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A D U A L  A P P R O A C H  TO B A Y E S I A N  I N F E R E N C E  A N D  

A D A P T I V E  C O N T R O L  

ABSTRACT. Probability updating via Bayes' rule often entails extensive informational 
and computational requirements. In consequence, relatively few practical applications of 
Bayesian adaptive control techniques have been attempted. This paper discusses an 
alternative approach to adaptive control, Bayesian in spirit, which shifts attention from 
the updating of probability distributions via transitional probability assessments to the 
direct updating of the criterion function, itself, via transitional utility assessments. Re- 
suits are illustrated in terms of an adaptive reinvestment two-armed bandit problem. 

1. INTRODUCTION 

In numerous multi-stage control problems arising in the physical, biological, 

and social sciences, a decision maker attempting to control a system is forced 

to operate with necessarily incomplete information regarding the statistical 

and structural characteristics of his problem environment. The crux of the 

decision maker's problem is then to determine a tractable satisfactory p ro -  

cedure for using past observations to improve current and future system per- 
formance. Control problems incorporating this feature are generally referred 

to as adaptive. 
Many currently available adaptive control techniques require the successive 

updating of system state probability distribution estimates via Bayes' rule. 

The need for state distribution estimation and updating arises from a focus on 
system state identification as a perceived essential intermediate step towards 

optimal control selection'. Unfortunately, as is well documented [1, 6, 12, 

13], the informational and computational requirements for probability distri- 
bution updating via Bayes' rule are often extensive. In consequence, relatively 

few practical applications of Bayesian adaptive control techniques have been 

at tempted) 
This paper will discuss an alternative approach to adaptive control, 

Bayesian in spirit, which shifts attention from the updating of probability 

distributions via Bayes' rule, a filtering operation on transitional probability 
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assessments, to the direct updating of the criterion function, itself, via a •ter- 
ing operation on transitional utility assessments. Analytical and computer 
simulation studies for the convergence and optimality properties of several 
specific criterion function f'flters are presented in previous papers [14-20] .  
In contrast, the present paper will focus on developing the fundamental 

analogy between use of criterion filters for direct criterion function updating 

and use of Bayes' rule for probability distribution updating. Results will be 
illustrated in terms of an adaptive reinvestment two-armed bandit problem. 

2. THE BASIC ANALOGY 

Consider, first, a simple example of the familiar parametric model underlying 

the Bayesian approach to statistical inference. Certain sample data, 60", arises 
as an observation of a random vector, 60. The distribution of 60 is assumed to 

be specified by a probability model, (~2, p (6010)), where ~2 _c R s is a specified 

sample space, and p ( .  I~): ~2 ~ R  is a probability density function indexed 
by a parameter 0 lying in a parameter space, (9. The true value of 0 is un- 
known, but the statistician has prior beliefs about this value which are ex- 
pressable in the form of a prior probability density function, p~ defined 
over O. The sample 60* increases his knowledge about 0; and the prior and 
sample information are combined to form an updated probability density 
function for 0, 

(1) p(OI60*)c~p(60*lO)p~ 

in accordance with Bayes' rule. If n -  1 independent past observations 
,60n-1 on 60 are available to the statistician, then (1) generalizes to 

(2) p(OI 60,~*_1, �9 . .  ,60~)=p(60, , - l lO)p(60n-210)  �9 . .p (60~lO)p~ 

Consider, now, the following simple adaptive control problem. A con- 

troller wishes to select a control, v, from a specified feasible control set, V, in 
an attempt to maximize his utility. The function U(60, v) which measures his 
utility depends jointly on the selection v and the realization of a random 
vector 60 taking values in some sample space ~2 __C R s. The form of the proba- 
bility density function p(60) governing 60 is unknown, but the controller is 
able to express his prior beliefs about his expected utility in the form of a 
prior expected utility function, U~ defined over V. Certain sample data, 
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w*, now becomes available to the controller concerning a past realization for 
co; and the controller combines his prior and sample information into an up- 
dated expected utility function 

u(~o*, v) + u ~ (v) 
(3) u(vlco*) = , v c v .  

2 

A control v* E Vis then selected to maximize U(vlco*) over V. 
Without the prior term U~ selection of a control to maximize (3) re- 

duces to the following simple opportunity cost maxim: Select a control v* 
which would have yielded maximum utility for the realized sample data, co*. 
Clearly this maxim is analogous to the maximum likelihood principle for 
selecting parameter estimates: Select the parameter value 0* which maximizes 
the likelihood function p (co* 10). With the prior term averaged in, selection of 
a control v* to maximize (3) is analogous to the Bayesian point estimate 
procedure of selecting a parameter estimate 0* to maximize the posterior 
probability density function (1). (See [3, Chapter 6] ) 

If a sequence coy , . . . ,  con*-I of n -- 1 independent past observations on 
co is available, (3) generalizes to the nth period updated expected utility 
estimate for v, 

(4) u*, (v) - u ( v l J ,  _, . . . .  ~ )  = 

= ( u ( ~ - , ,  v) + . . . + u(coL  v) + u~  

n 

__ (U(co*-l, V) q- [n --1] * (V) 
n 

If, for example, U(', v) is bounded and continuous over ~2, it follows by the 
strong law of large numbers that 

(5) U*(v)--~ fa U(w, v)p(w)dco a.s.; 

i.e., U*(v) is a strongly consistent estimator for the true expected utility 
associated with the selection of v. 

How might the prior expected utility function U~ be specified? If the 
sample space ~2 is known to the controller, one plausible specification for 
U ~ (v) might be the barycentric prior 
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(6) U~162176 v E V ,  

where pO (6o) is a prior probability density function for r Alternatively, if 
information concerning the relevant sample space ~2 is sketchy, U~ 
be specified directly, without explicit consideration of probabilities for ~.2 
Prior ignorance might be represented by a prior expecte d utility function of 
the form 

(7) U~ = constant. 

Notice that the problem of 'improper priors' does not arise for prior ex- 
pected utility functions. Moreover, because of the additive form of (4), prior 
expected utility specifications are inevitably reduced to insignificance as the 
number of sample observations on 6o increases. There is no need, as in stan- 
dard Bayesian analysis, to impose positivity and continuity restrictions on 
prior beliefs to ensure the eventual dominance of the sample data. 

3. FURTHER COMPARATIVE PROPERTIES OF CRITERION 
FILTERS AND POSTERIOR DISTRIBUTIONS 

In complete analogy to the form of the Kalman-Bucy filter for sequential 
state estimation (see [15] ), the linear filtering operation described by (4) 
transforms the vector (U(r v) . . . .  , U(r , v), U~ of prior and tran- 
sitional utility assessments into an updated estimate for expected utility. For 
brevity, any such filtering operation will be referred to as a criterion filter. As 
demonstrated in [14-20],  consistent criterion filters can be designed for 
adaptive control problems with intertemporal objectives and with random 
dements dependent on time as well as past control and system state realiz- 
ations. The analogy with probability density function updating via Bayes' rule 
still holds, but in less transparent form. For conceptual clarity, we will con- 
tinue in this section to develop the analogy with Bayes' rule probability up- 
dating in terms of the simple expressions (2) and (4) derived in Section 2. 

A number of properties which facilitate the analysis of updated proba- 
bility density functions such as (2) are equally useful for the analysis of up- 
dated expected utility estimates such as (4). Primary among these are the 
existence of conjugacy classes and the existence of sufficient statistics. 

Recall that a prior probability density function PO(O) is said to be 
conjugate to the transitional probability density function p(6ol0)if  the 



INFERENCES AND ADAPTIVE CONTROL 181 

posterior probability density function defined by (2) has the same general 
functional form as the prior. Conjugate classes of prior and transitional densi- 
ties for (2) become conjugate classes of prior and transitional utility functions 
for the updated expected utility function estimate (4) under a simple logar- 
ithmic transformation. For example, in complete analogy to the well-known 
conjugacy property of the normal distribution, it is readily established that 

quadratic specifications 

(8a) U(~, v) = a - b[60 -- v] 2 = a - -  be02 + 2 b ~ v  - -  b y  2 ; 

(8b) U~ = f~ v(~,  v) p~ 

for the prior and transitional utility assessments result in a quadratic 
specification 

( 9 )  U * ( v )  = a - -  bs  + 2 b m v  - -  b y  2 

for the corresponding expected utility estimate (4), where 

n - 1  

(lOa) m - "= ; 
n 

(lOb) 

n = l  

As in probability theory, the usefulness of the conjugacy property for 
prior and transitional utility functions is that it allows one to measure, ex- 
plicitly, the relative contributions of the prior information and the sample 
data information to the combined information provided by the updated ex- 
pected utility estimate U * ( v ) .  For example, given the quadratic specifications 
(8), the identities (10a) and (10b) reveal that each sample datum co* is 
allocated the exact same importance as the prior information in forming the 
updated expected utility estimate, a direct reflection of the simple nature of 
the criterion filter presently being used. 

Also as in probability theory, the advantage of nontrivial sufficient staffs- 
tics for criterion Filter estimates such as U * ( v )  is that all relevant information 
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is summarized in expressions having lower dimension than the number of 
sample observations, which facilitates computation. Of particular interest is 
the existence of sufficient statistics of fixed dimension, independent of 
sample size. 

Specifically, a function Tn(60n-i . . . . .  6Ol) taking ~2 n-1 into a space of 
dimension less than or equal to n -- 1 is appropriately termed a sufficient 
statistic for U*(- ) if 

(11) U*(v) : Gn(Tn(60~-~,...,60~),v), v E V ,  

for some function Gn(" ). Using the simple equal-weight criterion triter de- 
picted in (4), it is obvious that a minimal sufficient statistic for U*(v) is pro- 
vidied by the fixed-dimension vector * (60n-1, U*-I(v)), regardless of the 
specification for the utility function. For more complicated adaptive control 
problems involving, e.g., time-dependent observations 6oj*, this simple data re- 
duction is no longer possible. However, conditions guaranteeing the existence 
of sufficient statistics for posterior probability density functions such as (2) 
are easily transformed into conditions guaranteeing the existence of sufficient 
statistics for criterion filter estimates such as U* (v), even for more compli- 
cated falter-weight specifications. For example, if the utility function has the 
form 

r 

(12) U(60, v) = a + 
k = l  

bk(v)hk(60 ) + c(w) + d(v), 

it is readily verified that U*(" ) has form (1 1), where 

Zn((-On- 1 . . . . .  ( - O l )  ~ (13) 

----- h 1 ( 6 0 i ) ,  . . . , ~ hr(60i), ~ c(60i) 
~ i=1  i=1  

is a sufficient statistic of FLxed dimension r + 1. (The quadratic utility func- 
tion (8a) is a special case of (12) with r = 1.) Moreover, a sufficient statistic 
of form (13) continues to exist even when the filter weights are changed to 
reflect the possible dependence of observations on time, control selections, 
and past state values. (Cf. the time-dependent falter specification (29), below.) 
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4. AN ILLUSTRATIVE COMPARISON WITH BAYESIAN 
ADAPTIVE CONTROL TECHNIQUES 

In this section the criterion filtering adaptive control technique will be com- 

pared to the well-known Bayesian-dynamic programming adaptive control 
technique in the context of the following adaptive reinvestment problem: In 
each period n E {1 . . . . .  N - -  1}, an investor must decide how to allocate his 
initial capital xn between two investment opportunities A and B, the first 
which yields a positive or negative net return rate + s ( O < s  < 1) with un- 

known probabilities p~ and 1 - P n ,  respectively, and the second which yields 
a net return rate rn (0 < r n < Sn) with known probability 1. The objective of 
the investor is to maximize the expected value of the logarithm of his initial 
capital x N for period N. The investor's initial capital endowment xl' for 
period 1 is positive. 

Consider, first, the simple case previously treated in Refs. [2, 4, 10] in 

which p~, - p "  and r,, - 0 for each n E {1 . . . .  , N - -  1}. Thus, a risky invest- 
ment opportunity A with stationary unknown net return rate distribution must 
be compared against a safe neutral investment opportunity B in each period n .  
For notational convenience, assume s = 1. (Extension to the more general 

case is strightforward.) The investor's initial capital xn+ 1 in period n + 1 is 
then a simple function of his initial capital xn in period n, the net return rate 

co n E {1,-- 1} observed for investment opportunity A in period n, and the 

amount v n E [0, xn] of capital which the investor allocated to A in period n; 

namelyxn+ 1 = x  n + con'On. 
Let G(p) denote the investor's prior probability density function for p ' ,  

and assume the investor updates G(p) in accordance with Bayes' rule as 

follows: If k positive net return rates and m negative net return rates have 
been observed for A, G(p) is transformed into the posterior probability 

density function 

(14) 

Finally, let 

Gk ~ (p) = pk [i - -p ]~  G ( p ) / f 2  p k  [1 - -p l  m G(p)dp. 

t-1 
(15) Pkm =- Jo pGkrn('p)dp- 

The Bayesian-dynamic programming solution ( v~ (x l )  . . . . .  vffv-l(xN-1)) 
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for the adaptive reinvestment problem may now be found as follows. For 
each n,x,  k, and m, let g,,(x, k, m) denote the maximum attainable expected 
utility E log (Xs) starting with initial capital x with N -  n stages to go, and 
using the posterior probability density function (14). Then [9, Thm. 14.4, 
p. 101, Thm. 15.2, p. 104, and Thm. 17.6, p. 111] 

(16a) gN_t(x,k,m) = ma~ (Pkmlog(x+v)+ [1--Pkm] log(x--V)); 
__% 0 ~_x 

(16b) gn(x,k,m) = max (pmngn§ + v , k  + l , m ) +  
0~_~v <~x 

+ [1 --Pkm] gn*l (x -- v, k, m + 1)), 

1 < n < N - -  2, x @ (0, oo), and k and m E {0, 1, . . .} .  Proceedings in real time 
from period 1 to period N -  1, generate capital allocations vBn -vBn(Xn)E 
[0, xn] which satisfy the recurrence relations 

(17a) gn(x, ,kn,mn) = pk,mngn+l(Xn +v~,kn + 1 , m , ) +  

+ [1--Pknmn]gn+l(Xn --VBn,kn,mn + l), l < n < N - - 2 ;  

(17b) gN_a(Xu_I,kN_I, mN_I) = pkN_lmN_ IlOg(xN_ 1 + V~_l) + 

+ [1 --PkN-,mN-,] Iog(xN_l -- V~-l) ,  

where k~ and m n denote the number of positive and negative net return rates 
observed for A prior to period n. 

The structure of the Bayesian-dynamic programming solution is extremely 
simple; namely, 

v~(x,,) = [ [2Pkn'n"-- 1]Xn if 2pknm n > 1; 
(18) 

t 0 if 2pk,,n n-_< 1. 

Consider, now, the criterion f'dtering approach to the adaptive reinvest- 
ment problem with p~ =p^,  r, =0 ,  and s = 1. Let 'nth period utility' be 
defined by 

(19) U(~n,Vn,Xn)=-log(Xn + 60nVn) = log(Xn+l). 

Given definition (19), it can be shown [21, p. 153] that period-by-period 
utilities exhibit posit!ve linear correlation in the sense that maximum ex- 
pected utility in each period n + 1 is a positive linear affine function of the 
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utility realized in period n;hence [21, Thm. 3.3] the original control prob- 

lem, 

(20) max f . . .  f log (xN)p(CON_I) 
v I (x~)  . . . . .  ON_ 1 ( x N _ I )  

�9 �9 �9 P(COl )de~ �9 �9 �9 d ~ 1 7 6  

and the myopic sequential control problem, 

f u(con, vn(x.), x , , ) p ( c o . ) r i c o . ,  1 < n <-_ N - -  l ,  (21) m a x  
Vn(Xn) ~ [ o, x n] d 

yield identical optimal feasible allocations (v~Pt(x0 . . . . .  v~_tl(x,_x)). 
The criterion filter adaptive control technique suggested for (21) is as 

follows: 
Period 1. Specificy, for each possible capital state x > 0, a prior criterion 

function U~ ", x): [0, x] -+ R for preobservation state-conditioned expected 
utility evaluation of the feasible capital allocations v E [0, x]. Select an allo- 

cation v~ =-v~(xT)E [0,x~] to maximize U~ x T), where x~ denotes the 
initial capital endowment for period 1. Finally, observe a net return rate 
co~ E {1,-- 1} and record the new capital statex2 =x~ + co~v~ for period 2. 

Period n(n > 2). For each feasible capital allocation v C [0,xn], estimate 
nth period expected utility by 

(22) * _ \J=l U ~ ( v , x ~ )  . . . .  . 
Vt 

Select an allocation vn =-v~(Xn) E [0,x,] to maximize U,~ (" ,x , ) .  Finally, 
observe a net return rate co* E {1, -- 1} and record the new capital state 
X n +  1 : X  n + COnVn for periodn + 1. 

Thus, for each period n > 1 and each vE  [0,xn], the expected utility 
estimator U*(v, x~) is obtained by means of a linear filtering operation on a 
vector (U(co*~ -1, v, x , ) ,  . . . , U(co i ,  v , x , ) ,  U~ x , ) )  of utility assessments 
associated with the past observations co~ , . . . ,  co,-i and the current capital 
state x~. As in Section 2, the particular weighting scheme used in (22) results 

in a criterion •ter which is directly analogous to Bayes' rule for updating 

probability priors. 
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For direct comparison with the Bayesian-dynamic programming approach, 
assume the investor specifies barycentric prior criterion functions of the form 

(23) U~ = p~ v,x) + [1 _pO] U(-- 1, v,x), 

where pO - f~  pG(p)dp is the prior estimator for p~ generated by the prior 
probability density function G(p). Let p* = [kn + p~ where kn denotes 
the number of positive return rates observed for A prior to period n. The nth 
period expected utility estimator (22) can then be equivalently expressed as 

(24) U*(v,x,) = p*U(1 ,v ,x , )+ [1 --p*] U ( - 1 , v , x , ) .  

The capital allocation which maximizes (24) is easily verified to be 

. ( [ 2 p * - - l l x ,  if 2 p * > l ;  
(25) v . ( x . )  = { �9 < 

0 if 2p n = 1. 

Comparing (18) and (25), the form of the feedback control law (v*(x,)) 
generated by the criterion filtering method is identical to the form of feed- 
back control law (V~n(X~)) generated by Bayesian-dynamic programming 
methods. Suppose, for example, that the prior probability density function 
G(p) is given by the Beta distribution density function 

(26) G(p) = p"- '(1 --p)b-'/B(a, b), 

where B(a, b) is the Beta function with parameters a > 0 and b > 0, a speci- 
fication which permits great flexibility in the form of G(p). Then pO = 
a/[a + b] and, letting d, = [n - 1 + a + b], 

= = (npn/d~) + * (27) Pkn"n ([k, + a ] /d , )  * ( [ a - p ~  

Clearly, if a + b = 1, the feedback control laws (18) and (25) actually 
coincide. 

In any case, by a strong law argument, p* -+ p ~ a.s. If the Bayesian pos- 
^ * B terior mean Pknm, also converges to p , then v , (x )~  v, ( x )~  v~ 

where (v~ is the optimal feedback control law. For this latter result to 
hold, it is not essential that the prior criterion functions U~ x) have the 
barycentric form (23). By a strong law argument, k,[n -+p^ a.s.; thus v~(x) 
v~ a.s. as long as there exist positive constants K'  and K" such that 
K' log (x -- v) < U~ x) < K" log (x + v) for all x E (0, o.) and all v E (0,x). 
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Consider, now, the much more difficult problem in which the net return 
rate probabilities Pn are nonstationary. If the probabilities p~ are entirely 
unrelated, then no updating of prior beliefs in any form is beneficial. How 
can the investor determine whether or not this is, indeed, the case? 

To apply standard Bayesian techniques to this inference problem, it is 
necessary to specify posterior probability density functions 

(28) G,(P I~n-~, ...,wl)~ . . . . .  ~IIp)Gn(P), 
where now the transitional density Gn('lp ) and prior density Gn(p) are 

functions of time. There no longer exists a simple sufficient statistic such as 
(kn, ran) which transforms the available sample data in each period n into a 
vector of fixed dimension. Specification of the posterior densities (28) would 
thus seem to entail a prohibitive amount of computation. In addition, the 
specifications G~(-IP) and Gn(P) for the statistical model must be regarded 
as true by the investor; if he is unsure of their form, then in principle he 
should introduce an additional parameter to index a class of possible statisti- 
cal models, and he should introduce an additional prior distribution over this 
parameter. 

Even if one accepts, as this author does, the conceptual correctness of the 
Bayesian approach based on coherency principles, it seems clear that alternate 
approaches must be explored if practical adaptive control techniques are to 
be developed. Criterion filtering represents one possible approach to adaptive 
control which decreases computational complexity while retaining the essence 
of the Bayesian message: prior and sample information are to be combined to 
form updated expected utility evaluations over the set of feasible actions. 
How might criterion filtering be applied to the problem at hand? 

The simple criterion filter (22) is no longer adequate. Consider the more 
general criterion Filter 

(29) U*(v,x,,) =(n~ ~.=~ HnjU(co]',v,x,,)+HnoU~ 

where the normalization factor K. is given by 

(30) K'~ \ j=i H.j + 1t.o. 
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Intuitively, the weight Hnj in (29) measures the appropriateness of treating 
the pseudo utility observation U(coT, v, x , )  as if it were an actual observation 
on the currently relevant utility U(r v, x ,) .  If the probability pj  governing 
the past observation r is close to p~, then Hnj should be close to 1.0; if p] 
and p~ are very dissimilar, then Hnj should be close to 0.0. 

For example, if the investor believes that the net return rates ~* for in- 
vestment opportunity A are governed by a seasonally varying distribution 
with season duration t, i.e., 

(31) p~ = pj i f n = / m o d t ,  

then a reasonable filter weight specification for (29) might be 

1 if n = / m o d t  

(32) Ht~ = 0 otherwise. 

Less conservatively, the investor might specify an exponential weight scheme 

(33) Ht~ = exp (-- d(n,])). 

where d(., .) is a suitable distance function on the positive integers satisfying 
d(n,]) = 0 i fn =]  mod t. 

In analogy to the well-known bias/variance trade-off associated with the 
use of spectral windows in spectral density estimation, it can be shown that 
use of large-support weight schemes such as (33) in place of small-support 
weight schemes such as (32) tends to reduce the convergence time and 
increase the inconsistency of the resulting expected return estimates (29), 
assuming the underlying specification (31) is correct. How can the investor 
determine a satisfactory specification for an underlying probability model, 
and a satisfactory trade-off between convergence time and inconsistency? 

One possible approach is as follows, Suppose in period 1 the investor is 
able to span the possible model structures by a finite collection ~ ={Ht[ t  E 
T} of distinct fdter weight schemes 

(34) H t = { H t j l l < n < N - - 1 ,  0 < / < N - - I }  

For example, if the investor believes that the net return rates ~* are 
seasonally varying, with the season duration being either two, three, or four 
periods, he could specify a collection X comprising distinct filter weight 
schemes H 2, H 3 , and n 4 , each generated as in (32). Assuming such a 
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collection gr has been specified and a sequence (wn-l, vn- l , . .  ;, wl, vl ) of 
past return rates and allocations recorded, it is proposed that the investor in 
period n select a criterion f'dter weight scheme H t for (29) which satisfies 
the following mean squared error optimization problem: 

2 
[ [  Ak: the actual\ [Btk: the estimated \ ]  

n-1 I1 realized utility] ~expected utility in ~1 
(35) termin ~=1 ~ 1~ in period k for/ -- ~period k for allo- [ [  

I_\ allocation vk / \cation v k using H t ] J  , 

where 

(36) 

and 

Ak -- U ( ~ k ,  vk,xk) 

(37) B t = Htkj U(wj, v ~ , x k ) +  HtkoU~ Ktk. 

The suggested approach for selecting and adaptively updating a criterion 
filter weight scheme for (29) is closely analogous to the usual Bayesian pro- 
cedure for discriminating among a set of discrete alternative statistical models 
for Gn("IP) in (28). The key distinction is that attention has been focused 
directly on updating the criterion function estimate. In contrast, the Bayesian 
procedure indirectly updates the criterion function estimate by first updating 
probabilities. 

Finally, consider the general adaptive reinvestment problem with non- 
stationary net return rate probabilities p,~ for investment opportunity A and 
nonstationary deterministic net return rates r n for investment opportunity B. 
The appropriate state equation is now 

(38) xn+l = Xn + WnVn + rn [Xn -- Vn] - fn(con,  Vn,Xn); 

and the investor's optimization problem is no longer equivalent to a sequence 
of myopic optimization problems. (See [21, Example 5.2].) How might 
criterion faltering be applied? 

Letting Fn(x) denote the maximum attainable expected utility E log (xN) 
beginning in period n with initial capital x, it can be shown [9] that a feasible 
allocation (v~pt(x 1 ) . . . . .  V~v~l (XN-1)) is optimal if and only if the following 
dynamic programming optimality equations are satisfied almost surely: 
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(39a) FN-I(XN-1) : EN-X log OeN-I(bON_I,'I)~gP-tl(XN_I),XN_I))'~ 
(39b) Fn(x.) = E , , IF . . l o f . (~ . ,  v~ 

1 < n  < N - - 2 ,  where En[" ] denotes expectation with respect to {Pn, 
1 -p , ]  }. The crux of the investor's problem in each period n is to devise a 
satisfactory estimate C,~*(v, x . )  for the relevant nth period criterion function 

(40) C n ( v , x , )  =-- En[Fn+lofn(COn,V, Xn)]. 

A dynamic criterion-filtering procedure for generating these estimates, 
developed and tested in [18], is briefly outlined below. 

Period 1. For each n E { 1 , . . . ,  N - -  1 }, generate 3 a data set {O~_M(n),..., 
~oo(n)} using a prior probability estimate for p~. Compute the prior opti- 
mality equation estimates 

(41) F~v*-l(X) - max C f f  , ( v , x )  
vE[O,x] 

M 
[ • log (fN-t (CO-i(N-- 1), V, x)) t 

= max /i=~ ] 
ve tO. xl \ M +  1 

Fln*(x) - max Ctn*(v,x) 
vet0,xl 

~[  ,~§ v, 

= max i=o 
ve tO, x] M +  1 ' 

x > 0, n ~ {1 . . . .  , N - -  2}. Select a control v~ - v~(x~) ~ [0,x~] for period 
1 which satisfies F11*(x~)=Cl~*(v~, xT). Record the observation co~ for 
period 1 and the new state x2 = fl  (co~, v~, xT) for period 2. 

Period n (2 <- n < N - -  1). Compute the optimality equation estimates 

(42) ~N*-I(X) -- max C~*_,(v,x) 
vet0,x] 

-= max (Hu_l,oC~*_.l(V,x) + 
t 

v e [0, x] \ 
rl-1 )) 

+ X  * x) HN-1,1 log (fN_l@O/, V, K~_I, 
j=l 
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F~*(x) - max C~*(v,x) 
v~[O, x] 

m a x  
v~[O,x] 

(HkoCf~(v,x)+j~lH~,F[~+lfk(wj,v,x))Kff, 
x > 0, k E { n , . . . ,  N - -  2}. Select a control v* ~ v*(xn) E [0, xn] for period 
n which satisfies F2*(xn)= n, . * for C~ (Vn, x,~). Record the observation co n 

period n and the new initial state Xn+ 1 = fn(W*, v*, Xn) for period n + 1. 

The Fdter weights Hki in (42) can be adaptively selected using the general 
variational principle (35), as before, with return for period n defined to be 

log (xn+l). 

1. DISCUSSION 

One important question that must be asked concerns the computational 

requirements of the dynamic criterion filtering algorithm. Criterion filtering 

can be classified as an open-loop feedback adaptive control method, i.e., a 
feedback adaptive control method which directs the controller in each period 

n to ignore the fact that future observations will be made. (See [13].) Open- 

loop feedback adaptive control methods have a great computational advantage 
over closed-loop adaptive control methods, such as Bayesian-dynamic pro- 

gramming, which attempt to take into account both past and potential future 
observations in each decision period. The principal computational advantage 

of the criterion filtering method relative to many existing open-loop feedback 
adaptive control methods is the absence of required integrations. Although 
the computational burden is by no means eliminated, it is approximately 
reduced to the level of N deterministic dynamic programming problems. 

Other important questions concern the optimality properties of the 
criterion filtering approach to dynamic adaptive control problems. Namely: 

Does the filter-generated control law have the same general structure as the 

optimal control law? 

Do the f'flter-generated optimality equation estimates have the same general 
structure as the true underlying optimality equations? 
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How do the state, control,  and uti l i ty trajectories realized by use of  the 

fdter-generated control  law compare to the state, control,  and util i ty trajec- 

tories realized by use of  the optimal control  law? 

A detailed analytical and computer  simulation study of  these equations is 

carried out in [18] for a dynamic linear-quadratic control  problem with 

random state coefficients. An affirmative answer is provided for the first two 

questions; and the total  uti l i ty realized under the filter control  law is shown 

to be approximately on par with the total  uti l i ty realized under the optimal 

control  law for the tested range of  time horizons, uti l i ty function coefficients, 

and mean and standard deviation values for the random state coefficients. 

Fur ther  computer  programs are currently being designed to test criterion 

fdtering methods for an adaptive multi-stage team decision problem in which 

the observations wn of  one team are time and state dependent controls 

implemented by a competing team acting in accordance with an unknown 

feedback control  law. (See [22].)  

University of Southern California 

NOTES 

* Assistant Professor, Department of Economics, University of Southern California, 
Los Angeles, California 90007. This material is based upon work supported by the 
National Science Foundation under Grant No. ENG 77-28432. A previous version of 
this study was presented to the 17th Meeting of the NBER-NSF Seminar on Bayesian 
Inference in Econometrics, University of Michigan, Ann Arbor, Michigan, November 
3-4, 1978. 

Kalman filtering techniques, which are based on the sequential Bayesian updating of 
the conditional state mean and covariance matrix, have been successfully applied to 
certain problems in the physical sciences (e.g., satellite trajectory determination) for 
which a well-understood dynamical state equation can be satisfactorily linearized, the 
control objective (cost) function can be satisfactorily represented in quadratic form, 
controls are unconstrained by state variables, and random disturbances can be satis- 
factorily modeled as white noise second-order processes entering additively into the 
linearized state equation. (see [11].) These conditions, which imply the applicability 
of the well-known certainty equivalence theorem to separate the state estimation process 
from the control process, are often lacking in socioeconomic adaptive control problems. 
However, see [8] for references to certain applications of Kalman filtering techniques 
in the field of commercial demand forecasting. Also, see [7, Section 10] for applications 
of Bayesian techniques to several economic linear-quadratic adaptive control problems 
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with random state coefficients. Similar applications can also be found in several Special 
Issues on Control Theory put out by the Annals of Economic and Social Measurement. 
2 For example, the procedure suggested by De Finetti [5, page 87] for defining the 
prevision (expectation) of a random quantity X(to) could be used to generate, directly, 
the prior expected utility specifications U ~ (v). Specifically, De Finetti defines a decision 
maker's prevision s for X(to) to be the real number s he chooses when faced with the 
following decision: The decision maker will suffer a dollar penalty proportional to 
(X(to) --x-): if to obtains, where he is free to choose 37 as he pleases. For the example 
at hand, X(to) --- U(to, v). 
3 If actual observations are available for the net return rates ton, these may be used in 
place of or in conjunction with simulated observations. More generally, the prior esti- 
mates C~*(v, x) can be specified directly, without reliance on actual or simulated data. 
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