
The (greatest) fragment of Classical Logic that

respects the Variable-Sharing Principle (in the

Fmla-Fmla framework)

Abstract

We examine the set of formula-to-formula valid inferences of Classical
Logic, where the premise and the conclusion share at least a propositional
variable in common. We review the fact, already proved in the literature,
that such a system is identical to the first-degree entailment fragment of
R. Epstein’s Relatedness Logic, and that it is a non-transitive logic of the
sort investigated by S. Frankowski and others. Furthermore, we provide a
semantics and a calculus for this logic. The semantics is defined in terms
of a p-matrix built on top of a 5-valued extension of the 3-element weak
Kleene algebra, whereas the calculus is defined in terms of a Gentzen-
style sequent system where the left and right negation rules are subject
to linguistic constraints.
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1. Background and aim

In the wake of the so-called paradoxes of strict implication, characteristic of the
systems presented by C. I. Lewis in the early decades of the last century, many
logics were proposed whose featured notions of implication did not suffer such
inconveniences. In contemporary terminology, systems of this sort are referred
to as relevant or relevance logics—see, e.g., [28]. Work around these logics was
usually done in a rather idiosyncratic way, having in mind a particular under-
standing of the characteristic relevance of an implication free of the paradoxes.
For example, in [29] E. J. Nelson proposed a relevant implication, defined as
the impossibility of the truth of the antecedent and the falsity of the conse-
quent, the relevance of which lied in the requirement that both components
be accessory for said impossibility to obtain—contrary to Lewis’ implication,
where the impossibility of either of these conditions above was sufficient for the
impossibility of their conjunction. Alternatively, in [33] W. T. Parry proposed
a relevant implication, called analytic implication, the relevance of which lied
in the requirement that the content of the consequent is included or contained
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in the content of the antecedent—according to the exegesis of some scholars,
which was nevertheless disputed by W. T. Parry himself.

Despite the debates that took place in the decades following Lewis’ work, it
is nowadays widely assumed that when working with propositional languages an
implication is relevant only if its antecedent and consequent share some propo-
sitional variable in common. This seems to reflect the fact that these terms
should not totally diverge with regard to their subject-matters, meaning by this
that there should be some common subject-matter connecting the former and
the latter—with systems satisfying this condition only sometimes being called
“weakly” relevant. Granting a few idealized but relatively standard assumptions
about the formalization of subject-matters in the context of propositional lan-
guages, this constraint is usually formalized by the so-called Variable-Sharing
Principle (VSP, for short).1 This principle requires the following of a theorem
that is an implication of the form ϕ → ψ, where V ar(χ) refers to the set of
propositional variables appearing in a formula χ:

V ar(ϕ) ∩ V ar(ψ) 6= ∅

As it is known, there are many logics that respect the Variable-Sharing
Principle—a paradigmatic example being A. Anderson and N. Belnap’s logic R,
for which see [1, p. 252-254]. In this vein, although it has been pointed out that
the satisfaction of this criterion is only necessary but not sufficient to establish
the relevance of a target notion of implication, it could be interesting to con-
sider its satisfaction as an appropriate filter on a previously given independent
notion of implication—thus rendering an (at least weakly) relevant subsystem
thereof.2 In this vein we could conceive, for example, filtering Classical Logic
(CL, hereafter). Then, although truth-preservation in CL is an unacceptable
guide to implication (due to its permeability to irrelevancies in the form of the
paradoxes of material and strict implication), it might well be the case that the
simultaneous satisfaction of truth-preservation and the Variable-Sharing Prin-
ciple is an acceptable criterion. In fact, this is exactly the path followed by R.

1In particular, granting that the subject-matter of a complex proposition is to be identified
with the sum or collection of the subject matter of all the propositional letters appearing
in it—an idealized but relatively standard assumption, as discussed, e.g., in [5, p. 563].
Furthermore, in this respect it should be said that we are not considering languages with
propositional constants—like Verum or the Ackermann constant—for different considerations
need to be taken into account in such cases. We would like to thank Shawn Standefer for
urging us to clarify this issue. As suggested by an anonymous reviewer, for references on this
issue see [22] and [2].

2That the Variable-Sharing Principle can be seen as necessary but not sufficient is salient
by noticing that there have been many relevant logicians (Anderson and Belnap among them)
who rejected implications that are valid in Classical Logic and comply with the Variable-
Sharing Principle—e.g. those going from ¬ϕ ∧ (ϕ ∨ ψ) to ψ, or from ϕ ∧ ¬ϕ to ϕ ∧ ψ. We
would like to thank Francesco Paoli for urging us to highlight this fact. Also, as pointed out
by an anoynmous reviewer, it should be noticed that the VSP should be mainly predicated
of systems and not of formulae. It may only be used metaphorically in the latter cases—and
even then, not without some risk, since for example the schema ϕ → (ψ → ϕ) “satisfies” the
VSP but proves ψ → (ϕ→ ϕ) in any system with ϕ→ ϕ as an axiom and and Modus Ponens
as a rule.
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Epstein in [16] where his propositional Relatedness Logic (REL, henceforth) is
introduced.

Now, when working with relevant logics, it is standard to denote as “first-
degree entailments” those implications of the form ϕ→ ψ where ϕ and ψ contain
no occurrence of the implication connective. As noted in [16], [30], and [31], it
can be observed that whenever a first-degree entailment is valid in REL, the
consequent preserves the truth of the antecedent and, moreover, the implication
respects the Variable-Sharing Principle. More formally, when ϕ → ψ is a first-
degree entailment:

`REL ϕ→ ψ ⇐⇒

{
ϕ `CL ψ, and

V ar(ϕ) ∩ V ar(ψ) 6= ∅

It is also sometimes customary to think about such a set of valid first-degree
entailments as a logical system on its own right. This can be easily done by
considering the “first-degree fragment” Lfde of a logic L formulated in a language
with an implication connective, where ϕ→ ψ is a first-degree entailment:

`L ϕ→ ψ ⇐⇒ ϕ `Lfde
ψ

In this respect, it is instructive to notice that valid first-degree entailments
in REL encode certain validities in CL. Indeed, it can be easily seen that RELfde
is the Fmla-Fmla fragment of CLVSP—that is to say, the fragment of CL that
respects the Variable-Sharing Principle.3 That we choose to denote this frag-
ment by CLVSP can be explained by noting that, in general, we may denote with
the Fmla-Fmla fragment of LVSP the subsystem of a given logic L whose valid
inferences are only those valid inferences of L that satisfy the Variable-Sharing
Principle.4 That is to say:

ϕ `LVSP
ψ ⇐⇒

{
ϕ `L ψ, and

V ar(ϕ) ∩ V ar(ψ) 6= ∅

With these clarifications in mind, let us state what our goals are with regard
to RELfde—i.e., the Fmla-Fmla fragment of CLVSP. We aim at providing, first,
an extensional semantics and, second, a simple Gentzen-style sequent calculus
for it. Before detailing how the paper is structured in order to achieve our
goals, let us discuss two aspects of the title of this article which are connected
to said objectives. As an anonymous reviewer pointed out, the term “fragment”
is often used to signal language restriction, instead of delimitation of a certain
concrete and precisely delineated subsystem. However, in absence of a better
and widespread term for this purpose, we prefer to stick to it and hope that the

3The Fmla-Fmla fragment of a logic L is the restriction of L to what is called, e.g., in [25,
p. 108] the Fmla-Fmla framework. That is to say, set of inferences that are valid in such a
logic which have exactly one formula as a premise and exactly one formula as a conclusion.

4As an anonymous reviewer points out, this constitutes a slightly different variant of the
VSP—a deductive version of the VSP, one may claim. Here we are not concerned with logics
and their theorems involving an implication connective, but in logics and their valid inferences,
regardless of whether the system in question has a certified implication connective or not.
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reader does not fall prey of any ambiguity—thus, in what follows fragments will
not be linguistic but deductive restrictions of logical systems. Then, as another
anonymous reviewer points out, as there are many such fragments of Classical
Logic that respect the VSP, one may doubt the definite description element of
the title—i.e., calling CLVSP the fragment of said logic that respects the VSP.
However, we think it is clear enough that singling out the system that has all
the deductive validities of Classical Logic that also comply with the VSP makes
it an unequivocal qualification for this denomination. Furthermore, taking into
account that this is the greatest collection of such valid inferences of Classical
Logic that respect the VSP, also explains why our target subsystem of Classical
Logic is denoted by this definite description.

Thus, for the purpose of achieving our goals, our work is structured as fol-
lows. In Section 2, we analyze with a certain degree of generality the fragment
of any Tarskian logic that respects the Variable-Sharing Principle, establish-
ing that in some important cases the resulting systems belong to a peculiar
family—that of the non-transitive p-logics. In Section 3, we provide appropri-
ate semantics for RELfde with the help of certain structures called p-matrices
that generalize the so-called regular logical matrices. In Section 4, we present
a sound and complete Gentzen-style sequent calculus for RELfde whose rules
are bound to certain linguistic restrictions, guaranteeing the satisfaction of the
Variable-Sharing Principle. Finally, in Section 5 we wrap up some concluding
remarks and point towards directions of future work.

This being said, before delving into the proper contents of the article, let us
briefly make explicit that we will be working with a propositional language L
counting with a denumerable set V ar of propositional variables p, q, r, . . . and
with logical connectives ¬,∧,∨—intended to represent negation, conjunction,
and disjunction, respectively. Thus, FOR(L) will be the algebra of well-formed
formulae, standardly defined, whose carrier set is the set of well-formed formulae
FOR(L). In this respect, lower case Roman letters ϕ,ψ, χ, . . . will be considered
as schematic formulae, whereas upper case Greek letters Γ,∆,Θ, . . . will be
considered as schematic sets of formulae.

2. The fragment of a Tarskian logic that respects
the Variable-Sharing Principle

In this section we analyze the fragment of any Tarskian logic that respects
the Variable-Sharing Principle, paying special attention to the kind of systems
that results from applying such a sieve, and to the semantic structures usually
associated with said fragments. Thus, we notice that sometimes constraining
Tarskian logics in this way results in a peculiar kind of systems called non-
transitive p-logics. In this vein, we discuss logical matrices and related structures
generalizing them, called p-matrices, furthermore focusing on some sufficient
conditions that guarantee the satisfaction of the Variable-Sharing Principle in
the systems induced by such matrices.
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To begin with, let us recall what the literature usually understands by a
Tarskian logic. By this it is usually meant a logical system formulated in the
Set-Fmla framework, whose underlying consequence relation ` has the follow-
ing properties, where Γ,∆ ⊆ FOR(L) and ϕ,ψ ∈ FOR(L):5

• Γ ` ϕ if ϕ ∈ Γ (Reflexivity)

• If Γ ` ϕ and Γ ⊆ Γ′, then Γ′ ` ϕ (Monotonicity)

• If ∆ ` ϕ and Γ ` ψ for every ψ ∈ ∆, then Γ ` ϕ (Transitivity)

In our case though—since we are interested in discussing semantics and cal-
culi for RELfde which is the Fmla-Fmla fragment of CLVSP—we are interested
in the definition of Tarskian logics in the Fmla-Fmla framework. Whence,
if a logic counts with connectives ∧ and ∨ (to be interpreted, respectively,
as conjunction and disjunction) we may say that a Tarskian logic is a logi-
cal system whose consequence relation ` enjoys the following features, where
ϕ,ψ, γ, δ ∈ FOR(L):

• ϕ ` ϕ (Reflexivity)

• If ϕ ` ψ, then ϕ ∧ γ ` ψ and ϕ ` ψ ∨ δ (Monotonicity)

• If ϕ ` ψ and ψ ` γ, then ϕ ` γ (Transitivity)

Now, regarding the semantic interpretation of Tarskian logics, it is inter-
esting to notice that all such systems can be semantically characterized by
logical matrices. For a given propositional language L a logical matrix M is
a pair 〈A, D〉, where A is an algebra of the same similarity type than L, and
D is a subset of A, the universe or carrier set of A. Letting an M-valuation
v be an homomorphism from FOR(L) to A, a logical matrix M induces a
Tarskian consequence relation �M in the following standard manner, where
Γ ∪ {ϕ} ⊆ FOR(L):

Γ �M ϕ⇐⇒ for every M-valuation v: if v(Γ) ⊆ D, then v(ϕ) ∈ D

In this vein, it is a well-known result in Abstract Algebraic Logic—proved by
R. Wójcicki in [42]—that for any Tarskian logic whose underlying consequence
relation is `L, there is a class M of logical matrices such that `L = ∩{�M| M ∈
M}. Whenever such a class is a singleton {M}, we may say that `L = �M.
In such a case, we will take the liberty of referring to �M as �L. Thus, logical
matrices allow understanding logical consequence in the context of Tarskian
logics as preservation of designated values. Whence, if all the premises are
assigned a designated value, so must the conclusion. This generalizes the idea,
dear to Classical Logic, that valid arguments are such that if the premises are

5As pointed out by an anonymous reviewer, if we take into account sets of formulae—as
opposed to sequences, lists, or multisets thereof—Reflexivity and Transitivity below imply
Monotonicity. These properties are expressed here as standardly defined, e.g., in [19, p. 12].
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all true, so must be the conclusion. Of course, all the previous remarks apply
equally to a Tarskian logic formulated in the Fmla-Fmla framework—just that,
instead of talking of a plurality of premises, we just need to consider a single
premise.

Having clarified what Tarskian logics are, we may now move on to consider
the main question of this section, namely, what kind of system results from
focusing on the fragment of a Tarskian logic that respects the Variable-Sharing
Principle. We hope that answering this question will provide us some clarity
with regard to the semantic and proof-theoretic characterization of our target
logic, RELfde. But, to answer this question we must consider two scenarios. In
the first, the Tarskian logic in question already satisfies the Variable-Sharing
Principle. In the second, it does not. It is obvious then, that applying such
a constraint to a logic in the first scenario does not change anything. Thus,
we obtain the same system we started with.6 It is the second scenario that is
more interesting, because if the Tarskian logic we start with does not respect
the Variable-Sharing Principle, then the system resulting from filtering out all
its irrelevant impurities can be quite non-standard.

To observe why this may be the case, consider the following. For a logic
whose underlying consequence relation is ` let us a say that a theorem is a
formula ϕ such that ψ ` ϕ, for all ψ ∈ FOR(L), whereas an anti-theorem
is a formula ϕ such that ϕ ` ψ, for all ψ ∈ FOR(L). It should be clearly
noticeable that a logic L cannot satisfy the Variable-Sharing Principle if it has
either theorems or anti-theorems. Furthermore, as we will show below, if L has
either theorems or anti-theorems, its fragment satisfying the Variable-Sharing
Principle results in a logic that is not Tarskian—for it is non-transitive.

Interestingly enough, although non-transitive systems are not Tarskian log-
ics, some of them belong to a special kind that generalizes Tarskian logics. These
are the so-called p-logics, developed firstly by S. Frankowksi in [20]. When for-
mulated either in the Set-Fmla or the Fmla-Fmla framework, p-logics should
be considered as systems whose underlying consequence relation respects both
Reflexivity and Monotonicity, although it does not necessarily respect Transi-
tivity. By this, we mean that p-logics that are transitive are Tarskian logics,
whereas p-logics that are non-transitive are not—and can be, thus, regarded as
“proper” p-logics in some sense. In this spirit, consequence relations underlying
proper p-logics can be rightfully referred to as proper p-consequence relations.7

Along these lines, it can be easily shown that whenever we start with a
Tarskian logic L and later focus on its fragment satisfying the Variable-Sharing
Principle—that is on LVSP—there are some conditions that L may have which
guarantee that LVSP be a non-transitive p-logic. These can be summarized as
follows.

Observation 2.1. If L is a Tarskian logic and has either theorems or anti-

6One case of this sort is the logic Efde, induced by a logical matrix built on top of the 4-
element Belnap-Dunn algebra—discussed, e.g., in [15] by J. M. Dunn and in [4] by N. Belnap.

7The remark that some non-transitive systems are p-logics has substance to it as the latter
comprises, e.g., reflexive systems. Thus, non-transitive systems that are also non-reflexive
cannot be regarded as p-logics and therefore not all non-transitive systems are of this kind.

6



theorems, then the system LVSP is a non-transitive p-logic.

Proof. We first establish the Reflexivity and Monotonicity of LVSP, for which it is
important to remember the meaning that these properties have in the context of
Tarskian logics formulated in the Fmla-Fmla framework. To prove the former,
suppose ϕ `L ϕ. Trivially, V ar(ϕ) ∩ V ar(ϕ) 6= ∅. Whence, ϕ `LVSP

ϕ. To prove
the latter, suppose ϕ `L ψ and V ar(ϕ) ∩ V ar(ψ) 6= ∅, whence ϕ `LVSP

ψ. Since
L is assumed to be Tarskian, in the Fmla-Fmla framework its Monotonicity
amounts to the following inference being valid, for all γ ∈ FOR(L): ϕ∧γ `L ψ.
Simple set-theoretic reasoning allows to establish that V ar(ϕ∧γ)∩V ar(ψ) 6= ∅.
Whence, ϕ ∧ γ `LVSP

ψ. Similar reasoning establishes that ϕ `LVSP
ψ ∨ δ.

We now prove that if L has either theorems or anti-theorems, then LVSP is
non-transitive—and, thus, a “proper” p-logic. For this purpose, consider first
that L has theorems, letting ψ be a theorem, and ϕ and γ be arbitrary formulae,
such that V ar(ϕ) ∩ V ar(ψ) = ∅, but V ar(ϕ) ∩ V ar(γ) 6= ∅ and V ar(γ) ∩
V ar(ψ) 6= ∅. Since L is assumed to be Tarskian, in the Fmla-Fmla framework
its Monotonicity implies the validity of ϕ `L ϕ∨γ, for all γ ∈ FOR(L). Because
of ψ being a theorem, we know that ϕ∨γ `L ψ. Given V ar(ϕ)∩V ar(ϕ∨γ) 6= ∅,
and V ar(ϕ∨ γ)∩ V ar(ψ) 6= ∅—the latter by hypothesis—the previous remarks
guarantee that ϕ `LVSP

ϕ ∨ γ and ϕ ∨ γ `LVSP
ψ, although ϕ 0LVSP

ψ. Thus, if L
is a Tarskian logic that has theorems, LVSP is a non-transitive p-logic.

The case for anti-theorems is analogous, and thus we leave it to the reader
as an exercise.

Now, let us recall that the aim of this article is to provide a simple semantics
and calculus for RELfde—that is to say, the Fmla-Fmla fragment of CLVSP.
With the information of the previous result in hand, we may safely claim that
RELfde is a non-transitive p-logic.8 But, if this is the case, it would be interesting
to know whether p-logics in general (and non-transitive p-logics as a special case)
can be associated with certain semantic structures, just like Tarskian logics can
be identified with logical matrices.

Happily, the answer is affirmative in this respect. Indeed, there is a corre-
spondence between p-logics and a family of structures that generalizes logical
matrices—opportunely called logical p-matrices. Thus, for a given propositional
language L a logical p-matrix M is a triple 〈A, Dp, Dc〉, where A is an algebra
of the same similarity type than L, and Dp, Dc are subsets of A, the universe
or carrier set of A, such that Dp ⊆ Dc. These sets should be understood as a
set of designated values for formulae conceived as premises, and a set of desig-
nated values for formulae conceived as conclusions. Hence, by the restrictions
imposed above, if a formula is designated as a premise it must be designated
as a conclusion—although if it is not designated as a premise, it may well be

8It should be duly noted that the non-transitive nature of RELfde as a deductive system
stems from the non-transitivity of the implication involved in the first-degree entailments that
are valid in Epstein’s logic REL, which was already discussed in [16] and [30]. We would like
to thank an anonymous reviewer for urging us to clarify this.
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designated as a conclusion.9 Letting an M-valuation v be an homomorphism
from FOR(L) to A, a logical p-matrixM induces a p-consequence relation �M
in the following, standard manner, where Γ ∪ {ϕ} ⊆ FOR(L):

Γ �M ϕ⇐⇒ for every M-valuation v: if v(Γ) ⊆ Dp, then v(ϕ) ∈ Dc

In this vein, S. Frankowski’s shows in [20, p. 47] that for any p-logic whose
underlying consequence relation is `L, there is a class M of logical p-matrices
such that `L = ∩{�M| M ∈M}. Whenever such a class is a singleton {M}, we
may say that `L = �M. In such a case, we will take the liberty of referring to
�M as �L. It should be noticed that whenever Dp = Dc, the corresponding p-
matrix is actually a regular logical matrix—justifying the claim that the former
kind of structures generalizes the latter. In a nutshell, if being designated as
a premise is the same as being designated as a conclusion, then we are in the
presence of a regular logical matrix. When this is not the case and the p-matrix
in question is not a regular logical matrix, it is interesting to observe that logical
consequence cannot be understood as preservation of designated values, in the
traditional sense. It is perhaps better to say that it can be understood in terms
of preservation in a more liberal or generalized reading. Whence, if all the
premises are assigned a designated value for premises, then the conclusion must
be assigned a designated value for conclusions. Once again, the previous remarks
apply equally to a p-logic formulated in the Fmla-Fmla framework.

Information of this sort is useful, as it suggests to us that RELfde being a
proper p-logic, its semantics should be given in terms of a proper p-matrix.
This, of course, does not suggest in itself the features of the semantics in ques-
tion.10 For this purpose, let us review a number of remarks that will make
our approximation below more intelligible. These observations concern some
sufficient—although not necessary—features that a logical matrix, and a p-
matrix, in turn, may have that will make the system thereby induced to comply
with the Variable-Sharing Principle. In this regard, adapting some of the ter-
minology used in their article, we may paraphrase G. Robles and J. Mendez in
[37] (see also [36] and [38]) by stating the following result.

Lemma 2.2 ([37]). Let L be a Tarskian logic induced by the logical matrix
〈A, D〉, formulated in the propositional language counting with connectives ¬,∧,∨.
If there are a1, a2 ∈ A such that:

• a1 ∈ D and ¬A(a1) = ∧A(a1, a1, ) = ∨A(a1, a1, ) = a1

• a2 /∈ D and ¬A(a2) = ∧A(a2, a2, ) = ∨A(a2, a2, ) = a2.

9In S. Frankowski’s words, this formalizes the idea that p-consequence relations represent
the transition from premises which may be held to a stricter standard (of acceptance, or
belief, or truth) to conclusions which may be held to a more tolerant standard—constituting
plausible (whence the “p”) conclusions rather than strictly certain conclusions thereof.

10Notice that a proper p-logic cannot receive other than proper p-matrix semantics. Were
someone to offer regular matrix semantics for it, then the resulting system will be transitive,
and thus not a proper p-logic. Therefore, it will not be a semantics for it. We would like to
thank an anonymous reviewer for urging us to clarify this.
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Then, L satisfies the Variable-Sharing Principle.

We can easily see that these remarks can be straightforwardly generalized
so as to provide an analogous result concerning p-matrices, instead of regular
logical matrices. To discuss such a generalization we now turn.

Lemma 2.3. Let L be a p-logic induced by the p-logical matrix 〈A, Dp, Dc〉,
formulated in the propositional language counting with connectives ¬,∧,∨. If
there are a1, a2 ∈ A such that:

• a1 ∈ Dp and ¬A(a1) = ∧A(a1, a1, ) = ∨A(a1, a1, ) = a1

• a2 /∈ Dc and ¬A(a2) = ∧A(a2, a2, ) = ∨A(a2, a2, ) = a2.

Then, L satisfies the Variable-Sharing Principle.

Proof. Assume L is a p-logic induced by the p-logical matrix 〈A, Dp, Dc〉, where
all the operations and the truth-values involved have the conditions outlined
above. Suppose, then that there is a valid inference ϕ �L ψ such that V ar(ϕ)∩
V ar(ψ) = ∅. Then, consider an L-valuation v such that:

v(p) =

{
a1 if p ∈ ϕ
a2 otherwise

By the conditions assumed above, we know that v(ϕ) = a1, whereas v(ψ) =
a2. Thus, v(ϕ) ∈ Dp while v(ψ) /∈ Dc, whence v is a valuation witnessing
ϕ 2L ψ. This contradicts our initial assumption, which then implies that if
the aforementioned conditions are met, then every valid inference satisfies the
Variable-Sharing Principle.

In what follows, we will use these remarks in the investigation of semantic
structures that will induce the fragment of Classical Logic that respects the
Variable-Sharing Principle—i.e., in introducing semantics for RELfde. By this,
we mean that we will build a p-matrix that will induce the logic in question,
where such a p-matrix will have two truth-values behaving in the way described
by Lemma 2.3.

3. Semantics

The aim of this section is to present a simple extensional semantics for RELfde. In
this regard, it should be noted that algebraic semantics—particularly, semantics
where logical consequence is defined in terms of certain order-theoretic relations
holding between the elements of the carrier set of a given algebra as, e.g., in L.
Humberstone’s [25, p. 246]—have been introduced both for the full system REL
by R. Epstein in [16] and for the restricted fragment RELfde that concerns us,
by F. Paoli in [31]. Additionally, F. Paoli presents a more traditional algebraic
semantics for it in [30], in the form of a class of products of Boolean algebras
and τ -semilattices.
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However, no extensional semantics where logical consequence is understood
in terms of the assignment of designated values of some kind to premises and
conclusions has been discussed so far, whence the material below constitutes a
novel development in this respect.11 Of course, since RELfde is a non-transitive
p-logic and therefore a non-Tarskian logic, if it happens to be possible for it to
be induced by a logical matrix of sorts, such a structure will not be a regular
logical matrix, but rather a proper p-matrix. Thus, in what follows we present
a route to arrive at such a p-matrix, highlighting that there might be other
equally interesting manners of landing the same results.

In particular, we will go through a two-step process in order to define our
target p-matrix. This process will consist, on the one hand, in finding a proper
p-matrix that induces CL and, on the other hand, in extending said p-matrix
with additional truth-values so as to guarantee the satisfaction of the Variable-
Sharing Principle—without causing any other logical side-effects, as invalidating
classically valid inferences that satisfy this principle.

Our first step in the way to arriving at a p-matrix semantics for RELfde is the
presentation of a proper p-matrix that will induce CL. This already suggests
a few discussions in itself. To wit, if the matrix in question is a proper p-
matrix but not a regular matrix, one may wonder whether the resulting logic
will be identical to CL, or if it will differ with this system in some respect.
Lengthy debates have been had in the past few years in this regard, mostly
revolving around the logic ST defended by Cobreros, Égré, Ripley and van Rooij
in many works—some of which include [8], [9], [10], [11], [34] and [35]. For future
reference, the logic ST is induced by the p-matrix 〈SK, {t}, {t,n}〉 built on top
of the 3-element strong Kleene algebra SK from S. Kleene’s [26], whose carrier
set is {t,n, f} and whose characteristic operations can be presented in the form
of the “truth-tables” appearing in Figure 3. These authors championed the view
that Classical Logic can be legitimately seen as induced by a structure of this
sort, whereas other scholars contested that although the resulting system called
by them ST coincided with CL with regard to its set of valid inferences it did not
coincide in what regards to its valid metainferences—which, roughly speaking,
refers to inferences between inferences themselves. The jury is still out in this
trial, as it is in a related meta-discussion, that of trying to determine whether
the question itself is substantial or terminological.12

For the purpose of this article, however, we will admit that certain p-matrices
can characterize CL, at least in what concerns to its set of valid inferences. This
is instrumental for us, given the task we set for ourselves of trying to find a simple
semantics for those inferences that not only are valid in Classical Logic, but that
also respect the Variable-Sharing Principle. As a consequence of adopting this
point of view, we will entertain these p-matrices as inducing CL, although we

11As an anonymous reviewer points out, the semantics by Paoli in [30] are extensional, al-
though logical consequence there is not understood in terms of the usual notion of preservation
of designated values for logical matrices, but instead in terms of the satisfaction of a binary
relation Imp.

12Some of the crucial works on this debate are B. Dicher and F. Paoli’s [14], E. Barrio, F.
Pailos and D. Szmuc’s [3], and C. Scambler’s [39].
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Figure 1: The strong Kleene truth-tables

will sometimes refer to the systems thereby induced with other names—because
this will be useful for matters of clarity below, when we extend these structures
to arrive at semantics for RELfde.

Interestingly enough, recently p-matrix semantics for CL, different from those
discussed by Cobreros, Égré, Ripley and van Rooij, have been presented. This
alternative option is built on top of the 3-element weak Kleene algebra WK—
instead of the aforementioned strong Kleene algebra. Thus, either implicitly or
explicitly it is possible to find semantics along these lines in F. Correia’s [13],
F. Paoli and M. Pra Baldi’s [32] and in [Author]. In order for things to be clear
in what follows, let us state here that the WK algebra is the structure whose
carrier set is {t, e, f} and whose characteristic operations can be presented in
the form of the “truth-tables” appearing in Figure 2. In this respect, it was
either shown or mentioned in the previously referred works that an interesting
logic that we call wST can be shown to have the same valid inferences that CL,
thereby offering a proper p-matrix semantics for it.

¬
t f
e e
f t

∧ t e f

t t e f
e e e e
f f e f

∨ t e f

t t e t
e e e e
f t e f

Figure 2: The weak Kleene truth-tables

Definition 3.1. wST is the p-logic induced by the following p-matrix:

〈WK, {t}, {t, e}〉

Lemma 3.2 ([32], [Author]). For all ϕ,ψ ∈ FOR(L):

ϕ �CL ψ ⇐⇒ ϕ �wST ψ

Before moving on to the further extension of this p-matrix in order to arrive
at a structure inducing RELfde, let us take a moment to understand why the
introduction of the third value e is not disruptive, i.e., why the resulting logic
has the same valid inferences than CL. The explanation appearing next is a
straightforward adaptation of the one used to explain why ST has the same
valid inferences than CL, in many places of the literature.

Let us first observe the exclusion of e from the set of designated values for
premises guarantees that no inferences will be rendered invalid because the
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premises were assigned this new value. In other words, that only classically-
satisfiable premises can be the premises of an inference having a counterexam-
ple. Secondly, the inclusion of e in the set of designated values for conclusions
guarantees that no inference will be invalid because the conclusion was assigned
this new value. Again, this means that only classically-falsifiable conclusions
can be the conclusion of an inference having a counterexample. In a nutshell,
with the help of the linguistic resources available, the introduction of the non-
classical value e is ineffective for the generation of new counterexamples to
classically valid inferences. Furthermore, whenever a wST-valuation constitutes
a counterexample to some inference, the fact that the operations in WK are
monotonic with regard to the partial order i ≤ t, i ≤ f , i ≤ i, t ≤ t, f ≤ f
guarantees that these valuations can be transformed into Boolean valuations
without altering the values of complex formulae assigned t and f .13

Our second step in the way to arriving at a proper p-matrix for RELfde will
be, then, to appropriately extend the previously discussed p-matrix in the spirit
of the remarks made in Lemma 2.3. That is to say, we will have a p-matrix
whose underlying algebra has two additional values with respect to the WK
algebra—one of such values will be designated for premises and conclusions,
while the other will be undesignated for premises and conclusions. In addition,
these two elements will behave in the way described by Lemma 2.3, that is to
say, whenever they are negated, conjoined with themselves, or disjoined with
themselves, they will respectively return the same value. For reasons that will
be clear below, let us refer to these truth-values as oe

1 and oe
2, respectively.

However, on top of securing this behavior, we need to make sure that the
inclusion of such values is as effective and as innocuous as desired. In other
words, that their inclusion renders invalid all inferences that are valid in CL
which do not comply with the Variable-Sharing Principle, without invalidating
some inferences that do comply with said principle. For this purpose, one way
to extend the WK algebra to satisfy this demands is to allow for two additional
elements working exactly like the non-classical value e whenever premises and
conclusions share a propositional variable. Thus, it should be understood that,
whenever premises and conclusions share a propositional variable, it should
be impossible to generate counterexamples to the validity of the inference in
question by assigning the formulae involved the newly introduced truth-values
in a convenient way.

This can be done by letting the result of every operation in which the ele-
ments oe

1 and oe
2 are some, but not all of the inputs, be calculated as if these

truth-values were replaced by e—additionally, letting the result be oe
1 if all in-

puts were oe
1, and oe

2 if all inputs were oe
2, respectively. This guarantees that new

13From these remarks one may take away the fact that for any 3-element algebra A
with carrier set {t, i, f} having the 2-element Boolean algebra as a subalgebra, the p-matrix
〈A, {t}, {t, i}〉 induces a logic that has the same valid inferences that CL, as long as all the
operations in A are monotonic with regard to the aforementioned partial order—an observa-
tion already present in nuce in K. Schütte’s [40], as reviewed by J.-Y. Girard in [23, p. 162].
As mentioned in several places, among them in S. Kripke’s [27], both the operations in the
SK algebra and the operations in the WK algebra are monotonic in this way.

12



counterexamples to classically valid inferences will only emerge when premises
can be assigned the truth-value oe

1 and conclusions can be assigned the truth-
value oe

2. A situation only possible if premises and conclusions do not share any
propositional variable.

Finally, before moving on to defining the ingredients of the p-matrix inducing
RELfde, let us observe that the requirements above can be translated into general
algebraic terminology, as follows.

Definition 3.3. An algebra A has distinct elements k,ok ∈ A such that ok

“mimics” k if and only if for all n-ary operations ¶ and all {a1, . . . , an} ⊆ A:

if {ok} ( {a1, . . . , an}, then ¶A(a1, . . . , an) = ¶A((a1, . . . , an)[ok/k])

where (a1, . . . , an)[ok/k] is the result of replacing each occurrence of ok for an
occurrence of k in a1, . . . , an.

Naturally, this can be generalized to algebras counting with a set {ok1 , . . . ,okn}
of elements that “mimic” an element k.

Definition 3.4. An algebra A has a universally idempotent element k if and
only if for all n-ary operations ¶ and all {a1, . . . , an} ⊆ A:

if {k} = {a1, . . . , an}, then ¶A(a1, . . . , an) = k

Definition 3.5. Given an algebra A, the algebra A[ok] is its extension with a
universally idempotent element ok /∈ A that “mimics” an element k ∈ A, such
that for all n-ary operations ¶ and all {a1, . . . , an} ⊆ A ∪ {ok}:

¶A[ok](a1, . . . , an) =


ok if {ok} = {a1, . . . , an}
¶A((a1, . . . , an)[ok/k]) if {ok} ( {a1, . . . , an}
¶A(a1, . . . , an) otherwise

where (a1, . . . , an)[ok/k] is the result of replacing each occurrence of ok for an
occurrence of k in a1, . . . , an.

Once more, this can be generalized to extended algebras A[ok1 , . . . ,o
k
n] with

a set of universally idempotent elements {ok1 , . . . ,okn} that “mimic” an element
k previously available in the starting algebra A—which can be redescribed as
A[ok1 , . . . ,o

k
n−1][okn] = . . . = A[ok1 ] . . . [okn].

Having clarified this, our requirements above concerning a semantic struc-
ture for RELfde can otherwise be phrased as saying that we need to extend
the WK algebra with two universally idempotent elements that mimic e, one
of which should be designated for premises and conclusions in the context of
the extended p-matrix, whereas the other should be undesignated for premises
and conclusions in the context of the extended p-matrix. This algebra we call,
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correspondingly, the 5-element algebra WK[oe
1oe

2], whose carrier set can be con-
spicuously described as {t,oe

1, e,o
e
2, f} and whose operations can be described

by the “truth-tables” in Figure 3.14

¬
t f
oe
1 oe

1

e e
oe
2 oe

2

f t

∧ t oe
1 e oe

2 f

t t e e e f
oe
1 e oe

1 e e e
e e e e e e
oe
2 e e e oe

2 e
f f e e e f

∨ t oe
1 e oe

2 f

t t e e e t
oe
1 e oe

1 e e e
e e e e e e
oe
2 e e e oe

2 e
f t e e e f

Figure 3: The five-valued wST[oe
1oe

2] truth-tables

With these tools in hand, we turn to defining our target non-transitive p-
logic and to proving that its Fmla-Fmla fragment is equal to RELfde, that is
to say, to the Fmla-Fmla fragment of CLVSP.

Definition 3.6. wST[oe
1oe

2] is the logic induced by the following p-matrix:

〈WK[oe
1oe

2], {t,oe
1}, {t,oe

1, e}〉

Lemma 3.7. For every ϕ,ψ ∈ FOR(L) if there is a wST[oe
1oe

2]-valuation v
such that either v(ϕ) = t and v(ψ) = oe

2, or v(ϕ) = oe
1 and v(ψ) = f , then

V ar(ϕ) ∩ V ar(ψ) = ∅.

Proof. Firstly, that v(ϕ) = t implies that for all p ∈ V ar(ϕ), v(p) ∈ {t, f}.
Simultaneously, that v(ψ) = oe

2 implies that for all q ∈ V ar(ψ), v(q) = oe
2.

Whence, V ar(ϕ) ∩ V ar(ψ) = ∅. Secondly, that v(ϕ) = oe
1 implies that for all

p ∈ V ar(ϕ), v(p) = oe
1. Simultaneously, that v(ψ) = f implies that for all

q ∈ V ar(ψ), v(q) ∈ {t, f}. Whence, V ar(ϕ) ∩ V ar(ψ) = ∅.

Theorem 3.8. The Fmla-Fmla fragment of wST[oe
1oe

2] = RELfde

Proof. On the one hand, assume ϕ 2wST[oe
1o

e
2] ψ. There are four ways in which

this can happen. Either there is a wST[oe
1oe

2]-valuation v such that (i) v(ϕ) = t
and v(ψ) = f , or (ii) v(ϕ) = t and v(ψ) = oe

2, or (iii) v(ϕ) = oe
1 and v(ψ) = f , or

(iv) v(ϕ) = oe
1 and v(ψ) = oe

2. In case (i), we are guaranteed that v is a Boolean
valuation, whence we know that ϕ 2CL ψ. In cases (ii) and (iii), we know by
Lemma 3.7 that V ar(ϕ)∩V ar(ψ) = ∅. In case (iv), we know by Lemma 2.3 that
V ar(ϕ)∩V ar(ψ) = ∅. From all these considerations, it follows that ϕ 2RELfde ψ.

On the other hand, assume that ϕ 2RELfde ψ. That is to say, that either
ϕ 2CL ψ, or V ar(ψ) ∩ V ar(ϕ) = ∅. If the former is the case, then there is a
CL-valuation v such that v(ϕ) = t and v(ψ) = f . However, given CL-valuations

14Notice that this algebra can be seen as the extension with a universally idempotent element
that mimics the infectious element of a 4-element algebra appearing in the article [31] by F.
Paoli, referred to as the FP algebra in [Author]. Whence, in turn, this last structure can be
equally described as the extension of the WK algebra with a universally idempotent element
that mimics the infectious element e—that is to say, as WK[oe].

14



are a subset of wST[oe
1oe

2]-valuations, this establishes that there is a wST[oe
1oe

2]-
valuation v′ such that v′(ϕ) = t and v′(ψ) = f . From this it follows that
ϕ 2wST[oe

1o
e
2] ψ. If the latter is the case, it is possible to construct a wST[oe

1oe
2]-

valuation v such that:

v(p) =

{
oe

1 if p ∈ V ar(ϕ)

oe
2 otherwise

For such a valuation it is possible to show, as in Lemma 2.3, that v(ϕ) = oe
1

while v(ψ) = oe
2. From this it follows that ϕ 2wST[oe

1o
e
2] ψ.

Matters of interpretation of the truth-values involved are rather difficult.
To wit, whereas usually the characteristic value of the weak Kleene algebra is
understood as representing meaninglessness or nonsense of some sort, as in D.
Bochvar’s [6] and S. Halldén’s [24], it is saliently complicated to explain how
this reading spills into the interpretation of the mimicking values oe

1 and oe
2.

Our intention here is not, however, to provide a cogent philosophical reading
of the truth-values involved in a semantic presentation of RELfde—the Fmla-
Fmla fragment of CLVSP—but simply to offer a semantic structure that will
induce this target non-transitive p-logic. In this respect, an in-depth discussion
of these matters, hoping to determine if there is a p-matrix with a cogent and
perspicuous philosophical reading for RELfde, will have to wait for another time.

A further question regarding this semantic rendering of RELfde lies in its
being an extension of a proper p-matrix inducing a system with the same valid
inferences that CL. Our semantics for this fragment of CLVSP consisted of ex-
tending a p-matrix built on top of the WK algebra with mimicking values
appropriately taken to be designated or undesignated for premises and con-
clusions. One may, then, ask whether it is possible to build another different
p-matrix for RELfde by means of extending a proper p-matrix for CL built on
top of another structure. We leave this question for future research, although
we provide some preliminary conjectures in Section 5.

Having provided a semantics for our target logic, in the following section,
we devote ourselves to defining an appropriate calculus for this system.

4. Sequent Calculus

In this section we provide a sound and complete sequent calculus for RELfde, that
is to say, for the set of first-degree entailments valid in Epstein’s Relatedness
Logic, which incidentally coincides with the Fmla-Fmla fragment of CLVSP.15

Proof-systems for Epstein’s logic as a whole have been given by R. Epstein
himself in [16] in the form of an axiom system, by W. Carnielli in [7] in the form
of a tableaux system, and by L. Fariñas del Cerro and V. Lugardon in [17] in
the form of a Gentzen-style sequent calculus.

15I would like to thank Bruno Da Ré, Francesco Paoli and Shawn Standefer for very illumi-
nating and insightful discussions on the content this section.
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As regards RELfde, a Hilbert-style axiomatization has been presented by F.
Paoli in [30] , whereas a tableaux system is presented by him in [31]. Here,
with the purpose of endowing our target logic with a Gentzen-style sequent
calculus we will follow the ideas and techniques discussed by M. I. Corbalán
and M. Coniglio in [12], and by R. French in [21], where calculi with linguistic
restrictions are presented for 3-valued systems based on the WK algebra, as
well as for subsystems thereof like the first-degree entailments of R. Angell’s
logic of Analytic Containment.

For this task, we will work with sequents of the form Γ � ∆ defined as pairs
〈Γ,∆〉 where Γ and ∆ are finite sets of formulae. In this context, sequents will
receive a concrete interpretation, as we will establish that ϕ1, . . . , ϕn�ψ1, . . . , ψm
is provable in the target calculus if and only if the first-degree entailment ϕ1 ∧
· · · ∧ ϕn → ψ1 ∨ · · · ∨ ψm is valid in REL—in other words, if and only if ϕ1 ∧
· · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm. It will be important to bear this in mind when
conducting the soundness and completeness proofs.

The main idea behind the calculus that we introduce below is to have sequent
rules (be it initial sequents, operational or structural rules), that are bound to
linguistic restrictions. That is to say, rules that can be applied only if certain
constraints regarding the parametric or active formulae are met. These restric-
tions guarantee that the rules preserve the satisfaction of the Variable-Sharing
Principle or, put differently, that the rules guarantee that there is subject-matter
overlap between premises and conclusions.

We will now proceed to present the set of rules that define our calculus
GRELfde , later showing the adequacy of the formalism. Let us note, in passing,
that for Θ ⊆ FOR(L), V ar(Θ) =

⋃
θ∈Θ

V ar(θ).

Definition 4.1. The calculus GRELfde is constituted by the following rules:

Initial Sequents:

[Initial] Γ, p � p,∆

Structural Rules:

Γ, ϕ � ∆ Γ � ϕ,∆
Γ � ∆ [Cut ]

‡‡

‡‡ : where V ar(Γ) ∩ V ar(∆) 6= ∅

Operational Rules:

Γ � ϕ,∆
Γ,¬ϕ � ∆

[¬L]†
Γ, ϕ � ∆

Γ � ¬ϕ,∆ [¬R]‡

† : where V ar(Γ, ϕ) ∩ V ar(∆) 6= ∅ ‡ : where V ar(∆, ϕ) ∩ V ar(Γ) 6= ∅
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Γ, ϕ � ∆ Γ, ψ � ∆

Γ, ϕ ∨ ψ � ∆
[∨L]

Γ � ϕ,ψ,∆
Γ � ϕ ∨ ψ,∆ [∨R]

Γ, ϕ, ψ � ∆

Γ, ϕ ∧ ψ � ∆
[∧L]

Γ � ϕ,∆ Γ � ψ,∆
Γ � ϕ ∧ ψ,∆ [∧R]

Regarding the structural rules, it shall be noted that [Initial] is a form
of the structural rule of Identity or Reflexivity, with Left and Right Weakening
“absorbed”—to some extent. Indeed, as we remark below, adopting these initial
sequents allows for the left and right Weakening rules to be admissible in their
unrestricted forms.

Lemma 4.2. The following form of the Weakening rules are admissible in
GRELfde :

Γ � ∆
Γ, ϕ � ∆

[KL]
Γ � ∆

Γ � ϕ,∆
[KR]

Proof. Regarding [KL], suppose we have a derivation of Γ � ∆. We can turn
this into a derivation of Γ, ϕ�∆ by adding ϕ to the left-hand side of each of the
nodes of the derivation, as the uppermost node will still constitute a rightful
instance of [Initial]. Similarly, regarding [KR], suppose we have a derivation
of Γ � ∆. We can turn this into a derivation of Γ � ϕ,∆ by adding ϕ to the
right-hand side of each of the nodes of the derivation, as the uppermost node
will still constitute a rightful instance of [Initial].

The next result we discuss shows that every provable sequent of GRELfde
encodes a corresponding first-degree entailment that is valid in REL—or, what
is the same, a valid inference of RELfde. For the purpose of proving this, we will
appeal to the characterization of said set of valid entailments in the paragraphs
above.

Lemma 4.3. All the rules of GRELfde preserve RELfde-validity. In other words,
for each of the rules of the calculus, if the premise sequents are valid in RELfde,
so is the conclusion sequent of that rule.

Proof. We show this by cases—focusing on the restricted rules and leaving the
rest as exercises to the reader—assuming the premise sequents of a rule are valid
in RELfde, and later proving that its conclusion sequent is also valid in said logic.
In all cases below, we will assume that Γ can be redescribed as γ1, . . . , γn, and
that ∆ can be redescribed as δ1, . . . , δm.

[¬L]†: Assume γ1∧· · ·∧γn �RELfde ϕ∨δ1∨· · ·∨δm, and V ar(γ1∧· · ·∧γn, ϕ)∩
V ar(δ1 ∨ · · · ∨ δm) 6= ∅. By simple reasoning this allows to establish that
γ1∧· · ·∧γn �CL ϕ∨δ1∨· · ·∨δm and, concomitantly, that γ1∧· · ·∧γn∧¬ϕ �CL

δ1∨· · ·∨δm. Furthermore, that V ar(γ1∧· · ·∧γn, ϕ)∩V ar(δ1∨· · ·∨δm) 6= ∅
guarantees that V ar(γ1∧· · ·∧γn∧¬ϕ)∩V ar(δ1∨· · ·∨ δm) 6= ∅. Whence,
γ1 ∧ · · · ∧ γn ∧ ¬ϕ �RELfde δ1 ∨ · · · ∨ δm.
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[¬R]‡: Assume γ1∧· · ·∧γn∧ϕ �RELfde δ1∨· · ·∨δm, and V ar(δ1∨· · ·∨δm, ϕ)∩
V ar(γ1 ∧ · · · ∧ γn) 6= ∅. By simple reasoning this allows to establish that
γ1∧· · ·∧γn∧ϕ �CL δ1∨· · ·∨δm and, concomitantly, that γ1∧· · ·∧γn �CL

¬ϕ∨δ1∨· · ·∨δm. Furthermore, that V ar(δ1∨· · ·∨δm, ϕ)∩V ar(γ1∧· · ·∧
γn) 6= ∅ guarantees that V ar(γ1 ∧ · · · ∧ γn)∩ V ar(¬ϕ∨ δ1 ∨ · · · ∨ δm) 6= ∅.
Whence, γ1 ∧ · · · ∧ γn �RELfde ¬ϕ ∨ δ1 ∨ · · · ∨ δm.

[Cut ]
‡‡: Assume that γ1 ∧ · · · ∧ γn ∧ ϕ �RELfde δ1 ∨ · · · ∨ δm, that γ1 ∧ · · · ∧

γn �RELfde ϕ∨δ1∨· · ·∨δm, and that V ar(γ1∧· · ·∧γn)∩V ar(δ1∨· · ·∨δm) 6= ∅.
By simple reasoning this allows to establish that γ1 ∧ · · · ∧ γn ∧ ϕ �CL

δ1 ∨ · · · ∨ δm and γ1 ∧ · · · ∧ γn �CL ϕ ∨ δ1 ∨ · · · ∨ δm. In CL these two
facts imply that γ1 ∧ · · · ∧ γn �CL δ1 ∨ · · · ∨ δm, which together with the
assumption that V ar(γ1 ∧ · · · ∧ γn) ∩ V ar(δ1 ∨ · · · ∨ δm) 6= ∅ implies that
γ1 ∧ · · · ∧ γn �RELfde δ1 ∨ · · · ∨ δm.

The case of [Initial], the [∧] and [∨] rules are straightforward and thus are
left to the reader as an exercise.

Theorem 4.4 (Soundness). If the sequent ϕ1, . . . , ϕn � ψ1, . . . , ψm is provable
in GRELfde , then ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm.

Proof. We know that the initial sequents are valid in RELfde and that all rules
preserve RELfde validity. A straightforward induction on the height of the deriva-
tion shows (using Lemma 4.3 in the inductive step) that all provable sequents
encode inferences that are valid in RELfde. Thus, if ϕ1, . . . , ϕn � ψ1, . . . , ψm is
provable in GRELfde , then the corresponding inference is valid in RELfde—in other
words, ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm.

Now, having discussed the soundness of our calculus, we will now turn to
the more tiresome task of providing a completeness proof for GRELfde . For this
purpose, we will show that whenever ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm, there
is a respective sequent that is provable in our Gentzen-style sequent calculus
GRELfde .

Theorem 4.5 (Completeness). If ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm, then the
sequent ϕ1, . . . , ϕn � ψ1, . . . , ψm is provable in GRELfde .

Proof. In the Appendix.

Corollary 4.6 (Cut-elimination). The restricted version of the Cut rule is elim-
inable from GRELfde

Proof. In the Appendix.
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5. Conclusions

In this article, we discussed RELfde, the first-degree fragment of R. Epstein’s
Relatedness Logic—which is identical to the Fmla-Fmla fragment of CLVSP.
In this respect, we presented a p-matrix semantics and a Gentzen-style sequent
calculus for this logic.

A couple of venues for further research are left open in this regard. First,
our p-matrix semantics are based on the extension of the WK algebra with
two universally idempotent elements that “mimic” the characteristic infectious
element e. It would be important to know whether it is possible to offer different
semantics for RELfde, which are not built on top of the WK algebra, but on top
of a different algebraic structure. For example, extending a p-matrix for CL built
on top of the SK algebra. This may as well be possible, but we should notice that
an extension thereof like the one discussed above, with two mimicking values
will not work. In fact, it is easy to check that the logic ST[on

1 on
2 ] induced by the

p-matrix 〈SK[on
1 on

2 ], {t,on
1 }, {t,on

1 ,n}〉 will invalidate the inference schema ϕ∨
ψ �ST[on

1o
n
2 ] ψ∨¬ψ, which nevertheless satisfies the Variable-Sharing Principle.16

Other routes may be available that make no appeal to mimicking values, starting
from the SK algebra and obtaining a structure on top of which a proper p-matrix
for RELfde can be built—these will definitely be interesting to explore.

Furthermore, it would be illuminating to learn, where L is a subclassical logic
characterizable by a single finite matrix (like, e.g., S. Kleene’s K3 or G. Priest’s
LP) whether p-matrix semantics for the Fmla-Fmla fragment of LVSP can be
obtained, in the spirit of the semantics for RELfde. In other words, by expand-
ing their characteristic regular matrix semantics to proper p-matrix semantics
inducing systems having the same valid inferences, and later extending said
conforming p-matrix semantics with two mimicking values of the appropriate
kind. In this vein, a systematic and general way of obtaining proper p-matrix
semantics for subclassical systems may be useful—and can be found in some
recent developments by M. Fitting’s works, like [18]. We hope to investigate
these and other questions in the near future.

Appendix: Completeness and Cut-Elimination

Completeness Proof

We start by assuming that the sequent ϕ1, . . . , ϕn �ψ1, . . . , ψm is unprovable in
GRELfde . We, then, consider two cases:

(i) V ar(ψ1, . . . , ψm) ∩ V ar(ϕ1, . . . , ϕn) = ∅

(ii) V ar(ψ1, . . . , ψm) ∩ V ar(ϕ1, . . . , ϕn) 6= ∅
16As a means of an example, let us assume that ϕ is p and ψ is q, and consider a ST[on

1o
n
2 ]-

valuation v such that v(p) = t and v(q) = on
2 . This valuation is such that v(p∨q) = t, whereas

v(q∨¬q) = on
2 , witnessing p∨ q 2ST[on

1 on
2 ] q∨¬q, whence the invalidity of the aforementioned

schema.
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showing that in both cases we can design valuations that witness ϕ1 ∧ · · · ∧
ϕn 2RELfde ψ1 ∨ · · · ∨ ψm.

Case (i): if V ar(ψ1, . . . , ψm) ∩ V ar(ϕ1, . . . , ϕn) = ∅ is the case, consider a
RELfde-valuation v such that:

v(p) =


oe

1 if p ∈ V ar(ϕ1, . . . , ϕn)

oe
2 if p ∈ V ar(ψ1, . . . , ψm)

e otherwise

It is then straightforward to notice, as in Lemma 2.3, that all ϕj ∈ {ϕ1, . . . , ϕn}
will be such that v(ϕj) = oe

1, whereas all ψi ∈ {ψ1, . . . , ψm} will be such
that v(ψi) = oe

2. A quick inspections of the WK[oe
1oe

2] algebra allows to no-
tice that this renders v(ϕ1 ∧ · · · ∧ ϕn) = oe

1, while at the same time giving
v(ψ1 ∨ · · · ∨ ψm) = oe

2. Whence, ϕ1 ∧ · · · ∧ ϕn 2RELfde ψ1 ∨ · · · ∨ ψm.

Case (ii): if V ar(ψ1, . . . , ψm) ∩ V ar(ϕ1, . . . , ϕn) 6= ∅ is the case, in order to
show that ϕ1 ∧ · · · ∧ϕn 2RELfde ψ1 ∨ · · · ∨ψm we will apply a slight modification
of the method of reduction trees as explored, e.g., in [41] by G. Takeuti and in
[35] by D. Ripley.

The idea is to start with a sequent that we assume to be unprovable later
extending it in a finite series of steps with the help of reduction rules that will
finally render a reduction tree. Thus, we start with an unprovable sequent and
build a tree above it, with each node consisting of a sequent that results from
an application of the reduction rules to the sequent below it. As we extend
the tree, we will sometimes find that the tip of a branch is an instance of one
of [Initial]—in such a case we will consider this branch closed and will stop
performing reductions on it. Contrary to that, if a branch is not closed after
applying all the possible reduction rules, we will consider this branch open.

Below, we detail the rules that we apply to the sequents at the top of each
branch of the tree, at each stage of the reduction process. Let us note, in passing,
that this technique requires an enumeration of the formulae of our language, and
that when the same sequent appears at the tip of some branch of more than one
tree, they are simultaneously reduced.

• To reduce a sequent of the form Γ, ϕ∧ψ�∆, extend the branch with the sequent
Γ, ϕ, ψ � ∆.

• To reduce a sequent of the form Γ � ϕ ∧ ψ,∆, extend the branch by splitting in
two. To one new branch, add the sequent Γ�ϕ,∆; to the other, add the sequent
Γ � ψ,∆

• To reduce a sequent of the form Γ�ϕ∨ψ,∆, extend the branch with the sequent
Γ � ϕ,ψ,∆.

• To reduce a sequent of the form Γ, ϕ ∨ ψ � ∆, extend the branch by splitting in
two. To one new branch, add the sequent Γ, ϕ�∆; to the other, add the sequent
Γ, ψ � ∆.

• To reduce a sequent of the form Γ,¬ϕ � ∆, consider whether it is the case that
V ar(Γ, ϕ)∩V ar(∆) 6= ∅. If this is the case, extend the branch with the sequent
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Γ,¬ϕ � ϕ,∆; otherwise, do nothing and proceed to reduce the next sequent, if
there is one.

• To reduce a sequent of the form Γ � ¬ϕ,∆, consider whether it is the case that
V ar(∆, ϕ)∩V ar(Γ) 6= ∅. If this is the case, extend the branch with the sequent
Γ, ϕ � ¬ϕ,∆; otherwise, do nothing and proceed to reduce the next sequent, if
there is one.

Suppose we start with a sequent of the form ϕ1, . . . , ϕn � ψ1, . . . , ψm where
V ar(ψ1, . . . , ψm) ∩ V ar(ϕ1, . . . , ϕn) 6= ∅ and follow this process as many times
as necessary for there to be no more legal applications of the reduction rules.
Then, either all branches of the tree will be closed (whence, we have a proof
of the sequent that was assumed to be unprovable, contradicting our initial
hypothesis), or some branch will be open. Suppose the latter is the case.

The next step in our proof is to show that it is possible to find a RELfde-
valuation that witnesses ϕ1∧· · ·∧ϕn 2RELfde ψ1∨· · ·∨ψm. For this purpose, let
us temporarily relabel the sequents in the open branch as Γ1 � ∆1, . . . ,Γk � ∆k,
letting Γ1 � ∆1 be ϕ1, . . . , ϕn � ψ1, . . . , ψm and letting Γk � ∆k be the sequent
at the tip of the open branch. Furthermore, let the sequent Γ � ∆—where
Γ = ∪{Γi | 1 ≤ i ≤ k} and ∆ = ∪{∆i | 1 ≤ i ≤ k}—be the sequent that
“collects” all the sequents appearing in the nodes of the open branch.

Before going into the final stage of this proof, lets us highlight a number of
facts regarding our newly defined Γ and ∆. These are: (i) for all propositional
variables p, p /∈ Γ∩∆; (ii) there are Γ′,∆′ ⊆ V ar such that Γ′ ⊆ Γ and ∆′ ⊆ ∆;
(iii) for all formulae ϕ, if ¬ϕ ∈ Γ then ϕ ∈ ∆; (iv) for all formulae ϕ, if ¬ϕ ∈ ∆
then ϕ ∈ Γ. All these can be derived from the definition of Γ and ∆, the fact
that none of the Γi �∆i (1 ≤ i ≤ k) is an instance of [Initial], and the fact that
the reduction rules preserve the satisfaction of the Variable-Sharing Principle.

We prove here remark (iii), noting that the proof for remark (iv) is perfectly
analogous.17 Thus, suppose ¬ϕ ∈ Γ. By construction of Γ, either ¬ϕ ∈ Γ1 or
¬ϕ ∈ Γj , for j > 1. We now reason focusing on when an appearance of ¬ϕ is
being reduced.

• Suppose it is being reduced in the sequent Γ1 � ∆1, and that ¬ϕ ∈ Γ1. Then, in
this case, the restriction to reduce ¬ϕ amounts to V ar(Γ1\{¬ϕ}, ϕ)∩V ar(∆1) 6=
∅. However, V ar(Γ1 \ {¬ϕ}, ϕ) is just V ar(Γ1). Whence, given we know by
hypothesis that V ar(Γ1) ∩ V ar(∆1) 6= ∅, this restriction is satisfied and it is
guaranteed by the reduction rules that ϕ ∈ ∆1+1. Therefore, by the construction
process above ϕ ∈ ∆. (Notice that this would not be guaranteed if it were not
the case that, by hypothesis, V ar(Γ1) ∩ V ar(∆1) 6= ∅)

• Suppose, alternatively, that it is being reduced in the sequent Γj �∆j , for j > 1,
and that ¬ϕ ∈ Γj . Then, in this case, the restriction to reduce ¬ϕ amounts
to V ar(Γj \ {¬ϕ}, ϕ) ∩ V ar(∆j) 6= ∅. Recall that, by construction, Γ1 ⊆ Γj

and ∆1 ⊆ ∆j . There are, now, two cases: either ϕ /∈ Γ1, or ϕ ∈ Γ1. If the
former, then by the above V ar(Γj \ {¬ϕ}, ϕ) ∩ V ar(∆j) 6= ∅. If the latter,
then once again V ar(Γj \ {¬ϕ}, ϕ) is just V ar(Γj), and then by the above

17In turn, we stress here that remark (i) is true because otherwise Γ�∆ would be an instance
of [Initial], and remark (ii) is true because otherwise V ar(Γ) ∩ V ar(∆) = ∅, which would
contradict the assumptions holding at this point of the proof.

21



V ar(Γj \{¬ϕ}, ϕ)∩V ar(∆j) 6= ∅. Therefore, the restriction is satisfied and it is
guaranteed by the reduction rules that ϕ ∈ ∆j+1. Finally, by the construction
process above ϕ ∈ ∆. (Notice that this would not be guaranteed if it were not
the case that, by hypothesis, V ar(Γ1) ∩ V ar(∆1) 6= ∅)

Now, for the final stage of the proof, take the aforementioned sequent Γ � ∆
and consider the RELfde-valuation v such that:

v(p) =

{
t if p ∈ Γ or ¬p ∈ ∆

f otherwise

We now prove by induction on the complexity of ϕ that v is a RELfde-valuation
such that v(ϕ) = t if and only if ϕ ∈ Γ and v(ϕ) = f if and only if ϕ ∈ ∆.

Base case:

• ϕ = p. If p ∈ Γ, v(p) = t by definition of v. Otherwise, if p ∈ ∆, for example,
v(p) = f by definition. Notice that, by the remarks above, we know that either
p /∈ Γ, or p /∈ ∆—granting the well-definedness of v.

Inductive step: we assume that for all formulae of lesser complexity than ϕ, the
hypothesis holds and show that it also holds for ϕ.

• ϕ = ¬ψ. If ¬ψ ∈ Γ, we know that ψ ∈ ∆ by the remarks above. By the IH
we know that v(ψ) = f , whence v(¬ψ) = t. Otherwise, if ¬ψ ∈ ∆, we know
that ψ ∈ Γ by the remarks above. By the IH we know that v(ψ) = t, whence
v(¬ψ) = f .

• ϕ = ψ ∧ χ. ψ ∧ χ ∈ Γ we know that ψ, χ ∈ Γ. By the IH we know that
v(ψ) = v(χ) = t. Thus, v(ψ ∧ χ) = t. Otherwise, if ψ ∧ χ ∈ ∆, then either
ψ ∈ ∆ or χ ∈ ∆. By the IH we know that either v(ψ) = f or v(χ) = f . Whence,
v(ψ ∧ χ) = f .

• ϕ = ψ ∨ χ. If ψ ∨ χ ∈ Γ we know that either ψ ∈ Γ or χ ∈ Γ. By the IH we
know that either v(ψ) = t or v(χ) = t. Whence, v(ψ ∨ χ) = t. Otherwise, if
ψ∨χ ∈ ∆, we know that ψ, χ ∈ ∆. By the IH this implies that v(ψ) = v(χ) = f .
Whence, v(ψ ∨ χ) = f .

Given this, and since {ϕ1, . . . , ϕn} ⊆ Γ and {ψ1, . . . , ψm} ⊆ ∆, we know
that for all i such that 1 ≤ i ≤ n, v(ϕi) = t, and for all j such that 1 ≤ j ≤ m,
v(ψj) = f . Whence, by looking at the Boolean reduct of the WK[oe

1oe
2] algebra

it is easy to notice that v(ϕ1∧· · ·∧ϕn) = t and v(ψ1∨· · ·∨ψm) = f . Therefore,
v is a RELfde-valuation witnessing the fact that ϕ1∧· · ·∧ϕn 2RELfde ψ1∨· · ·∨ψm.

This establishes that if ϕ1 ∧ · · · ∧ϕn �RELfde ψ1 ∨ · · · ∨ψm, then a sequent of
the form ϕ1, . . . , ϕn � ψ1, . . . , ψm is provable in GRELfde .18

18Notice that this proof does not give full CL, because when considering whether we are in
Case(i) or Case (ii), some classically valid inferences are discarded right away—namely, those
inferences which do not satisfy the Variable-Sharing Principle.
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Cut-Elimination Proof

By Theorem 4.4, if there is a proof of the sequent ϕ1, . . . , ϕn � ψ1, . . . , ψm in
GRELfde , then ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm. Furthermore, by Theorem 4.5,
if ϕ1 ∧ · · · ∧ ϕn �RELfde ψ1 ∨ · · · ∨ ψm, then applying the method of reduction
trees gives a proof of the sequent ϕ1, . . . , ϕn � ψ1, . . . , ψm in GRELfde . However,
notice that this proof does not feature any instance of the restricted version of
the Cut rule and is, thus, a Cut-free proof. Whence, for any sequent provable
in GPAIfde , there is a proof of it that does not use the restricted version of the
Cut rule.
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[17] L. Fariñas del Cerro and V. Lugardon. Sequents for dependence logics.
Logique et Analyse, 133-134:57–71, 1991.

[18] M. Fitting. The Strict/Tolerant Idea and Bilattices. In A. Zamansky and
O. Arieli, editors, Outstanding Contributions to Logic volume dedicated to
Arnon Avron. Spriger. Forthcoming.

[19] J. M. Font. Abstract Algebraic Logic. College Publications, London, 2016.
[20] S. Frankowski. Formalization of a plausible inference. Bulletin of the Sec-

tion of Logic, 33(1):41–52, 2004.
[21] R. French. A Simple Sequent Calculus for Angell’s Logic of Analytic Con-

tainment. Studia Logica, 105(5):971–994, 2017.
[22] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An

Algebraic Glimpse at Substructural Logics. Elsevier, San Diego, CA, USA,
2007.

[23] J.-Y. Girard. Proof theory and logical complexity. Bibliopolis, Napoli, 1987.
[24] S. Halldén. The Logic of Nonsense. Uppsala Universitets Arsskrift, Upp-

sala, 1949.
[25] L. Humberstone. The Connectives. MIT Press, Cambridge, MA, 2011.
[26] S. C. Kleene. Introduction to metamathematics. North-Holland, Amster-

dam, 1952.
[27] S. Kripke. Outline of a theory of truth. Journal of Philosophy, 72(19):

690–716, 1975.
[28] E. Mares. Relevance Logic. In E. N. Zalta, editor, The Stanford Encyclope-

dia of Philosophy. Metaphysics Research Lab, Stanford University, spring
2014 edition, 2014.

[29] E. J. Nelson. Intensional relations. Mind, 39(156):440–453, 1930.
[30] F. Paoli. Semantics for first-degree relatedness logic. Reports on Mathe-

matical Logic, 27:81–94, 1993.
[31] F. Paoli. Tautological entailments and their rivals. In J. Béziau,
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