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Inventing Logic: 
!e Löwenheim-Skolem !eorem and First- 
and Second-Order Logic

INTRODUCTION

On its own, the Löwenheim-Skolem theorem – as well as the ensuing 
Skolem Paradox – is of scant mathematical, logical, and even philo-
sophical signi#cance. It is of no consequence to practicing mathemati-
cians, admits of extant resolutions at the logical level and is su%ciently 
vague to support all sorts of philosophical arguments.*  Nevertheless, 
much enquiry and ink has &owed on the matter, and we intend here 
to contribute to this muddy river, all the while trying to avoid waxing 
poetic or waning technical. In this essay, we purport to use the para-
dox as a paradigm by which we mean to evaluate the role of #rst- and 
second-order predicate logic in a post-foundational context. As there 
is no reason to prefer one kind of logic over another unless we specify 
to what purpose we intend to use it, we shall argue that if we want 
mathematical logic to axiomatize, describe and couch the language of 
informal mathematical practice, then second-order logic yields more 
intuitively appropriate models. As well, since the Skolem paradox is a 
problem purely for standard model-theoretic semantics, our second-
ary purpose will simply be to show through this example how modern 
model-theoretic results can illuminate our current understanding of 
what logic is, as well as of what we conceive the role of logic to be in the 
greater scheme of human understanding. Indeed it is our over-arching 
intention to ponder the inherent limitations and, paradoxically, the 
intrinsic openness of human thought.

*  Most notably, within Skolem’s own expoundings on the subject. For a succinct rundown 
of this topic, we refer the reader to George (1985).
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1.0 WHAT LOGIC?

Philosophic logic is generally understood as the formalization of ver-
nacular languages. !ere are in fact many types of such formaliza-
tions: syllogistic, propositional and modal logics all attempt to cap-
ture the syntactic structure of speech patterns -- that is, of thought 
itself.*  Much of modern logic, however, arose in a mathematical 
context, more precisely in the context of the foundational crisis of 
the early twentieth century. As a preamble to our discussion on the 
(epistemo)logical implications of the Löwenheim-Skolem theorem 
on the axiomatization of mathematics, we shall #rst brie&y review 
the nature of mathematical logic as a peculiar branch of logic. As 
well, we shall #nd it worthwhile to touch upon the distinction and 
relation between model-theoretic semantics and proof-theoretic 
syntax which is crucial to our argument. Finally, we shall review in 
this section the characteristics of #rst- and second-order logic (and 
by extension, higher-order logic) – which is ultimately the object of 
our paper.

1.1 POST-FOUNDATIONAL MATHEMATICAL LOGIC

Nowadays, mathematical logic can be de#ned as the attempt to 
achieve an adequate formalization of mathematical language; alter-
natively, it can be considered as the study of the deductive and ex-
pressive power of formal theories. Historically, mathematical logic 
owes its inception to the search for the foundations of mathematics. 
!e crisis in the foundations of mathematics was wrought with vig-
orous debate about purely abstract entities such as the uncountably 
in#nite sets evoked by Cantor’s !eorem. During the foundational 
crisis, logicism aimed to reduce all of mathematics to fundamental 
logical ‘laws’ of thought, to be expressed through an ideal and closed 

* We must here note that there is a strong positive feedback e"ect between the thought 
expressed through language and the language that underlies the thought.
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formal logical system with explicit axioms su%cient to characterize 
all abstract mathematics -- initially considered to be part and parcel 
with set theory.  Set theory, however, was rife with contradictions 
and paradoxes; the #rst axiomatic wave in the #eld of logic focused 
quite exclusively on smoothing out and formalizing Cantor’s para-
dise – work which was taken up notably by Hilbert, Russell, White-
head, Zermelo, Skolem, and Fraenkel (Crossley et al. 1972, p. 5; Fer-
roiros 2001, p. 471).
Despite the obsolescence of foundational studies proper, this work 
remains a driving force behind much research in mathematical logic 
and many logicians and mathematicians still explicitly or implicitly 
harbour hope that some kind of non-absolute foundation can still be 
achieved. Most notably, the ghost of Hilbert’s programmes can still 
be glimpsed in debates into the ‘nature’ of mathematical logic. As it 
had once been hoped that mathematics could be reduced to logic, it 
seems that the ideal that logic should be devoid of any mathematical 
content or presuppositions is still circulating: logic should formalize 
mathematics, but if mathematics impregnates logic, we arrive at a 
vicious circle. On the other hand, it is not clear that there is a non-
ideological reason why mathematics must rest on a foundation that 
is itself non-mathematical in nature.*  Hence, while we shall not dis-
cuss foundational studies in this paper, we do note that many preju-
dices still seem to hold: ‘logic’ logic is equated with #rst-order logic, 
and ‘mathematical’ logic is equated with second-order logic – which 

*  In fact, the reverse statement sounds rather absurd barring convincing non-ideological 
reasons. Evidently, much has been made of the presence or lack thereof of a border be-
tween logic and mathematics; generally, however, mathematical logic is considered a sub-
discipline of both mathematics and logic. While some maintain that even a fuzzy border 
is a border – a border that restricts each discipline to its own sphere – we are not of that 
opinion. If anything, the haziness of this border renders it a priori ‘undecidable’ to which 
domain a ‘foundation’ (or, even a simple axiomatization) of mathematics must be sought. 
Regardless, as Boolos has remarked, if all the other sciences presuppose themselves, why 
shouldn’t mathematics? See Boolos (1975, p. 517), Gauthier (1976, pp. 294-6), and Shapiro 
(1999, pp. 51-54).
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is itself con&ated with set-theory; Many important philosophical is-
sues concerning the nature of logic itself surround the debate be-
tween #rst- and second-order logic – to which we shall soon turn 
our attention, a'er having #rst delved into the semantics/syntax di-
chotomy that pervades modern logic (Shapiro 1985, p. 742). 

1.2 MODEL THEORETIC SEMANTICS

Although modern logic arose during the Grundlagenkrise der Math-
ematik, its crux occurred a'er its falter. We thus #nd it impossible 
to delineate the scope of what logic is, what it can do, and what we 
would like it to do, without wording it in proof- and model-theoretic 
terms. All mathematical logic consists of two parts: a formal lan-
guage governed by recursive proof-theoretic syntax and an informal 
language governed by descriptive model-theoretic semantics. !e 
formal language is ideally uncontaminated by the content or mean-
ing of the linguistic sentences it codi#es: the archetypal formal sys-
tem is a sturdy logical skeleton that wavers not in the winds of philo-
sophical opinions. !e informal semantics is the interpretation of 
the theory that re&ects unto the language its truth conditions.
As the Löwenheim-Skolem theorem is a model-theoretic problem, 
it is this aspect of the logical conundrum that retains our attention. 
Models accomplish the linguistic reference-#xing of the consequence 
relations delineated by the deductive system. At times, these models 
may reveal the defects in our logical systems that are in need of ad-
justments, though at others they may expose &aws in our broader 
epistemological systems instead. Indeed, since Tarski, model-theory 
has o'en been understood as a theory about truth. !is is perhaps 
why model-theory has come to dominate and de#ne mathematical 
logic.*  But if “formal language is to model-theory what language is 

*  Harold Hodes even goes so far as to claim “truth in the model is a model of truth” (Sha-
piro 1999, p. 44).
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to the world” (Shapiro 1999, p. 44), and if the world ‘contains’ the 
truth that the language seeks to reconstruct, then an analysis of the 
model brings to light not only what we know, but also what we can 
know, what we cannot know, as well as how we know (Gauthier 1976, 
pp. 121-2 and 218; Shapiro 1999, pp. 43-4, 56). 

1.3 FIRST- AND SECOND-ORDER LOGIC

In this paper, we are concerned solely with #rst- and second-order 
predicate calculus with standard model-theoretic semantics. First-
order predicate logic (henceforth, ‘FOL’) consists of a given non-
empty domain d within which a countable in#nity of quanti#ed 
variables range over the individual elements. Standard #rst-order 
model-theoretic semantics are fundamentally characterized by 
completeness, compactness and the Löwenheim-Skolem theorem 
(henceforth, ‘LST’). A'er the metalogical conclusions of Gödel’s en-
quiries, FOL became highly valued for its ability to generate a full 
deductive system. !is appraisal re&ects the strong proof-theoretic 
tradition that su"uses all of mathematics: there can be no results 
without proof. For these reasons, #rst-order calculus is still the de 
facto fundamental logical language (Ferreiros 2001, p. 470; Gauthier 
1976, pp. 64, 123; Manzano 1996, p. 112; !arp 1975, pp. 4, 7). 
Second-order predicate logic (abbreviated ‘SOL’) with standard 
model-theoretic semantics have interpretations wherein additional 
‘second-order’ quanti#ed variables range over all of the subsets of 
elements of a given non-empty domain d, along with the standard 
‘#rst-order’ variables that range over its objects alone. Most early 
logicians, like Zermelo, initially worked purely with second-order 
logic. First-order logic was an o"shoot of the original predicate logic 
and was later championed by logicians like Skolem for mostly ide-
ological reasons – but practical reasons as well: #rst-order logic is 
more easily and crisply manipulated (Crossley et al. 1972, p. 5; Fer-
reiros 2001, p. 471). Since Gödel’s incompleteness theorem shows 
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that compactness and LST inherently fail in second-order axiom 
systems, no standard model-theory of SOL can produce a complete 
deductive system (Gauthier 1976, p. 64; Shapiro 1985, p. 714; Shap-
iro 1999, p. 42).*   
Although it is generally considered that FOL trades expressive pow-
er in the name of securing clear epistemic gains, there is a damper: 
a complete deductive system alone neither provides knowledge nor 
generates new knowledge (Gauthier 1976, p. 218; Jané 1993, p. 67; 
Shapiro 1999, pp. 44-5). Nonetheless, the other side of the coin is 
that SOL is overly expressive: it has been claimed that, by saying eve-
rything, it in fact says nothing. Indeed, though its incompleteness 
lends itself to dizzying heights of expressive potential, its deductive 
mechanisms are cumbersome and o'en bewildering. For this rea-
son, it is SOL that must bear the burden of proof (Gauthier 1976, p. 
123; Jané 1993, p. 71; Manzano 1996, pp. 5, 60-2, 112).†  

2.0 WHAT PARADOX?

One of the earliest meta-mathematical results to arise from model-
theoretic research into FOL was the Löwenheim-Skolem theorem. 
In this section, we shall #rst explore the Löwenheim-Skolem theo-
rem, including the upward and downward expansions of the theo-
rem which we owe to Tarski. !en, we shall touch upon the ensuing 
Skolem paradox that arises in the semantic interpretations of #rst-
order models,‡  as well as its basic philosophic import. !e paradox 

*  On the other hand, some non-standard second-order models do have all three of these 
properties – most notably, Henkin semantics. However, all the same objections (includ-
ing the ones that derive from the presence of LST) that we will address later hold for these 
second-order models (Gauthier 1976, p. 123; Shapiro 1985, p. 715).
†  !e problem with FOL is that its strong syntax cannot generate results that constitute 
new knowledge, whilst the problem with SOL is that its strong semantics do not allow 
logicians to show which of its disparate results constitute knowledge.
‡  Given that LST does not hold in second-order theories, Skolem’s paradox cannot arise in 
second-order model-theoretic semantics.
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not being a true antinomy, and it being but of minor signi#cance to 
mathematicians, we shall describe a few solutions of which it admits 
within the framework of metamathematical logic. !e impact of LST 
on our understanding of #rst- and second-order predicate logic, as 
well as on logic and epistemological possibilities themselves, will be 
addressed in the next chapter.

2.1 THE LÖWENHEIM-SKOLEM THEOREM

As we have seen, the Löwenheim-Skolem property – along with 
completeness and compactness – is a hallmark of #rst-order models. 
Quite simply, the Löwenheim-Skolem theorem states that any theo-
ry that is consistent (i.e., that has a model) has a countable model. 
Whilst prior to Gödel’s completeness and compactness theorems,*  
the Löwenheim-Skolem theorem is nevertheless its immediate con-
sequence, as it states that if a formula is satis#able (i.e., has a mod-
el), then it is satis#able within a countable domain. However, given 
Gödel’s accompanying compactness theorem, LST follows from the 
completeness theorem in such a way that it is possible to derive the 
upwards and downwards Löwenheim-Skolem-Tarski theorems (or 
‘LSTT’). !e original theorem, as re#ned by Tarski, can thus be for-
mulated in two versions: a) the upward Lowenheim-Skolem-Tarski 
theorem and b) the downward Löwenheim-Skolem-Tarski theorem. 
!e upwards LST states that if a theory has any model of in#nite 
size, then that theory also has a model whose domain is the same 
size as an in#nite set A; in other words, a satis#able set of sentences 
always has a model of a greater in#nite cardinal. As a corollary, the 
downward LST proves that if M is a model of cardinality K and if λ 
is a cardinality smaller than K, than M has a submodel of cardinality 

*  Gödel’s completeness theorem states that FOL mechanically produces all the valid logical 
formulas that follow from its axioms, such that any logical expression is either satis#able or 
refutable in a model. His compactness theorem states that a set of sentences in FOL has a 
model if and only if all of its #nite subsets also have a model (Crossley 1972, p. 7).
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λ which satis#es the same theory as M itself; in other words, every 
satis#able sentence has at most a countable model (Shapiro 1985, p. 
714; Schoen#eld 2001, p. 79).
By Lindström’s theorem – one of the pioneering technical results 
of model-theory – LST is required if we want a strong #rst-order 
theory.*  However, the presence of the Löwenheim-Skolem property 
means that #rst-order theories cannot manage the cardinalities of 
its in#nite models, in such a way that its models are not categori-
cal – that is, they are not isomorphic. As a consequence, while LST 
plays an important role in proving the strength and completeness 
of FOL, it nevertheless has the serious unintended consequence of 
paving the way for Gödel’s 1931 incompleteness theorem wherein 
(through a process now known as the ‘arithmetization’ of logical syn-
tax) Gödel proved that FOL was not strong enough to either prove 
or disprove the formulas of classic mathematics, such as arithmetic. 
FOL is incomplete in regards to the theory of natural numbers based 
on Peano’s well established axioms,†  and this is a highly problem-

*  Lindström’s theorem establishes that if a model of any given logic L has either Löwen-
heim-Skolem-Tarski property and is also compact (and, therefore, complete), then L is 
equivalent to #rst-order logic. FOL is then equated with the maximal (strongest) logic 
possible – but only given these provisions. Indeed, the characterization of the ‘strength’ 
of FOL as de#ned by this theorem is dependant upon the presumption that LST (and 
compactness, and completeness) are essential characteristics of sound logic: if they are 
not, then invoking Lindström’s theorem amounts to begging the question (!arp 1975, 
pp. 4-9). !e question of elucidating whether or not LST is a necessary feature of logic 
(which would then imply that FOL is the strongest logic period) is by no means one we 
are prepared to answer, but it is a question we will confront as we weigh the undesirable 
consequences of the Löwenheim-Skolem property against those of a logical system that 
does not possess it.
†  !e incompleteness theorem also had considerable rami#cations on the burgeoning dis-
cipline of proof-theory – which has led, amongst other things, to the universally accepted 
(yet unprovable) Church-Turing thesis which states that the absolute undecidability of a 
formula can be decided via algorithms. !is theorem was crisply trailed by a whole slew 
of undecidability results concluding that the whole of mathematics as well as a host of 
basic problems – such as the Continuum Hypothesis itself (when combining Gödel’s and 
Cohen’s consistency results) – were essentially undecidable. With these results arose for 
the #rst time a fundamental problem of consistency within elementary number theory. Of 
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atic situation. Indeed, LST has been deemed the #rst of the modern 
incompleteness theorems, casting shadows on the assumption that 
FOL can be the kind of strong logic that mathematical theory and 
practice can rely on (Kleene 1952, p. 427). 
A #nal note: because of the lack of completeness and compactness 
of second-order theories, some theoreticians will admit only FOL as 
‘valid’ logic. However, the lack of a Löwenheim-Skolem property in 
second-order models of these theories is not actually considered a 
problem: rather, it is thought of as a favourable characteristic – for 
reasons we shall see shortly. As such, while the Löwenheim-Skolem 
theorem and Skolem’s paradox cannot quite be considered a logical 
deal-breaker, it is a tipping-point – a genuine model-theoretic prob-
lem. Of course, to understand how model-theoretic semantics can 
in&uence our understanding of the formal theories themselves and 
further delineate the scope of logical enquiries, it shall be necessary 
to describe the ensuing Skolem paradox. 

2.2 SKOLEM’S PARADOX

!e Löwenheim-Skolem theorem leads to a simple paradox: the 
appearance of a seeming contradiction between the Löwenheim-
Skolem theorem (which proves that if a formula or list of formulas 
is satis#able, then it is o-satis#able) and Cantor’s theorem (which 
proves the existence of non-denumerable sets of cardinality 2 0). 
Overtly, since we have a countable theory that proves the undenu-
merability of some sets, how can the ensuing model account for 
the existence of uncountable objects within its countable domain? 
For we then have countable models for axiom systems that are in-
tended to structure uncountable domains – which is unseemly. !e 

course, all of these considerations are also of consequence within the mathematical and 
philosophical discourse on the nature of truth (Boolos 1975, p. 523; Crossley 1972, pp. 
7-10; Kleene 1952, pp. 300-1, 317-8, 436). As seminal as Gödel’s incompleteness results 
are, we regret that we can provide no more space to the subject in this present paper.
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paradox confronts us with the reality that any axiomatization of set 
theory employing a denumerable amount of formal axioms will fail 
to render and characterize the absolute concepts of set, power-set, 
bijection, non-denumerability, etc., which are the very fundamental 
set-theoretic notions that we intend mathematical logic to explain 
(Kleene 1952, p. 427; Kleene 1971, pp. 326-9). 
Furthermore, as already alluded to, the upward and downward LST 
reveal the basic non-categoricity of #rst-order models, further rein-
forcing the non-absoluteness of set-theoretical notions in FOL. !is 
has led to a (relatively) marginal meta-mathematical and philosoph-
ical conclusion called Skolemism. Skolemism is the idea that set-the-
oretical notions are inherently relativistic: what is non-denumerable 
in one interpretation of a formal system may be denumerable in an-
other, as there is no prior absolute de#nition of non-denumerability; 
instead, uncountability is a property relative to a given model, not 
of the formal system.*  For the Skolemite, the paradox proves the 
model-relative nature of all cardinality results. Skolem’s paradox is 
thus a problem speci#cally for model-theory: it paradoxically reveals 
that a complete and compact formal axiom system produces many 
interpretations – including unintended ones that rub against the 
grain of the formal theory we thought we were building up. LST thus 
inherently provides the impetus for non-standard models (Crossley 
et al. 1972, pp. 6, 29; Ferreiros 2001, p. 472; Kleene 1952, p. 427).†  Of 
course, to a certain extent, this is natural: the scienti#c method has 
a sneaky way of crushing our hunches, hypotheses and our desires; 

*  !ough, to be fair, it is hotly contested whether we even have a prior solid reason to 
believe that these are notions that can be rendered at all, given set theory itself is in need 
of a formal ‘foundation’ (Jané 1993, pp. 78-83; Shapiro 1999, p. 58). However, it is not our 
aim to engage in foundational debates, and so this will remain here a moot point.
†  !e #rst of these models was constructed by Skolem himself. It is through the work of 
Henkin however that such non-standard models are revealed to be an inherent conse-
quence of the model-theoretic relativity of complete and compact FOL with Löwenheim-
Skolem properties (Crossley et al. 1972, p. 29).
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but applied to model-theory, the consequences of LST seem to reveal 
that this is a problem within even the most rigid application of the 
scienti#c method itself. 

2.3 SOLUTIONS TO SKOLEM'S PARADOX

Skolem’s paradox has de#nite solutions available, whether we like 
these particular resolutions or not. As it is not an antinomy (but is, 
rather, a mere incongruity), it may be brushed aside by informal 
mathematic practice and, indeed, by much of formal mathematics. 
And therein lies a distinction between the logician and the math-
ematician, for while the mathematician is content to work with logi-
cal concepts and models for purely investigative and constructive 
reasons, it is the logician who must concern himself with the ontic 
starting point of the concepts and models invoked (Klenk 1976, pp. 
476, 479). However, logic itself cannot produce any ontic knowledge 
without subscribing to an underlying ideological position postu-
lating its prior existence. !erefore, we shall explore here only the 
solutions pertinent to the model-theoretic semantics of #rst- and 
second-order theories.

2.3.1 WITHIN FIRST ORDER LOGIC

!e upward Löwenheim-Skolem-Tarski theorem "x
!e aforementioned upward and downward versions of LST com-
prise what may be considered a re&ection schema, wherein the up-
ward version correlates to the ascending re&ection of all acceptable 
models of higher in#nite cardinality and the downward theorem 
represents a descending re&ection of all admissible models of lower 
(in)#nite cardinality. Viewed in this light, a dialectical interpretation 
through the upward and downward variants saves the Lowenheim-
Skolem theorem from itself, with no need to step outside a #rst-
order theory. !us, within FOL, the upwards Löwenheim-Skolem-
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Tarski theorem may be invoked to dispel the paradox and show that 
the continuum can be built up through an ascending re&ection of 
the countable models which underlie it. Indeed, this may well ac-
count for the hypothesis that denumerable models are su%cient to 
describe set-theory (Gauthier 1976, pp. 297-8; Klenk 1976, pp. 475, 
479, 485). However, the upward LSTT has its own host of drawbacks, 
which shall be succinctly addressed in the next section.
!e misinterpretation interpretation 
!is solution can also be dubbed the ‘much ado about nothing solu-
tion’. Indeed it may be claimed that while the model-theoretic in-
terpretation understands the existential and universal quanti#ers to 
range only over the domain of M, the observing logician ‘intuitively’ 
understands instead that ‘   x’ and ‘   x’ to range over the entire set-
theoretic universe. In other words, while only 0 elements can be ‘ob-
served’ within the model’s domain, the full spectrum 2 0 can be ‘ob-
served’ from without. However, within the countably in#nite model, 
the in#nite sets actually are countable – they may really be placed 
in bijection with the natural numbers. !e apparent paradox arises 
simply because this bijection does not actually occur from within the 
perspective of the model. !e denumerable model thus internally 
satis#es the notion of ‘non-denumerable set’, though the model is in 
fact countable to the external observer of the model. !is is how a 
countable model can be said to su%ciently describe the continuum. 
Indeed, in retrospect, it seems rather trite to say that if M is count-
able – and the paradox is thus rendered somewhat banal. Of course, 
this is still an unexpected and unsettling explanation to the logician 
as it leaves him or her with no compass by which he may explain his 
own notion of (non-)denumerability (Crossley et al. 1972, pp. 6, 29; 
Kleene 1952, p. 426). 
!e non-standard model-theoretic semantics way out 
Of course, it can also simply be accepted as fact that there are 
standard and non-standard models. It could very well be that we 

A  E
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commonly use a particular arithmetic, but that there might be a 
manifold of consistent arithmetic that we could also work with in 
a sound manner. In fact, mathematicians do frequently build and 
explore non-standard models of theories, some mathematicians be-
come specialists of these models, and some believe that one or more 
non-standard models are in some shape or form ‘better’ than non-
standard ones.*  Skolem’s paradox isn’t an antinomy, it is then just 
an unexpected consequence: one we must learn from. In actuality, 
there is no Platonist or intuitive conception of ‘set-theory’ as either 
an ideal fact or a #xed intuitive notion to which we ought to #t our 
model-theoretic semantics. Rather, we develop and construct what 
set-theory really is or is not based on the results achieved through 
axiomatization, model-theory and, especially, proof-theory. Nothing 
beyond what is proved is of any scienti#c substance; if a consistent, 
complete and compact logic necessarily entails LST and the Skolem 
‘paradox’, then that is logic, that is reality. !ere is simply no other 
way to proceed than to attempt to solve ‘known’ problems – by any 
means necessary.†  !e costs of this resolution will be elucidated in 
the fourth section.

2.3.2 WITHIN SECOND-ORDER LOGIC

*  ‘Better’ need not mean absolutely better. A non-standard model might simply be better 
at capturing a certain use or a certain possible application of a theory. As an analogy, we 
can truthfully say that the duodecimal notation is ‘better’ for counting, that a non-simple 
continued fraction is ‘better’ at expressing π, or that the binary system is ‘better’ for build-
ing Turing machines. Again, ‘better’ always refers to a certain context.
†  !e #x just mentioned smoothly recoups the constructivist position. In fact, according 
to McCarty and Tennant, Skolem’s paradox does not actually arise at all in constructiv-
ist practice. Indeed, it is a basic underlying assumption among constructivists and some 
intuitionists that Cantor’s theorem and the notion of ‘non-denumerability’ have no place 
in logic, as they cannot be constructed in the rigorous sense of the word. At best, it is pos-
sible to suspend belief as to the matter, but it is still widely believed within constructivist 
circles that even countable in#nity is de juris unconstructible. Evidently, such a position 
entails that LST – and therefore Skolem’s paradox itself – is unconstructible (McCarty & 
Tennant 1987).
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As we know, LST only applies to #rst-order formal theories. It does 
not apply either to second-order structures, or to the informal math-
ematics that #rst-order model-theoretic semantics intends to cap-
ture. LST does not apply to SOL because SOL does not itself produce 
LST, and thus it does not produce the infamous paradox. Further-
more, second-order models of ZFC were shown in 1930 by Zerme-
lo (himself an early champion of SOL) to accurately interpret the 
informal set-theoretic notions of cardinality and power-set, some-
thing with which #rst-order axiomatizations struggle. Furthermore, 
SOL characterizes up to isomorphism the classic theory of natural 
numbers as established by Peano’s axioms (Shapiro, Second-Order 
Lang.). !e details of this (and other bene#ts) incurred by SOL due 
to its lack of LST shall be dealt with later on in the next section.

3.0 WHAT SEMANTICS?

As we have seen, LST and Skolem’s paradox are intrinsically tied to 
FOL. But as we have also seen, FOL is intrinsically tied to LST by 
Lindström’s theorem.*  !ough the paradox is not a strict contradic-
tion of the sort that poses a strong problem for mathematics itself, 
it does highlight some of the inescapable limitations of any #rst-or-
der axiomatization of mathematics. Most immediately, the question 
arises as to whether there is an inherent contradiction in #rst-order 
model theory, and what this contradiction tells the respective logi-
cal and mathematical communities. Indeed, it seems to us that the 
paradox gives us a clearer idea of what logic can or cannot do, but 
most importantly, whether the interest lies in a secure but restrictive 
FOL, or in a treacherous but expressive SOL. !is section shall thus 
review what the Löwenheim-Skolem theorem can tell us about #rst- 
and second-order logic. 

*  See footnote  on p. 34.
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3.1 THE LÖWENHEIM-SKOLEM  THEOREM IN FIRST-ORDER LOGIC 

A limitation imposed on FOL by the upward and downward LST is 
that it is in fact impossible from a model-theoretic perspective to say 
what the cardinality of the underlying model is: though we can say 
that it is in#nite, we cannot say in an absolute way whether the mod-
el is actually imbedded in an uncountable model. Of course, the up-
wards Löwenheim-Skolem-Tarski states that if the string of formulas 
has a model, it admits also of models of every in#nite cardinality K 
– but this does not allow us to deduce whether the countable model 
is characterizing an uncountable domain which is itself ‘really’ un-
countable (Crossley et al. 1972, p. 29; Shapiro 1985, pp. 716-9).*  
Given the ubiquity of the concept of non-denumerable sets in math-
ematics, it is expected of mathematical logic that its language allows 
for an expression of this property, as well as many others that are es-
sential to mathematical theory. Yet applied to #rst-order logic, LST 
is tantamount to stating that FOL is not powerful enough to gener-
ate an enumerating function capable of expressing the concept of 
non-denumerability: as such, what appears to be non-denumerable 
within M, is in fact denumerable from without (Kleene 1952, p. 426; 
Klenk 1976, p. 475). In fact, the presence of LST renders FOL’s se-
mantics inadequate even to allow for a satisfactory expression of the 
basic arithmetical principle: Peano’s axiom of induction. Also, proof-
theory being inexorably intertwined with model-theoretic seman-
tics, LST thus has indelible consequences on the strength of FOL as 
a deductive system: despite completeness, the range of what it can 
prove is so limited as to render it rather an absurd choice for the de-
scription of mathematical practice (Boolos 1975, p. 521; Jané 1993, 
pp. 68, 70; Shapiro 1985, pp. 716, 722, 727). 

*  !is idea can be expressed something like stating that there exists an uncountable ‘uni-
verse’ outside the domain of the countable model at hand, a universe of which the model 
captures only a piece (Crossley et al. 1972, p. 70). But then that raises the question: can we 
provide a model for this universe?
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3.2 THE LÖWENHEIM-SKOLEM  THEOREM IN SECOND-ORDER LOGIC 

Because LST fails in SOL, its model-theoretic semantics allow for 
the convenient and sound expression of countable and uncountable 
sets, since non-denumerability is characterizable in second-order 
model-theoretic semantics: the formula expressing the uncountable 
domain simply admits of no countable model. As such, SOL inter-
prets ‘correctly’ our intuitive set-theoretic ideas. Furthermore, the 
crucial axiom of induction in ZFC, as well as Peano’s axioms and the 
axioms of separation and replacements, are also best expressed at the 
second-order.*  Arithmetic, real and complex number analysis, Eu-
clidean spaces, real vector spaces... the list of theories uniquely and 
exactly expressible through second-order model-theoretic seman-
tics is far too extensive to be dismissed out of hand (Boolos 1975, pp. 
521-2; Jané 1993, pp. 68-71, 79-81; Manzano 1996, pp. 4-5; Shapiro 
1985, pp. 722, 727, 729-30).
Another bene#t conferred unto SOL by its lack of LST is its catego-
ricity results. Because SOL is not compact and is not imbued with 
the Löwenheim-Skolem property, its models are categorical; for ex-
ample, it can characterize the sets of natural and real numbers – and 
many other in#nite structures – up to isomorphism (Shapiro 1985, 
p. 714; Shapiro 1999, p. 43). !is may very well prove to be a great-
er strength than the syntax of FOL; a'er all, to correctly describe a 
structure is to describe it categorically, and second-order model-the-
oretic semantics does this for denumerable and non-denumerable 
structures, as well as most of the structures of classical mathematic 
theory. Categoricity also seems more essential than completeness 
when considering the interdisciplinarity of the mathematical sub-
#elds, as exempli#ed by the common practice of embedding speci#c 

*  Of course, this and other axioms may be ‘replaced’ with #rst-order axiom schemes. 
However, this solution requires that we postulate an in#nity of axioms (to the unique 
second-order axioms), a move which is quite preposterous in light of a formal system that 
cannot even express what it is that is meant by ‘in#nite’ within its own model- and proof-
theory (Boolos 522; Jané 79-80; Shapiro, Second-Order Lang. 725-6)!
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theories within another, most commonly set-theory – for which sec-
ond-order axiomatization has thus far proven indispensable (Boolos 
1975, pp. 523-5; Jané 1993, p. 70; Shapiro 1985, pp. 716-7, 722, 728, 
739). A'er all, even if a theory were to be explainable through FOL, 
if its models are not categorical, not much is gained. 
So then what is the advantage of limiting the scope of logic solely 
to FOL when it is well known that its expressive power is inherent-
ly poor and inadequate to express even the basic givens of classical 
mathematics? Well, SOL’s semantic power are themselves impugned: 
it has been claimed that all the answers it claims to hold are merely 
hypothetical for lack of a complete deductive system to draw them 
out (Jané 1993, pp. 81-4; Klenk 1976). As both FOL and SOL have 
their advantages and disadvantages, it is impossible to say which 
one is the ‘better’, unless we specify what we are using the logic for. 
!e answer seems deceptively simple, but is in reality quite treacher-
ous: we want mathematical logic to reproduce our intended models. 
However, since the Löwenheim-Skolem property prohibits the iso-
morphic categorization of our intended in#nite models, FOL inher-
ently leads us to consider unintended models – and this is a serious 
problem for most logicians. 

4.0 WHAT INTENDED MODELS?

Amongst other things, Skolem’s paradox highlights a visceral meta-
mathematical impasse: what constitutes an intuitively acceptable 
model? A'er all, we are wont to think that mathematicians have some 
grasp of the theory they are in the midst of elaborating; however, a 
naive Platonist vision of the mathematical objects that populate the 
reality ‘behind the model’ is anathema to the modern, level-headed 
theoretician. But are intended models ‘real’ models? Are unintended 
models aberrations of truth? Must we reject a formally true theory 
if it yields unintended models? Are intended models philosophically 
anachronistic? None of these questions can be acceptably answered 
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lest we #rst ponder the question: what is model theory (and math-
ematical logic itself) a theory of? 

4.1 MODEL-THEORY AND INFORMAL MATHEMATICS 

We here mean to deepen our previous discussion: why should math-
ematical logic prefer semantic expressiveness over completeness? 
What exactly are we trying to express? And why are not proof-theo-
ry and formal axiom systems enough to express it? Of course, math-
ematical logic is engaged in an inexhaustible dialogue with standard 
informal mathematical practice.*  Intended models are just the mod-
els that are intended by practicing mathematicians; it is their infor-
mal theories and models that mathematical logic intends to formal-
ize. For while it may turn out that the informal theories are found 
wanting in some aspect or another, it is to informal mathematics that 
we must turn to if we are to give any meaning to the term ‘intended 
model’. We want the models of our formal systems to coincide with 
the intended objects and relations we mean to describe – ideally cat-
egorically. !ese are the original models, the ones we hold all others 
up to (Shapiro 1999, pp. 45, 48).
A'er all, informal mathematics is both the beginning and end point 
of mathematical logic: it not only provides the immediate impetus 
and raison-d’être of logic, but it is also hoped that logic has applica-
tions – namely, that it is useful and illuminating to proof-seeking 
practitioners. It is through informal mathematics that we can con-
ceive, however vaguely, of what we mean by the standard intended 
model that unites the majority of mathematicians and logicians (Jané 
1993, pp. 68-9; Shapiro 1985, pp. 725-6). As such, what this practice 
says and to a certain extent how it does it constitutes our standard. 
We shall now contrast the correlations between #rst- and second-
order models with standard semantics with the informal mathemati-

*  Perhaps sometimes aptly referred to as pre-formal mathematics.
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cal practice that grounds it.

4.2 THE LÖWENHEIM-SKOLEM  THEOREM AND INFORMAL 
MATHEMATICS 

As noted, LST is not generally considered to be a problem for prac-
ticing mathematicians. But despite the fact that LST admits of reso-
lutions both at the #rst- and second-order level, it shall nevertheless 
prove instructive to enquire more into the preferences of the math-
ematicians themselves. As has been stated, FOL is generally consid-
ered incapable of axiomatizing some of the most elementary branch-
es of mathematics – including set-theory, which is crucial to nearly 
all branches of the discipline. Not surprisingly, what FOL cannot 
axiomatize is what it can’t model: in#nite structures. !is is where 
LST can be considered the tipping-point, especially if one consid-
ers the fact that the language of in#nity is crucial to our modern 
understanding of mathematics and physics (Shapiro 1985, pp. 714-5, 
719, 739). LST is an issue for model-theoretic semantics, and where 
FOL fails the test is precisely in the semantic section. !e semantics 
involved in informal mathematical practice -- even such well-un-
derstood notions as #nitude, mathematical induction, minimal clo-
sure and well-founded relations like the predecessor and ‘less than’ 
relations (which may all be easily constructed with second-order 
formulas) – simply cannot be expressed in #rst-order axiomatiza-
tions. FOL neither resembles our mathematical structures nor seems 
useful to the working mathematician looking for guidance in far-o" 
places like philosophy, logic and meta-mathematics (Shapiro 1985, 
pp. 722-4, 727). 
Of course, there are reasons to prefer FOL, but in a post-foundation-
al epoch one must re-evaluate the traditional authority of #rst-order 
theories, especially if one considers that foundational studies are ul-
timately about founding pre-formal mathematics. While SOL can no 
more provide a foundation for all of mathematics, it does shed more 
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light on mathematical theory and practice than its #rst-order coun-
terpart. Second-order model-theoretical semantics simply provide 
better models of the in#nite structures that are vital to modern math-
ematics. Also, they capture better the meanderings and sinews of the 
semantics of ordinary mathematic discourse;* indeed, it seems that 
informal mathematics, which dispenses totally of the LST, functions 
semantically at the second-order level of logic. Indeed, the universal 
preference for second-order languages by practicing mathematicians 
can be interpreted as their universal rejection of Skolemism (Jané 
1993, p. 67; Shapiro 1985, pp. 720, 727, 739; Shapiro 1999, pp. 44, 
62).

5.0 INVENTING LOGIC?

As we have seen, intended models refer to the use of particular terms 
and sentences in informal theory, but that such use is subject to some 
kind of evolution (especially when re&ected to itself by a formal the-
ory’s model) is quite banally evident and inevitable. While the model 
then means to capture the use of informal notions, the model itself 
still must be semantically interpreted to gauge whether this use is in 
fact adequately expressed. Here, there seems to be a curious inter-
play: while we want our formal models to capture something of our 
intended models, the formal model itself does not ever point to the 
intended model and, in fact, provides no real means by which we may 
gauge the veracity of our intended models, or even what we ourselves 
mean by our vague idea of the intended model. Furthermore, without 
semantic interpretation, it is di%cult to assess what we are building 
formal theories of, and perhaps most importantly, why we are build-
ing them in the #rst place. !e intent of this section is to o"er up a few 
further musings on what model-theoretic semantics can tell us about 
our broad meta-mathematical, logical and epistemological aims.

*  Indeed, of ordinary vernacular discourse itself (Klenk 1976, p. 483).
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5.1 MODEL-THEORETIC SEMANTICS AND INTENDED MODELS

!e Löwenheim-Skolem theorem confronts us with the facile way in 
which we rely upon unspoken agreements as to our intended mod-
els. Indeed, the relativity results inherent to LST can lend credence 
to the idea that logic might just be a purely formal science. Indeed, 
given the LSTT, Skolem’s paradox proves neither the existence nor 
the non-existence of non-denumerable sets as the #rst-order model 
actually allows sentences to be interpreted either in the denumerable 
or the non-denumerable domain (Klenk 1976, pp. 476, 479). !e 
interpreter’s choice is then guided by other than purely formal con-
siderations – such as one’s prior commitment to the ontological ex-
istence or characteristics of non-denumerable sets. All that the LST 
actually states is that the models generated by FOL cannot character-
ize, cannot say anything about whatever the hypothetical structure 
of non-denumerable sets might be (Klenk 1976, pp. 479, 484). Under 
this light, the results of the application of the LST to FOL are not 
criteria by which one can measure whether the intuitively intended 
model of sets has been achieved – rather, it begs such questions as: 
what ‘intended model’?  Why not unintended models? Why not the 
model that we completely, if counter-intuitively, built? 
While the answer to such questions lie outside the scope of our essay, 
we #nd it su%cient for the moment to postulate that if we mean to 
describe mathematics – but especially if we mean to ‘found’ mathe-
matics – then our models had better do this; if this is the case, it sim-
ply will not do to have an axiom system incapable of reproducing the 
basic conceptual underpinnings of modern mathematics. Of course, 
our conceptual understanding might need adjusting but it will have 
to be adjusted in light of a theory within which it can discuss itself. 
Besides describing mathematical structures, it would also be nice if 
we could derive as well a model of mathematical activity itself. How-
ever, since FOL needs to replace simple second-order axioms (like 
the axiom of induction) with in#nite axiom schemes, it seems that 
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even the syntax of FOL is insu%ciently strong to deduce the most 
basic of the intuitions and principles that mathematicians work with. 
It thus seems that the informal logic of proof-theory itself is second-
order – though we may with more or less success transcribe it to the 
#rst-order.
 

5.2 MODEL-THEORETIC SEMANTICS AND FORMAL SYSTEMS

Meta-mathematical speculation as to what is an intended model put 
aside, in actuality, formal logic does rely on informal mathematical 
theories and practice to guide its investigations: it is those theories 
that we want to generate in our models. However, modern axiomat-
ics are not merely meant to codify and crystallize static states of 
knowledge or disembodied mathematical notions &oating in the sky 
above. Or, rather, if this is what some intend it to do, then modern 
axiomatics also entails a host of unintended consequences. First and 
foremost, the formalization of informal theories o'en reveals unex-
pected epiphenomena – of which Skolem’s paradox has struck us as 
a worthy paradigm. Because of such results, the formal theory itself 
morphs and adapts to these results through repeated intrusions and 
manipulations of its holdings. Sometimes, however, it is informal 
practice that is subtly or not so subtly modi#ed by the observations 
and clari#cations of model-theoretic results (Klenk 1976, pp. 480, 
482). 
As such, even though our mathematical hunches and techniques may 
need #ne-tuning, a model in which classical mathematics cannot rec-
ognize itself will be very hard-pressed to provide answers, solutions 
and guidance to informal mathematics. !e structural and formal ap-
proach is not su%cient to account for both the state and the needs of in-
formal mathematics. Mathematics is a rigorous but inherently creative 
and ultimately intuitive discipline. Formalization is what happens a&er 
the edi#cation of su%cient reasons warranting such a formalization, as 
well as su%cient guiding ideas. We cannot build a vacuum. In fact, we 
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are tempted to say that ‘incompleteness’ is part and parcel with the way 
humans e"ectively think – even about mathematics. 
As such, logicians must take into account the symbiotic relation 
between informal practice and formal system if logic is to re&ect 
mathematics, and if logic is to be a productive science – especially as 
proof-theory becomes more and more entangled with model-theory 
(Gauthier 1976, p. 293; Shapiro 1985, pp. 716-7; Shapiro 1999, pp. 46, 
50, 56-7). !e dichotomy between informal mathematics and formal 
logic has indeed become a tenuous premise to uphold (Klenk 1976, 
p. 482), one that not only sheds little light on meta-logical aims, but 
cuts o" its supply. Strict logic has not rei#ed itself, it has become 
more and more acutely aware of its limitations. If anything, modern 
logic has not become static, it has exploded into a convoluted host of 
standard and non-standard models, #rst-, second- and higher-order 
logics and set theories, etc. 

5.3 MODEL-THEORETIC SEMANTICS AND EPISTEMOLOGY

We want logic sometimes for logic’s sake but also for the sake of in-
terdisciplinary research. We wish to apply logic in order to discover 
inalienable truths about the world. Logic is a branch of epistemol-
ogy; it is a branch of philosophy that perhaps more than any other 
is the science of knowledge, or of measuring knowledge (Gauthier 
1976, 296-7). While we do not state that either the Skolem paradox 
or any particular interpretation of a model has any ontic import,*  
we do state that we intend to capture at least some sort of ontologi-
cal reality, whether or not we ourselves (can) capture this reality.†  
Although an ideal logic will be devoid of any content (i.e., will be 

*  No existence claims stem either from #rst- or second-order logic (Jané 1993, p.  68).
†  !e extant literature spawned by Putnam’s “Models and Reality” (1980) attests to the 
desirability and general plausibility of such a thesis. However, Putnam’s hypotheses are of 
no weight to our present discussion, which limits itself to the meta-mathematical implica-
tions of model-theory.
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purely syntactical) (Boolos 1975, p. 517; Jané 1993, pp. 67, 72-4), this 
strikes us as a Platonic ideal of sorts for many reasons. We ought to 
apply logic to elucidate a domain, a structure, a world, a universe 
that is itself inherently populated – by us.
While logic does not reveal meaning, and even though it is a highly 
contested idea that anything has meaning, we nevertheless intend 
it to be a tool by which we can explore, purify and understand the 
meanings that we do ascribe to the constructed universes within and 
without ourselves. It is to this extent that we do not wish to reduce 
logical results to simple epistemological and ontological epiphenom-
ena. If logic means nothing, why do we build it? For what would we 
want models, other than for gleaning, gauging and separating some 
sorts of truth? !e model is a tool: it can tell us what does not work, 
what is contradictory, what is consistent, what is satisfactory, and 
what is merely interesting. It confronts with a certain externaliza-
tion, a map of particular mental labyrinths through which we daily 
cut our paths. It is a creative tool for investigation, for exploration. 
It characterizes equally the true, the false, the hypothetical, the fan-
tastical, the interesting. What we do with these representations, how 
we semantically interpret the given formal logic is how we link what 
could be but merely interesting observations with an even richer and 
more complex reality within and without ourselves. 

CONCLUSION

In light of its inherent limitations, FOL is inapt to characterize and 
structure informal mathematical theory and practice. Seeing as how 
a vast portion of mathematical theories (as well as physical theories) 
require that they be imbedded in set theory, and seeing as how for-
mal logic itself has a set-theoretic pedigree, the role of second- and 
higher-order logic is currently of greater import. !is is not to say 
that the soundness of set-theory itself does not need to be further 
explored and expounded, but it is to say that a development and con-
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solidation of SOL is to be recommended if one wants to found math-
ematics albeit in a non-absolute manner (pace Jané 1993, pp. 68, 74-
5, 78, 85) and understand what mathematics and logic is about and 
what they can say about human understanding and cognitive func-
tions. However much we might want and even need to formalize 
theories, it would be foolish and unproductive to ignore the inherent 
creativity involved both in mathematical and logical practice. And 
if what we want logic to do is formalize that reality as much as it is 
possible for it to do, SOL (much like non-standard models, quan-
tum logic and multivalent propositional logic) is unavoidably logic 
(Gauthier 1976, pp. 294-5). It is certainly not all that logic is, but to 
disregard SOL and its substantial weight is to do a great disservice to 
logic and the development of a fundamental branch of knowledge in 
regards to the human experience.
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