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Abstract. Systems ofogico-probabilistic (LP) reasoning characterize inference
from conditional assertions that are interprete@gsessing high conditional
probabilities. In previous work, we studied fourlM@own LP systems (name-
ly, systems O, P, Z, and QC), and presented data dmmputer simulations in
an attempt to illustrate the performance of the fystems. These simulations
evaluated the four systems in terms of their teogléo license inference to ac-
curate and informative lower probability boundsegi incomplete information
about a randomly selected probability distributfatmere this probability distri-
bution may understood as representing the trudnasbic state of the world). In
our earlier work, the procedure used in generdtiegunknown probability dis-
tribution (i.e., the true stochastic state of tharld) tended to yield probability
distributions with moderately high entropy levdlsthe present article, we pre-
sent data charting the performance of the fouresystin reasoning about prob-
ability distributions with various entropy levelShe results allow for a more
inclusive assessment of the reliability and robessof the four LP systems.

Keywords. ampliative inference, default reasoning, non-moniatoeasoning,
probability logic.

1 L P Reasoning: Systems O, P, Z, and QC

We represent the four LP systems considered I@r&,(Z, andQC; described be-
low) using a simple propositional language L, witie usual connectives, [, [J, and
0, and A, B, C, etc. as meta-logical variables raggiver arbitrary sentences of L.
Our main interest will be in extensions of L by meaf a default (or uncertain) con-
ditional operator=. In particular, we will concern ourselves with exsions of L by
simple uncertain conditionals of the form=AB. Throughout the papea, and3 will
serve as meta-variables ranging over such simpiditonal formulas, whild™ rang-
es over sets of them|¥ ” is used to denote derivability in classical lagand ‘1" to
denote an arbitrary contradictionhe four LP systems that we consider are ordered in
terms of the number of inferences they licer@e (P [0 Z [0 QC). We proceed by
considering the weakest system first.
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11 SystemO

SystemO is of interest because of its close connectiothéofollowing consequence
relation:

(1) Strict Preservation: Aj=By,..., A=B, |[d S'p.C:>D iff for all probability func-
tions P (over L): P(D|CG min({P(Bi|A) : 1<i<n}).

SystemO was developed by Hawthorne [1] and Hawthorne armdtiivson [2] as
an inferential calculus for[||s_p_. Throughout the present article[1°}” denotes the

syntactical notion of derivability in syste@
System O (after Hawthorne):

REF (reflexivity): 1 ; A=A

LLE (left logical equivalence): if] (AOB)L(BUA), then A=C [0 , B=C
RW (right weakening): ift] BOC, then A>B [0 j A=C

VCM (very cautious monotony): ABC [0 ; ALB=C

XOR (exclusive Or): ifll =(ADB), then A>C, B=C [0 ; ALB=C
WAND (weak And): A=B, AlkC=0 |0 ; A=BIOC

It is easy to see that all of the rules of syst@rare correct with respect tdﬂ|L_p,
i.e.,l |0 ,A=B impliesI” |J sp. A=B. Itwas the hope of Hawthorne and Makinson
[2] that [1 , was also complete with respect td JL but Paris and Simmonds [3]
have shown that this not the case.

Following [5], we propose a marriage of syst@nand a rule for inferring lower
probability bounds that corresponds to the coressnof systen® for [ . To
make sense of such inferences, we employ stateroktite form “A=,B” to express
that P(BJA) = r, and say that systen® licenses the (valid) inference to
C= min(gr 11<iny) D from A= By,..., A= B, in cases where &>By,..., Ai=Bn [0
C=D.

A remarkable fact abo@ is its weakness compared to standard systemsnali-co
tional logic. According to Segerberg [4], the westkeeasonable’ system of condi-
tional logic includes REF, LLE, and RW, along witte following rule:

(AND): from A=B and A=C infer A=B[IC.
The inferential power of AND is quite significafidy adding AND to the systel®@,

we obtain (in one step) the well known systBmin comparison with WAND, we
note that A>C is derivable from A~C=I[], given RW, REF, and XOR, while
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A[=C=0 is not derivable from A>C, given these rules. It is in this respect that
WAND is weaker than the rule AND.

12 SystemP

As described in [5], systefd represents the confluence of a number of diffesent
mantic criteria. But the feature of systéhthat is of greatest interest here is its con-
nection with the following consequence relation [6}):

(2) Improbability-Sum Preservation: A;=B;,..., Ar=B, |[J isp C=>D iff for all prob-

ability functions over L: I(D|Cx Z{I(Bi|A) : 1<isn}, where I(A|B) is defined as
1-P(A|B).

Adams demonstrated that the following calculus édea by [1 ) is correct and
complete for [J isp:
System P (after Adams):

REF

LLE } as with systen®

RW

AND: as above

CC (cautious cut): AB, ALB=C [0 , A=C

CM (cautious monotony): B, A=C [1 , ALB=C
OR: A=C,B=C [ b AB=C

Following [5], we propose a marriage of syst®mand a rule for inferring lower
probability bounds that corresponds to the coresgrof syster® for |[J - In par-

ticular, we say that systeRlicenses the (valid) inference to-s -+ .1<i<ny D from
A= By,..., A= B, in cases where £5B;,..., Ai=B, [0 , C=D.

13 SystemZ

While systemP sanctions more inferences than syst@mt still sanctions fewer in-
ferences than one might reasonably accept. FarosiP does not licence inference
via subclass inheritance based on default assumptionsiflevance (or independ-
ence). For example, if we know that this animal is alenkird (BCM) and that birds
can normally fly (B=F), and nothing else of relevance, then we woutditinely
draw the conclusion that this male bird can fly. (Hpwever, BM=F is notP-

1 we also observe that XOR is weaker than the rule(i@fRoduced below), and that VCM
implies CM (below), in the presence of AND, while Giplies VCM (below), in the pres-
ence of RW ([2], 251).
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entailed by B>F, because there are possible probability disiobst in which
P(F|B2M) is much smaller than P(F|B). If we do infefl@=F from B=F, in such
cases, then we assunbg,default, that the additional factor M (in this case thedgr
of a bird) isirrelevant to its ability to fly (or in other words, M anddfe assumed to
be probabilistically independent given B). A stigigrward means of enlarging the
set of LP-derivable conditionals, in order to ird#usuch default inferences, is to give
up the requirement that a reasonable inferenceabé for all possible probability
distributions, and consider only ‘normal’ probatyildistributions, i.e., those distribu-
tions which satisfy the default assumption of ex@lnce. An early suggestion for
realizing this idea was thmaximum entropy approach to default inference (cf. [7];
[8], 491-3). By selecting a probability distributidhat maximizes entropy, one mini-
mizes probabilistic dependences. Despite havingesatmmactive features, the maxi-
mum entropy approach is rather complicated, andsease further disadvantages,
such as language dependence.

SystemZ of Pearl [9] and Goldszmidt and Pearl [10] maintkamany of the ad-
vantages of the maximum entropy approach, whileramraing its disadvantages.
Like the maximum entropy approach, inference inesysZ proceeds via the con-
struction of a semantic model of the premise camniils that maximizes probabilistic
independences. In system this is achieved by maximizing tliegree-of-normality
of the set of possible worlds represented by aadmkodel, according to the follow-
ing definition:

(3) Definition (cf. [10], 68, def. 15; [11], 308f): A ranked mod&V, r) isas least as
normal as a ranked model (W, r*) (with the same world,set short (W, )=y (W,
r¥), iff for all wOOW, r(w) < r¥(w).

As has been shown (cf. [5]; [9]), every set of werWW (which is constructed over
the language of the conditional knowledge b@sdas a uniquenost normal ranked
model, the so calledmodel. In order to define the notion of a z-model, wstfde-
fine the notion of a-rank.

(4) Definition ([9], section 1; [10], 65, fig. 2): For every (fie) P-consisterftset of
conditionalsl” = {A;=B;,..., A.=B,}, the zrank of the elements df is defined by
the followingz-algorithm:
(i) Initial step: Seti=0. Seh =T.
(ii) Iterative step:
(1) If A is nonempty, let\, [0 A consist of all conditionala in A which are
tolerated by A, otherwise go to (iii.
(2) If Aj is nonempty, sk = A-A;, and i =i +1.
(3) If Aj is empty, sef\,, = A, and sefA =[J.

2 A set of conditional§ is calledP-consistentff I does noP-entail-O=[.
3 A conditional A=B is tolerated by, if there is a possible world over the propositibatoms
appearing i\ that verifies AB and does not falsify any conditionaln
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(i) Output: Thez-partition (Ao, ..., N, Aw).
The z-rank of a conditional a in a P-consistent, written “z-(a)”, is defined as the
index i of that sef\; in the z-partition of” in whicha occurs.

The assumption of the preceding definition, thas P-consistent, guarantees that
there is a z-model fdr, according to the following definition:

(4) Definition ([9], 123-5, Eg. 5, 6, and 10): Thremodel of a P-consistent”, (W,
zr), is defined as follows:

For each w among the set of logically possible d®dver the propositional atoms
appearing if":
(i) If wfalsifies A, then wil Wr.
Else: (i) wlOWr, and z(w) = 0, if w doesn't falsify anyx in I'; otherwise g(w) =
max({ z-(a) : w falsifiesa }) + 1.
(i) The z-rank of an arbitrary formula C relatito (W, z) is defined asZC) =
min({ zr(w) : wOOWr and w verifies C }), with miri{l) = co.
(iv) Foralll': T |[1}; C=D (I Z-entails C=D) iff either (a) is P-inconsistent, or
(b) C=D is satisfied in (W,zr) (i.e., all worlds with rank ZC) verify D).

Z-entailment validates inference Hgfault inheritance (i.e., A=B |['L, AOC=B)
as well agefault contraposition (i.e., A= B |[[lL; =B=-A). That these inferences
hold ‘by default’ means that they hold under thendibon that the conditional
knowledge base doesn’t contain further conditiotiadg ares-inconsisterftwith the
conclusions of these inferences (cf. Adams 197Be Telation||[[L}, is thusnon-
monotonic, since, for example, whethdiO{A =B} |[[IJ, -B=-A, depends on
whether {A =B} 0{-B=-A} is e-inconsistent.

One disadvantage @-entailment is that (in the absence of further agsions) it
does not automatically provide information concegnprobabilistic reliability, such
as provided by the improbability-sum semantics dgstemP. However, in [5] it is
shown how to obtain this desideratum (based on \wofk2]):

Theorem 1 If A;=By,..., A=B, [, C=D holds, then improbability-sum preser-
vation (I(D|C)< Z{ I(B|A) : 1<i<n}) holds for all probability functions P that ssfi
the default assumptions R(#8;|C) = P(B|A), for all 1<i<n.

Proof: See [5], theorem 4 (5).

We proceed here as if the default assumptions figetdn theorem 1 hold, and say
that systenZ licenses the inference t0=£3s1 - .1<icny D from Ai=; Bay,..., A= By,

in cases where £>B;,..., A,=B,, |[[L, C=D. As with the evaluations conducted in

“ A set of conditionals ig-consistent just in case the corresponding conditipnobabilities
can be simultaneously made arbitrarily close to 1.
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[5], a central question concerns whether inferencaccordance with the preceding
principle tends to yield accurate conclusions.

14 System QC

Z-entailment is not the strongest (minimally reass@ginference calculus for ‘risky’
default inference among uncertain conditionals.e&an stronger and extremely sim-
ple calculus igjuasi-classical reasoning. Here one reasons with uncertain comgil$o
as if they were material implications:

(5) I P, C=Diff {ADB:A=B O} |0 COD.

Improbability-sum preservation holds for inferenbetween material conditionals,
or more generally, between formulas of propositidogic, as was shown by Suppes
([13], 54). In particular, {A,...,A.} |O B iff it holds for all probability distributions
that I1(B) < Z{I(A j):1<isn}. Beyond the result of Suppes, it is possiblddonulate
probabilistic conditions under whidQC-reasoning approximately satisfies improba-
bility-sum preservation. In particular, it is shown ([5], sec. 2.5, (13)) that @C
inference from a given set of premises is guaranteepreserve probability in the
manner of systerR iff the improbability-sum of the premises is very smatid some
decimal powers smaller than the probability of ¢tbaclusion’s antecedent. Following
[5], we proceed as if these conditions hold, andtkat systenQC licenses the infer-
ence to & i-sp—rs<icny D from A= By,..., A= By, in cases where A By,...,

A=B, [0 oc C=D. The question remains of whether inference iroetance with
the preceding principle tends to yield accuratectusions.

2 The Simulations

Following [5], our simulations operate over a siempdnguage with four two-valued
variables: a, b, ¢, and d. Similarly, we assumeadability distribution over the six-
teen possible worlds describable in this langu&ge.all of our simulations, we gen-
erated a probability distribution over these wotthyssetting the values of the follow-
ing fifteen independently variable probabilities: P(®(bja), P(bja), P(c|ab),
P(clakb), P(ctab), P(chal-b), P(djablc), P(d|abl-c), P(d|arblc),
P(d|a=bl~c), P(dtalblc), P(dhablc), P(dha=blc), and P(da-blc).
Within [5], the probability distributions over tlsxteen worlds were selected for each
simulation, by setting the above fifteen conditiopeobabilities according to a uni-
form probability distribution on the unit intervaiverging from [5], we controlled
the entropy level of the probability distributionser the sixteen worlds. For each
simulation, we chose a particular entropy ledelOur program then proceeded by
generating probability distributions in the manoé[5] until a distribution was gen-
erated whose entropy resided in the inter&a0[05,5+0.05].
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To manage the search space in assessing the fosyst®ms, we restricted our at-
tention to conditionals whose antecedent and cams#qgconsist in conjunctions of
literals. We also assumed that no propositionainaéppears twice in angremise
conditional or inferred conditional. These restrictions effectively limited the langaa
under consideration to 464 conditionals (cf. [3)e call the language composed of
this set of 464 conditionals 3. Drawing from Ls, we assumed that a small number
of conditionals, so-called premise conditionalgetiher with their associated proba-
bilities, were known to the reasoning systems. Wthér required that the probability
associated with each premise conditional was &t l@®. We chose the cut-off 0.9,
since cases where the probability of the premiselitionals is relatively high repre-
sent a significant challenge for systefsand QC (cf. [5]). In each simulation, the
three premise conditionals were selected at ranlom among the sentences of L
whose probability was at least 0.9. We then allowadh LP reasoning system to
infer, from the given premise conditionals, alltbé conditionals, €, D, that follow
according to the respective systems. For systenzs andQC, the value r, for each
inferred conditional, was set to be one minus tin@ ®f the improbabilities of the
premise conditionals needed in deriving the congiud-or systen®, r was set to be
the probability value of the least probable prentseditional needed for the deriva-
tion of C=D in O.

After determining which conclusions were inferredthe four systems, each sys-
tem was assigned numeric scores for each of thelwsians that it inferred. The first
scoring measure that we applied is calledattieantage-compared-to-guessing meas-
ure. The idea behind this measure derives fronfabethat the mean difference be-
tween two random choices of two real values r afrdra the unit interval is (prova-
bly) 1/3. Based on this fact, we assessed eaclerayby counting a judged lower
probability bound that differs from the true probigyp by more than one-thirchega-
tively, and counting a judged lower probability bound thifers from the true proba-
bility by less than one-thirdositively. We scored the judged lower probability bounds
by a simpldinear measure of their distance from the true probadmlit

(6) Theadvantage-compared-to-guessing (ACG) score for derived conditionals:
Scorg@ces(C=,D, P) := 1/3- |[r— P(D|C)|.

For reasons elaborated in [5], the A@@asure does not provide a fully adequate
means of evaluating LP systems. In order to takeoad view of the advantages and
disadvantages of reasoning in accordance withdhe gystems, we considered two
other scoring measures.

We call the second measure that we consideredutitee-price-is-right measure.
This measure assigns a positive score to any edelamwer probability bound that
does not exceed the true probability, and penaliziesred bounds that exceed the
true probability by a simplénear measure of their distance above the true probabil-

ity:
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(7) Thesubtle-price-is-right scorefor derived conditionafs
Scorgp(C=,D, P) :=r, if r< P(D|C),
:= P(D|C)-r, otherwise.

We call the final scoring measure that we consuiéineexpected utility measure:

(8) Theexpected utility score for derived conditionals:
Scorgy(C=D, P) := (P(D|C) - (P(D|C)- r)%) [P(C)/2.

The EU measure scores an inferred conditionat, B, by evaluating the expected
value of the decisions licensed by the acceptahseah a conditional (i.e., a condi-
tional whose content is P(D|&)r). In particular, we assume that a judged gréates
lower conditional probability bound has the follegi behavioral import: If r is the
greatest lower probability bound that a given ageaepts for D given C, then (if she
is prudent and has sufficient wealth) she will fnage all wagers on D, conditional on
C, at price $s, so long as s <r, and refuse temuch wagers for>sr. Given this
behavioral interpretation of inferred conditionalge considered an environment in
which a respective agent is offered a single opmitst to purchase a wager on D
conditional on C with a stake s, where s is deteechiat random, according to a uni-
form probability distribution over the interval [@]. In that environment, the expected
value of accepting the greatest lower probabilioudd r on P(D|C) igrovably:
(P(D|CY = (P(D|C)- r)?) P(C)/2 (cf. [14]).

3 The Results

The entropy of a probability distribution, P, owefinite set of possible worlds, W, is
defined as E(P) =2 P(w)Ibg(P(w)) (for w\[JW). So in the case where W contains
sixteen worlds (as is the case in our simulati&@{®) will be in [0, 4], where E(P) = 4
means that P is a uniform probability distributiover W, and E(P) = 0 means that P
is a standard valuation function (assigning thaiedl to exactly one world, and the
value 0 to all others). Since the four LP systenas e consider are ordered in terms
of the number of inferences they licen§e[{l P [0 Z 0 QC), our focus here is on the
‘new’ inferences licensed by each system as oneegds from syster® to system
QC, i.e., the inferences licensed by syst®&mnthe inferences licensed by systém
that are not licensed by syst&n(P-0), the inferences licensed by systénthat are
not licensed by systef (Z-P), and the inferences licensed by sys@f that are
not licensed by systed (QC-Z). Table 1 lists the average number of conclusions
inferred by each (sub)system, across varied entleysis, and the average number
erroneous inferences among tAeP and QC-Z inferences, i.e., those instances

®> The name of the measure derives from the longimgnAmerican game show where contest-
ants must guess the price of items, and succedthby the most accurate guess that does
not exceed the price of the relevant item.
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where the inferred lower bound exceeded the agiadability. (These average val-
ues are based on a sample of one thousand sirmdatie@ach listed entropy level.)

Table 1. Mean number of inferences and errors

Mean Number of Mean Number of

Eg\t/:;py Inferences Errors

(@) P-O Z-P QC-Z Z-P QC-Z
3.5 3.02 0.06 10.31 3.62 8.2 3.55
3.0 3.1 0.25 23.33 20.8 16.04 20.03
25 3.28 0.4 30.88 35.33 21.21 34.03
2.0 3.56 0.76 34.65 42.61 24.41 40.85
15 4.01 1.23 38.4 49.33 27.77 46.98
1.0 4.3 1.84 40.06 51.62 29.94 49.1
0.5 4.9 2.82 40.61 53.75 31.3 51.56

The most obvious pattern exhibited in table 1 iat tthe number of inferences
drawn by each system is a decreasing functionettitropy level. This pattern was
expected, since lower entropy levels imply a lesmby distributed probability func-
tion, and in turn a greater number of possible emonditionals with multiple con-
juncts in their consequents. Such conditionals stpgp greater number of inferences
in all of the systems considered.

We now consider the average scores earned by speatve systems for the full
set of conclusions drawn within a single simulatidables 2, 3, and 4 list the results.

Table 2. Mean ACG scores

Entropy Mean ACG Scores

Level (@] P-O Z-P QC-z
35 1.01 0.02 241 -0.49
3.0 1.03 0.07 4.47 -3.61
2.5 1.08 0.11 4.02 -6.76
2.0 1.17 0.21 2.59 -8.48
1.5 1.31 0.34 1.10 -9.98
1.0 1.40 0.51 -1.06 -10.67
0.5 1.600 0.85 -2.78 -11.91

Table 3. Mean sPIR scores

Entropy Mean sPIR Scores

Level O P-O Z-P QC-Z
35 2.83 0.06 1.01 -1.62
3.0 2.92 0.22 3.73 -9.80
25 3.11 0.35 3.11 -17.28
2.0 3.40 0.68 1.00 -20.98
15 3.83 1.10 -1.34 -24.14
1.0 412 1.67 -4.55 -25.43
0.5 4.76 2.68 -7.16 -27.67
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Table4. EU scores

Entropy Mean EU Scores

L evel [®) P-O Z-P QC-Z
35 0.232 0.006 0.396 -0.001
3.0 0.462 0.041 1.287 -0.026
25 0.656 0.089 1.945 -0.047
2.0 0.867 0.216 2.338 -0.058
15 1.191 0.422 2.865 -0.067
1.0 1.520 0.743 3.185 -0.071
0.5 1.975 1.293 3.423 -0.056

Examining tables 2, 3, and 4, we see that @@&-Z inferences earn negative
scores at every entropy level, according to alkeehscoring rules. This provides a
relatively good reason for concluding that we sHoobt reason in accordance with
systemQC, if our concern is to draw conclusions that areuaate and informative.
On the other hand, we see tl@atand P-O inferences earn positive scores at every
entropy level, according to all three scoring rulgs it pretty clear that it is reasona-
ble to make these inferences. In fact, the presemtiusion is unsurprising given (1)
and (2), above, that characterize the ability aftemsO andP to preserve premise
probability.

It is only when we turn to evaluate the qualityZofP inferences that the data from
tables 1, 2, and 3 is equivocal. When considermeggACG and sPIR scores for the
Z-P inferences, we observe a peak in performance, wherentropy level of the
underlying probability distribution is relativelyigh (= 3.00), but thereafter decreas-
ing entropy correlates with decreasing ACG and s§d&es. On the other hand, de-
creasing entropy correlates with increasing EU esoFigure 1 provides a graphical
representation of that pattern.

== QC-Z Inferences
== 7-P Inferences
= P-0 Inferences
=== {J Inferences

Mean EU Score

0 D.I5 ‘I 1 .I5 2 2.I5 3 3.I5 4—
Entropy Level
Fig. 1. Mean EU scores
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In order to get a clearer idea of what’'s goingiorg helpful to look at the average
scores earned for single inferences across vanedpy levels. Tables 5, 6, and 7 list
the results, and figure 2 provides a graphic prasem of the information presented
in table 7.

Table5. Mean ACG scores per inference

Entropy Mean ACG Score per Inference

Level O P-O Z-P QC-Z
35 0.333 0.275 0.234 -0.134
3,0 0.332 0.269 0.192 -0.173
25 0.331 0.275 0.130 -0.191
2,0 0.329 0.273 0.075 -0.199
15 0.326 0.274 0.029 -0.202
1,0 0.325 0.278 -0.026 -0.207
0,5 0.327 0.302 -0.069 -0.221

Table 6. Mean sPIR scores per inference

Entropy M ean sPIR Score per Inference

Level 0] P-O Z-P QC-Z
3,5 0.939 0.863 0.098 -0.447
3,0 0.944 0.866 0.160 -0.471
2,5 0.950 0.878 0.101 -0.489
2,0 0.953 0.887 0.029 -0.492
15 0.954 0.898 -0.035 -0.489
1,0 0.958 0.906 -0.114 -0.493
0,5 0.972 0.949 -0.176 -0.515

Table 7. Mean EU scores per inference

Entropy Mean EU Scor e per Inference

Level 0] P-O Z-P QC-Z

3,5 0.077 0.086 0.038 -0.00015
3,0 0.149 0.165 0.055 -0.00124
2,5 0.200 0.222 0.063 -0.00133
2,0 0.243 0.283 0.067 -0.00137
15 0.297 0.344 0.075 -0.00137
1,0 0.354 0.404 0.080 -0.00138
0,5 0.403 0.458 0.084 -0.00103
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0.5

== QC-Z Inferences
== 7-PF |nferences
m— P-{J Inferences
=== {0 Inferences

0.4

D; _
// —

Mean EU Score / Inference

-0

Entropy Level

Fig. 2. Mean EU scores per inference

Our main remaining concern is to evaluate the guafiZ—P inferences. Tables 5
shows thaZ—-P inferences lead to bounds that are relativelyectoghe true probabil-
ities, when entropy high. However, when the entrtgwel is very low, the distance
between the judged bounds and the true probalditgs to be rather great. For ex-
ample, when the entropy of the underlying distidrutis 0.5, the inferred lower
bound for an averagé-P inference differs from the true probability by ab®.4.
Similarly, while Z—P inferences are expected to yield relatively hi§hRs scores,
when an inferred bound is not in error (rangingrfrabout 23 to 38 percent of cases,
depending on the entropy level), we see that wherentropy level is low, a typical
erroneous inferred bound exceeds the true probabifia significant margin. In con-
trast, the EU scores fa—-P inferences (as witl® and P-O inferences) increases
with decreases in the entropy of the underlyingbphility distribution® The latter
result marks one positive sign in favor of the gyabf Z—P inferences. And we
maintain that the latter resudbes reflect a significant capacity &—-P inferences to
exploit information about an environment to draslpful conclusions about that envi-
ronment. Indeed, if we consider plausilaprioristic methods of assigning lower
probability bounds, such as the ones considerdd4h i.e., methods of assigning
lower probability bounds to the elements gfWiithout exploiting the information that
was supplied to the four LP systems (in the fornp@mise conditionals), then we
see that the EU scores earned ZetP inferences tend to be much higher than the
scores earned by aprioristic methods. For exanthke,most successful aprioristic
method considered in [14] assigned the lower boudr@s1/4, and 1/8, respectively,
to conditionals with one, two, or three conjunaistheir consequent (as the values
1/2, 1/4, and 1/8 are the average probabilitiecémditionals with the corresponding
number of conjuncts in their consequents). In theecwhere entropy was not con-

® The present effect is the result of inferred cosicins with more probable antecedents, when
the entropy level is low.
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trolled (and the mean entropy of the underlyingbatality distributions was about
2.88), this aprioristiomethod earned an EU score of about 0.0204 peremder,
which is far lower than the average scores earyetH® inferences (across all entro-
py levels).

4 Conclusions

It almost goes without saying that it is reasondblaccept the conclusions Of and
O-P inferences, so long as our goal is to accept atewnd informative probability
statements. It is also quite clear that we shooldaccept the conclusions QIC-Z
inferences. The difficult choice is whether to guicthe conclusions oZ—P infer-
ences. In cases where itlkazown that the entropy of the underlying distributiomist
low (or probably not low), it will usually be reasable to shoulder the risk inherent in
accepting the conclusions df-P inferences. More generally, the tendencyZef
inferences to deliver significant positive EU s&ifeven when the entropy of the
underlying distribution is very low) indicates tkialue of these inferences as a basis
for decision making.

In considering whether it is reasonable to acchptdonclusions oZ-P infer-
ences, we think it is reasonable to consider whethere are alternatives that would
support better probability judgments. Since we knbat our present method of asso-
ciating lower probability bounds with—P inferences is prone to overestimation, we
conjecture that a more optimal method would makewanward correction to these
assigned bounds. It would also make sense to hargize of this correction, in cases
where the entropy of the underlying distributionkisown. The exploration of this
idea is left to future work.
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