-

selves are incomparable. Thanks to an anonymous referee for bringing this issue to my
attention.
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And if {b,X;w,XC} % {b, Y ;w, Y C} and {b, Y ;w, Y C} % {b, Z;w,ZC},
then {b,X;w,XC} % {b, Z;w,ZC}.

I do not constrain the preference relation in general to be complete and

transitive, which leaves room for incomparability.

Why accept Restricted Ordering? Given our definition of comparative

probability, Restricted Ordering requires that the comparative probabil-

ity judgments of our agent are complete and transitive. There are reasons

to be skeptical of both.21 For proponents of imprecise credences, rejecting

completeness is particularly natural. Perhaps you have some opinion about

how likely it is that there is life on mars and some opinion about how likely

it is to rain tomorrow but no opinion about which is more likely. This seems

particularly plausible if we consider agents which are not perfectly rational.

In response, remember that I want to explain how it is possible to ascribe

precise credences to agents with some irrational preferences. For this reason,

I will not consider agents whose comparative probability judgments fail to be

complete and transitive. Such agents fall outside of the scope of my project.

The next two axioms are where the main action is. Let us begin with:

Certain Prize. For any b, w ∈ O, if b � w, then for any X ∈ F ,

b % {b,X;w,XC} and {b,X;w,XC} % w.

This principle states a plausible minimal rationality condition. It says that

if you strictly prefer b to w, then you must weakly prefer getting b for certain

to an act which yields b if X happens and w otherwise. Further, you must

weakly prefer this act to getting w for certain.

While Certain Prize is quite weak, it is possible to imagine agents

which violate this axiom. For example, agents might prefer a risky option

over a sure thing because they enjoy the thrill of gambling.22 Relatedly,

Certain Prize might be violated by agents who prefer randomization (Icard

2021). One response to this concern is to make more fine-grained distinctions

21Fishburn (1986, p. 339) discusses examples in which comparative probability judg-
ments violate completeness and transitivity. Ding, Holliday, and Icard (2021) study logics
for comparative probability without completeness.

22Thanks to an anonymous referee for raising this objection.
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among outcomes (Dreier 1996). For example, a prize obtained for sure would

be a different outcome from the same prize obtained by a risky gamble.

However, this move threatens to trivialize decision-theoretic norms. So it is

best to concede that while the axiom is weaker than rationality axioms in

standard representation theorems, it still makes substantive demands which

some agents might violate.

Do agents which violate Certain Prize not have subjective probabilities?

This is not very plausible. After all, it is precisely their subjective probabili-

ties which lead them to prefer the risky option. It is more plausible to think

that if agents love the thrill of gambling, it might be difficult to determine

their subjective probabilities from their preferences. As I show below, Cer-

tain Prize is a necessary condition for the agent’s comparative probability

judgments to be representable by a probability function, so measuring the

subjective probability of agents which violate Certain Prize would require

a fundamentally different approach to measuring subjective probability.

Here is another key axiom:

Alternative Prize. For any X, Y, Z ∈ F and b, w ∈ O, if b � w

and Z is such that X ∩ Z = Y ∩ Z = ∅, then {b,X;w,XC} �
{b, Y ;w, Y C} iff {b,X∪Z;w, (X∪Z)C} � {b, Y ∪Z;w, (Y ∪Z)C}.

Alternative Prize says the following. Suppose you strictly prefer b

over w and you prefer {b,X;w,XC} over {b, Y ;w, Y C}. Now we modify

both acts as follows: You also get b if some event Z disjoint from both X

and Y happens. Now you should prefer {b,X ∪ Z;w, (X ∪ Z)C} to {b, Y ∪
Z;w, (Y ∪ Z)C}. This reasoning also works backwards. Alternative Prize

has a clear interpretation in terms of probability. If you prefer {b,X;w,XC}
to {b, Y ;w, Y C}, you think that X is at least as likely as Y . Therefore, X∪Z
must be at least as likely as Y ∪Z given that Z is disjoint from both X and

Y . So you should prefer {b,X ∪ Z;w, (X ∪ Z)C} to {b, Y ∪ Z;w, (Y ∪ Z)C}
since you want the better prize on the more probable event.

You might violate Alternative Prize if you have credences which are not

additive and represented by an alternative formalism like Dempster-Shafer
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functions or ranking theory.23 But my goal is to provide foundations for as-

cribing subjective probability to partly irrational agents. So agents modeled

by such formalisms fall outside the scope of my project.24 It would be de-

sirable to have more general foundations for measuring belief which apply to

agents with non-probabilistic credences, but I will not consider such agents

here.

My axioms on the preference relation are necessary and sufficient for the

comparative probability ordering to be a qualitative probability (de Finetti

1931):

Definition 2. A binary relation < on F is a qualitative probability iff for

all X, Y, Z ∈ F :

1. < is complete and transitive (Ordering),

2. Ω < X < ∅ (Boundedness),

3. Ω � ∅ (Non-Triviality),

4. if X ∩Z = Y ∩Z = ∅, then X � Y ⇐⇒ X ∪Z � Y ∪Z (Qualitative

Additivity).

Theorem 1. The preference relation % satisfies Outcome Independence,

Non-Degeneracy, Restricted Ordering, Certain Prize and Alterna-

tive Prize if and only if the comparative probability ordering < is a quali-

tative probability.

A proof is provided in the appendix. I follow Savage’s definition of com-

parative probability. Savage also assumes Outcome Independence and

Non-Degeneracy. The key difference is that Savage uses much stronger

axioms to derive the result that the comparative probability ordering is a

qualitative probability. Instead of Restricted Ordering, Savage assumes

23Ellsberg (1961) gives an example of preferences which violate Alternative Prize.
24Titelbaum (2022, Ch. 14.3) gives a brief introduction to Dempster-Shafer functions

and Spohn (2012) discusses ranking theory. As both authors note, it is unclear how these
alternatives to probability interact with decision making, which is a reason to set them
aside for our purposes. Thanks to an anonymous referee for the suggestion to consider
these frameworks.
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that preferences are complete and transitive, which rules out incomparable

options. This strong assumption is unnecessary to establish that the com-

parative probability ordering is complete and transitive. It suffices to assume

that a small fragment of the preference relation is complete and transitive.

Further, Savage appeals to the ‘Sure-Thing Principle’ in order to estab-

lish that the comparative probability ordering satisfies Boundedness, Non-

Triviality and Qualitative Additivity. The Sure-Thing-Principle is a strong

axiom which rules out the Allais-preferences discussed earlier and plays a

crucial role in establishing the existence of an expected utility representa-

tion. The key observation is that we can replace the Sure-Thing-Principle

by the much weaker rationality axioms Certain Prize and Alternative

Prize and still show that the comparative probability ordering is a qualita-

tive probability.25

Krantz et al. (1971, pp. 208-11) prove a similar result.26 But instead of

Restricted Ordering, they assume that preferences are complete and tran-

sitive, which rules out incomparable options. Furthermore, I have shown that

my axioms are not only sufficient but necessary for the comparative probabil-

ity ordering to be a qualitative probability. So my result is a strengthening

of Krantz et al. (1971), maximally paring down the axioms on the prefer-

ence relation required to show that the comparative probability ordering is

a qualitative probability.

One could also axiomatize comparative probability directly and argue

that the qualitative probability axioms are reasonable constraints on belief

without trying to justify them by more fundamental axioms about prefer-

25Machina and Schmeidler (1992) also weaken Savage’s axiom to give a ‘more robust
definition of subjective probability’. However, their axioms are stronger than the ones
given here, as they entail that preferences always respect stochastic dominance—a prop-
erty they refer to as ‘probabilistic sophistication’—and that preferences are complete. My
representation theorem shows how to define subjective probability without probabilistic
sophistication (and without completeness). Elliott (2017) provides a representation the-
orem for ‘frequently irrational’ agents and uses a restricted class of two-outcome acts
to construct a unique credence and utility function. However, this credence function is
not necessarily a probability function, so this approach does not provide foundations for
ascribing subjective probability to partly irrational agents.

26Outcome Independence is equivalent to the first axiom by Krantz et al. (1971),
Certain Prize is equivalent to their second axiom and Alternative Prize is equivalent
to their third axiom. They also mention Non-Degeneracy.
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ences (Joyce 1999, p. 91). However, my project is to show how we can infer

credences from preferences without already assuming that we have access to

comparative probability judgments. Therefore, I start with axioms on the

preference relation.

So far, we have seen how preference reveals qualitative probability. How

do we get from qualitative probability to quantitative probability? Probabil-

ity function p represents the qualitative probability < if for all X, Y ∈ F ,

p(X) ≥ p(Y ) ⇐⇒ X < Y.

The axioms introduced so far are necessary but not sufficient for the exis-

tence of a probability function representing our qualitative probability (Kraft,

Pratt, and Seidenberg 1959). To get around this problem, I add an axiom

which ensures that the space of events is sufficiently rich to pin down a

(unique) probability function. Here is Savage’s proposal:

Event Richness. For all X,Z ∈ F and outcomes b, w ∈ O with

b � w, if {b,X;w,XC} � {b, Z;w,ZC}, there is a finite partition

Y = {Y1, ..., Yn} of Ω such that for all Yi ∈ Y , {b,X;w,XC} �
{b, (Z ∪ Yi);w, (Z ∪ Yi)C}.

This axiom says that we can cut up events very finely. If you strictly prefer

the good prize on X rather than Z, there is a finite partition of our state

space such that you still prefer the good prize on X rather than Z or one of

the elements of our partition. It is instructive to state Event Richness in

terms of comparative probability. In these terms, it says that if X � Z, then

there exists a finite partition Y = {Y1, ..., Yn} of Ω such that for all Yi ∈ Y ,

X � Z ∪ Yi.
Why accept Event Richness? Savage (1972, p. 38) gives the following

argument. Suppose you judge X to be more probable than Z. Savage points

out that we could plausibly choose a coin and throw it sufficiently often such

that you would still judge X to be more probable than Z or any particular

sequence of heads and tails. As Savage notes, this doesn’t require that you

consider the coin to be fair. The possible outcomes of the coin flip form the

required partition.
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Let us end by briefly reflecting on the plausibility of Event Richness.

Does rationality require that you cut up events very finely? Despite Savage’s

argument, this does not seem very plausible. Like Non-Degeneracy, we

should think about Event Richness not as rationality axiom but rather

as structure axiom which ensures that preferences are rich enough to fix

subjective probability. This means that realism can tell a more plausible

story about this axiom than constructivism. According to the realist story, it

is not the existence of subjective probability which requires such a rich event

space. Rather, the rich event space is necessary to infer (precise) probability

from preference.

Event Richness implies that Ω is infinite.27 This might strike you as

problematic because it seems possible to have subjective probabilities with a

finite state space. One option is to look for another structure axiom which

is compatible with finite state spaces but still allows us to derive a unique

probability function. As Luce (1967) and Fishburn (1986) point out, there

are such axioms, but they are rather complicated and do not have intuitive

plausibility of Event Richness. Since we need some structure axiom any-

ways, it seems best to stick with Event Richness because of its intuitive

plausibility. However, finding a good replacement for Event Richness which

is compatible with finite state spaces is a way in which the representation

theorem could be improved.28

5.3 Representation Theorem

The axioms allow us to prove:

27Proof sketch: Assume Ω is finite. Then consider the least probable event X such that
X � ∅. Event Richness demands that there exists a finite partition Y of Ω such that
for all Yi ∈ Y, {b,X;w,XC} � {b, Yi;w, Y C

i }, so X � Yi � ∅, which contradicts our
assumption.

28Another option would be axioms ensuring that the comparative ordering can be rep-
resented by some probability function which needn’t be unique (Scott 1964). However,
this is not compatible with providing decision-theoretic foundations for precise subjective
probability and so I will set it aside. One could also argue that comparative probability
orderings on finite spaces should be extendable to orderings on infinite state spaces which
satisfy Event Richness.
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Theorem 2. If the preference relation % satisfies Outcome Indepen-

dence, Non-Degeneracy, Restricted Ordering, Certain Prize, Al-

ternative Prize and Event Richness, there is a unique finitely additive

probability function p : F → [0, 1] representing the comparative probability

ordering <, so for all X, Y ∈ F ,

p(X) ≥ p(Y ) ⇐⇒ X < Y.

Once we have shown that the comparative probability ordering is a qual-

itative probability, the rest of the proof is due to Savage. Here is a quick

proof sketch inspired by Kreps (1988, pp. 120-125):

Proof. The axioms entail that for any n ∈ N, there is a partition Y of Ω

into n equiprobable events: events such that Yi ≈ Yj for each Yi, Yj ∈ Y .29

We write C(k, n) for a union of k cells of this partition. We define, for any

X ∈ F :

k(X,n) = maxk

(
X < C(k, n)

)
.

So given a n-fold equiprobable partition, k(X,n) is the unique maximal pos-

itive integer such that X is at least as probable as the union of k cells of our

partition. We define

p(X) = lim
n→∞

k(X,n)

n
.

One can show that p is a finitely additive probability function which repre-

sents < and that it is unique.

In this proof, we divide Ω into more and more fine-grained equiprob-

able partitions. For every such partition, we ‘approximate’ p(X) by the

largest number of cells collectively less probable (according to our compara-

tive probability ordering) than X divided by the number of all cells. Step by

step, we get a closer approximation, until we recover the ‘true’ probability

of X in the limit. As a simple analogy, think of approximating the area of

a two-dimensional figure by drawing more and more fine-grained grids and

29Fishburn (1970, pp. 195-8) provides a detailed reconstruction of this step of the proof.
Gaifman and Liu (2018) discuss how it relies on the assumption that the events form a
σ-algebra.
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counting the number of squares covered by the figure divided by the number

of all squares. As the grid gets more and more fine-grained, we approximate

the area of our figure more and more closely and we recover the true area in

the limit.

We can think of the theorem in two ways. If we are inclined towards

constructivism, we can think of it as a definition of subjective probability in

terms of preferences. In this case, the fact that Ann’s subjective probability

of rain tomorrow is .3 is constituted by the fact that

lim
n→∞

k(rain, n)

n
= .3,

and from this perspective, my axioms are conditions under which subjective

probability exists. If we are inclined towards realism, we think that there

is a probability function encoding Ann’s beliefs not defined in terms of her

preferences. From a realist point of view, we can interpret the proof as giving

an algorithm to measure Ann’s subjective probability by constructing better

and better approximations. From this perspective, my axioms are conditions

under which subjective probability can be measured by this algorithm.

5.4 Countable Additivity

As it stands, the representation theorem delivers a finitely additive probabil-

ity function which represents our agent’s beliefs. This probability function

might fail to be countably additive.30 Some decision theorists, for exam-

ple de Finetti and Savage, have argued that rationality only requires finite

additivity and violations of countable additivity are fine. However, there

are also reasons to want countable additivity. Most importantly, there are

convergence theorems in Bayesian statistics which show that under certain

conditions, agents with different priors converge to similar opinions after

30The probability function p : F → [0, 1] is countably additive if for any countable
sequence X1, X2, ... of pairwise disjoint events in F , p(

⋃∞
n=1Xi) =

∑∞
n=1 p(Xi).
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learning enough shared evidence.31 Many of these convergence theorems re-

quire countable additivity (Elga 2016). So if convergence is a central part

of your conception of subjective probability, finitely additive probability is

not enough. This is not the place to settle whether arguments for countable

additivity are conclusive. The key point is that if countable additivity is

desirable, we can add another plausible axiom on preferences to ensure that

subjective probabilities are countably additive, building on work by Villegas

(1964). Details are in the appendix.

6 Problems Solved

I explain how my representation theorem does better than Ramsey’s method.

6.1 Weak Rationality Assumptions

My axioms do not entail that our agent is an expected utility maximizer.

They do not even entail the weaker claim that our agent always respects

stochastic dominance. A quick way to see this is that my axioms only con-

strain preferences over a very restricted set of acts—two-outcome acts where

one outcome is strictly preferred—while expected utility maximization and

stochastic dominance constrain preferences over all acts. My axioms do

not even require preferences over arbitrary acts to be transitive. So the

axioms are compatible with Allais-preferences and violations of stochastic

dominance.

Further, the axioms allow agents to consider many options incomparable.

To be sure, Non-Degeneracy requires the existence of at least two com-

parable outcomes. However, the axioms allow agents to consider all other

outcomes incomparable. Thus, we can make room for the kind of outcome

incomparability discussed above (career as a doctor vs. career as a rock star).

Furthermore, we allow agents to consider acts with more than two outcomes

31Subjective Bayesians draw on such convergence theorems to argue that, despite differ-
ent priors, rational agents will agree in the long run (Earman 1992, ch. 6). Convergence
arguments also play an important role in some versions of objective Bayesianism (Neth
2023).
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incomparable even if all outcomes are comparable, like in the complicated

portfolio choice discussed earlier. So, speaking a bit loosely, we allow agents

to consider almost all options incomparable.

I still make substantive rationality assumptions. In particular, as dis-

cussed above, we can imagine agents which violate Certain Prize and Al-

ternative Prize. It would be desirable to have even more general founda-

tions for subjective probability. But there is a trade-off between substantive

rationality axioms which allow us to measure subjective probability but ex-

clude some agents and weak rationality axioms which include these agents

but might make measuring subjective probabilities impossible. In particular,

Theorem 1 shows that my rationality axioms are necessary conditions for the

agent’s comparative probability judgments to be representable by a probabil-

ity function. The comparative probability judgments of agents which violate

these axioms cannot be represented by any probability function. So if we

want to further weaken these axioms, a fundamentally different approach to

measuring subjective probability is needed.

6.2 Useful Advice

As explained above, my axioms allow agents to have some irrational pref-

erences. Thus, we can give useful advice. We can define or measure the

subjective probabilities of partly irrational agents from their preferences over

simple acts and use these probabilities to give useful advice for how to choose

among more complicated acts.

You might complain that my axioms are too weak because they only

constrain preferences over test acts. But this is a feature, not a bug. We can

measure or define subjective probability from preferences over test acts and

then apply your favorite decision-theoretic norm to give advice for choices

among more complicated acts. I remain agnostic on what exactly this advice

looks like. Beyond the basic requirement to respect stochastic dominance,

different decision theorists will give different advice: some of them will advise

you to maximize expected utility, others will advise you to maximize risk-

weighted expected utility and so on. Since I allow incomparable options,
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there is also the question of how to decide when options are incomparable.

But any decision theorist needs to know at least your credences to give useful

advice.32 My representation theorem shows how we can measure or define

your credences without already presupposing that your preferences are fully

rational and so enables the decision theorist to give useful advice.

Here is a simple toy example for how we can give useful advice. There is

an urn with some red marbles, some yellow marbles and some black marbles.

A marble will be drawn from this urn.33 We observe that Ann strictly prefers

winning one dollar if the marble is red over winning one dollar if the marble

is black. So Ann prefers {$1, R; $0, RC} over {$1, B; $0, BC}, where R is the

event that the marble is red and B the event that the marble is black. We

know that Ann likes more money rather than less, so Ann thinks R is more

likely than B. Using Alternative Prize, we can infer that Ann must judge

R ∪ Y to be more likely than B ∪ Y , where Y is the event that the marble

is yellow.

Now suppose Ann faces another choice. The first option pays one dol-

lar if the marble is red, two dollars if the marble is yellow and nothing

otherwise: {$1, R; $2, Y ; 0$, B}. The second option pays one dollar if the

marble is black, two dollars if the marble is yellow and nothing otherwise:

{$1, B; $2, Y ; $0, R}. We can advise Ann that, to avoid (strict) stochastic

dominance, she should prefer the first option. This is genuinely useful advice

because it is consistent with my axioms that Ann has no preference among

these options or even prefers the stochastically dominated option.

6.3 No Dependence on Utility

My axioms make minimal demands on the richness of the outcome space.

I only require that there are at least two outcomes our agent is not indif-

ferent between. Thus, we can define or measure subjective probabilities of

32For decision-theoretic advice to be useful, we also need some way to measure your
utility function (Narens and Skyrms 2020) and possibly other functions like your risk
function (Neth 2019b).

33To satisfy Event Richness, let us assume that this is the first draw in an infinite
sequence of draws from the urn.
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a very ‘simple-minded’ agent who only distinguishes between the outcome

GOOD and the outcome BAD and has an ordinal ranking of these two out-

comes. We can disentangle measuring subjective probability from the strong

assumptions about value implicit in standard representation theorems.

There is a subtle difference in how my structure axioms compare to Ram-

sey and Savage. While I do not assume a rich space of outcomes, I do assume

a rich space of events, as required by Event Richness. Ramsey’s original

method does not need such a rich space of events.34 So in terms of struc-

tural richness, my method does better than Ramsey’s in one way but worse

in another way. This means that our axioms are incomparable in terms of

their logical strength. However, from a philosophical point of view, I think

that Ramsey and my approach assume a similar amount of structural rich-

ness. Ramsey assumes that our agent makes very fine-grained distinctions

with respect to the value of outcomes while I assume that our agent makes

very fine-grained distinctions with respect to the comparative probability of

events. In contrast, my rationality axioms are much weaker than Ramsey’s

rationality assumptions. Compared with Savage, I make the same structural

assumptions about event richness but much weaker rationality assumptions,

so we have a strictly more general decision-theoretic foundation for subjective

probability than Savage’s.

The upshot: I have shown how to define or measure subjective probability

with much weaker rationality axioms than standard representation theorems.

If we are interested in ascribing precise subjective probability to partly ir-

rational agents, this is definite progress. One might also take this result as

illustration of how strong Event Richness really is. This axiom is doing the

heavy lifting in my construction of subjective probability. On the one hand,

this might incline some of us to be skeptical of this structure axiom.35 On

the other hand, nobody has figured out how to derive subjective probability

without rich preferences and it is probably impossible to do so. So it is fair

34When reconstructing Ramsey’s reasoning, Fishburn (1981, p. 151) writes that Ramsey
assumes ‘a finite state set’. As noted above, no finite Ω can satisfy Event Richness.

35Joyce (1999, p. 98) expresses skepticism about the structure axioms in Savage’s rep-
resentation theorem, although one of Joyce’s main targets of completeness which I don’t
assume.
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to say that we have found better foundations for subjective probability.

7 Interpretation

I sketch two ways in which my representation theorem sheds light on the in-

terpretation of subjective probability. First, it naturally fits with a view on

which comparative probability is more fundamental than numerical proba-

bility. Second, it suggests a subjectivist version of the classical interpretation

of probability.

7.1 Comparativism

Our starting point were comparative probability judgments defined in terms

of preferences. I laid down axioms to ensure that this comparative proba-

bility ordering is a qualitative probability and an additional structure axiom

to ensure that there is a unique probability function which represents this

ordering. While we ultimately end up with a unique probability function

which represents our agent’s beliefs, this approach naturally suggests a pic-

ture on which comparative probability is more fundamental than numerical

probability.36 This is in sharp contrast to Ramsey’s approach. For Ramsey,

subjective probabilities are ratios of utilities and so they are fundamentally

quantitative.

The idea that comparative probability is more fundamental than numer-

ical probability has considerable intuitive appeal. It is more natural to think

about which of two events is more likely than to assign numerical prob-

abilities. Furthermore, as I will turn to explain now, taking comparative

36Comparativism is discussed by Koopman (1940), Fine (1973), Zynda (2000),
Hawthorne (2017), Stefánsson (2017), Konek (2019), and Elliott (2022). Of course, the
idea of starting with comparative probability is well-known in decision theory (Fishburn
1986). However, it is valuable to make explicit that we can be realists about comparative
probability and constructivists about numerical probability, while many decision theorists
like Savage are constructivist all the way down. As Holliday and Icard (2013) point out,
comparative probability can also shed light on probability operators in natural language
and so might help us with puzzles about which inferences with these operators are valid
(Yalcin 2010; Neth 2019a).
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probability as fundamental allows us to tell a plausible story about the ax-

ioms.

My representation theorem naturally fits with a combination of realism

and constructivism: realism about comparative probability and construc-

tivism about numerical probability. According to this picture, the com-

parative probability ordering is psychologically real and not reducible to

preferences—rather, preferences serve to measure comparative probability.

This is the realist aspect. The advantage of this bit of realism is that we can

tell a plausible story about some axioms, in particular Non-Degeneracy,

which requires our agent not to be indifferent among all outcomes. It is not

very plausible to think that the existence of comparative probability requires

this axiom, but much more plausible to think that measuring comparative

probability requires this axiom.

However, in contrast to the comparative probability ordering, the prob-

ability function constructed in the representation theorem is not psycholog-

ically real but only a ‘representational device’ to talk about the underlying

comparative probability ordering. This is the constructivist aspect. The

advantage of this bit of constructivism is that we can tell a plausible story

about Event Richness. It is implausible to think that subjective proba-

bility requires the rich event space postulated by this axiom. If we think of

comparative probability as fundamental, we can say that agents might have

comparative subjective probabilities even if they do not satisfy this axiom.

The axiom describes a condition under which we can represent comparative

subjective probability by a unique probability function, not a condition under

which subjective probability exists.

7.2 Vindicating the Classical Picture

According to the classical interpretation of probability associated with Laplace,

we can determine the probability of some event as follows.37 First, we find a

suitable set of ‘equally possible’ cases. Then, we count the number of cases

37Gillies (2000, ch. 2) gives an overview of the classical interpretation and Diaconis and
Skyrms (2018, ch. 1) briefly recount the history of reasoning about probability in terms
of ‘equally possible’ cases.
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in which the event occurs and divide this number by the number of all cases.

For example, if we want to find out the probability of snake eyes (two 1’s)

when rolling two fair dice, there are 36 ‘equally possible’ cases and exactly

one of these cases is snake eyes, so the probability of snake eyes is 1
36

.

There are many well-known objections to the classical interpretation of

probability. First, you might complain that the definition given above is

circular. Laplace defines probability in terms of ‘equally possible’ cases,

but it is hard to see what ‘equally possible’ could mean other than ‘equally

probable’. Second, the classical interpretation entails that all probabilities

are rational, since they are the ratio of two positive integers. But there

is nothing incoherent about irrational-valued probabilities.38 Third, what

guarantees that we can always find ‘equally possible’ cases? They are easy

to find in games of chance but much harder to find in real-life situations,

where we might try to find the probability that a nuclear power plant will

have a catastrophic accident in the next 100 years (Halpern 2003, p. 18).

My representation theorem can be construed as subjectivist version of the

classical interpretation of probability. Recall how we construct the subjective

probability function. To find Ann’s subjective probability for rain tomorrow,

we find n mutually exclusive and collectively exhaustive events which Ann

considers to be equally probable. We write down k, the greatest number of

events Ann considers to be collectively less likely than rain tomorrow. This

is a bit like counting the number of ‘cases’ in which it rains tomorrow. We

approximate Ann’s subjective probability of rain tomorrow by k divided by

the total number of cases. We define Ann’s subjective probability of rain

tomorrow as the limit of this procedure as n goes to infinity.

The shift towards the subjective helps with some of the well-known wor-

ries for the classical interpretation. First, what does it mean to say that the

cases are ‘equally possible’? In our picture, it means that they are judged to

be equally probable by our subject and we can know that they are so judged

by looking at our subject’s preferences. Since we have not defined compara-

tive probability in terms of numerical probability but rather directly in terms

of preferences, we can sidestep the circularity worry. Second, since we define

38Hájek (1996) uses this as an argument against (finite) frequentism.
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subjective probability as limit of a sequence of rational numbers, we can have

irrational-valued subjective probabilities.

Some worries for our subjectivist Laplacean picture still remain. What

guarantees that, for any n, we can find a partition of n mutually exclusive

and collectively exhaustive events which our subject considers to be equally

likely? In our construction, this follows from Event Richness, which ensures

that the event space of our subject is sufficiently fine-grained. But is it a

requirement for the existence of subjective probability to have such a fine-

grained event space? Arguably not. If we accept comparativism, we can reply

that the more fundamental comparative subjective probabilities still exist

without Event Richness, but they may not admit of representation by a

unique probability function. From this point of view, Laplace’s ‘equiprobable

cases’ highlight a condition under which comparative probability judgments

can be represented by a unique probability function.

8 Conclusion

Ramsey wants to reduce subjective probability to preference but makes very

demanding rationality assumptions—the agent under consideration has per-

fectly coherent preferences. I have shown how to provide better founda-

tions for subjective probability: axioms which ensure that there is a unique

probability function representing our agent’s beliefs while leaving room for

mistakes.

Let me close by observing that we if we are convinced that my axioms are

rationally required, we can also read my representation theorem as an answer

to the question: Why be probabilistically coherent? Because rationality re-

quires you to obey the axioms and if you obey the axioms, there is a unique

probability function representing your comparative probability judgments.

In contrast to other decision-theoretic arguments for probabilistic coherence,

such as dutch book arguments or standard representation theorems, this ar-

gument does not presuppose or entail expected utility maximization. So

we have a new argument for probabilistic coherence from weak assumptions
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about practical rationality in the face of uncertainty.39
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Appendix

Theorem 1. The preference relation % satisfies Outcome Independence,

Non-Degeneracy, Restricted Ordering, Certain Prize and Alterna-

tive Prize if and only if the comparative probability ordering < is a quali-

tative probability.

Proof. I begin by showing the left-to-right direction. Assume % satisfies

the axioms. By Outcome Independence and Definition 1, < is a binary

relation on F . By Non-Degeneracy, there are b, w ∈ O with b � w.

By Restricted Ordering, for any X, Y ∈ F , we have {b,X;w,XC} %

{b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}, so by Definition 1, X < Y

or Y < X. Therefore, < is complete. Analogous reasoning shows that < is

transitive, so < satisfies Ordering.

Consider any X ∈ F . By Certain Prize, we have b % {b,X;w,XC}
and {b,X;w,XC} % w. Now b = {b,Ω;w,∅} and w = {w,Ω; b,∅}. So

{b,Ω;w,∅} % {b,X;w,XC} and {b,X;w,XC} % {w,Ω; b,∅}, and by Defi-

nition 1, Ω < X < ∅, so < satisfies Boundedness. By analogous reasoning,

< satisfies Non-Triviality.

Now assume X ∩ Z = Y ∩ Z = ∅. We want to show that X � Y ⇐⇒
X ∪ Z � Y ∪ Z. Assume X � Y . By Definition 1, {b,X;w,XC} %

{b, Y ;w, Y C} for some b, w ∈ O with b � w. By Alternative Prize,

{b,X ∪ Z;w, (X ∪ Z)C} � {b, Y ∪ Z;w, (Y ∪ Z)C}, so X ∪ Z � Y ∪ Z
by Definition 1. Analogous reasoning shows the converse implication, so <

satisfies Qualitative Additivity.

I proceed to show the right-to-left direction. Assume < is a qualita-

tive probability. We want to show that % satisfies the axioms. Assume

{b,X;w,XC} % {b, Y ;w, Y C} for some b, w ∈ O with b � w. By Definition

1, X < Y . Now assume for reductio that for some b′, w′ ∈ O with b′ � w′,
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{b′, X;w′, XC} 6% {b′, Y ;w′, Y C}. By Definition 1, X 6< Y , which contradicts

our assumption. Therefore, {b,X;w,XC} % {b, Y ;w, Y C} for all b, w ∈ O

such that b � w, so Outcome Independence holds. We have Ω � ∅ by

Non-Triviality, so {b,Ω;w,∅} � {b,∅;w,Ω} for some b, w ∈ O with b � w.

Therefore, there are some b, w ∈ O with b � w, so Non-Degeneracy holds.

By Ordering, for all X, Y ∈ F , X < Y or Y < X. Consider some

b, w ∈ O with b � w. We want to show that for all X, Y ∈ F , ei-

ther {b,X;w,XC} % {b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}. As-

sume X < Y . By Definition 1, {b′, X;w′, XC} % {b′, Y ;w′, Y C} for some

b′, w′ ∈ O with b′ � w′. So by Outcome Independence, {b,X;w,XC} %
{b, Y ;w, Y C}. An analogous argument applies if Y < X. For transitiv-

ity, assume that for some b, w ∈ O with b � w, we have {b,X;w,XC} %

{b, Y ;w, Y C} and {b, Y ;w, Y C} % {b, Z;w,ZC}. By Definition 1, X < Y

and Y < Z, so by Ordering it follows that X < Z. Again by Definition

1, {b′, X;w′, XC} % {b′, Y ;w′, Y C} for some b′, w′ ∈ O with b′ � w′. By

Outcome Independence, {b,X;w,XC} % {b, Y ;w, Y C}, so Restricted

Ordering holds. By Boundedness, for all X ∈ F , Ω < X and X < ∅, so

b % {b,X;w,XC} and {b,X;w,XC} % w for all b, w ∈ O with b � w so

Certain Prize holds.

Finally, let X∩Z = Y ∩Z = ∅ and assume {b,X;w,XC} � {b, Y ;w, Y C}
for some b, w ∈ O with b � w. By Definition 1, X � Y , so by Qualitative

Additivity, X ∪ Z � Y ∪ Z. Again by Definition 1 and Outcome Inde-

pendence, {b,X ∪ Z;w, (X ∪ Z)C} � {b, Y ∪ Z;w, (Y ∪ Z)C}. A similar

argument shows the converse entailment, so Alternative Prize holds.

We can ensure countable additivity by adding this axiom:

Monotone Preference Continuity. For any b, w ∈ O with

b � w and any monotonically increasing sequence of events X1 ⊆
X2 ⊆ ... with

⋃∞
n=1Xi = X, if for all n, {b, Y ;w, Y C} % {b,Xn;w,XC

n },
then {b, Y ;w, Y C} % {b,X;w,XC}.

Building on work by Villegas (1964), we can show:

Theorem 3. If the preference relation % satisfies Outcome Indepen-

dence, Non-Degeneracy, Restricted Ordering, Certain Prize, Al-
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ternative Prize, Event Richness and Monotone Preference Conti-

nuity, there is a unique countably additive probability function representing

<.

Proof. Assume the preference relation % satisfies Outcome Independence,

Non-Degeneracy, Restricted Ordering, Certain Prize, Alternative

Prize and Event Richness. Then < is atomless, which means that for

every X � ∅, there is some Y ⊆ X such that X � Y � ∅. Now, given

Monotone Preference Continuity, < satisfies:

Monotone Probability Continuity. If X1, X2, ... is a mono-

tonically increasing sequence of events with
⋃∞

n=1Xi = X, and

for every n, Y < Xn, then Y < X.

Villegas (1964) shows that if < is an atomless qualitative probability and

Monotone Probability Continuity holds, there is a unique countably ad-

ditive probability function representing <. By Theorem 2, there is a unique

probability function representing <. By Villegas’ result, Monotone Pref-

erence Continuity implies that this probability function must be countably

additive.
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