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ABSTRACT 

A generalization of the standard n-person game 

is presented, with flexible information requirements suit­

able for players constrained by bounded rationality. 

Strategies (complete contingency plans) are replaced by 

"policies," i. e., end-mean pairs of candidate goals and 

"controls" (partial contingency plans). The existence of 

individual objective functions over the joint policy choice 

set is axiomatized in terms of primitive preference and 

probability orders. Conditions are given for the exis­

tence of pure policy Nash equilibrium points in n-person 

games, and pure policy Nash bargaining and equilibrium 

threat solutions in 2-person policy games. Connectedness 

of the policy and payoff sets is not required. 



GAMES, GOALS, AND BOUNDED RATIONALITY* 

by 

Leigh Tesfatsion 

1. INTRODUCTION 

In standard games the choice set for player i is assumed to be 

a collection of "strategies," i.e., functions which assign to each of 

player i's information sets S~ one of the arcs which follows a repre-
1 

sentative vertex of S~ (see Owen [7]). Strategies are thus complete 
1 

contingency plans for playing the game at hand. Once a strategy has 

been chosen by every player (possibly including a strategy "chosen by 

chance"), a unique outcome for the game is determined. 

The usefulness of the standard game theory framework for real-

world problems is somewhat limited. In actual problem contexts the spe-

cification of available actions in the form of complete contingency 

plans is often not feasible. Information may necessarily be incomplete; 

alternatively, the required calculations may be too costly. Players in 

real-world games generally plan in advance for only a limited number 

of moves. Secondly, the implicit requirement that the chance strate-

gies be defined independently of the other players' strategy choices 

often imposes an awkward formulation on real-world problems. 

In this paper a "policy game" (p-game) is presented, with flexible 

information requirements suitable for group decision problems con-

strained by bounded rationality. The players are allowed to specify 

their available actions in the form of partial contingency plans 

("controls"). Their choice sets are assumed to be collections of end-

mean, candidate goal-control pairs ("policies"). The candidate goals 

*Research underlying this paper was supported by National Science 
Foundation Grant GS-3l276X. 



are operationally interpreted as potential objectives (e.g., market 

share aspiration levels) whose realization the players can attempt to 

achieve by appropriate choice of control. Chance strategies and conse­

quences (e.g., monetary payoffs) are subsumed into "state flows" over 

which the players' policy-conditioned preference and probability orders 

are both defined. Thus, in a manner to be made precise below, chance 

strategies need not be defined independently of the players' .policy 

choices. The existence of objective (expected utility) functions repre­

senting the players' preferences among joint policies is axiomatized. 

For games with only one player, the p-game reduces to the policy 

model (goal-control model) formulated in Tesfatsion [9]. As shown 

2 

there, the Savage expected utility model, the Marschak-Radner team model, 

the Bayesian statistical decision model, and the standard optimal control 

model can be viewed as special cases of the policy model. Similarly, 

it is shown in this paper that the standard n-person game in normal form 

can be viewed as a special type of p-game. 

The importance of explicit, nontautological 1 goal specification in 

problems of individual choice is discussed and illustrated in Tesfatsion 

[9]. Briefly, specified goals and controls play distinct strategic 

roles in many decision problems. Moreover, goals can be important for 

the feedback evaluation of chosen policies; i.e., the utility or cost 

of a chosen policy may be a function of the "distance" between the real­

ized outcome and the target 2 outcome (goal) specified in the chosen 

policy. 

In game theory the importance of explicit, nontautologica1 goal 

specification is potentially even greater. As Aumann [1] notes, for a 

standard n-person game the implications of a particular coalition struc­

ture (partition of the player set) are often quite clear; but what is 
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often not clear is why a particular coalition structure should initially 

form. For p-games, with nontautological goals explicitly introduced, 

it seems reasonable to predict that players with complementary candidate 

goals will form coalitions. Thus certain initial restrictions on the 

players' candidate goal sets might in some cases be used to restrict 

the number of coalition structures that can "rationally" form, prior to 

any consideration of imputed coalition values. Indeed, real-world 

players free to cooperate but constrained by bounded rationality would 

probably not bother to impute values for coalitions containing players 

with highly conflicting candidate goals. 

The organization of this paper is as follows. In section 2 the 

p-game is presented and discussed in normal form; i.e., with individual 

objective (expected utility) functions for the players simply assumed 

given. In section 3, drawing on results from Tesfatsion [10], it is 

shown that necessary and sufficient conditions exist for "primitive" 

p-games with finite state flow sets to have this normal form. It is 

also shown that a standard n-person game in normal form can be viewed as 

a special type of ax iomati zed primitive p-game in normal form. 

In section 4, drawing on results from Tesfatsion [11], conditions 

are given for an n-person p-game to have at least one pure policy Nash 

equilibrium point. Also, drawing on results from Tesfatsion [12], a 

broad class of 2-person threat p-games for which a unique pure policy 

Nash bargaining solution exists is characterized in terms of three, 

simple, empirically meaningful properties of the joint objective func­

tion: compact domain, continuity, and "corner concavity." Conditions 

are also given for the existence of at least one pure policy Nash 

equilibrium threat solution. As will be discussed further below, pure 

3 
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policy sets corresponding to p-games must realistically be allowed to be 

disconnected if the candidate goal sets are nontrivial. The existence 

results in section 4 are nontrivial extensions of standard game theory 

in that connectedness of the policy and payoff sets is not required. 

In section 5 an example is given of a primitive 2-person p-game 

with expected utility representation as in section 2. 

2. THE POLICY GAME 

Let G = {g, ... } be a set of (joint) candidate goals~ and for each 

g c G let I\(g) = {A(g), ... } be a set of (joint) C"ontrols. Then the com-

ponents for an n-person policy game (p-game) in normal form are given by 

(1) 
n 

(n*', !HI,' IT U '!HI-+R ) \81 • * .. \81 len 1 

where: n*={l, ... ,n} is the player set; 8= {e, ... }=U G({g}xl\(g» is the 
gc 

joint policy choice set consisting of candidate goal-control pairs 

(joint policies); and for each icn* U.:8-+R is the objective function for 
1 

player i. 
n 

The function IT *U. :8-+R will be referred to as the joint 
n 1 

objective function. 

dual 

I\(g) 

In the special case where G is a cross-product IT. *G. of indivi­
lcn 1 , 

candidate goal sets G.={g.,g., ... } , and, for each (g ,'" ,g ) E G, 
1 1 1 1 n 

is a cross product IT. *I\.(g.) of individua7 control sets I\.(g.), 
~n 1 1 1 1 

the p-game will be called free. For free p-games there is a natural 

identification between 

cross-product IT. 8., lcn* 1 

the policy choice set 8 = U G({g}X!\(g» and the 
gc 

where 8. =U G ({g.}xl\.(g.». The sets0i 
1 gi c ill 1 

will be referred to as individual policy choice sets . 

The candidate goals g c G can be operationally interpreted as 

potential objectives (e.g., production quotas) whose realization the 



players can attempt to achieve by appropriate choice of control. The 

controls can be operationally interpreted as possibly conditioned se-

quences of actions (i.e., partial contingency plans) under the joint 

control of the players at the time of their choice. The grouping of the 

controls into sets {A(g) I g € G} reflects the possibility that differ-

ent controls may be relevant for different goals. 

Each player is assumed to have full knowledge of the joint objec­

tive function IT *U.: @+R
n

• The objective of the p-game is assumed to 
n 1 

be the selection by the n players of a joint policy (candidate goal -

control pair) in the policy choice set @ which is "optimal" in some 

sense with respect to this joint objective function. 

The game is fully specified only when "optimal" is defined and 

rules are given concerning allowable cooperation. These rules must in 

turn be combined with specific assumptions concerning the structure of 

G and the control sets A(g), g € G. For example, by itself the formal-

ization of the p-game in (1) implies that total cooperation is needed. 

On the other hand, a free p-game may be played without any form of 

cooperation (each player i may independently choose an individual 

policy in @.). Hybrid games are also possible, e.g., cooperative choice 
1 

of a goal and noncooperative choice of controls. A certain group of 

environmental protectionists may jointly agree on a platform (goal) 

for their organization; at the same time they may heartily disagree 

(act noncooperatively) in voting for a particular presidential-vice 

presidential ticket as an instrument for achieving this platform. 

3. AXIOMATIC APPROACH TO THE POLICY GAME 

The normal form for standard games is generally interpreted as a 

5 
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reduced form representation for an "extensive" game described in more 

detailed terms. Similarly, as will be shown below, a p-game in normal 

form can be interpreted as a representation for a more primitive p-game. 

However, unlike extensive games in which functional representations for 

probability and preference are already assumed to exist, this "primi-

tive p-game" is defined entirely in terms of sets and relations (3.1). 

Thus the normal form representation for the primitive p-game must be 

axiomatized; it is not a reduced form. As will be seen below (3.2), 

necessary and sufficient conditions exist for primitive p-games with 

finite state flow sets to have a normal form representation. In 3.3 

it will be shown that the standard n-person game in normal form can be 

interpreted as an axiomatized primitive p-game in normal form. 

3.1 THE PRIMITIVE P-GAME: Let G be a set of (joint) candidate 

goals~ and for each g € G let A(g) = {A(g), .•. } be a set of (joint) 

controls. Then the components for a primitive n-person p-game are given 

by 

where 

n* _ {I, ... ,n} is the player set; 

Ug€G({g} x A(g)) is the joint policy choice set 

consisting of candidate-goal rontrol pairs 

(joint policies); 
i 
~ (policy preference order for player i) is a weak order 3 

on e, for all i € n*; 

and for each joint policy e € e and i € n*, 



2. 

~.(e) = {w.(e), ... } is a nonempty set of state flows associ-
1. 1. 

ated with e by player i; 

i 
~e (e-conditioned preference order for player i) is a weak 

order 3 on ~.(e); 
1. 

i 
~e (e-conditioned probability order for player i) is a weak 

order on 2~i(e), the algebra4 comprising all subsets 

(event flows) E.(e) c ~.(e). 
1. - 1. 

The candidate goals and controls can be interpreted as in section 

i 
The weak orders ~ ,i E n*, can be interpreted as preference orders 

as follows. For all joint policies e', e" E (9: 

7 

i 
e' ~ e" <=> the joint selection of e' is at least as desirable 

to player i as the joint selection of e". 

For each e E (9 and i E n*, the set ~i(e) of state flows wi(e) can 

be interpreted as player i's answer to the following question: "If 

joint policy e were to be chosen by the n players, what distinct situ-

ations (Le., state flows wi (e)) might obtain?" The state flows may 

include references to past, present, and future happenings. In order 

for subsequent probability assessments to be realistically feasible, 

each state flow should include player i's background information con-

cerning the decision problem at hand. 

i 
The e-conditioned preference order ~ can be interpreted as fol­e 

lows. For all w',w" E ~i(e), 

i 
w' ~e w" <=> the realization of w' is at least as desirable 

to player i as the realization of w'~ given 

the event "the n players choose e." 

i 
Similarly, the e-conditioned probability order ~e can be interpreted 



as follows. For all event flows E', E" e: 2\ti(e), 

i 
E' ~8 E" <=> in the judgment of player i, the realization 

of E' is at least as likely as the realization 

of E", given the e"en::: "the n player[: cheose 

e." 

A state flow may be relevant for player i's decision problem 

under distinct potential policy choices; i.e., \ti(8) n ~i(e') i ~ 

for some e, a' e: 8. Similarly for event flows. Given state flows 

w, w' e: ~i(e ) n~i(e'), it may hold that w 
i i 

~8 w' whereas w' ~ 8' w. 

Verbally, the relative rlesirability of the state flows wand w' for 

player i may depe~d on which conditioning event he is considering, 

"the n players choose 8 "or Hthe n players choose e' ." Similarly for 

the relative likelihood of event flows. 

An example illustrating these interpretations is given in section 

5. Other examples are given in Tesfatsion [9]. 

3.2 EXPECTED UTILITY REPRESENTATION: In Tesfatsion llO,6.l] 

necessary and sufficient conditions A* are given which ensure that a 

one-person primitive p-game (equivalently, a primitive p-modeJ.). 

( ( 
1 

8, P 
1 

'~8 ) 1 8 E 8}) 

with finite state flow sets D.l,e) has an expected utility representa-

tion in the following sense. For each policy e E 8 there exists a 

finitely additive probability measure 01(-le):2~1(e) + [0,1] satisfying 

(2) 
1 

> 0 1 (E' Ie) <=> E ~8 E', 

8 



satisfying 

for all w, w' € n1 (e), su~h that 

(4) J u1 (wle)ol( dw le) > f u1(wle')'1.( dw le') <=> e 

n1 (8) °l(e') 

for all 8, 8' € 3. 

1 
~ tl ' , 

The conditions A* are restrictions on player l's preference and 

probability orders 

1 
~8 I e € (0}. 

For primitive n-person p-games with finite state flow sets, necessary 

and sufficient conditions for th~ existence of an individual ~bjective 

(expected utility) representation as in (2), (3), (4) for ea2h player's 

policy preference order can be obtained by requiring conditions A* to 

hold for each player's preference and probability orders 

{ ~i ___ i i I ...., 8 Ol} 1· c- n*. 
, p 8 ' ~8' t. t!J, c-

The expected utility representation (2), (3) and (4) for the policy 

i I 

preference orders ~ , i € n*, can be interpreted as follows. To each 

state flow w € n. (8), 8 € 8, player i assigns a utility number u. (w 18) 
1 1 

representing the desirability of {w} obtaining, conditioned on the event 

"the n players choose 8," and a probability number o.(wle) representing 
1 

the likelihood of {w} obtaining, conditioned on the event "the n players 

choose 8." He then calculates his expected utility 

V.(8) - f u.(wI8)o.(dwI8) 
1 o. (Il) 1 ' 1 

1 

9 



corresponding to each choice of j oint policy e E: 18 . The function 

Ui : 18~ R is then the objective function fo~ playe~ i. The components 

for an axiomatized primitive n-person p-game can thus be presented in 

normal form 

(n*; e; IT. * U.: e ~Rn) , 
1.E:n 1. 

as in section 2. 

3.3 STANDARD GAMES AS P-GAMES: For standard n-person games 

r in normal form (see Owen [7]), the choice of strategies 0
1

, ... ,on 

by players l, ... ,n and a strategy 0 "by chance" determine that a 
o 

unique outcome teo , ... ,0 ) will obtain. 
o n 

Player i then receives a 

certain real-valued (utility) payoff f.(t(o , ... ,0 )). Since the 
1. 0 n 

players do not know in advance which chance strategy will obtain, it 

is assumed that each player i calculates his expected payoff 

~i(ol, ... ,on) corresponding to each joint strategy (ol, ... ,on). For 

example, denoting the strategy set for player i by 6. and the set of 
1. 

possible chance strategies by 6 , 
o 

~.(ol'···'o )=f L(t(o ,0 1 , ... ,0) P.(do), 1. n 6
0 

1. 0 n 1. 0 

where P. represents player its assessments concerning the likelihood 
1. 

of the chance strategies in 6. The goal of player i is assumed to be 
o 

g.: (player i maximizes his expected payoff). 
1. 

The game r can be viewed as a free p-game as follows. Define 

n* = {l, ... n}, the player set; 

10 
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G.' - {g.}, a one-element candidate goal set for player i, 
1. 1. 

i E n*; 

A' .(g.) - ~., the control set for player i corresponding to 
1. 1. 1. 

gi' i E n*; 

@'. - {g.} x A'.(g.) = {(g.,o.),(g. ,o.'), ... }, the individual 
1. 1. 1. 1. 1. 1. 1. 1. 

policy choice set for player i, i E n*; 

and for each joint policy 8 =«gl,<\),···,(gn,on» E II iEn* @i' and 

i E n*, 

~. '(8) = ~ , the state flow set associated 
1. 0 

with 8 by player i; 

u. '(. 18):~. '(8) ~ R, the utility function associated with 8 
1. 1. 

by player i, given by u.'(6 18) = f.(t(6 , ... ,6 », 
1. 0 1. 0 n 

6 E ~.'(8)· 
o 1. ' 

o. '(. 18): 2~i'(8) ~ [0,1], the probability measure associated 
1. 

11 

with 8 by player i, where o. '(6 18) = P.(6 ),6 E~. '(8). 
1. 0 1. 0 0 1. 

n 9' Then for each joint policy 8 = «gl,6
1
), ••• ,(gn,6 n » E IT i =l Hi' 

and each i E n*, 

10 '(8) u.'(wI8) o.'(dwI8) =J. f.(t(6 , ... ,6 »l?(d6) 
. "i 1. 1. LlO 1. 0 n 1 0 

= \)J.(6 , ••• ,6 ). 
1. 0 n 

Hence r can be identified with the free p-game 

(n*,· II@"IIU"II9 ' ~ Rn) 
n* i' n* i· n* i ' 

where, for each i E n*, the objective function U ,. II @~ ~ R for 
i' n* 1. 

player i is given by 



e.' . 
1 

4. SOLUTIONS FOR POLICY GAMES 

Researchers investigating the existence of Nash equilibrium points 

for standard games in normal form have generally assumed that the play-

ers can "mix" their strategy choices by resorting to various random 

devices; e.g., player i may decide to implement pure strategy b if a 

12 

flipped coin lands heads and pure strategy d if it lands tails. Similar-

ly, researchers investigating the existence of bargaining solutions in 

2-person standard games have generally assumed that the two players can 

"correlate" their choice of strategies; e.g., players I and 2 may agree 

to implement joint strategy (b,c) if a flipped coin lands heads and joint 

strategy (d,e) if it lands tails. Individual strategy sets for standard 

games with mixed strategies are convex. Moreover, since (utility) payoff 

functions in standard games are assumed to be linear with respect to 

lotteries, the payoff regions for standard games with correlated stra-

tegies are convex. For such games a distinction is not made between pure 

and mixed or correlated strategy solutions (see Owen [7]). 

On the other hand, in real-world group decision contexts such as 

boardroom meetings, union versus management, and presidential elections, 

the flipping of coins is seldom observed. Conditions ensuring the 

existence of pure solutions are thus of particular interest. As is well 

known, all fjnite standard n-person g.:lmes in extensive form with "com-

plete information" have pure strategy Nash equilibrium points (Owen, 

[7,1.4.5]). Horeover, the existence theorems established fer N2.sh 



equilibrium points in mixed strategy games in normal form can 

be extended to pure strategy games in normal form having 

convex strategy sets. In addition, Debreu [2] has established the 

existence of pure strategy Nash equilibrium points for games in normal 

form whose individual strategy sets are contractible (hence connected) 

polyhedra. On the other hand, no Nash equilibrium existence results 

appear to have been established for games in normal form having dis-

connected strategy sets. Similarly, Nash's bargaining solution has 

been investigated only for games with convex (hence connected) payoff 

regions. 

The joint policy choice set 8 for p-games is a disjoint union 

U G ({g} x A(g» of policy subsets {g} x A(g) corresponding to the 
gE: 

distinct candidate goals g E: G. Unless G is a trivial one-element set, 

it cannot be assumed that 8 is connected; similarly for the payoff 

region IT *U.(8). In theorems 4.2 and 4.5 below, conditions are given 
n 1 

which are sufficient to guarantee the existence of Nash equilibrium and 

bargaining solutions for p-games in normal form without requiring either 

8 or IT *U.( 8) to be connected. Since standard games in normal form 
n 1 

have been shown (3.3 above) to be a special type of p-game, these 

theorems represent an extension of existing game theory. 

4.1 DEFINITION: Let a free n-person p-game (n*' IT 8.' , n* l' 

IT * 8. will be called a pure policy Nash equilibrium point 
n 1 

each i E: n*, 

, , 
(5) U.(8') > 

1 
U . (8 l' , . . . , 8. 1 ' 8., 8 . +1 ' . .. ,8 ' ) 

1 1- 1 1 n 

if for 

for all 8. E: 3.. (See Luce and Raiffa [3] for a critique of this 
1 1 

13 



solution concept.) 

4.2 THEOREM (Tesfatsion [11,2.8]): Let a free n-person p-game 

be given such that: 

1) IT * @. is a compact metrizable absolute neighbophood 
n ~ 

retract; 

2) IT * u. is continuous; n ~ 

" cech 3) T(S) is CF-acyclic (i.e., acyclic with respect to 

homology over a field F) for each S E IT * e., where T -
n ~ 

IT *T.: IT * e . -+ IT * 9. is a muZtivalued map defined by n ~ n ~ n ~ 

T.(S') - {S~ Ee.1 u,(Sl', ... ,S~, ... ,A ') 
~ ~ ~ ~ ~ n 

max u. (Sl' , .•• ,S . , ... ,S '). A. E ,3. } 
~ ~ n 1 1 

for s' - (Sl' •... ,An') E IT e. and i E n*' 
n* 1 • 

" 4) The Lefschetz number of T (with respect to Cech homology 

over F) 1:S not zer'o. 

Then r has at least one pure policy Nash equilibp1:wn point. 

REMARK: For a detailed discussion of 4.2. please refer to 

Tesfatsion [111. As discussed there. many of the spaces commonly 

14 

used in economic and game theory are compact metrizable absolute neighbor-

hood retracts: for example. compact convex subsets of Banach spaces; 

finite dimension~l locally contractible compact metrizable spaces (e.g .• 

finite discrete spaces); and locally euclidean compact metrizable spaces 



(e.g., compact n-manifolds). Contractible (e.g. convex) subsets of 

compact Hausdorff spaces are CF-acyclic. If IT
n
* 8

i 
is a C

F
-acyc1ic 

compact Hausdorff space, then the Lefschetz number of T is equal to 1. 

In general, however, the hypotheses of 4.2 do not require any form of 

global connectedness for IT * 8 .• 
n 1 

4.3 DEFINITIONS: A 2-person p-game r ::: ({1,2}; 8 ; UlxU2:8~ R2) 

will be called a threat p-game if the two players bargain with each 

other in three stages as follows: Stage 1) A status quo threat 8* £ 8 

is announced; Stage 2) Players 1 and 2 attempt to agree on a joint 

policy 8 £ 8; Stage 3) If an agreement on a joint policy 8 is reached, 

it is implemented and player i receives U.(8). If an agreement on a 
1 

joint policy is not reached, then the threat 8* is enforced and player 

i receives U.(8*). 
1 

By refusing to come to an agreement, player i can ensure himself 

of the payoff U.(8*). Hence the effective range of joint payoffs for 
1 

players 1 and 2 arising from pure policy choices 8 £ 8 is given by the 

barter set 

B(u*,v*) _ B n{(u,v) £ R2 I u > u*, v > v*}, 

where u'~ ::: U
l 

(8*), v* ::: U
2 

(8*), and B ::: {Ul xU2 (8) I 8 £ 8 }. 

A function J:D ~ R2, D an arbitrary set, will be said to be 

corner concave if for every pair d, d' £ D and every r £ [0,1] there 

exists d* £ D such that 

(6) rJ(d) + [l-r] J(d') ~ J(d*). 

If D is interpreted as a collection of pure joint policies and J is 

interpreted as a joint objective function, then (6) has an 

obvious interpretation: Each available correlated joint policy (lottery 

15 



among pure joint policies) involving two pure joint policies is 

"dominated" by at least one available pure joint policy in the sense 

that, for each player i, the expected utility of the correlated joint 

policy is no greater than the utility of the pure joint policy. 

A function J:D ~ R2 will be said to be corner concave with respect 

to (u*,v*) E R2 if the restriction of J to J-l ({ (u,v) I u > u*, 

v > v*}) is corner concave. 

In the nineteen fifties Nash ([4],[5]) proposed six axioms as an 

empirically meaningful set of conditions which should be satisfied by 

any "barter rule" devised to settle 2-person games by assigning to each 

barter set B S R2 a "solution" (u,v) E B. He then established the 

existence of a unique barter rule satisfying these six axioms with 

respect to the class of all standard 2-person threat games with compact 

convex barter sets. In 4.5 below this result will be extended to the 

class of all 2-person threat p-games with compact policy sets and con-

tinuous, corner concave joint objective functions. Barter sets corre-

sponding to such games need not be connected. 

The six Nash axioms will first be presented in general form. 

4.4 THE NASH AXIOMS: Let V* denote any collection of subsets of 

the form 

D(u*,v*) _ D n {(u,v) E R2 I (u,v) > (u*,v*)} 

with (u*,v*) E D S R2. A function ~: V* ~ R2 will be said to satisfy 

the Nash axioms with respect to V* if for every D(u*,v*) E V*: 

Axiom 1 (Feasibility): ~(D(u*,v*» E D; 

16 
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Axiom 2 (Individual Rationality): ~(D(u*,v*» > (u*,v*); 

Axiom 3 (Pareto Optimality): If (u,v) £ D and 

(u,v) > ~(D(u*,v*», then (u,v) = ~(D(u*,v*»; 
= 

Axiom 4 (Independence of Irrelevant Alternatives): If 

A(u*,v*) £ V* with (u',v') £ A(u*,v*) c 

D(u*,v*) and (u',v') = ~(D(u*,v*», then 

(u',v') = ~(A(u*,v*»; 

Axiom 5 (Independence of Linear Transformations): Suppose 

E = {(r
l

u+s
l
,r2v+s

2
) I (u,v) £ D(u*,v*)} £ V*. 

Then if ~(D(u*,v*» = (u' ,v'), it must hold 

Axiom 6 (Symmetry): Suppose (u,v) £ D(u*,v*) iff (v,u) £ 

D(u*,v*), and suppose u* = v* and ¢(D(u*,v*» = (u' ,v'). 

Then u' = v'. 

REMARK: See Smorodinsky and Kalai [8] and Luce and Raiffa [3] for 

a critical appraisal of the Nash axioms; also Nydegger and Owen [6] for 

an experimental test of these axioms. 

Let c* denote the collection of all barter sets corresponding to 

2-person threat p-games with compact joint policy choice set 8 and 

2 . h continuous joint objective function U
l 

x U
2
:8+ R , corner concave Wlt 

respect to the threat payoff Ul x U2 (e*). 



4.5 THEOREM (Tesfatsion [12, 4.4 and 4.10]): There exists a 

unique barter rule ~: C* ~ R2 which satisfies the Nash axioms with 

respect to C*. 

REMARK: For a detailed discussion of 4.5, please refer to 

Tesfatsion [12]. As proved there, corner concavity of a continuous 

function J:D ~ R2, D compact, is equivalent to "corner concavity" of 

the set J(D), defined as follows. For any set A C R2, let A- denote 

its closed convex hull and let AP denote the set of all pareto optimal 

(efficient) points in A. Then A is said to be "corner concave" if AP 

is a nonempty compact set which coincides with (A-)P. The set and 

function definitions of corner concavity both have obvious extensions 

n to R , n > 2, which leads to the following conjecture: for n > 2, 

n 
corner concavity for a continuous function J:D ~ R , D compact, is 

equivalent to corner concavity for J(D) S Rn. 

Suppose r is a free 2-person p-game with compact joint policy 
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choice set 8 1 ~ 8
2 

and continuous corner concave joint objective func­

tjon U = U
1 

x U
2

: 8
1 

x 8
2 
~ R2. The question arises whether there exists 

a pure policy Nash equilibrium threat for r; i.e., letting WI x W2 (') -

~(B(U('»): 8
1 

x 8
2 
~ RZ, where ~ is the barter rule in 4.5, a joint 

x 8 which satisfies (5) with respect to 
2 

WI x W
2

. If the derived game r = ({1,2}; 8 1 x 8 2; WI x W2 : 81 x 8 2 

~ R2) satisfies conditions 1),2),3), and 4) in 4.2, then the answer 

is affirmative. 



r 

5. EXAMPLE OF A P-GAME 

An illegal parking problem is formalized in terms of a free 2-

person p-game with expected utility representation as axiomatized in 

section 2. The example illustrates three points. First, certain 

group decisions can be given an expected utility rationalization even 

though the decision makers specify their available acts in the form of 

partial rather than complete contingency plans. Second, the choice 

among end-mean, goal-control pairs arises naturally in many decision 

problems. Third, choice of goal as well as choice of control can 

affect a decision maker's probability and preference judgments concern-

ing future events. 

The campus Chief of Police C must devise a new policy to meet the 

problem of bicycles parked illegally next to the library rather than in 

a bikerack some distance away. At present CIS officers issue only 

warning tags. All collected fines are traditionally spent by C at his 

discretion. All confiscated bikes are traditionally given to the Sports 

Club. 

Assume C views his problem as the following free noncooperative 

p-game between himself and a typical student S, in which he has the 

first move (i.e., C will implement his chosen policy before S). 

C's Candidate Goal Set 

maximize collected 
- [gl: fines, to be used 

for merit awards 

minimize 
illegal 
parking 

} 
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Remark: More realistically, the candidate goals g E G
C 

could be 

vectors (p,r), where p varies over a set of target ceilings for the 

average illegal parking rate (e.g., at most twice a week) and r varies 

over a set of target floors for average collected revenues (e.g., at 

least $1.00 per week). 

S's Candidate Goal Set 

minimize costs in terms 
of time and money } 

S's Control Sets (one control set associated with each candidate goal 

AC(gl) - [ $1: 

x [ t: 

[ $5, h: 

C announces 
$1 fine rate 

, $5: 

C announces 
goal to his t' : 
officers 

C announces 
"illegally parked 
bikes will be 
confiscated" 

C announces 
} $5 fine rate 

C does not 
announce goal to } 
his officers 

} x {t,t'}; 

, -~ 
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S's ControZ Sets (one control set associated with each candidate goal in 

S always parks 
illegally next 
to library 

S always 
parks in } 
bikerack 

S daily flips 
fair coin to decide 
where to park 

[ (lib), (flip), (rack) } 

Joint PoZicy Choice Set 

_ e x e . c S 

x 

Let WO denote C's background information concerning the parking 

problem. In particular, assume WO contains the information that the 

current daily diligence index for detecting illegally parked bikes is 

\; i.e., C believes that at present, on any given day, the probability 

is ~ that his officers making the rounds will detect a bike parked il-

legally next to the library. It seems reasonable to assume that C is 

worried about the possible effects that the various joint policy choices 

by C and S might have on this diligence index. For example, C might be 

quite sure that the index would rise if he were to announce to his offi-

certs the goal gl: (maximize collected fines, to be used for merit 

awards), whereas at best the index would stay the same if he were to 

exhort them with g2:(minimize illegal parking). 

To examine the various possibilities, C asks himself the following 
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question for each joint policy e E: @C x @S: "Given that e is implemented 

by S and myself, what distinct situations (state flows) might occur, 

relevant for the problem at hand?" For example, the set of state flows 

C associates with the joint policy e I == (gl' ($1, t» x (go ,lib) E: 

might be 

@ x @ 
C S 

22 

diligence rate 
[ increases; hence 

expected daily fine 
revenues > 50¢ 

diligence rate 
fails to increase } 
hence expected 
daily fine reve­
nues < 50¢ 

whereas the set of state flows he associates with the joint policy 

@ x 
C 

@S might be 

diligence rate 
[ increases; hence 

expected daily fine 
revenues> $2.50 

diligence rate 
fails to increase } 
hence expected 
daily fine reve­
nues < $2.50 

REMARK: Presumably C is unable or unwilling to estimate the condi-

tional likelihoods that S will choose any particular policy in @S' 

following a policy choice by C. If C were willing to make such esti-

mates, then SIS possible policy choices could be embodied in state flow 

sets conditioned just on CIS policies in @C rather than on joint poli-

cies in @ x @ 
C S· The p-game would then essentially reduce to a one-

person policy model problem, as discussed in Tesfatsion [9]. 

Assume to each state flow W E: nc(e), e E: @C x @S' C assigns a utili­

ty number u(wle) representing the desirability of w obtaining, condi-

tioned on the event "c and S choose e," and a probability number crewle) 

representing the likelihood of w obtaining, conditioned on the event 

"c and S choose e." He then calculates his expected utility 



s~ (e)u(wie)o(dwi e ) 
c 

corresponding to each choice of joint policy e £ B x B • 
C S 

For simplicity, let it also be assumed that C finds only three of 

his policy choices in BC to be undominated, so that he need only esti­

mate S's expected utility levels for nine possible joint policy choices 

as illustrated in the following "expected utility matrix" [(p,q)]. 

(The components p give C's expected utility and the components q give 

S's expected utility.) 

~ e~:(go,lib) e~: (go' flip) e~' : (go' rack) 
. 

e~:(gl,($l,t» (4,8) (3,7) (2,2) 

e~: (gl' ($5,4» (8 )4) (6,6) (1,3) 

eC": (g2,(h,t'» (1,0) (2,1) (5~4) 

Expected Utility Matrix 

According to the expected utility matrix, if C's chosen goal is gl: 

(maximize collected fines, to be used for merit awards), then, from C's 

point of view, the more illegal parking by S the better; and if C's 
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chosen goal is g2: (minimize illegal parking), then the less illegal 

parking by S the better. Further, if C chooses gl as a goal and S chooses 

(g ,rack), i.e., straight legal parking, then C would prefer S made such 
o 



a choice in the face of a $1 fine rate rather than a $5 fine rate. (For 

example, under a $5 fine rate, the blame for the failure to obtain reve-

nues might be attributed to too high a fine rate.) 

From S's point of view, the higher the fine rate, the lower the 

expected utility of illegal parking. Confiscation also makes illegal 

parking less attractive than legal. On the other hand, given a low fine 

rate of $1, the time saved parking illegally next to the library out-

weighs the risk of being detected. For the higher fine rate, prudence 

suggests only occasional illegal parking. 

The set of pareto optimal joint policies is 

{(e' e') (e" e") (e" e')} 
c' s ' C' s' C' s 

whereas the set of Nash equilibrium joint policies is 

{ (e " , e ") , ( e III, 8 '" ) } • 
C S C S 
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The highest utility level C can guarantee for himself is 6, through choice 

of e~, assuming that S is "rational" and consequently chooses e~. The 

resulting joint policy (e~,e~) is a unique pareto optimal - Nash equili­

brium solution, yielding a joint payoff of (6,6). 

REMARK: With @C xeS assumed to have the discrete topology, it 

can be shown that the above p-game satisfies the hypotheses of 4.2. How-

ever, this application of 4.2 is rather trivial. The power of the Lefschetz 

condition 4) in 4.2 is more clearly revealed when the policy choice set 

o has a richer topological structure. 
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FOOTNOTES 

1 
An example of a tautological specification of a goal by a decision 

maker i would be "i maximizes his utility." Such specified goals convey 

no information to other decision makers in the problem environment, and 

hence can play no strategic role. 

2 Goals are generally tinged with probability considerations; they 

are the end result of an act of choice in the face of uncertainty. Thus 

goals cannot always be identified with "desirable outcomes". (Most 

people would like to be billionaires, but how many adopt this as a goal?) 

3A binary relation > on a set D is a weak order if for all 

a,b,c £. D 

(1) a > b or b > a (Le., > is connected); 

(2) a > band b ~ c implies a > c (i.e., > 

is transitive). 

4A collection F of subsets of a nonempty set X is said to be an 

algebra in X if F has the following three properties: 

(1) X € F; 

(2) 
c c If A € F, then A € F, where A is the complement of 

A relative to X; 

(3) If A, B € F, then A U B € F. 
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