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Abstract. Systems of logico-probabilistic (LP) reasoning characterize inference 
from conditional assertions that are interpreted as expressing high conditional 
probabilities. In previous work, we studied four well known LP systems (name-
ly, systems O, P, Z, and QC), and presented data from computer simulations in 
an attempt to illustrate the performance of the four systems. These simulations 
evaluated the four systems in terms of their tendency to license inference to ac-
curate and informative lower probability bounds, given incomplete information 
about a randomly selected probability distribution (where this probability distri-
bution may understood as representing the true stochastic state of the world). In 
our earlier work, the procedure used in generating the unknown probability dis-
tribution (i.e., the true stochastic state of the world) tended to yield probability 
distributions with moderately high entropy levels. In the present article, we pre-
sent data charting the performance of the four systems in reasoning about prob-
ability distributions with various entropy levels. The results allow for a more 
inclusive assessment of the reliability and robustness of the four LP systems.  

Keywords: ampliative inference, default reasoning, non-monotonic reasoning, 
probability logic. 

1 LP Reasoning: Systems O, P, Z, and QC 

We represent the four LP systems considered here (O, P, Z, and QC; described be-
low) using a simple propositional language L, with the usual connectives ¬, ∧, ∨, and 
⊃, and A, B, C, etc. as meta-logical variables ranging over arbitrary sentences of L. 
Our main interest will be in extensions of L by means of a default (or uncertain) con-
ditional operator: ⇒. In particular, we will concern ourselves with extensions of L by 
simple uncertain conditionals of the form A⇒B. Throughout the paper, α and β will 
serve as meta-variables ranging over such simple conditional formulas, while Γ rang-
es over sets of them. “|” is used to denote derivability in classical logic, and “⊥” to 
denote an arbitrary contradiction. The four LP systems that we consider are ordered in 
terms of the number of inferences they license (O ⊂ P ⊂ Z ⊂ QC). We proceed by 
considering the weakest system first. 
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1.1 System O 

System O is of interest because of its close connection to the following consequence 
relation:  

 
(1) Strict Preservation: A1⇒B1,…, An⇒Bn ||s.p. C⇒D iff for all probability func-

tions P (over L): P(D|C) ≥ min({P(Bi|Ai) : 1≤i≤n}). 
 
System O was developed by Hawthorne [1] and Hawthorne and Makinson [2] as 

an inferential calculus for ||s.p.. Throughout the present article, “|O” denotes the 

syntactical notion of derivability in system O. 
 

System O (after Hawthorne): 
 
REF (reflexivity): |O A⇒A     

LLE (left logical equivalence): if | (A⊃B)∧(B⊃A), then A⇒C |O B⇒C   

RW (right weakening): if | B⊃C, then A⇒B |O A⇒C  

VCM (very cautious monotony): A⇒B∧C |O A∧B⇒C  

XOR (exclusive Or): if | ¬(A∧B), then A⇒C, B⇒C |O A∨B⇒C  

WAND (weak And): A⇒B, A∧¬C⇒⊥ |O A⇒B∧C   

 
It is easy to see that all of the rules of system O are correct with respect to ||s.p., 

i.e., Γ |O A⇒B implies Γ ||s.p. A⇒B. It was the hope of Hawthorne and Makinson 

[2] that |O was also complete with respect to ||s.p., but Paris and Simmonds [3] 

have shown that this not the case.  
Following [5], we propose a marriage of system O, and a rule for inferring lower 

probability bounds that corresponds to the correctness of system O for ||s.p.. To 

make sense of such inferences, we employ statements of the form “A⇒r B” to express 
that P(B|A) ≥ r, and say that system O licenses the (valid) inference to   
C⇒min({r

i
:1≤i≤n}) D from A1⇒r

1
 B1,…, An⇒r

n
 Bn, in cases where A1⇒B1,…, An⇒Bn |O 

C ⇒D. 
A remarkable fact about O is its weakness compared to standard systems of condi-

tional logic. According to Segerberg [4], the weakest ‘reasonable’ system of condi-
tional logic includes REF, LLE, and RW, along with the following rule: 

 
(AND): from A⇒B and A⇒C infer A⇒B∧C. 

 
The inferential power of AND is quite significant. By adding AND to the system O, 
we obtain (in one step) the well known system P. In comparison with WAND, we 
note that A⇒C is derivable from A∧¬C⇒⊥, given RW, REF, and XOR, while 
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A∧¬C⇒⊥ is not derivable from A⇒C, given these rules. It is in this respect that 
WAND is weaker than the rule AND.1 

1.2 System P 

As described in [5], system P represents the confluence of a number of different se-
mantic criteria. But the feature of system P that is of greatest interest here is its con-
nection with the following consequence relation (cf. [6]): 

 
(2) Improbability-Sum Preservation: A1⇒B1,…, An⇒Bn ||i.s.p. 

C⇒D iff for all prob-

ability functions over L: I(D|C) ≤ Σ{I(B i|Ai) : 1≤i≤n}, where I(A|B) is defined as 
1−P(A|B). 
 
Adams demonstrated that the following calculus (denoted by |P) is correct and 

complete for ||i.s.p.. 
 

System P (after Adams):  
 
REF       
LLE  as with system O   
RW    
AND: as above  
CC (cautious cut): A⇒B, A∧B⇒C |P A⇒C 

CM (cautious monotony): A⇒B, A⇒C |P A∧B⇒C 

OR: A⇒C, B⇒C |P A∧B⇒C 
  
Following [5], we propose a marriage of system P, and a rule for inferring lower 

probability bounds that corresponds to the correctness of system P for ||i.s.p.. In par-

ticular, we say that system P licenses the (valid) inference to C⇒1−Σ{1−r
i
:1≤i≤n} D from 

A1⇒r
1
 B1,…, An⇒r

n
 Bn, in cases where A1⇒B1,…, An⇒Bn |P C⇒D. 

1.3 System Z 

While system P sanctions more inferences than system O, it still sanctions fewer in-
ferences than one might reasonably accept. For instance, P does not licence inference 
via subclass inheritance based on default assumptions of irrelevance (or independ-
ence). For example, if we know that this animal is a male bird (B∧M) and that birds 
can normally fly (B⇒F), and nothing else of relevance, then we would intuitively 
draw the conclusion that this male bird can fly (F). However, B∧M⇒F is not P-

                                                           
1 We also observe that XOR is weaker than the rule OR (introduced below), and that VCM 

implies CM (below), in the presence of AND, while CM implies VCM (below), in the pres-
ence of RW ([2], 251). 

77



 

 

entailed by B⇒F, because there are possible probability distributions in which 
P(F|B∧M) is much smaller than P(F|B). If we do infer B∧M⇒F from B⇒F, in such 
cases, then we assume, by default, that the additional factor M (in this case the gender 
of a bird) is irrelevant to its ability to fly (or in other words, M and F are assumed to 
be probabilistically independent given B). A straightforward means of enlarging the 
set of LP-derivable conditionals, in order to include such default inferences, is to give 
up the requirement that a reasonable inference be valid for all possible probability 
distributions, and consider only ‘normal’ probability distributions, i.e., those distribu-
tions which satisfy the default assumption of irrelevance. An early suggestion for 
realizing this idea was the maximum entropy approach to default inference (cf. [7]; 
[8], 491-3). By selecting a probability distribution that maximizes entropy, one mini-
mizes probabilistic dependences. Despite having some attractive features, the maxi-
mum entropy approach is rather complicated, and has some further disadvantages, 
such as language dependence. 

System Z of Pearl [9] and Goldszmidt and Pearl [10] maintains many of the ad-
vantages of the maximum entropy approach, while overcoming its disadvantages. 
Like the maximum entropy approach, inference in system Z proceeds via the con-
struction of a semantic model of the premise conditionals that maximizes probabilistic 
independences. In system Z, this is achieved by maximizing the degree-of-normality 
of the set of possible worlds represented by a ranked model, according to the follow-
ing definition: 

 
(3) Definition (cf. [10], 68, def. 15; [11], 308f): A ranked model (W, r) is as least as 
normal as a ranked model (W, r*) (with the same world set), in short (W, r) ≥N (W, 
r*), iff for all w∈W, r(w) ≤ r*(w). 

 
As has been shown (cf. [5]; [9]), every set of worlds W (which is constructed over 

the language of the conditional knowledge base Γ) has a unique most normal ranked 
model, the so called z-model. In order to define the notion of a z-model, we first de-
fine the notion of a z-rank.  

 
(4) Definition ([9], section 1; [10], 65, fig. 2): For every (finite) P-consistent2 set of 
conditionals Γ = {A 1⇒B1,…, An⇒Bn}, the z-rank of the elements of Γ is defined by 
the following z-algorithm: 

(i) Initial step: Set i = 0. Set ∆ = Γ.  
(ii) Iterative step:  

(1) If ∆ is nonempty, let ∆i ⊆ ∆ consist of all conditionals α in ∆ which are 
tolerated by ∆, otherwise go to (iii).3  

 (2) If ∆i is nonempty, set ∆ = ∆−∆i, and i = i +1. 
 (3) If ∆i is empty, set ∆∞ = ∆, and set ∆ = ∅. 

                                                           
2 A set of conditionals Γ is called P-consistent iff  Γ does not P-entail ¬⊥⇒⊥. 
3 A conditional A⇒B is tolerated by ∆, if there is a possible world over the propositional atoms 

appearing in ∆ that verifies A∧B and does not falsify any conditional in ∆. 
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(iii) Output: The z-partition (∆0, …, ∆k, ∆∞). 
The z-rank of a conditional α in a P-consistent Γ, written “zΓ(α)”, is defined as the 
index i of that set ∆i in the z-partition of Γ in which α occurs. 

 
The assumption of the preceding definition, that Γ is P-consistent, guarantees that 

there is a z-model for Γ, according to the following definition: 
 
(4) Definition ([9], 123-5, Eq. 5, 6, and 10): The z-model of a P-consistent Γ, (WΓ, 
zΓ), is defined as follows:  

For each w among the set of logically possible worlds over the propositional atoms 
appearing in Γ:  
(i)  If w falsifies ∆∞, then w ∉ WΓ. 
Else: (ii)  w∈WΓ, and zΓ(w) = 0, if w doesn’t falsify any α in Γ; otherwise zΓ(w) = 
max({ zΓ(α) : w falsifies α }) + 1.  
(iii)  The z-rank of an arbitrary formula C relative to (WΓ, zΓ) is defined as zΓ(C) = 
min({ zΓ(w) : w∈WΓ and w verifies C }), with min(∅) = ∞. 
(iv)  For all Γ: Γ ||∼∼Z C⇒D (Γ Z-entails C⇒D) iff either (a) Γ is P-inconsistent, or 
(b) C⇒D is satisfied in (WΓ,zΓ) (i.e., all worlds with rank zΓ(C) verify D). 

  
Z-entailment validates inference by default inheritance (i.e., A⇒B ||∼∼Z A∧C⇒B) 

as well as default contraposition (i.e., A ⇒ B ||∼∼Z ¬B⇒¬A). That these inferences 
hold ‘by default’ means that they hold under the condition that the conditional 
knowledge base doesn’t contain further conditionals that are ε-inconsistent4 with the 
conclusions of these inferences (cf. Adams 1975). The relation ||∼∼Z is thus non-
monotonic, since, for example, whether Γ∪{A⇒B} ||∼∼Z ¬B⇒¬A, depends on 
whether Γ∪{A⇒B} ∪{ ¬B⇒¬A} is ε-inconsistent.  

One disadvantage of Z-entailment is that (in the absence of further assumptions) it 
does not automatically provide information concerning probabilistic reliability, such 
as provided by the improbability-sum semantics for system P. However, in [5] it is 
shown how to obtain this desideratum (based on work in [12]): 

 
Theorem 1  If A1⇒ B1,…, An⇒Bn ||∼∼Z C⇒D holds, then improbability-sum preser-
vation (I(D|C) ≤ Σ{ I(B i|Ai) : 1≤i≤n}) holds for all probability functions P that satisfy 
the default assumptions P(Ai⊃Bi|C) ≥ P(Bi|Ai), for all 1≤i≤n.  

 
Proof: See [5], theorem 4 (5). 

 
We proceed here as if the default assumptions specified in theorem 1 hold, and say 

that system Z licenses the inference to C⇒1−Σ{1−r
i
:1≤i≤n} D from A1⇒r

1
 B1,…, An⇒r

n
 Bn, 

in cases where A1⇒B1,…, An⇒Bn ||∼∼Z C⇒D. As with the evaluations conducted in 

                                                           
4 A set of conditionals is εεεε-consistent just in case the corresponding conditional probabilities 

can be simultaneously made arbitrarily close to 1. 
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[5], a central question concerns whether inference in accordance with the preceding 
principle tends to yield accurate conclusions. 

1.4 System QC 

Z-entailment is not the strongest (minimally reasonable) inference calculus for ‘risky’ 
default inference among uncertain conditionals. An even stronger and extremely sim-
ple calculus is quasi-classical reasoning. Here one reasons with uncertain conditionals 
as if they were material implications: 

 
(5)  Γ  |QC C⇒D iff  { A⊃B : A⇒B ∈ Γ }  | C⊃D. 
 

Improbability-sum preservation holds for inferences between material conditionals, 
or more generally, between formulas of propositional logic, as was shown by Suppes 
([13], 54). In particular, {A1,…,An} | B iff it holds for all probability distributions 
that I(B) ≤ Σ{I(A i):1≤i≤n}. Beyond the result of Suppes, it is possible to formulate 
probabilistic conditions under which QC-reasoning approximately satisfies improba-
bility-sum preservation. In particular, it is shown in ([5], sec. 2.5, (13)) that a QC 
inference from a given set of premises is guaranteed to preserve probability in the 
manner of system P iff the improbability-sum of the premises is very small, and some 
decimal powers smaller than the probability of the conclusion’s antecedent. Following 
[5], we proceed as if these conditions hold, and say that system QC licenses the infer-
ence to C⇒1−Σ{1−r

i
:1≤i≤n}  D from A1⇒r

1
 B1,…, An⇒r

n
 Bn, in cases where A1⇒ B1,…, 

An⇒ Bn  |QC C⇒D. The question remains of whether inference in accordance with 

the preceding principle tends to yield accurate conclusions. 

2 The Simulations 

Following [5], our simulations operate over a simple language with four two-valued 
variables: a, b, c, and d. Similarly, we assume a probability distribution over the six-
teen possible worlds describable in this language. For all of our simulations, we gen-
erated a probability distribution over these worlds by setting the values of the follow-
ing fifteen independently variable probabilities: P(a), P(b|a), P(b|¬a), P(c|a∧b), 
P(c|a∧¬b), P(c|¬a∧b), P(c|¬a∧¬b), P(d|a∧b∧c), P(d|a∧b∧¬c), P(d|a∧¬b∧c), 
P(d|a∧¬b∧¬c), P(d|¬a∧b∧c), P(d|¬a∧b∧¬c), P(d|¬a∧¬b∧c), and P(d|¬a∧¬b∧¬c). 
Within [5], the probability distributions over the sixteen worlds were selected for each 
simulation, by setting the above fifteen conditional probabilities according to a uni-
form probability distribution on the unit interval. Diverging from [5], we controlled 
the entropy level of the probability distributions over the sixteen worlds. For each 
simulation, we chose a particular entropy level δ. Our program then proceeded by 
generating probability distributions in the manner of [5] until a distribution was gen-
erated whose entropy resided in the interval [δ−0.05, δ+0.05]. 
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To manage the search space in assessing the four LP systems, we restricted our at-
tention to conditionals whose antecedent and consequent consist in conjunctions of 
literals. We also assumed that no propositional atom appears twice in any premise 
conditional or inferred conditional. These restrictions effectively limited the language 
under consideration to 464 conditionals (cf. [5]). We call the language composed of 
this set of 464 conditionals “L4”. Drawing from L4, we assumed that a small number 
of conditionals, so-called premise conditionals, together with their associated proba-
bilities, were known to the reasoning systems. We further required that the probability 
associated with each premise conditional was at least 0.9. We chose the cut-off 0.9, 
since cases where the probability of the premise conditionals is relatively high repre-
sent a significant challenge for systems Z and QC (cf. [5]). In each simulation, the 
three premise conditionals were selected at random from among the sentences of L4 
whose probability was at least 0.9. We then allowed each LP reasoning system to 
infer, from the given premise conditionals, all of the conditionals, C⇒r D, that follow 
according to the respective systems. For systems P, Z, and QC, the value r, for each 
inferred conditional, was set to be one minus the sum of the improbabilities of the 
premise conditionals needed in deriving the conclusion. For system O, r was set to be 
the probability value of the least probable premise conditional needed for the deriva-
tion of C⇒D in O. 

After determining which conclusions were inferred by the four systems, each sys-
tem was assigned numeric scores for each of the conclusions that it inferred. The first 
scoring measure that we applied is called the advantage-compared-to-guessing meas-
ure. The idea behind this measure derives from the fact that the mean difference be-
tween two random choices of two real values r and s from the unit interval is (prova-
bly) 1/3. Based on this fact, we assessed each system by counting a judged lower 
probability bound that differs from the true probability by more than one-third nega-
tively, and counting a judged lower probability bound that differs from the true proba-
bility by less than one-third positively. We scored the judged lower probability bounds 
by a simple linear measure of their distance from the true probabilities: 

 
(6) The advantage-compared-to-guessing (ACG) score for derived conditionals:  

ScoreACG(C⇒r D, P) := 1/3 − |r − P(D|C)|. 
 
For reasons elaborated in [5], the ACG measure does not provide a fully adequate 

means of evaluating LP systems. In order to take a broad view of the advantages and 
disadvantages of reasoning in accordance with the four systems, we considered two 
other scoring measures. 

We call the second measure that we considered the subtle-price-is-right measure. 
This measure assigns a positive score to any inferred lower probability bound that 
does not exceed the true probability, and penalizes inferred bounds that exceed the 
true probability by a simple linear measure of their distance above the true probabil-
ity: 
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(7)  The subtle-price-is-right score for derived conditionals5: 
ScoresPIR(C⇒r D, P) := r, if r ≤ P(D|C),  

        := P(D|C) − r, otherwise. 
 

We call the final scoring measure that we considered the expected utility measure: 
 
(8)  The expected utility score for derived conditionals: 

ScoreEU(C⇒r D, P) := (P(D|C)2 − (P(D|C) − r)2) ⋅ P(C)/2. 
 

The EU measure scores an inferred conditional, C⇒r D, by evaluating the expected 
value of the decisions licensed by the acceptance of such a conditional (i.e., a condi-
tional whose content is P(D|C) ≥ r). In particular, we assume that a judged greatest 
lower conditional probability bound has the following behavioral import: If r is the 
greatest lower probability bound that a given agent accepts for D given C, then (if she 
is prudent and has sufficient wealth) she will purchase all wagers on D, conditional on 
C, at price $s, so long as s < r, and refuse to accept such wagers for s ≥ r. Given this 
behavioral interpretation of inferred conditionals, we considered an environment in 
which a respective agent is offered a single opportunity to purchase a wager on D 
conditional on C with a stake s, where s is determined at random, according to a uni-
form probability distribution over the interval [0, 1]. In that environment, the expected 
value of accepting the greatest lower probability bound r on P(D|C) is provably: 
(P(D|C)2 − (P(D|C) − r)2) ⋅ P(C)/2 (cf. [14]). 

3 The Results 

The entropy of a probability distribution, P, over a finite set of possible worlds, W, is 
defined as E(P) = −∑i P(wi)⋅log(P(wi)) (for wi∈W). So in the case where W contains 
sixteen worlds (as is the case in our simulations) E(P) will be in [0, 4], where E(P) = 4 
means that P is a uniform probability distribution over W, and E(P) = 0 means that P 
is a standard valuation function (assigning the value 1 to exactly one world, and the 
value 0 to all others). Since the four LP systems that we consider are ordered in terms 
of the number of inferences they license (O ⊂ P ⊂ Z ⊂ QC), our focus here is on the 
‘new’ inferences licensed by each system as one proceeds from system O to system 
QC, i.e., the inferences licensed by system O, the inferences licensed by system P 
that are not licensed by system O (P−O), the inferences licensed by system Z that are 
not licensed by system P (Z−P), and the inferences licensed by system QC that are 
not licensed by system Z (QC−Z). Table 1 lists the average number of conclusions 
inferred by each (sub)system, across varied entropy levels, and the average number 
erroneous inferences among the Z−P and QC−Z inferences, i.e., those instances 

                                                           
5 The name of the measure derives from the long running American game show where contest-

ants must guess the price of items, and succeed by have the most accurate guess that does 
not exceed the price of the relevant item. 
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where the inferred lower bound exceeded the actual probability. (These average val-
ues are based on a sample of one thousand simulations at each listed entropy level.) 
 

 
Table 1. Mean number of inferences and errors 

 

Entropy 
Level 

Mean Number of  
Inferences   

Mean Number of 
Errors 

O P-O Z-P QC-Z   Z-P QC-Z 
3.5 3.02 0.06 10.31  3.62    8.2  3.55 
3.0 3.1 0.25 23.33 20.8 

 
16.04 20.03 

2.5 3.28 0.4 30.88 35.33 
 

21.21 34.03 
2.0 3.56 0.76 34.65 42.61 

 
24.41 40.85 

1.5 4.01 1.23 38.4 49.33 
 

27.77 46.98 
1.0 4.3 1.84 40.06 51.62 

 
29.94 49.1 

0.5 4.9 2.82 40.61 53.75   31.3 51.56 

 
 
The most obvious pattern exhibited in table 1 is that the number of inferences 

drawn by each system is a decreasing function of the entropy level. This pattern was 
expected, since lower entropy levels imply a less evenly distributed probability func-
tion, and in turn a greater number of possible premise conditionals with multiple con-
juncts in their consequents. Such conditionals support a greater number of inferences 
in all of the systems considered. 

We now consider the average scores earned by the respective systems for the full 
set of conclusions drawn within a single simulation. Tables 2, 3, and 4 list the results. 

 
 

Table 2. Mean ACG scores 
 

Entropy 
Level 

Mean ACG Scores 
O P-O Z-P QC-Z 

3.5 1.01 0.02  2.41  -0.49 
3.0 1.03 0.07  4.47  -3.61 
2.5 1.08 0.11  4.02  -6.76 
2.0 1.17 0.21  2.59  -8.48 
1.5 1.31 0.34  1.10  -9.98 
1.0 1.40 0.51 -1.06 -10.67 
0.5 1.600 0.85 -2.78 -11.91 

 
Table 3. Mean sPIR scores 

 
Entropy 
Level 

Mean sPIR Scores 
O P-O Z-P QC-Z 

3.5 2.83 0.06  1.01  -1.62 
3.0 2.92 0.22  3.73  -9.80 
2.5 3.11 0.35  3.11 -17.28 
2.0 3.40 0.68  1.00 -20.98 
1.5 3.83 1.10 -1.34 -24.14 
1.0 4.12 1.67 -4.55 -25.43 
0.5 4.76 2.68 -7.16 -27.67 
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Table 4. EU scores 
 

Entropy 
Level 

Mean EU Scores 
O P-O Z-P QC-Z 

3.5 0.232 0.006 0.396 -0.001 
3.0 0.462 0.041 1.287 -0.026 
2.5 0.656 0.089 1.945 -0.047 
2.0 0.867 0.216 2.338 -0.058 
1.5 1.191 0.422 2.865 -0.067 
1.0 1.520 0.743 3.185 -0.071 
0.5 1.975 1.293 3.423 -0.056 

 
 

Examining tables 2, 3, and 4, we see that the QC−Z inferences earn negative 
scores at every entropy level, according to all three scoring rules. This provides a 
relatively good reason for concluding that we should not reason in accordance with 
system QC, if our concern is to draw conclusions that are accurate and informative. 
On the other hand, we see that O and P−O inferences earn positive scores at every 
entropy level, according to all three scoring rules. So it pretty clear that it is reasona-
ble to make these inferences. In fact, the present conclusion is unsurprising given  (1) 
and (2), above, that characterize the ability of systems O and P to preserve premise 
probability. 

It is only when we turn to evaluate the quality of Z−P inferences that the data from 
tables 1, 2, and 3 is equivocal. When considering the ACG and sPIR scores for the 
Z−P inferences, we observe a peak in performance, when the entropy level of the 
underlying probability distribution is relatively high (≈ 3.00), but thereafter decreas-
ing entropy correlates with decreasing ACG and sPIR scores. On the other hand, de-
creasing entropy correlates with increasing EU scores. Figure 1 provides a graphical 
representation of that pattern.   

 
 

 
Fig. 1. Mean EU scores 
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In order to get a clearer idea of what’s going on, it is helpful to look at the average 
scores earned for single inferences across varied entropy levels. Tables 5, 6, and 7 list 
the results, and figure 2 provides a graphic presentation of the information presented 
in table 7. 

 
 

Table 5. Mean ACG scores per inference 
 

Entropy 
Level 

Mean ACG Score per Inference 
O P-O Z-P QC-Z 

3,5 0.333 0.275  0.234 -0.134 
3,0 0.332 0.269  0.192 -0.173 
2,5 0.331 0.275  0.130 -0.191 
2,0 0.329 0.273  0.075 -0.199 
1,5 0.326 0.274  0.029 -0.202 
1,0 0.325 0.278 -0.026 -0.207 
0,5 0.327 0.302 -0.069 -0.221 

 
 

Table 6. Mean sPIR scores per inference 
 

Entropy 
Level 

Mean sPIR Score per Inference 
O P-O Z-P QC-Z 

3,5 0.939 0.863 0.098 -0.447 
3,0 0.944 0.866 0.160 -0.471 
2,5 0.950 0.878 0.101 -0.489 
2,0 0.953 0.887 0.029 -0.492 
1,5 0.954 0.898 -0.035 -0.489 
1,0 0.958 0.906 -0.114 -0.493 
0,5 0.972 0.949 -0.176 -0.515 

 
 

Table 7. Mean EU scores per inference 
 

Entropy 
Level 

Mean EU Score per Inference 
O P-O Z-P QC-Z 

3,5 0.077 0.086 0.038 -0.00015 
3,0 0.149 0.165 0.055 -0.00124 
2,5 0.200 0.222 0.063 -0.00133 
2,0 0.243 0.283 0.067 -0.00137 
1,5 0.297 0.344 0.075 -0.00137 
1,0 0.354 0.404 0.080 -0.00138 
0,5 0.403 0.458 0.084 -0.00103 
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Fig. 2. Mean EU scores per inference 

 
 
Our main remaining concern is to evaluate the quality of Z−P inferences. Tables 5 

shows that Z−P inferences lead to bounds that are relatively close to the true probabil-
ities, when entropy high. However, when the entropy level is very low, the distance 
between the judged bounds and the true probability tends to be rather great. For ex-
ample, when the entropy of the underlying distribution is 0.5, the inferred lower 
bound for an average Z−P inference differs from the true probability by about 0.4. 
Similarly, while Z−P inferences are expected to yield relatively high sPIR scores, 
when an inferred bound is not in error (ranging from about 23 to 38 percent of cases, 
depending on the entropy level), we see that when the entropy level is low, a typical 
erroneous inferred bound exceeds the true probability by a significant margin. In con-
trast, the EU scores for Z−P inferences (as with O and P−O inferences) increases 
with decreases in the entropy of the underlying probability distribution.6 The latter 
result marks one positive sign in favor of the quality of Z−P inferences. And we 
maintain that the latter result does reflect a significant capacity of Z−P inferences to 
exploit information about an environment to draw helpful conclusions about that envi-
ronment. Indeed, if we consider plausible aprioristic methods of assigning lower 
probability bounds, such as the ones considered in [14], i.e., methods of assigning 
lower probability bounds to the elements of L4 without exploiting the information that 
was supplied to the four LP systems (in the form of premise conditionals), then we 
see that the EU scores earned for Z−P inferences tend to be much higher than the 
scores earned by aprioristic methods. For example, the most successful aprioristic 
method considered in [14] assigned the lower bounds 1/2, 1/4, and 1/8, respectively, 
to conditionals with one, two, or three conjuncts in their consequent (as the values 
1/2, 1/4, and 1/8 are the average probabilities for conditionals with the corresponding 
number of conjuncts in their consequents). In the case where entropy was not con-
                                                           
6 The present effect is the result of inferred conclusions with more probable antecedents, when 

the entropy level is low.  
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trolled (and the mean entropy of the underlying probability distributions was about 
2.88), this aprioristic method earned an EU score of about 0.0204 per inference, 
which is far lower than the average scores earned by Z−P inferences (across all entro-
py levels).  

4 Conclusions 

It almost goes without saying that it is reasonable to accept the conclusions of O and 
O−P inferences, so long as our goal is to accept accurate and informative probability 
statements. It is also quite clear that we should not accept the conclusions of QC−Z 
inferences. The difficult choice is whether to accept the conclusions of Z−P infer-
ences. In cases where it is known that the entropy of the underlying distribution is not 
low (or probably not low), it will usually be reasonable to shoulder the risk inherent in 
accepting the conclusions of Z−P inferences. More generally, the tendency of Z−P 
inferences to deliver significant positive EU scores (even when the entropy of the 
underlying distribution is very low) indicates the value of these inferences as a basis 
for decision making.  

In considering whether it is reasonable to accept the conclusions of Z−P infer-
ences, we think it is reasonable to consider whether there are alternatives that would 
support better probability judgments. Since we know that our present method of asso-
ciating lower probability bounds with Z−P inferences is prone to overestimation, we 
conjecture that a more optimal method would make a downward correction to these 
assigned bounds. It would also make sense to vary the size of this correction, in cases 
where the entropy of the underlying distribution is known. The exploration of this 
idea is left to future work. 
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