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ABSTRACT. Two families of relational semantics for relevant logics, the ternary re-
lation and the Fine-style, or operational-relational, semantics are compared on point
of interpretation. Following Punčochář, it’s noted that the former kind tend to be
given ontic or realist styles of interpretation, whereas the latter tend to be given epis-
temic or informational styles. The equivalence between these semantic approaches
means that we can have both in one setting (with one grounded in the other), but it’s
argued that, nonetheless, there are reasons to prefer a version which takes the realist
interpretation as basic and the informational one as grounded in it. The resulting,
layered, semantic picture is sketched, and an application to the Mares–Goldblatt in-
terpretation of quantifiers is proposed.
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1. INTRODUCTION

Relational semantics for relevant and substructural logics can be put into two camps:
there is the ternary relation (TR) framework most famously studied by Sylvan (né
Routley) and Meyer [39; 40] and the operational–relational, or Fine-style (F) frame-
work most famously studied by Fine [20]. (For further details on the history of these
developments, see Bimbó and Dunn [7]; Bimbó et al. [8].) Punčochář [33, §6], not-
ing that these two frameworks are formally equivalent, suggests that the difference
between them should be understood as having to do with the kind of explanation they
tend to proffer for the meanings of the logical vocabulary. As he sees it, the TR frame-
work tends to be understood ontically, as having to do with the real world and objects
therein, while the F framework tends to be understood epistemically, or perhaps a bet-
ter word is informationally, as having to do with the sorts of things grasped by agents,
communicated by assertions, and which comprise theories.

While one should not put too much weight on the claim for TR semantics are
read realistically and the F semantics otherwise (realist versions of F semantics have
been given, for instance, by Jago [24], where the elements of an F model are taken
to represent exact truthmakers), it does track a tendency. For example, Barwise and
Perry [4], whose situation theory is often invoked as a philosophical story motivating
TR semantics (for instance, in Restall [35]; Mares [30] and Tedder [42]), took the
realism of their picture as one of its theoretical strengths. On the other hand, Logan
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[27; 28] has recently proposed a form of the F semantics, which takes the objects
literally to be theories (i.e., deductively closed sets of sentences).

These two frameworks are formally equivalent in the sense that any model of one
kind can be transformed into a model of the other kind satisfying all the same for-
mulas as the original (this will be properly spelled out, and proved, in §4, building
on [33]). Punčochář takes this fact to indicate that one is free to choose whichever
framework one prefers for a particular application, and this is, of course, true. In-
deed, there are mathematical reasons why one might prefer one to the other: the TR
semantics is often simpler in a mechanical sense (there are fewer things in the frames
and fewer constraints), whereas the F semantics is often simpler in a conceptual sense
(binary operations and relations are more familiar as mathematical objects than are
ternary relations).1 So in a sense there is, and need be, no rivalry between these two
approaches.

It has, however, been suggested for some time that the TR semantics of relevant
logics are unmotivated, ad hoc formalisms that do not provide a true meaning theory
for the logical vocabulary. Perhaps the most famous version of this line of criticism is
due to Copeland [9; 10], and one gets the impression that the F semantics has usually
been taken to be the more natural account, as providing a more natural interpretation of
the central conditional connective.2 So when the goal is to provide a philosophically
significant theory of meaning of the relevant vocabulary, which is one of the things
that one may take the relational semantics to be for, there is a serious question on the
table, and a reason to want to take sides.

In this paper, I will harness the equivalence results to suggest that we approach this
apparent distinction in a different way, by focusing on the fact that we can always con-
struct one kind of model from another. The resulting picture is a layered semantics,
where one kind of model is grounded in a model of the other kind. Rather than taking
either an ontic or informational stand, tout court, I’ll suggest that we can always have
both, and that the question comes down to which we take to be basic. We can always
capture the ontic flavor of the TR semantics and the informational flavor of the F se-
mantics in one framework; the real question concerns the direction of explanation. Do
we account the ontic properties of a TR model in terms of the informational properties
of an underlying F model, or vice versa? I’ll argue that, in general, an ontically-based
presentation provides a more satisfying route for explanation of the facts to be ac-
counted for by a semantics (namely, facts about entailments), and that therefore, if we
take Punčochář’s distinction seriously, we ought to prefer to take the TR semantics
as basic. With this argument made, I’ll briefly discuss an interesting upshot for the
Mares and Goldblatt [32] semantics for quantifiers.

1It might be, cheekily, put that part of the miracle performed in Urquhart’s [45] undecidability proof
was simply in finding a ternary relation in the wild, in the form of co-linearity.

2It’s been suggested to the author, in conversation with an interlocutor who shall remain nameless (you
know who you are), that the TR truth condition is a kludge, trying, and failing, to capture the beauty and
simplicity of the operational truth condition, due to Urquhart [44], and that the resulting framework is ugly
and unmotivated.
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2. THEORIES OF MODELS AND THEORIES OF ENTAILMENT

The formal structure of the options for orders of explanation — either accounting
for ontic features in terms of informational ones or vice versa — closely mirrors a
related dispute in the philosophical discussion surrounding possible worlds and their
use in frame semantics for modal logics. In that literature a salient distinction is that
between grounding propositions in possible worlds and grounding possible worlds in
propositions. Versions of these approach are discussed in Loux [29].

The dispute between these two approaches, as discussed in Divers [12], can be
seen as circling around the question of how best to account for the modal properties of
propositions. An account of possible worlds, and the relationship they bear to propo-
sitions, should provide an account of when propositions are necessary or possible.
Ideally, it should give us insight into questions about which particular propositions are
necessary or possible, and why. The account which the realist line on possible worlds
gives of these is familiar, namely, that a proposition is necessary when it is true in
every possible world and it is possible when true in some. So when we are tasked with
accounting for, say, what makes it the case that a particular proposition is possible,
if we take the realist line of explanation our task is to provide reasons to believe that
there is a possible world which makes the proposition true.

Theories of relational semantics for relevant logics are not aimed at providing ex-
planations for why propositions are necessary or possible, but rather are aimed at
providing explanations for why certain propositions entail others. As Anderson and
Belnap [1, §1] stress, entailment is the heart of logic. So if we aim to give an ac-
count of the meanings of the logical connectives in terms of a theory of models, a
major part of our project will be to do so in a way that accounts for why, in general,
some propositions entail others.3 Furthermore, the account should provide us with the
means to answer questions about which particular propositions entail which others.
So when it comes to deciding between rival semantic theories, it will be in terms of
their accounts of entailments, and the kinds of explanation they proffer for particular
entailment facts, that I propose we make our decisions. One reason to prefer a realist
picture, as opposed to one like that of [28], which takes the basic elements to be the-
ories, is that the realist approach seems to stand a better shot at providing satisfying
answers to questions of the form “why does such-and-so particular implication claim
express an entailment (or not)?” In the case of a negative answer to such a question,
the realist line would have us describe a situation which supports an instance of the an-
tecedent but not the appropriate instance of the consequent. With such a countermodel
in mind, one will have provided a strong reason to reject the claim that the implication
in question is an entailment.4 Positive answers will concern the properties of situa-
tions, and how they go about satisfying propositions. The account taking theories as
basic seems hard-pressed to provide a similarly satisfying, non-circular explanation of
entailment facts.

3Throughout, I’ll discuss “explanation” in a metaphysical sense. In this sense, a fact explains another
one when it features in an account of why the latter holds.

4One example of doing such a thing can be found in [42], where it is argued that implications of the
form (A! B)! ((B ! C)! (A! C)) do not express entailments, by means of describing a concrete
situation which would falsify this implication formula.
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Having said this, note that even theories of meaning for the logical vocabulary
which are formally equivalent may yet differ with respect to the explanations they of-
fer of these facts. (I venture to suggest that non-realist approaches will generally fare
worse on this front.) Consider the case of possible worlds again. Whether we take
propositions to be composed of possible worlds or take possible worlds to be com-
posed of propositions, we may wind up with the same collection of propositions being
necessary. There is, nonetheless, still a debate between these about which approach
provides the better explanation of those modal facts. How can such debates proceed?

2.1. Data-Fit, Parsimony, and Explanatory Power. One way to cash out such de-
bates concerns the extent to which different proposals satisfy different principles of
theory choice. One such principle, the fit to the data, does not decide between these:
being equivalent, both theories will fit the data to the same extent. So the choice comes
down to other principles, and for my purposes there seem to be two, which are most
salient:

(1) Ontological Parsimony: One should choose a theory which, ceteris paribus,
involves commitment to fewer kinds of entity.

(2) Explanatory Power: One should choose a theory which, ceteris paribus, pro-
vides a more satisfying explanation of the phenomena underlying the data.

In the case of modal theories, we can take the salient data to concern the modal
status of propositions, and choose between the candidate theories based on (1) and
(2). Following Lewis [25], there seem to be good reasons to think that a realist account
performs better on (2), but non-realist accounts seem to fare better on (1). The question
then becomes when we’re forced to choose one of (1), (2), which should we prefer?

I think that we should pretty much always prefer to gain explanatory power at the
loss of parsimony than go the other way around, at least when all other things are,
indeed, equal. Let me sketch a brief argument why.5 What is the theoretical cost of
having more ontological commitments? As far as I can tell, the main cost is that taking
on commitments to more kinds of entities runs the risk of falsifying the theory. If we
commit ourselves to the existence of something which turns out not to exist, we’ll
have made an error, and have a false theory on our hands. Such risks are, indeed,
theoretical costs, as are any commitments we take on which might wind up false.
However, they are just as costly as any other such risky commitments we take on by
making assertions — they are not more costly. So when we decide which theories to
adopt, and we weigh the costs of ontological commitments, which come along with
the theory, we should weigh these the same way we do any potentially false claims the
theory makes.

If this is correct, then when we are in a position to decide whether to adopt an onto-
logically profligate, but more explanatory theory or one which is more parsimonious
and less explanatory, the question comes down to whether we should take on a greater
risk of falsehood in the hope of having a more explanatory theory. I think the answer

5This argument is, of course, deeply indebted to Lewis [25], though I’ll refrain from citing chapter and
verse as I go into it. It’s worth noting that it involves an appeal to inference to the best explanation, and this
has been discussed in detail by Lipton, information concerning which can be found in [26]. The notion of a
“satisfying explanation” to which I appeal is, perhaps, best understood as an appeal to an explanation being
the “loveliest,” in his terminology, but I’ll leave this appeal somewhat vague here.
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here should be a resounding “yes.” In general, we are better off taking the liberal at-
titude of seeking truth than we are taking the more conservative approach of avoiding
falsehood; from this perspective, if the only thing we have to lose by taking onboard
commitments to further entities that provide us with better explanatory power is the
risk of falsehood, we should do so.

3. ONTIC TR FRAMES AND INFORMATIONAL F FRAMES

Let’s cash out the sense in which you might understand TR semantics as being more
ontic and F semantics as being more informational. As mentioned, this distinction is
not hard and fast. There are realist readings offered of some forms of F semantics (as
in [24]), and there have certainly been informationally flavored readings of semantics
in the TR framework, such as in Dunn’s work on program interpretations [17; 14; 15].

Having said this, it does seem to be the case that, as Punčochář [33] notes, there
is a tendency for proponents of the TR semantics to defend realist readings and those
of the F semantics to defend informational readings. Perhaps, the most clear point
of distinction between these approaches concerns the interpretation of disjunction; a
bit of discussion of the history here is salient. Urquhart [44] first attempted to give
an operational semantics for relevant logics employing a frame with points obeying
the truth condition for disjunction common from Kripke semantics for modal and
intuitionist logic. Taking JAKM as the collection of points of a frame satisfying a
formula A in a model M, this truth condition is:

JA_B KM = JAKM [ JB KM.

The problem, well known, is that if one attempts to interpret the conditional in terms
of a binary operation ⌦, as

JA! B KM = {s : 8t(t 2 JAKM ) s⌦ t 2 JB KM)},
then one winds up with models for which standard relevant logics are not complete
(see Dunn and Restall [18], for more details). In order to resolve the problem, one
must adopt a different truth condition either for disjunction or the conditional. The F
framework takes the former route, and the TR framework takes the latter.

It’s been noted many times over the years (e.g., [23; 13; 22; 24]) that the standard
truth condition for disjunction is ill-suited to interpretations of points in the frame
as informational, motivating the move made by proponents of the F framework. For
instance, suppose we take frame elements to represent information states, such as
those available to an agent in the course of a reasoning task. There’s no good reason
to suppose that whenever such an agent has information supporting a disjunction,
they’ll have information supporting either disjunct. For instance, Sherlock Holmes
may have enough information to know “either Moriarty or Queen Victoria committed
the murder” without having information adequate to pin down the identity of the killer.
This is one way that an informational reading is especially well suited to the F style
semantics.

The kind of situation-theoretic reading often offered for TR semantics can avoid
this issue by taking situations themselves not to be the sorts of things which agents
directly cognize. On this sort of picture, what an agent cognizes is not a situation
but rather a proposition (or collection thereof), which type situations, but need not be
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situations themselves. Situations are, perhaps, well understood as inexact truthmakers
which support the truth of propositions — in this case, it is a plausible claim that they
support a disjunction just in case they support one of the disjuncts.6

Another way this tendency comes up is that the most standard interpretation of the
ternary relation, using channel theory Barwise [3], as in [35; 42], has a realist flavour.
It posits mind-independent links between situations to interpret the ternary relation.
The operation of the F semantics, on the other hand, is usually read informationally,
as concerning the result of applying an epistemic or informational action on bits of
information, sentences, or theories [44; 41; 28]. I won’t go into further detail, but
hopefully this suffices to bolster Punčochář’s case that there is a tendency for TR se-
mantics to be read ontically and F semantics to be read epistemically/informationally.

Now let’s turn to the equivalence of the frameworks.

4. A SKETCH OF EQUIVALENCE BETWEEN TR AND F

This section is, as the title suggests, just a sketch — a more detailed investigation
of these matters is certainly possible. I’ll give basic details to provide the reader
an indication of how the construction works, going in either direction, and how it
naturally proceeds through the three layers on which I’ll be focused later. A fuller
presentation of a narrower result concerning the logic R can be found in [33].

The main aim is to show that the TR and F semantic frameworks are equivalent in
the sense that from a model on a frame of one kind, we can construct a model on a
frame of the other kind which satisfies just the same formulas. This goes to show that
the frameworks capture, in a sense, the same data, leaving the question of the choice
between them up to other theoretical considerations. In this section, I’ll introduce
a form of the TR semantics and a form of the F semantics and then show how to
construct one from the other in a simple, uniform way.

There are a number of available variations on the theme of “TR semantics” and “F
semantics,” and the versions I sketch here are chosen in a way which is partially due
to my own, perhaps idiosyncratic, preferences and partially in order to simplify the
presentation. I’ll deal here with basic forms of the TR and F semantics appropriate
for the relevant logic B — the correspondence available between frame conditions
and further axioms or rules which may be added to B to obtain further logics is well
known, and we do not need to go into it here. I take the propositional language to
be defined, as usual, from a set of atomic formulas P, the logical constant t, and the
connectives ¬,^,_,! (of arities 1, 2, 2, 2, respectively). I’ll use L to denote the
language.

6For related discussion, into which I’ll not go further here, see Deigan [11]. As a related point, note that
both the TR and F semantic frameworks commonly employ the standard truth condition for conjunction
in terms of set intersection. One upshot of this, in the case of the situation-theoretic picture, is that we
obtain the validity of the distribution law immediately from the fact that a powerset algebra, with unions
and intersections, is a distributive lattice. The justification of the distribution law has been discussed in
relevant circles (e.g., in Belnap [5] and Restall [37]), and this raises a potential avenue of objection against
reading the situation-theoretic line as realist. I won’t go into this question further, but note it as a potential
difficulty.
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4.1. Ternary Relation Frames and Models.

Definition 1. A ternary relation (TR) frame F is a tuple hW,N,R,⇤i where ? 6= N ✓
W , R ✓W 3, and ⇤ : W �!W are such that, given the following definitions:

= {ha,b i 2W 2 : 9g 2 N(Rgab )}

P(W )" = {X ✓W : 8b 2W (9a 2 X(a  b )) b 2 X)},
the following constraints are satisfied:

(tr1) hW,i is a poset.
(tr2) N 2 P(W )".
(tr3) If a 0  a,b 0  b ,g  g 0 and Rabg , then Ra 0b 0g 0.
(tr4) If a  b then b ⇤  a⇤, and furthermore, a⇤⇤ = a .

Before defining models on TR frames, let’s fix a couple other definitions. First,

Definition 2. Given a set G ✓ P(W )", we fix the following:

[G ) := {Y 2 P(W )" : 9X1, . . . ,Xn 2 G (
\

jn
Xj ✓ Y )}

Briefly, [G ) is the least filter, on the distributive lattice hP(W )",\,[i, containing G .7

Definition 3. Given X ,Y 2 P(W )", let

X ! Y = {a : 8g (9b 2 X(Rabg)) g 2 Y )}
¬X = {a : a⇤ /2 X}

Definition 4. A model M on a TR frame F is a function of type P �! P(W )", ex-
tended to a valuation J ·KM : L�! P(W )" as follows:

(1) JpKM = M(p) (4) JA^B KM = JAKM \ JB KM

(2) JtKM = N (5) JA_B KM = JAKM [ JB KM

(3) J¬AKM = ¬JAKM (6) JA! B KM = JAKM ! JB KM

A formula A is satisfied by M on F just in case N ✓ JAKM; it is satisfied by F in case
it is satisfied by any model on F; it is valid on a class F of TR frames just in case it is
satisfied by each F 2 F .

4.2. Fine-Style Frames and Models. The semantics in this section does not quite
follow Fine’s original presentation. The most salient point is that I explicitly include
an operation, u, which interprets disjunction. Since much of what I say here concerns
disjunction, I pull this out explicitly and state some conditions concerning it ((f1),
(f5), and (f6)) in order to clarify its behavior. For instance, (f5) is the constraint, noted
by Humberstone [23], which enforces distribution in a general setting. Fine does not
include a detailed discussion of disjunction, but I render these constraints explicit for
the purposes of comparison.

Definition 5. A Fine-style (F) frame G is a tuple hS,SP,v,⌦,�,@i, where ? 6= SP ✓
S, v✓ S2, ⌦ : S2 �! S, � : SP �! SP, and @ 2 S so that the following constraints
are satisfied:

7For further information on lattices and related topics, the reader may consult Dunn and Hardegree [16].
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(f1) hS,vi is a meet (written u) semi-lattice.
(f2) If s v s0 and t v t 0 then s⌦ t v s0 ⌦ t 0. Also, @⌦ s = s, for any s 2 S.
(f3) � is an order-inverting involution: so s v t )�t v�s and �� s = s.
(f4) If x,y 2 S, a 2 SP, and x⌦ y v a, then there are x0,y0 2 SP s.t. x v x0, y v y0,

x0 ⌦ y v a, and x⌦ y0 v a.
(f5) If su t v u, then there are s0, t 0 2 SP s.t. s v s0, t v t 0, and s0 u t 0 v u.
(f6) If su t 6v u, then there are s0, t 0 2 SP s.t. s v s0, t v t 0, and s0 u t 0 6v u.

Definition 6. Given X ,Y 2 P(S)", let

X  Y = {s 2 S : 8t 2 S(t 2 X ) s⌦ t 2 Y )}
X tY = {s 2 S : 9t,u 2 S(t uu v s & t 2 X & u 2 Y )}
⇠X = {s 2 S : 8t 2 SP(s v t )�t /2 X)}

Definition 7. A model on an F frame G is a function L of type P�! P(S)" required
to satisfy the constraint, for any p 2 P,

8t 2 SP(s v t ) t 2 L(p))) s 2 L(p)

L is extended to a full valuation | · |L : L �! P(S)" required to satisfy the following
clauses:

(1) |p|L = L(p) (2) |¬A|L =⇠ |A|L
(3) |A^B|L = |A|L \ |B|L (4) |A_B|L = |A|L t |B|L
(5) |A! B|L = |A|L |B|L (6) 8t 2 SP(s v t ) t 2 |A|L)) s 2 |A|L

A formula A is satisfied on L just in case @ 2 |A|L. Satisfaction on a frame and
validity w.r.t. a class of frames are defined as for TR models.

4.3. From TR to F. Now let’s show that from an arbitrary TR frame, we can con-
struct an F frame such that for any model on the original frame, we can obtain a model
on the new frame which satisfies the same formulas as the original model.

Definition 8. Given a TR frame F, let its F-mate F
F = hSF ,SF

P ,vF ,@F ,⌦F ,�Fi be
defined as follows:

(i) SF = {G ✓ P(W )" : 8Y 2 P(W )"(9inXi 2 P(W )"(
T

in Xi 2 G ) Y 2 G ))}
(ii) SF

P = {G 2 SF : 8X ,Y 2 P(W )"(X [Y 2 G ) X 2 G or Y 2 G )}
(iii) vF=✓
(iv) @F = [{N})
(v) G ⌦F D = {Y 2 P(W )" : 9X 2 D(X ! Y 2 G )}

(vi) �FG = {X 2 P(W )" : ¬X /2 G }, for G 2 SF
P .

The idea of the construction is that we take the set of filters, w.r.t. hP(W )",\,[i,
SF , the set of prime filters thereon, SF

P , an order vF , a logical point @F , and a pair of
operations appropriate for the interpretation of implication and negation on Fine-style
frames, ⌦F and �F . So we have, essentially, constructed a set of non-prime points out
of (up)sets of prime points and defined operations appropriate to interpret the logical
vocabulary, all in accordance with the structure of F frames.

This construction proceeds by a two step process. We start from the TR frame,
and then we consider the space of propositions thereon, given by P(W )", and it is out
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of this space that we define our desired F frame. Intuitively speaking, we construct
propositions out of elements of W , and from there we construct elements of the desired
F frame. Let us verify that FF is, indeed, an F frame when F is a TR frame.

Fact 9. If F is a TR frame, then F
F is an F frame.

Proof. It suffices to ensure that FF verifies conditions (f1)–(f6). For (f1), just note that
vF=✓ does have a meet, namely, \, and so hSF ,vFi is, indeed, a meet semi-lattice.

For (f2) we have two things to check. First, suppose G vF D and S vF Q are
the case, and furthermore, that X 2 G ⌦F S . Therefore, there is a Y 2 S such that
Y ! X 2G , and so Y 2Q and Y ! X 2 D , and so X 2 D ⌦F Q . Since X was arbitrary,
this suffices to prove that G ⌦F S vF D ⌦F Q . Next, we want to show that for any
G 2 SF , @F ⌦F G =G . First, if X 2 @F ⌦F G , then there is a Y 2G s.t. Y ! X 2 @F .
But Y ! X 2 @F holds iff N ✓ Y ! X holds in F and so Y ✓ X holds there, and so if
Y 2 G then X 2 G , since G 2 SF . For the converse, if X 2 G then, since X ✓ X always
holds, we have X ! X 2 @F , and so X 2 @F ⌦F G , as desired.

For (f3), we again have two things to prove. First, suppose that G ✓ D and that
X 2 �F D . Thus, ¬X /2 D and so ¬X /2 G , and so X 2 �FG , as desired. Note, further,
that X 2 �F �F G holds iff ¬¬X 2 G iff X 2 G .

For (f4), suppose that we have G ,D 2 SF and Q 2 SF
P s.t. G ⌦F D ✓Q . To obtain a

D 0 ◆ D such that G ⌦F D 0 ✓Q , consider the pair

hD , D� = {X 2 P(W )" : 9Y /2Q(X ! Y 2 G )}i.

Now by definition D is a filter on hP(W )",\,[i, and it is fairly easy to verify that
D� is an ideal.8 Furthermore, we can show that D \ D� = ?. In fact, there are
no X1, . . . ,Xm 2 D and Y1, . . . ,Yn 2 D� s.t.

T

1im
Xi ✓

S

1 jn
Yj. With this fact, since

hP(W )",\,[i is a distributive lattice, we can employ [16, Corollary 13.4.6] to infer
that there is a D 0 2 SF

P s.t. D 0 ◆ D and D 0 \D� 6= ?.9 From this, we can infer that
G ⌦F D 0 ✓Q , as desired.

Let’s show the key fact, assuming, for contradiction, that for each Yj there is a
Z j /2 Q such that Yj ! Z j 2 G , and so

T

1im
Xi !

S

1 jn
Z j 2 G and so

S

1 jn
Z j 2 Q ,

contradicting the assumption that Q 2 SF
P .10

The argument needed to obtain a G 0 ◆ G s.t. G 0 2 SP and G 0 ⌦D ✓Q is similar, so
elided. Also, the proofs of (f5) and (f6) are straightforward and, for reasons of space,
are left to the reader. /

This suffices to show that the F-mate of a TR frame is an F frame, as desired. It
remains to show how, given a model M on a TR frame F, to obtain a model on F

F

which will satisfy the same formulas. For this, we adapt the definition of a canonical
valuation, given in Bimbó and Dunn [6, p. 23].

8The key facts are: (X ! Y )\ (Z !U)✓ (X [Z)! (Y [U), and if X ✓ Y then Y ! Z ✓ X ! Z.
9Note, this step is analogous to the use of the Pair Extension lemma in completeness proofs for relevant

logics w.r.t. their TR frame semantics, for instance in [2, §48.3].
10This relies on the fact that (X ! Y )\ (Z !U)✓ (X \Z)! (Y [U).
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Definition 10. Given a model M on a TR frame F, we fix | · |M : L �! P(SF)" by
setting |A|M = {G 2 SF : JAKM 2 G }.

Fact 11. Given a model M on a TR frame F, the model | · |M on F
F has the following

properties:

(1) |A|M 2 P(SF)", for every A 2 L (2) |t|M = {G 2 SF : @ ✓ G }
(3) |A^B|M = |A|M \ |B|M (4) |A_B|M = |A|M t |B|M

(5) |A! B|M = |A|M  |B|M (6) |¬A|M =⇠ |A|M

(7) 8D 2 SF(8G 2 SF
P (D ✓ G ) G 2 |A|M)) D 2 |A|M)

(8) For any A 2 L, N ✓ JAKM iff @F 2 |A|M.

Proof. (1) is immediate from the definition. The others we can prove by induction on
the complexity of formulas. For (2), the only atomic case, we can show:

|t|M = {G 2 SF : JtKM = N 2 G }= {G 2 SF : [{N}) = @ ✓ G }

(3) is immediate, and left to the reader. For (4), note that the right-to-left direction is
immediate from the fact that JCKM ✓ JA_BKM holds for C 2 {A,B}, so let’s consider
the converse. Note that if JA_BKM = JAKM [ JBKM 2 G , then it’s immediate that
JCKM 2 [{JCKM}) holds for C 2 {A,B} and [{JAKM})\ [{JBKM})✓G , which suffices
to show that G 2 |A_B|M , as desired. For (5) and (6), the standard kind of arguments
given in completeness proofs (for instance, those in Restall [36]) suffice, and verifying
these are left to the reader.

For (7), we proceed by contraposition. Suppose that D 2 SF \ |A|M , so that JAKM /2
D . We want to show that there is a G 2 SF

P s.t. D ✓ G and JAKM /2 G . For this,
however, it suffices to employ Dunn and Hardegree [16, Corollary 13.4.6], fixing {X 2
P(W )" : X ✓ JAKM}, noting that this is an ideal which doesn’t overlap D , and thus we
can obtain a prime filter G on hP(W )",N,\,[,!,¬i s.t. G ◆ D and G \ {X : X ✓
JAKM}=?, so that JAKM /2 G as desired.

For (8), it suffices to note that:

@ 2 |A|M () JAKM 2 @ = [{N}) () N ✓ JAKM /

Points (1)–(7) guarantee that | · |M is well-defined, giving rise to a model on F
F .

Point (8) gives the desired property, that the formulas satisfied by | · |M on F
F are just

those satisfied by M on F. So we can state:

Theorem 12. Given any TR frame F, and model M thereon, we can construct an
F-frame F

F and a model satisfying just those formulas satisfied by M.

This gives us one half of our puzzle; that any formulas satisfiable on a TR frame
are satisfiable on some F frame.

4.4. From F to TR. This direction is quite similar, and is, in any case, better under-
stood. In Fine’s original paper, especially, the part reproduced in Anderson et al. [2,
§51.5], he considered in some detail the relationship between his frames and the TR
frames presented by Sylvan, Meyer, and their collaborators Routley et al. [40]. The
method I’ll employ is a bit different from his, but shares some similarities.
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Definition 13. Given the an F frame G, we construct GT R = hW T R,NT R,RT R,⇤T Ri,
G’s TR-mate, as follows:

W T R =
�

G ✓ P(S)" : 8Y 2 P(S)"(9inXi 2 G (
\

in
Xi ✓ Y ) Y 2 G )) &

8X ,Y 2 P(S)"(X tY 2 G ) (X 2 G or Y 2 G ))
 

NT R = {G 2W T R : @ 2 G }
RT R =

�
hG ,D ,Qi 2 (W T R)3 : 8X ,Y 2 P(S)"((X  Y 2 G & X 2 D)) Y 2Q)

 

G ⇤T R
= {X 2 P(S)" : ⇠X /2 G }

Fact 14. If G is an F frame then G
T R is a TR frame.

Proof. It suffices to prove that (tr1)–(tr4) hold of GT R.
For (tr1), it suffices to show that the defined T R is, in fact, just ✓, i.e., that 9G 2

NT R(RT RG DQ) () D ✓Q . For the left-to-right, suppose that 9G 2NT R(RT RG DQ)
and X 2 D . If G 2 NT R, then @ 2 G and since @ ✓ X  X , we have that X  X 2 G ,
and thus X 2 Q . Since X was arbitrary, this suffices to show that D ✓ Q , as desired.
For the converse, suppose that D ✓Q ; in fact, since for any X 2 D and any G 2 NT R

we have X  X 2 G , we have that RT RG DQ , which suffices to show the result (given
that NT R 6=?, verification of which fact we leave to the reader).

For the remainder, we’ll take the order concerned just to be ✓ without further
comment. For (tr2), we want to show that if G 2 NT R and G ✓ D then D 2 NT R. This
is immediate from the definition of NT R.

The arguments needed for (tr3) and (tr4) are quite similar to arguments standardly
given to show that the canonical frame of a logic is a TR frame, and the reader may
consult [2, §48.3] or [40, Ch. 4] for details of this style of argument. /

Definition 15. Given the TR-mate G
T R of an F frame G and a model L on G, let

JAKL = {G 2W T R : |A|L 2 G }.

Now, once again, we just have to verify that the resulting model satisfies the re-
quired properties.

Fact 16. Given a model L on a F frame G, the evaluation J·KL on G
T R has the follow-

ing properties:
(1) If G 2 JAKL and G ✓ D , then D 2 JAKL.
(2) JtKL = NT R

(3) JA^B KL = JAKL \ JB KL

(4) JA_B KL = JAKL [ JB KL

(5) JA! B KL = {G 2W T R : 8D ,Q((RT RG DQ & D 2 JAKL))Q 2 JB KL)}
(6) J¬AKL = {G 2W T R : G ⇤T R

/2 JAKL}
(7) For any A 2 L, NT R ✓ JAKL iff @ 2 |A|L.

Proof. The reader is encouraged to check [6] for details of proving completeness for
relational frames for distributive multi-gaggles. The details there suffice here, as can
be noted by the fact that the complex algebra of an F frame will be a multi-gaggle.
The only part of verifying this that is not standard involves verifying that distribution
obtains, and the argument style, using (f5), can be found in [23]. /
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From this we can infer the key fact, which is:

Theorem 17. From any F frame G we can obtain a TR frame G
T R such that, for any

model L on G there is a model J·KL on G
T R satisfying exactly the same formulas as L.

I’ve only dealt here with frames appropriate for the basic logic B, but there is a
well-known correspondence theory for accommodating stronger logics, and it seems
likely that these results allow for the above to be generalized to frames appropriate for
a wider range of logics (as can be done in the case of R, as shown in [33]). For my
purposes, the basic form I’ve given here is enough to make my point, so I’ll leave it at
that and get back to the philosophical work.

5. LAYERED SEMANTICS

As per §2.1, a realist account provides for a more explanatorily satisfying picture,
and the equivalence results of §4 indicate how it is that, starting from this basis, we
can recapture the working of the information-based semantics of the F approach in a
more satisfying way using the TR semantics.11 In any case, regardless of which way
one proceeds to do the grounding, the equivalence provides a way of capturing both
in one framework with some nice results.

The three-layer picture can be represented as follows — the arrows on the left side
indicate explanatory priority (the arrows go from from the thing-grounded to the thing-
grounding), and those on the right side order of the “defined in terms of” relation:

Information States G 2 SF
??y

??y

Propositions X 2 P(W )"??y
??y

Situations a 2W

As indicated, situations provide the ground of the truth of propositions, and elements
of SF represent the states of information to which agents can find themselves having
access. As before, there are good reasons that these should not be required to be prime,
as they are not. One can have an information state which includes/supports a disjunc-
tive proposition without supporting either disjunct. Situations, however, understood
as inexact truthmakers are prime.

On the base level, we have objects, situations — particularly, something like the
abstract situations of [4] — to which we have an existential commitment. We take
them to be real things, and take propositions to be constructed out of these in sys-
tematic ways. Propositions, or representations thereof, are then the constituents of
information states, to which agents have cognitive access. For instance, it is by taking
in visual information that an agent learns what information the witnessed situation
conveys, and they are then in a position to perform various cognitive tasks with that
information. Part of the story here is that we don’t directly perceive situations, nor do

11Assuming, of course, that the version of the F semantics involved is read in a non-realist and the TR
semantics in a realist way.
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we express situations directly by our various linguistic/cognitive actions. Rather, what
we perceive/express/cognize are propositions and collections thereof into information
states. On this line, when we open our eyes and perceive the world around us, what
we perceive is not the world directly, but information carried by the world — what we
perceive is a fact, not an object.

One place where the distinction becomes most salient is that many situations will
be typed by a proposition. This captures the intuitive idea that our available informa-
tion underdetermines the state of the world (the situation) we have information about.
When I look at my office, and out the window, there is a great deal of information
I get, but the actual world situation I, the office, and the window inhabit supports a
great deal more information than that which I obtain by perception. For instance, I
may see a drawer, and have a vague idea of what is in it, but may not have access to
the more precise information supported by the situation of my office, which specifies
precisely what is in the drawer. It is this underdetermination which explains why our
information has certain imperfections, such as not being prime.

While in need of further precisification this story provides a skeleton for how a
reasonably natural theory of meaning could be constructed on this sort of layered
picture, and this in a way which accommodates the nice features of both the ontic and
the epistemic/informational readings.

6. MARES–GOLDBLATT QUANTIFIERS IN LAYERED SEMANTICS

One nice feature of the three-layered semantic picture is that we have three places
where we can locate meanings. I’ve suggested that entailment facts should be un-
derstood to be grounded in the world. Having said that, however, we can locate the
meanings of other expressions in other places, namely in the proposition or informa-
tion state layer. One natural kind of expression which would seem to have its meaning
most naturally in one of these higher layers may be certain modals which concern the
interactions between agents and their available information.

The example I want to consider is the Mares–Goldblatt (MG) [32] interpretation of
quantifiers, which I’ll suggest most naturally lives at the propositional layer.12 This
provides an interesting contrast with the standard, Quinean, picture of the quantifiers
wherein their meanings are to be found in the world, and the arrangements of proper-
ties over objects. The picture I’ll sketch is similar to Mares’ [31] proposed interpreta-
tion of the MG semantics, though it differs from his in some respects. Let me begin
by recapping the basic elements of the MG semantics, building on the basis of the TR
framework.

6.1. MG Quantifiers in TR Semantics. First we extend the basic propositional lan-
guage (implicit up until now) by a denumerable collection of variables Var = {xn}n2w ,
and the quantifiers 8,9. A language signature consists of a set of name constants Con
and a collection Pred of predicate letters of varying arities: the letter c will function
as a metavariable over Con and Pn over Pred, having arity n.

12The original form of this semantics was given for quantified extensions of R, but it has recently been
expanded to include a range of weaker logics in Ferenz [19]; Tedder and Ferenz [43].
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Definition 18. An MG frame is a tuple hW,N,R,⇤,Prop,D,PropFuni, where F =
hW,N,R,⇤i is a TR frame, Prop ✓ P(W )", D 6= ?, and PropFun ✓ {j : j : Dw �!
Prop}. We stipulate a range of constraints on these things. To that end, given f 2 Dw

(called a “variable assignment”), if f 0 2 Dw is such that for any m 6= n, f m = f 0m,
then f 0 is an xn-variant of f , written f 0 ⇠xn f .

The constraints, taking the definitions of !,¬ as operations on P(W )" from Defi-
nition 6, are:
(MG1) There is a jN 2 PropFun s.t. for all f 2 Dw , jN f = N.
(MG2) If j 2 PropFun, then there is a ¬j 2 PropFun s.t. (¬j) f = ¬(j f ).
(MG3) If j,y 2PropFun, then there is a j⌦y 2PropFun s.t. (j⌦y) f =j f ⌦y f

for each ⌦ 2 {\,[,!}.
(MG4) If j 2 PropFun,n 2 w , then there is a 8nj 2 PropFun s.t.

(8nj) f =
[
{X 2 Prop : X ✓

\

f 0 ⇠xn f

j f 0}.

(MG5) If j 2 PropFun,n 2 w , then there is a 9nj 2 PropFun s.t.

(9nj) f =
\
{X 2 Prop :

[

f 0⇠xn f

j f 0 ✓ X}.

A model M on a MG frame is a multi-type function: it is of types Con �! D and
Predn �! Dn (where Predn ✓ Pred is the set of n-ary predicate letters), and we define
the combination of M with f 2 Dw as follows, for any t 2Con[Var:

Mf (t) =

(
f n if t = xn 2Var;
M(t) if t 2Con.

We define J·KM assigning formulas to elements of PropFun inductively as follows
(note that (JAKM) f , often written JAKM

f , takes a value in Prop):

(1) JPn(t1, . . . ,tn)KM
f = M(Pn)(Mf (t1), . . . ,Mf (tn))

(2) J¬AKM
f = ¬(JAKM

f ) (5) JA! B KM
f = JAKM

f ! JB KM
f

(3) JA^B KM
f = JAKM

f \ JB KM
f (6) J8xnAKM

f = (8nJAKM) f
(4) JA_B KM

f = JAKM
f [ JB KM

f (7) J9xnAKM
f = (9nJAKM) f

A formula A is satisfied by the pair M, f just in case N ✓ JAKM
f . A is satisfied by M

just in case it it satisfied by M, f for any f 2 Dw . A is satisfied by an MG frame if
satisfied by every model on the frame, and it is valid w.r.t. a class of MG frames if
satisfied by every frame in the class.

The key innovation in this semantic framework concerns, naturally, the quantifiers.
In particular, it is the introduction of the clauses (MG4) and (MG5). Note that, unlike
in the standard, Tarskian framework, these are not interpreted just as generalized inter-
sections/unions of “instances.” Rather, these are mediated by elements of Prop — we
don’t just consider, when evaluating a quantified claim at a world a , whether all/some
instance of the quantified formula holds at a , or even at worlds related to a . Rather,
we consider the state of information from a , that is, how a fits into the structure of
propositions; in effect, we consider what the information supported by a commits one
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to. It’s by working with Prop like this explicitly that Mares and Goldblatt are able to
avoid the problems, discovered by Fine [21], with employing the standard Tarskian
truth condition. So the interpretation of the quantifiers concerns not just a frame, but
this combined with a particular complex algebra over that frame — that is to say, it is
a form of general frame semantics. However this difference isn’t just interesting for
technical purposes, but also for philosophical purposes.

In particular, by working with this larger structure of information, the MG interpre-
tation of the quantifiers seems to open itself up to readings of these objects other than
the traditional reading made famous by Quine [34]. For example, the truth condition
for the existential quantifier can be spelled out as

a 2 J9xnAKM
f () 8X 2 Prop(a 2 X )8b (9 f 0 ⇠xn f (b 2 JAKM

f 0)) b 2 X)).

That is, any proposition X which a supports contains any situation b which supports
at least one instance of A. That is, the information supported by a must be supported
by a situation which supports at least one instance. We are concerned not with an exis-
tential commitment at the world of evaluation, but rather with a situation-independent
informational commitment. In order to be so committed, one does not need to be
committed to the existence of an A in any particular situation, but rather just be com-
mitted to infer the information supported by a in any situation, which does support
the existence of an A. To use the preferred terminology of Sylvan [38], we might
call this a particular quantifier, which simply tracks the commitments associated with
commitment to a particular one satisfying the formula.

The important thing for my purposes is that the three-layer semantic framework
provides the grist both for a realist interpretation of the propositional vocabulary, and
an informational interpretation of the quantifiers, in one setting. That this is a strength
of the account is, of course, the kind of point Punčochář [33] noted, but it’s an advan-
tage we retain even when we are more picky about the grounding of the framework.
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