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Abstract— A common characteristic of all popular multi-path 
routing algorithms in Mobile Ad-hoc networks, such as 
AOMDV, is that the end to end delay is reduced by utilization 
of parallel paths. The competition between the neighboring 
nodes for obtaining a common channel in those parallel paths 
is the reason for end to end delay increment. In fact, due to 
medium access mechanism in wireless networks, such as 
CSMA/CA, data transmissions even through two Node-
Disjoint paths are not completely independent and each path 
will affect the other one. In this paper we have modified the 
AODV protocol which results in selection of zone-disjoint 
paths, to the extent feasible, and as a result we achieve less end 
to end delay. The efficiency of the proposed protocol has been 
evaluated on different scenarios and there has been a 
noticeable improvement in the packet delivery ratio and also in 
the reduction of end-to-end delay comparing to AOMDV. 

Keywords- MANET; Multi-path Routing Algorithms; Zone-
disjoint Paths, End-to-end delay. 

I. INTRODUCTION

In ad-hoc networks, lack of any infrastructure requires 
the nodes to perform routing and transferring of data all by 
themselves [1]. Mobility of nodes and ambiguity of topology 
adds to the complexity of routing in such networks [2]. 

There are many common routing algorithms used in Ad-
hoc networks but AODV1 [3, 4] and DSR2 [5], which both 
are on-demand algorithms, are the most popular ones. In on-
demand algorithms, the Route Discovery procedure is 
carried out only when there is a packet to be transferred and 
there exists no valid path. Multi-path on-demand routing 
algorithms discover several paths instead of one, once the 
routing is performed [6]. This eliminates the need for further 
routing when there is a broken link in the path, reducing the 
average number of Route Discovery for each node and 
achieving higher fault tolerance for the Mobile Ad-hoc 
networks. 
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In some multi-path algorithms once different paths are 
discovered, they are all stored but only one of them is used 
for transferring the data. The other stored paths will become 
useful once the current one is broken. There are also other 
multi-path algorithms that transfer data over all discovered 
paths concurrently which reduces end to end delay and 
increases end to end bandwidth. 

One important factor in latter kind of algorithms is to 
choose the best paths for load balancing data transfer. In this 
case, set of paths that have no common node among 
themselves will achieve highest fault tolerance, since a 
broken node will only affect one path. This type of paths are 
knows as Node Disjoint. 

In wireless networks CSMA/CA [7] protocol is used for 
acquiring channel access and to prevent Hidden and Exposed 
Terminal problems. In this protocol, RTS3 and CTS4 packets 
sent forth and back between nodes force some nodes to wait 
until they can take part in next competition round for 
acquiring the channel. This will increase overall end to end 
delay in node-disjoint paths. 

As an example, figure1 shows a hypothetical wireless 
network which is consisted of 10 nodes. In this figure the 
wireless transmission range of each node is shown. Also, 
nodes that are within transmission range of each other are 
connected through links. 

In this figure, there are two Node Disjoint paths between 
nodes S and D which are S-I1-I2-I3-I4-D and S-I5-I6-I7-I8-
D. Transmission of data over these paths is not independent 
of each other. The end-to-end delay of each path is actually 
dependant on the traffic volume on the other path and this is 
due to the RTS and CTS messages which are used by nodes 
in the network to prevent collision and Hidden and Exposed 
Terminal problems. As a result a node in either of those two 
paths might have to delay its data transmission due to 
receiving a CTS message from a node on the other path. 
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Figure 1. Node Disjoint Paths. 

In this paper we propose an on-demand multi-path 
routing algorithm based on AODV, which utilizes common 
omni-directional antennas, unlike other solutions which 
require unidirectional antennas for each node in the network 
[8, 9]. 

The rest of this paper is organized as follows. The 
following section deals with the related works. Section III 
describes the proposed protocol mechanism in detail. 
Performance evaluation by simulation is presented in section 
IV and concluding remarks are made in section V. 

II. RELATED WORKS

Most of multi-path routing algorithms such as AOMDV5

[10] have their basis in a single-path algorithm due to their 
efficiency. One drawback with multi-path algorithms is that 
they send more routing request packets, comparing to single-
path algorithms and this makes them more complicated. 

 AOMDV is a simple, yet high efficient multi-path 
algorithm which tries to find Link-Disjoint paths. In this 
algorithm the source broadcasts routing request packet to all 
its neighbors. Once neighbors of the source node receive the 
RREQ packet, they add their own address to the packet; 
announcing themselves as the founder of a path, and 
broadcast it.  

Every intermediate node by receiving a request packet 
will check to see if it has already received a same request and 
if not, then it reconstructs and broadcasts the request packet. 
If the same request was processed previously the following 
conditions will be investigated and if met, the packet would 
be accepted and will be inserted in the route table; otherwise 
the packet will be ignored.  These conditions are: 

1. Whether the request packet is received from a 
new neighbor node6. 

2. Whether the request packet is received from a 
new path founder node. 

3. Whether the number of hops in the request 
packet is less than the existing ones. 

The destination node will send as many responses as 
number of request packets it has received and hereby informs 
the source node of the paths. 

To ensure zone-disjoint paths, [8] has utilized directional 
antennas. In this method each node stores signal power and 
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signal angle of their neighbors in a table. While node-disjoint 
paths are being discovered, the information in that table will 
be used by each node to select zone-disjoint paths. One of 
the drawbacks of this method as mentioned in [9] is the need 
for directional antennas while in most ad-hoc network Omni-
directional antennas are used. 

III. PROPOSED ALGORITHM

Our proposed algorithm, called ZD-AOMDV7, is an on-
demand multi-path routing protocol based on AODV. In the 
proposed algorithm the concept of “Active Neighbor” is 
introduced. Active neighbors are the neighbor nodes which 
have already received and replied to the Route Request 
packet (RREQ) and it’s probable that they exist on other 
paths for the same source and destination, so even though 
they are located on two disjoint paths they will still affect 
each other in simultaneous data transfer. As mentioned in the 
abstract, our proposed algorithm tries to find zone-disjoint 
paths between source and destination. The nodes in zone-
disjoint paths have almost no neighbor in the other path, to 
the feasible extent.  

In brief, our proposed algorithm counts the number of 
active neighbors for each path from source to destination and 
eventually will choose paths that have the lowest total 
number of active neighbor nodes. 

A. AODV Modifications 

In almost all the implementations of AODV algorithm, 
the intermediate nodes in a path will use a “Route Cache” 
table where they store the discovered paths. As a result, if a 
node receives a RREQ packet for which there exists a known 
path in the Route Cache table, the node will send a RREP 
message to the sender. 

In ZD-AOMDV, there is no need for the intermediate 
nodes to have Route Cache tables and as a result the 
destination will receive all the path-request messages from 
different paths. 

Also in the proposed algorithm, each node should save 
the RREQ messages it receives from other nodes in 
RREQ_Seen table, so that it can respond to the queries it 
receives from its neighbors. Also, there is an additional field 
in RREQ_Seen table of each node, called 
After_Active_Neighbor_Count (After_A_N_C), which will 
be used to count the number of active neighbors identified 
after sending the RREQ message. 

In order to let the subsequent nodes to know the total 
number of active neighbors of the traversed nodes along a 
path, a new field called ActiveNeighborCount is added to the 
headers of both RREQ and RREP messages. 

Also two new messages, RREQ_Query and 
RREQ_Query_Reply, are added to the route discovery 
process. 

B. Proposed algorithm procedure 

Once a node intends to send data to a certain destination 
and doesn’t find a valid path in its route table, it starts the 
route discovery process with broadcasting a RREQ packet to 
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its neighbors and the ActiveNeighborCount field in the 
RREQ packet is set to zero. 

Same as AOMDV, each neighbor upon receiving the 
RREQ packet will insert its name into the RREQ packet as 
the founder of one of probable paths and then will store the 
information of the packet in its reverse path table. 

In the next step each path founder will send a 
RREQ_Query to its own neighbors asking them if they have 
already received the same RREQ packet before. Then each 
path founder will wait for neighbor’s answer for a certain 
amount of time. Then each path founder will increase the 
ActiveNeighborCount field in the RREQ packet based on the 
number of positive responses it has received from its 
neighbors, and broadcast it.  

At the same time, upon receiving the RREQ_Query 
message, each neighbor should search in the RREQ_Seen 
table and check if it has received the same RREQ message 
before or not and respond to this question with the 
RREQ_Query_Reply message. If this is the first time that it 
is receiving this RREQ, then the RREQ is also stored in the 
RREQ_Seen table along with the asking neighbor 
information. 

Since in ZD-AOMDV the redundant RREQ messages are 
not thrown away, some nodes will receive the same RREQ 
message again and as a result they perform the query once 
more. So we should make sure that only the new neighbors 
will respond to this query. As a result, if a node receives a 
query message (RREQ_Query) for an existing RREQ in its 
RREQ_Seen table, it will respond with RREQ_Query_Reply 
message only if it has received the query from a new 
neighbor node, otherwise it will ignore the query. 

Also it is possible that a node receives a query message 
from a new neighbor node corresponding to an existing 
RREQ which a query had already been performed for it 
before, and had already broadcasted that RREQ message. 
Since this new neighbor has not been considered in active 
node calculations, a new field called After_A_N_C is added 
to the RREQ_Seen table in each node. This field will be 
incremented once a node receives a query for an existing 
RREQ message from a new neighbor which had already 
been broadcasted. (Note that the receiving node will respond 
with the RREQ_Query_Reply in this case) 

Each node will add the content of this field to the 
ActiveNeighborCount filed in the RREP message, once it 
receives the RREP message sent from destination to the 
source. This will ensure that the source upon receiving the 
RREP messages from destination can find out the exact 
number of active neighbors of each path.  

Once the source node receives the first RREP packet, it 
will wait for a certain amount of time for other RREP 
packets to arrive from different paths. Then, it chooses the 
paths with least number of active neighbors for load-
balanced transferring of data. 

In AOMDV, as soon as the source has received the first 
RREP packet it begins transferring of data to the destination, 
which means that the path with least hops is used for data 
transfer. While in ZD-AOMDV, data transfer is postponed 
until several RREP packets are received. This helps the 

source node to choose the paths that are far from each other 
(zone disjoint paths). 

C. Pseudo code of ZD-AOMDV 

The steps taken by source node, destination node and 
intermediate nodes are listed in figures 2, 3 and 4 
respectively. 

1. If there is data to be sent to a certain destination and there is 
no valid path for that destination, broadcast the RREQ packet. 

2. Wait for first RREP packet to arrive. 
3. After receiving the first RREP packet, wait for a certain 

amount of time, then from received paths choose those ones 
that have the least active neighbors and starts load balancing 
data transfer on these paths. 

Figure 2. Pseudo code for the source node in ZD-AOMDV. 

1. Send back a RREP packet to all the nodes from which a 
RREQ packet is received.

Figure 3. Pseudo code for the destination node in ZD-AOMDV. 

1. Once a RREQ message is received and is acceptable (based 
on three aforesaid conditions in the Related Works section) 
perform the following steps: 

i. Save this message in the RREQ_Seen table 
ii. Construct the RREQ_Query packet  

iii. Send the RREQ_Query packet to the neighbors asking 
them if they have already seen the same RREQ 
message before 

iv. Wait for a certain amount of time for 
RREQ_Query_Reply messages from neighbors 

v. Increase the ActiveNeighborCount field based on the 
positive responses  that are received 

vi. Broadcast the RREQ message with the new 
ActiveNeighborCount value. 

2. Once a RREQ_Query message is received one of the 
following steps are  performed: 

i. If based on the RREQ_Seen table this is a new RREQ 
message, store the RREQ in the RREQ_Seen table 

ii. If based on the RREQ_Seen table the same RREQ has 
been received from the same node, ignore the query.

iii.  If the RREQ is an existing one in the RREQ_Seen 
table and it has been received from a new neighbor but 
the same RREQ had not been broadcasted before, then 
only respond with sending back the positive 
RREQ_Query_Reply. 

iv. If the RREQ is an existing one in the RREQ_Seen 
table and it has been received from a new neighbor 
and the same RREQ had already been broadcasted, 
then respond with sending back the positive 
RREQ_Query_Reply and also increment the 
After_A_N_C field of the corresponding RREQ in the 
RREQ_Seen table. 

3. Once the RREP message is received add the content of the 
corresponding After_A_N_C to the   ActiveNeighborCount 
field of the RREP and send the RREP. 

Figure 4. Pseudo code for the intermediate node in ZD-AOMDV 
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To better understand our proposed algorithm a 
hypothetical network is presented in figure 5-a as an 
example. 

In figure 5-a, node S intends to transfer data to node D 
and it finds that there is no path in its routing table to the 
destination. It will initiate the route discovery process by 
broadcasting the RREQ packet to all its neighbors. 

Nodes A, B, and C upon receiving the RREQ will insert 
their address into it as the founder of a path and will save the 
RREQ message in their RREQ_Seen table. Also they will 
reset the corresponding After_A_N_C value to zero in the 
RREQ_Seen table. Then each of them will broadcast 
RREQ_Query packet. After performing the queries, nodes A 
and C will each recognize node B as their active neighbor 
and will increment the ActiveNeighborCount in their RREQ 
message by one. Node B will recognize both A and C as 
active neighbors and will increment its 
ActiveNeighborCount by two. After that each of the nodes 
A, B and C will broadcast their RREQ packet. 

 The first RREQ message arrives to destination through 
node B. Up to this point the active neighbor value of this 
path (S-B-D) is two. Also nodes E and F will receive the 
RREQ message at his point and will initiate the query 
process, through which they recognize node B as their active 
neighbor and will increment the ActiveNeighborCount in 
their RREQ message. Also since node B has already 
broadcasted the same RREQ message before; it will respond 
to node’s E and F query with positive RREQ_Query_Reply
and at the same time will increment the After_A_N_C field 
of this RREQ in its RREQ_Seen table by one for each of 
those queries. 

As shown in figure 5-b all the RREQ messages which 
arrive at destination will have the same 
ActiveNeighborCount value equal to two. In this figure the 
ActiveNeighborCount value (Left Number) of each RREQ at 
each node just before broadcasting the RREQ is shown along 
with the ActiveNeighborCount value (Right Number) of the 
RREQ at each node. As shown for node B, the value of 
After_A_N_C is equal to 2 for this RREQ. 

The destination will respond back to its neighbors with a 
RREP message for each RREQ that it receives and will also 
update the ActiveNeighborCount value of RREP message 
with the same value in the RREQ. Each intermediate node on 
the path will add its After_A_N_C value to the 
ActiveNeighborCount value in the RREP message it 
receives. As shown in Figure 5-c, only node B will end up 
changing the ActiveNeighborCount value in the RREP and 
will increment it by two. Eventually the RREP messages will 
arrive at source. 

After the source node receives the first RREP the source 
will allocate a certain time for other RREP messages to 
arrive. After the timer is expired the source will choose the 
paths which have lower ActiveNeighborCount values and 
will start sending data to destination through these zone-
disjoint paths. In out example the source will choose the two 
paths shown in Figure 5-d which are S-A-E-D AND S-C-F-
D for transferring data. 

IV. PERFORMANCE EVALUATION

In order to evaluate ZD-AOMDV, we have compared its 
performance to AOMDV with regards to several 
performance metrics. 

Figure 5. An example for proposed routing algorithm 
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A.  Simulation Environment 

 We have used GloMoSim [11] as the simulation 
environment.  In our scenario both algorithms use three paths 
for load-balanced transferring of data. Also, the area in 
which the nodes are spread is 1000×1000 meters and there 
are 100 nodes which can move in a range of 250 meters in 
random direction. The traffic model used for each node is 
CBR. Also in our simulation scenario each node uses the 
IEEE802.11 protocol in its MAC layer and for the purpose of 
sending or receiving data the standard RADIO-ACCNOISE 
model is used. In the random movement model chosen in this 
scenario, each node selects an arbitrary destination point and 
will remain still for a period of one second after it reaches 
destination. The total simulation time is 300 seconds and the 
results are the average of 25 times of simulation. 

B. Performance Metrics 

Three important performance metrics were evaluated in 
our simulation: (i) Average End-to-End Delay of packets – 
this includes all possible delays caused by buffering during 
route discovery phase, queuing at the interface queue, 
retransmission at the MAC layer, propagation and transfer 
delays – (ii) Packet Delivery Ratio, (iii) Control Overhead 
Ratio – the number of routing control packets in simulation 
time. 

C.  Simulation Results 

1)  Packet Delivery Ratio 

By increasing each node’s maximum speed, the packet 
delivery rate decreases in both algorithms, but the simulation 
result shown in figure 6 shows that ZD-AOMDV achieves 
higher rate of packet delivery compared to AOMDV. This is 
due to selection of zone-disjoint paths which decreases the 
collisions at the MAC layer. 
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Figure 6. The packet delivery ratio with varying speed. 

2) Routing overhead 

In this section, the two algorithms are compared in terms 
of routing overhead. The maximum speed of each node is 

considered 25 meter per second. As shown in figure 7 the 
overhead of routing in ZD-AOMDV algorithm increases 
rapidly as the number of nodes increase. This is due to the 
increase in the number of query and query-reply packets sent 
between neighbors in the route discovery process. 
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Figure 7. The routing overhead with varying speed. 

3)  Average end to end delay 

Figure 8 illustrates simulation results for average end-to-
end delay of our proposed algorithm based on nodes 
maximum speed compared to AOMDV. ZD-AOMDV 
achieves less average end to end packet delivery delay than 
AOMDV. 
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Figure 8. The average end-to-end delay with varying speed. 

Although the Route Discovery phase of our proposed 
algorithm takes more time comparing to AOMDV but in data 
transfer phase ZD-AOMDV overtakes AOMDV and leads to 
less average end-to-end delay. This is due to selection of 
zone-disjoint paths. 

V. CONCLUSION

Multi-path routing algorithms in ad-hoc networks tend to 
use load balancing in order to transfer data between source 
and destination. This leads to less end-to-end delay since 
data is simultaneously transferred through several paths to 
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destination. Although selecting node-disjoint paths for load 
balancing seems to be a good choice, but the nodes on these 
paths can still affect each other in the data transferring phase. 
This is because CSMA/CA protocol is used for acquiring 
channel access in wireless networks. To eliminate this 
problem we can utilize each node with directional antennas. 

In this paper we proposed a multi-path protocol based on 
AODV which utilizes common omni-directional antennas, 
rather than directional ones and transfers data trough 
multiple zone disjoint paths simultaneously. For discovering 
zone-disjoint paths, the number of active neighbors in each 
path is calculated during the route discovery process. The 
total number of active neighbors for each path is the main 
parameter for selecting zone-disjoint paths. Finally, for 
evaluating our suggested protocol we compared it with 
AOMDV and achieved lower end-to-end delay and also 
increase in the packet delivery ratio. 
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