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Abstract. Systems of logico-probabilistic (LP) reasoning characterize inference from

conditional assertions interpreted as expressing high conditional probabilities. In the

present article, we investigate four prominent LP systems (namely, systems O, P, Z,

and QC) by means of computer simulations. The results reported here extend our previ-

ous work in this area, and evaluate the four systems in terms of the expected utility of the

dispositions to act that derive from the conclusions that the systems license. In addition to

conforming to the dominant paradigm for assessing the rationality of actions and decisions,

our present evaluation complements our previous work, since our previous evaluation may

have been too severe in its assessment of inferences to false and uninformative conclusions.

In the end, our new results provide additional support for the conclusion that (of the

four systems considered) inference by system Z offers the best balance of error avoidance

and inferential power. Our new results also suggest that improved performance could be

achieved by a modest strengthening of system Z.

Keywords: Probability logic, Ampliative inference, Scoring rules

1. Introduction

Systems of logico-probabilistic (LP) reasoning characterize inference from
conditional assertions that are interpreted as expressing high conditional
probabilities. In previous work [17], we studied four LP systems (namely,
systems O, P, Z, and QC; described below), and presented data from com-
puter simulations that illustrated the performance of the four systems. These
simulations tested the four systems in terms of their tendency to draw true
informative conclusions and avoid drawing false or uninformative conclu-
sions, given accurate information about an environment, where the inferred
conclusions take the form of lower probability bounds. In [17], we argued
that our simulations support the conclusion that system Z provides the best
balance of reward versus risk, in terms of drawing true informative conclu-
sions and avoiding false or uninformative conclusions. A key tool of our
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evaluation was the scoring of individual conclusions licensed by each of the
four systems, and one of our essential points was that most of the inferences
that are made by system QC (the strongest system considered), and not by
system Z (the second strongest system considered) yield negative scores.

The methods of evaluation employed in [17] were based on certain intu-
itions which led to three different scoring measures (called ACG, PIR, and
sPIR; described in section 3). Of course, intuitions are never sacrosanct,
and may be overturned by other considerations, and in retrospect, it ap-
pears that reasons can be given for thinking that the scoring rules employed
in [17] were biased toward over-punishing inference to false and uninforma-
tive conclusions, and may thus have been biased against system QC which
licenses many inferences, and thereby take greater risks for the sake of draw-
ing true informative conclusions.

In this article, we present data that represents a re-evaluation of systems
O, P, Z, and QC, according to a new scoring measure, known as “EU”,
which equates the value of a drawing a conclusion with the expected utility
of the actions licensed by that conclusion, and is thereby in line with the
dominant paradigm for evaluating the rationality of actions and decisions.
We observe that the resulting EU scores earned by system QC are signifi-
cantly better than the scores that it earned by the lights of the ACG and
sPIR measures. However, we also note that the mean EU scores for the
inferences drawn by system QC and not by system Z are very low and of-
ten negative. Based on these findings, we draw two important conclusions:
(1) any LP reasoning system whose EU scores exceed those of system Z
will presumably result from strengthenings of that system, rather than from
weakenings, and (2) such strengthenings will presumably be small, com-
pared to the full strength of system QC. We begin our discussion with a
brief description of the four LP systems.

2. LP Reasoning: Systems O, P, Z, and QC

We represent the four LP systems using a simple propositional language L,
with the usual connectives ¬, ∧, ∨, and ⊃ and ≡ (for material implication
and material bi-implication), and A, B, C, etc. as meta-logical variables
ranging over arbitrary sentences of L. Throughout the article, our interest
will be restricted to the extension of L which results from the addition of
simple uncertain conditionals of the form A⇒B. α and β will serve as meta-
variables ranging over such simple conditional formulas, while Γ ranges over
sets of them. “`” is used to denote derivability in classical logic, and “⊥”
to denote an arbitrary contradiction. The four LP systems that we consider
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are ordered in terms of the number of inferences they license (O ⊂ P ⊂ Z
⊂ QC). We proceed by considering the weakest system first.

2.1. System O

System O is of interest because of its close connection to the consequence
relation s.p., where “s.p.” stands for “strict preservation”:

(1) Strict Preservation: A1⇒B1,. . ., An⇒Bn s.p.C⇒D iff for all probabil-
ity functions P (over L): P(D|C) ≥ min({P(Bi|Ai) : 1≤i≤n}).1

System O was developed by Hawthorne [7] and Hawthorne and Makinson [8]
as an inferential calculus for s.p.. Throughout the present article, “`O”
denotes the syntactical notion of derivability in system O.

System O (after Hawthorne):

REF (reflexivity): `O A⇒A

LLE (left logical equivalence): if ` A≡B, then A⇒C `O B⇒C

RW (right weakening): if ` B⊃C, then A⇒B `O A⇒C

VCM (very cautious monotony): A⇒B∧C `O A∧B⇒C

XOR (exclusive Or): if ` ¬(A∧B), then A⇒C, B⇒C `O A∨B⇒C

WAND (weak And): A⇒B, A∧¬C⇒⊥ `O A⇒B∧C

It is easy to see that all of the rules of system O are correct with respect
to s.p., i.e., Γ `O A⇒B implies Γ s.p. A⇒B. It was the hope of Hawthorne
and Makinson [7] that `O was also complete with respect to s.p., but, as
Paris and Simmonds [13] have shown, this is not the case.

Following [17], we propose a marriage of system O, and a rule for inferring
lower probability bounds that corresponds to the correctness of system O
for s.p.. To make sense of such inferences, we employ statements of the
form “A⇒rB” to express that P(B|A) ≥ r, and say that system O licenses
the (valid) inference to C⇒min({ri :1≤i≤n})D from A1⇒r1B1,. . ., An⇒rnBn,
in cases where A1⇒B1,. . ., An⇒Bn `O C⇒D.

A remarkable fact about system O is its weakness compared to standard
systems of conditional logic. According to Segerberg [18], the weakest ‘rea-
sonable’ system of conditional logic includes REF, LLE, RW, along with the
following rule:

(AND): from A⇒B and A⇒C infer A⇒B∧C.2

1As a convenience, we assume that P(B|A) = 1, when P(A) = 0.
2For an investigation of lattices of systems based on Segerberg’s [18] minimal semantics,

see [21] and [22].
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The inferential power of AND is quite significant. By adding AND to the
system O, we obtain (in one step) the famous system P.3

2.2. System P

As we describe below, system P represents the confluence of a number of dif-
ferent semantic criteria. However, the feature of system P that is of greatest
interest here is its connection with the following consequence relation:

(2) Improbability-Sum Preservation: A1⇒B1,. . ., An⇒Bn i.s.p.C⇒D iff
for all probability functions over L: I(D|C) ≤ Σ{I(Bi|Ai) : 1≤i≤n}, where
I(A|B) is defined as 1 − P(A|B) (cf. [2], [1]).

Adams demonstrated that the following calculus P (denoted by `P) is
correct and complete for i.s.p..

System P (after Adams):

REF, LLE, and RW (as with system O)

AND (as above)

CM (cautious monotony): A⇒B, A⇒C `P A∧B⇒C

OR: A⇒C, B⇒C `P A∨B⇒C

In addition to being correct and complete with respect to  i.s.p., system
P is correct and complete for three other semantics, namely: (i) infinitesi-
mally high probability semantics, (ii) ranked (or preferentially ordered) pos-
sible world semantics4, and (iii) Adams’ yielding condition (cf. [2], [1], [17]).

Following [17], we propose a marriage of system P, and a rule for infer-
ring lower probability bounds that corresponds to the correctness of system
P for i.s.p.. In particular, we say that system P licenses the (valid) infer-
ence to C⇒1−Σ{1−ri :1≤i≤n} D from A1⇒r1B1,. . ., An⇒rnBn, in cases where
A1⇒B1,. . ., An⇒Bn `P C⇒D.

2.3. System Z

While system P sanctions inference to a larger number of conditionals than
system O, it still sanctions fewer inferences than one might reasonably ac-
cept. For instance, system P does not licence inference via subclass inher-
itance based on default assumptions of irrelevance (or independence). For
example, if we know that this animal is a male bird (B∧M) and that birds can

3There are also systems which lie in between O and P, namely the systems C and CL
(cf. [10], [12], ch. III), for which no known probability semantics exists.

4The connection between such ranked world semantics and Spohn’s ranking theory of
belief is one that has yet to be explored in a systematic way (cf. [19], 15).



5

normally fly (B⇒F), and nothing else of relevance, then we would intuitively
draw the conclusion that this male bird can fly (F). However, B∧M⇒F is not
P-entailed by B⇒F, because there exist possible probability distributions in
which P(F|B∧M) is much smaller than P(F|B). If we do infer B∧M⇒F from
B⇒F, in such cases, then we assume, by default, that the additional factor
M (in this case the gender of a bird) is irrelevant to its ability to fly (or in
other words, M and F are assumed to be probabilistically independent given
B). A straightforward means of enlarging the set of LP-derivable condition-
als, in order to include such default inferences, is to give up the requirement
that a reasonable inference be valid for all possible probability distributions,
and consider only ‘normal’ probability distributions − in particular those
distributions which satisfy the default assumption of irrelevance. An early
suggestion for realizing this idea was the maximum entropy approach to
default inference (see [14], 491-3). By selecting a probability distribution
that maximizes entropy, one minimizes probabilistic dependences. Despite
having some attractive features, the maximum entropy approach is rather
complicated and has some further disadvantages, such as language depen-
dence (cf. [6], 309f; [23]).

System Z of Pearl [15] and Goldszmidt and Pearl [5] maintains many
of the advantages of the maximum entropy approach, while overcoming its
disadvantages.5 Like the maximum entropy approach, inference in system Z
proceeds via the construction of a semantic model of the premise conditionals
that maximizes probabilistic independences. In system Z, this is achieved by
maximizing the degree-of-normality of the set of possible worlds represented
by a ranked model, according to the following definition:

(3) Definition (cf. [5], 68, Def. 15; [6], 308f): A ranked model (W, r) is at
least as normal as a ranked model (W, r*) (with the same world set), in
short (W, r) ≥n (W, r*), iff for all w∈W, r(w) ≤ r*(w).6

According to theorem 1(i) (below) there exists, for every set of worlds W
(which is constructed over the language of the conditional knowledge base
Γ), a unique most normal ranked model, the so called z-model. In order
to define the notion of a z-model, we first define the notion of a z-rank. A

5The approach of [15] and [5] was independently suggested by Lehmann and Magi-
dor [11], who called the system rational closure. The approach of Lehmann and Magidor
proceeds by constructing a preference relation over the set of all extensions of the P-closure
of a given set of premise conditionals Γ which satisfy rational monotony (RM): A⇒B /
A∧C⇒B or A⇒¬C. It was then shown that the Z-closure of Γ is the uniquely preferred
extension in this set (see [11], p. 29, 31-33, 38-42).

6A conditional A⇒B is said to be satisfied by a ranked world model (W, r), if all of
the lowest-rank worlds verifying A verify B.
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precise statement of this definition requires some additional terminology: A
set of conditionals Γ is P-consistent iff Γ does not P-entail ⊥. A conditional
A⇒B is tolerated by a set of conditionals Γ iff {A∧B}∪{C⊃B: C⇒B ∈ Γ}
is consistent.

(4) Definition (cf. [15], section 1; [5], 65, fig. 2):

For every (finite) P-consistent set of conditionals Γ, the z-rank of the ele-
ments of Γ is defined by the following z-algorithm:

(1) Initial step: Set i = 0. Set ∆ = Γ.

(2) Iterative step: While ∆ is nonempty, let ∆i ⊆∆ consist of all conditionals
α ∈ ∆ which are tolerated by ∆.

(i) If ∆i is nonempty, let ∆ = ∆−∆i, and i = i+1.

(ii) If ∆i is empty, let ∆∞ = ∆, and ∆ = ∅.
Output: The z-partition (∆0, . . ., ∆k, ∆∞).

The z-rank of a conditional α in a P-consistent Γ, written “zΓ(α)”, is defined
as the index i of that set ∆i in the z-partition of Γ in which α occurs.

The preceding definition differs from Pearl and Goldszmidt’s correspond-
ing definition in the additional clause (2)(ii), which allows that Γ is ε-
inconsistent7 (for details see [17], Def. (9)). The assumption that Γ is
P-consistent guarantees that there is a z-model for Γ, according to the fol-
lowing definition (where a conditional A⇒B is verified by a possible world
w iff A∧B is true at w, and falsified by w iff A∧¬B is true at w, and a set
of conditionals, Γ, is falsified by w iff at least one conditional in Γ is falsified
by w):

(5) Definition (cf. [15], 123-5, Eq. 5, 6, and 10): The z-model of a P-
consistent Γ, (WΓ, zΓ), is defined as follows: For each w among the set of
logically possible worlds over the language of Γ:

(i) If w falsifies ∆∞, then w /∈ WΓ.

(ii) If w does not falsify ∆∞, then (a) w ∈WΓ, and (b) zΓ(w) = 0, if w does
not falsify any α ∈ Γ, and zΓ(w) = max({zΓ(α): w falsifies α})+1, otherwise.

(iii) The z-rank of an arbitrary formula C relative to (WΓ, zΓ) is defined as
zΓ(C) = min({ zΓ(w) : w∈WΓ & w verifies C}), with min(∅):= ∞.

(iv) For all Γ: Γ `Z C⇒D iff either (a) Γ is P-inconsistent, or (b) C⇒D is
satisfied in (WΓ, zΓ).

Theorem 1 expresses the crucial property of the z-model:

Theorem 1 (cf. [15], [5]):
7A set of conditionals is ε-consistent just in case the corresponding conditional proba-

bilities can be simultaneously made arbitrarily close to 1.
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(i) For every P-consistent Γ there exists a unique most normal ranked model
among all ranked models for Γ, and this is the z-model (WΓ, zΓ).

(ii) Γ `Z C⇒D (according to (5)(iv)) iff

{A⊃B: A⇒B ∈ Γ & zΓ(A⇒B) ≥ zΓ(C)} ` C⊃D.

Proof: For (i), see [5] (67f), since the admission of an ε-inconsistent remain-
der set ∆∞ doesn’t change the uniqueness of the z-model. For (ii), see [17].

Z-entailment validates inference by default inheritance (i.e., A⇒B `Z
A∧C⇒B) as well as default contraposition (i.e., A⇒B `Z ¬B⇒¬A). That
these inferences hold ‘by default’ means that they hold under the condition
that the conditional knowledge base doesn’t contain further conditionals that
are ε-inconsistent with the conclusions of these inferences. Hence, in contrast
to `O and `P, `Z is non-monotonic over conditionals. For example, A⇒B
`Z A∧C⇒B, but A⇒B, A∧C⇒¬B 0Z A∧C⇒B. Similarly, ¬B⇒¬A is not
Z-entailed by A⇒B in the presence of ¬B⇒A.

There is no separate calculus for Z-entailment, but Theorem 1(ii) and
the z-algorithm, (4), outline a straightforward procedure for deciding Z-
entailment via propositional satisfiability tests. One significant disadvantage
of Z-entailment is that (in the absence of further assumptions) it doesn’t
give us information about probabilistic reliability in the form of almost-
tight lower bounds, such as is provided by the improbability sum semantics
for system P. Nor does system Z, on its own, tell us the minimal proba-
bilistic default assumptions that are needed to derive particular conclusions.
However, it is shown in [17] (based on work in [16]) how to obtain these
additional desiderata.

Theorem 2 : If A1⇒B1,. . ., An⇒Bn `Z C⇒D holds, then improbability-
sum preservation (I(D|C) ≤ Σ{I(Bi|Ai) : 1≤i≤n}) holds for all probability
functions P that satisfy the default assumptions P(Ai⊃Bi|C) ≥ P(Bi|Ai),
for all 1≤i≤n.

Proof: See [17], Theorem 2.6.

We proceed here as if the default assumptions specified in Theorem 2
hold, and say that system Z licenses the inference to C⇒1−Σ{1−ri :1≤i≤n}D
from A1⇒r1B1,. . ., An⇒rnBn, in cases where A1⇒B1,. . ., An⇒Bn`Z C⇒D.
As with the evaluations conducted in [17], we concern ourselves with question
of whether inference by the proposed rule tends to yield accurate conclusions.

2.4. System QC

Z-entailment is not the strongest (minimally reasonable) inference calculus
for ‘risky’ default inference among uncertain conditionals. An even stronger
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and extremely simple calculus is quasi-classical reasoning. Here one reasons
with uncertain conditionals as if they were material implications:

(6) Γ `QC C⇒D iff {A⊃B : A⇒B ∈ Γ} ` C⊃D.

Improbability-sum preservation holds for inferences between material
conditionals, or more generally, between formulas of propositional logic, as
was shown by Suppes [20]. In particular, {A1,. . .,An} ` B iff it holds for all
probability distributions that I(B) ≤ Σ{I(Ai):1≤i≤n}. Beyond the result
of Suppes, it is possible to formulate probabilistic conditions under which
QC-reasoning approximately satisfies improbability-sum preservation. In
particular, it is shown in [17] (Sec. 2.5) that a QC inference from a given
set of premises is guaranteed to preserve probability in the manner of sys-
tem P iff the improbability-sum of the premises is very small, and some
decimal powers smaller than the probability of the conclusion’s antecedent.
Following [17], we proceed as if these conditions hold, and say that sys-
tem QC licenses the inference to C⇒1−Σ{1−ri :1≤i≤n}D from A1⇒r1B1,. . .,
An⇒rnBn, in cases where A1⇒B1,. . ., An⇒Bn `QC C⇒D. The question
remains of whether inference by the preceding rule tends to yield accurate
conclusions.

3. How to Evaluate Judged Lower Probability Bounds

In line with [17], our interest is in determining which LP system offers the
best balance of reward versus risk, and we continue the approach of scoring
the individual conclusions licensed by the respective systems. In [17], three
scoring measures were considered. The first scoring measure introduced was
called the advantage-compared-to-guessing measure:

(7) The advantage-compared-to-guessing (ACG) score for derived condition-
als: ScoreACG(C⇒rD, P) := 1/3 − |r − P(D|C)|.

The idea behind this measure derives from the fact that the mean dif-
ference between two random choices of two real values r and s from the
unit interval is (provably) 1/3. Based on this fact, we assessed each sys-
tem by counting a judged lower probability bound that differs from the true
(actual) probability by more than one-third negatively, and by counting a
judged lower probability bound that differs from the true probability by
less than one-third positively. The ACG measure scores judged lower prob-
ability bounds by a simple linear measure of their distance from the true
probabilities.

Within [17], we acknowledged that the ACG measure does not provide a
fully adequate means of evaluating LP systems, since it sometimes punishes
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a true informative judgment, in comparison with making no judgment at
all. This will occur, for example, if the conclusion C⇒0.6D is inferred, when
P(D|C) = 0.95. In order to take a broader view of the advantages and dis-
advantages of reasoning in accordance with the four systems, we considered
two additional scoring rules:

(8) The price-is-right (PIR) score for derived conditionals:

ScorePIR(C⇒rD, P) := r, if r ≤ P(D|C),

:= 0, otherwise.

(9) The subtle-price-is-right (sPIR) score for derived conditionals:

ScoresPIR(C⇒rD, P) := r, if r ≤ P(D|C),

:= P(D|C) − r, otherwise.

The PIR measure rewards true inferred lower bounds, but it does not punish
false inferred lower bounds (i.e., cases where r > P(D|C)). We acknowledged
this defect of the PIR score, and introduced the sPIR scoring measure in
order to address the defect: The sPIR measure rewards true inferred lower
bounds (proportional to their closeness to the true probability), and punishes
false inferred lower bounds (proportional to their distance from the true
probability). A possible problem with the sPIR measure is that sometimes
punishes inference to highly informative, though incorrect, lower probability
bounds. This will occur, for example, if the conclusion C⇒0.96D is inferred,
when P(D|C) = 0.95.

Our evaluations in [17] were based primarily on the ACG and sPIR scor-
ing measures. But in retrospect, reasons can be given for thinking that
the two measures are biased toward over-punishing inference to false and
uninformative conclusions, and thus biased against system QC. Moreover,
although the ACG and sPIR measures are based on reasonable intuitions, it
is not precisely clear how these measures correlate with the expected util-
ity of decision making based on the conclusions inferred by the respective
LP systems. In order to address this concern, we here develop a scoring
rule that measures the expected utility of decision making based on the in-
ferences licensed by respective LP systems. As it turns out, the resulting
measure is also relatively permissive in its evaluation of inference to false
and uninformative conclusions. So in contrast to the ACG and sPIR mea-
sures, evaluation via the new measure provides test conditions that are very
favorable to system QC.

The behavioral import of a probability judgment is naturally explicated
in terms of the actions that the judgment licenses for agents who are pru-
dent. A relatively simple explication of the actions licensed by respective
probability estimates is cashed out in terms of betting behavior, in particu-
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lar, in terms of the price that an agent should be willing to pay for a wager
on a proposition B, which is assumed to pay $1 if B is true, and $0 oth-
erwise. According to this explication, an agent who assigns probability r
to B: (i) should be willing to pay $s for a wager on B so long as s < r,
(ii) should be indifferent to paying $r for such a wager if r = s, and (iii)
should be unwilling to pay $s for such a wager, if s > r. ($s is called the
“stake” of the bet.) This framework is easily extended in order to explicate
judgments about conditional probabilities in terms of conditional wagers, by
assuming that a conditional wager is called off, and the stake returned, if
the antecedent proposition is false.

We can also extend the preceding account in order to explicate prudent
betting behavior based on judged greatest lower probability bounds, and
judged greatest lower conditional probability bounds. For the sake of sim-
plicity, we assume that a prudent agent will reject any wager (or conditional
wager) about which she is indifferent.8 Then we have the following explica-
tion of the behavioral import of judged greatest lower conditional probability
bounds: If r is the greatest lower probability bound that a given agent ac-
cepts for B given A, then (if she is prudent and has sufficient capital) she
will purchase all wagers on B, conditional on A, at price $s, so long as s <
r, and refuse to accept such wagers for s ≥ r.9 Given these conditions, we
can compute the expected utility of accepting a greatest lower probability
bound r on P(B|A) in the case where a respective agent is offered only a
single opportunity to wager on B conditional on A, at price $s.10

Assuming that an agent accepts and rejects wagers in the manner de-
scribed, we can also determine the expected utility of accepting a particular
greatest lower probability bound on B conditional on A, independent from a
specific stake s, by assuming an environment in which the agent is offered a
single opportunity to purchase a wager on B conditional on A with a stake
s, where s is determined at random, according to a uniform probability dis-

8This assumption makes no difference to the scores agents receive by the EU scoring
measure (below), since the model upon which this measure is based assigns zero probability
to an agent being offered a wager at a price that is identical to her greatest lower probability
bound for the proposition in question.

9Since an agent is offered only a single opportunity to wager within the model intro-
duced in the following paragraph, the kind of case contemplated in [4] cannot arise.

10We here adopt the assumption that an agent’s utility function for wealth is linear, and
thus that the expected utility of judged probabilities, within the model, is identical to the
expected changes in wealth consequent to those judged probabilities. Alternatively, the
present account can be recast so that the currency of the wagers considered is measured
in units of utility.
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tribution over the interval [0, 1].11 Given this assumption, we arrive at the
following scoring rule, which measures the expected utility of accepting the
greatest lower bound r for P(B|A):

(11) The expected utility (EU) score for derived conditionals:

ScoreEU (A⇒rB, P) := (P(B|A)2 − (P(B|A) − r)2)·P(A)/2.

The following features of the EU measure are of interest:

(i) The EU measure punishes uninformativeness, but to a lesser degree than
the ACG measure, because the absolute difference between P(B|A) and r is
squared, which makes it smaller (assuming |P(B|A) − r| is less than one).

(ii) The EU measure rewards high inferred lower bounds to a higher degree
than low inferred lower bounds of comparable accuracy, because the expected
gain of the former ones is much greater than that of the latter ones.

(iii) The EU score earned for an inference is discounted as a function of the
probability of the antecedent condition, which is reasonable, since the more
likely it is that a wager is called off, the less the impact of purchasing the
wager, in terms of possible gains and losses.

(iv) The EU measure does not punish falsely inferred lower bounds, because
deviating upwards and downwards from the true probability P(B|A) is pun-
ished to the same degree (P(B|A) − r)2·P(A)/2. The EU measure shares
this feature with the ACG measure.

In the following section we review the simulation results of [17], and
present the results of new simulations which evaluate the four LP reasoning
systems by means of the EU scoring rule.

4. The Simulations

Our simulations were identical to the ones described in [17] save that we
scored each of the systems according to the EU measure, in addition to
replicating the results for the three other measures.12 Following [17], we
assumed a simple language with four two-valued variables: a, b, c, and
d. We likewise assumed a probability distribution over the sixteen possi-
ble worlds: ±a∧±b∧±c∧±d (where “±” connotes a negated or unnegated
variable). For all of our simulations, we generated a probability distribution

11Alternatively, one may consider the case where the agent is offered repeated oppor-
tunities to wager on A conditional on B (where the stake s varies according to a uniform
distribution on [0, 1]), and consider the average amount earned by an agent who is disposed
to accept and reject wagers in the described manner.

12The simulations in [17] were programmed in Visual Basic .NET 2010. We adapted
that code in order to run the simulations described here.
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over these worlds by setting the values of the following fifteen independently
variable probabilities: P(a), P(b|a), P(b|a), P(c|a∧b), P(c|a∧b), P(c|a∧b),
P(c|a∧b), P(d|a∧b∧c), P(d|a∧b∧c), P(d|a∧b∧c), P(d|a∧b∧c), P(d|a∧b∧c),
P(d|a∧b∧c), P(d|a∧b∧c), and P(d|a∧b∧c). In all cases, the values for these
probabilities were determined at random, setting each of the fifteen values
independently, according to a uniform probability distribution on the unit
interval.13

For all simulations, we assumed that a small number of conditionals,
so-called base conditionals, together with their associated probabilities, were
known to the reasoning systems. We then allowed each LP reasoning system
to infer, from the base conditionals, so-called derived conditionals C⇒rD,
which follow according to the respective system. For systems P, Z, and
QC, the value r, for each derived conditional, was set to be one minus the
sum of the improbabilities of the base conditionals needed in deriving the
conclusion. For system O, r was set to be the probability value of the least
probable base conditional needed for the derivation of C⇒D in O.

To manage the search space in assessing the four LP systems, we re-
stricted our attention to conditionals whose antecedent and consequent con-
sist in conjunctions of literals, i.e., of formulas of the form ±x (for x ∈ {a,
b, c, d}). We also assumed that no propositional atom appears twice in a
potential base or derived conditional. These restrictions effectively limited
the language under consideration to 464 conditionals (cf. [17]). We call the
language composed of this set of 464 conditionals L4.

For the systems P, Z, and QC, our program tested whether a given con-
ditional follows from a given set of base conditionals via a series of propo-
sitional satisfiability tests, by an implementation of resolution/refutation
theorem proving. In the case of system O, where it is impossible to test for
implications via propositional satsifiability checks, our algorithm was differ-
ent, and exploited the restrictions that were imposed on the set of potential
base and derived conditionals.

5. Results

Given a probability distribution P, our program selected a small set of base
conditionals at random from among the set of those conditionals whose con-
ditional probability met or exceeded a fixed value s. We call the value s

13We used the RandomClass constructor that is built into the .NET Framework in order
to generate these values. The constructor generates pseudo random numbers according to
algorithm based on Donald E. Knuth’s subtractive random number generator algorithm [9],
with a time-dependent seed value which is determined by the system clock.
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the minimum probability of base conditionals. We varied the number of base
conditionals b (b = 1, 2, 3, or 4), along with the value s (s = 0.5, 0.6, 0.7,
0.8, 0.9, or 0.9999). For each combination of values for b and s, we ran
one thousand simulations (so for each combination we generated a proba-
bility function and a set of base conditionals one thousand times).14 For
each simulation, our program tabulated the total of the ACG, PIR, sPIR,
and EU scores accumulated by each system for the set of conditionals (and
associated bounds) derived by that system.

Our results for the ACG, PIR, and sPIR scoring measures were very
similar to the results reported in [17]. A representative selection of the results
are presented in Figures 1 and 2, which chart the average total AvG and
sPIR scores per simulation (including standard error bars), for varied values
of s (the minimum probability for base conditionals), where the number of
base conditionals is held fixed at four.15

The poor performance of system QC, as measured by the ACG and
sPIR scoring rules, is best grasped by noting that the set of QC inferences
includes the set of system Z inferences. It follows that the aggregate score
earned for the inferences among QC−Z is equal to the result of subtracting
the aggregate score earned by system Z from the aggregate score earned by
system QC. As with the simulations described in [17], the average aggregate
score earned for the inferences among QC−Z was negative for both the ACG
and sPIR measures, for each combination of b (number of base conditionals)
and s (minimum probability of base conditionals) that we considered. That
systems QC’s sPIR scores are so much worse than that of systems O and P
stems from the fact that most inferences in QC−Z are erroneous (and sPIR
strongly punishes mistakes). Similarly, QC’s ACG scores are much worse
than those of systems O and P for minimum probabilities greater than
0.75, which means that QC−Z inferences based on premises of moderate
probability are very uninformative.

The results of [17] strongly suggest that inferences made by system Z are
of good quality, and that the additional inferences made by system QC (the

14Though the standard error rates for the mean values reported below vary greatly, we
judged (based on trial simulations) that 1000 simulations would be adequate to achieve
sufficiently accurate results (balancing concerns about computational feasibility). Our
judgment is vindicated, for the most part, as the reported standard error rates are in most
cases small or relatively small in comparison to the differences in performance of the four
systems.

15For all figures, we used the spline interpolater that is built into the .NET Chart Control
in order to fill in the values not gathered through our simulations. The default line tension
value (0.5) was used for all figures.
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Figure 1. Mean total ACG scores per simulation, with four base conditionals

Figure 2. Mean total sPIR scores per simulation, with four base conditionals
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QC−Z inferences) are of rather poor quality. However, the scoring rules
applied within [17] were quite tough, and perhaps biased against system
QC. In order to address this concern, we now present results that illustrate
the performance of system QC by the light of the EU scoring rule.

The EU scores for the four LP systems for varied values of b (the number
of base conditionals) and s (the minimum probability for base conditionals)
are summarized within Table 1, which reports respective mean total EU
scores for a single simulation, along with standard error rates for the mean
values “±S.E.M.”16

Table 1. Mean total EU scores per simulation for O, P, Z, and QC inferences

16We adopt the convention for reporting significant digits proposed in [3], with the
following exceptions: For Table 2, we do not report standard errors smaller than 0.001,
and report mean values to the third place beyond the decimal, in such cases. For Table
3, we do not report standard errors smaller than 0.0001, and report mean values to the
fourth place beyond the decimal, in such cases.
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Examining Table 1, we see that the EU scores for systems Z and QC
invariably exceed the scores for systems O and P by a considerable margin.
In cases where the minimum probability for base conditionals is low, we
also see that scores for system QC tend to exceed the scores for system Z.
Representative behavior of the four systems, as tracked by the EU measure,
is illustrated by Figure 3, which presents the total average EU scores for the
four systems, in the case where the number of base conditionals is held fixed
at four, and the minimum probability for base conditionals is varied.

Figure 3. Mean total EU scores per simulation, with four base conditionals

While the results appear favorable to system QC, further analysis sup-
ports a different conclusion. Recalling the fact that the four systems can be
ordered in terms of the number of inferences they license, it is instructive to
consider the scores earned for the ‘new’ inferences licensed by each system
as one proceeds from system O to system QC, i.e., the inferences licensed
by system O, the inferences licensed by system P that are not licensed by
system O (P−O), etc. The results are recorded on Table 2.

Table 2 presents a more balanced picture of the performance of the four
systems, since it records the score earned by each system for the new infer-
ences that the system adds to the inferences that are already licensed by its
more conservative predecessor. Figure 4 illustrates the general pattern, and
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Table 2. Mean total EU scores per simulation for O, P−O, Z−P, and QC−Z inferences

presents the data from Table 2 for the case where the number of base con-
ditionals is fixed at four, and the minimum probability for base conditionals
is varied.

While system QC is the only system that tends to permit new infer-
ences that earn negative scores, in some cases, it appears, on balance, that
QC−Z inferences tend to earn positive scores. However, a closer analysis
reveals that QC−Z inferences are of low quality. To see why this is so, con-
sider Table 3, which displays the average score earned per inference, among
inferences in the categories O, P−O, Z−P, and QC−Z.17

In presenting Table 3, our concern is to offer a reasonable assessment
17Note that the reported average EU scores for P−O inferences from 3 and 4 base

conditionals, and minimum probability 0.9999, are each based on a single inference, and
are thus not good measures of the typical EU score earned by P−O inferences in such
cases.
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Figure 4. Mean total EU scores per simulation, with four base conditionals

of the value of the conclusions drawn by system QC. What Table 3 illus-
trates is that the inferences made by system QC tend to generate some value
(according to the EU measure) in many situations. However, a reasonable
assessment of the value of the conclusions drawn by system QC recom-
mends that we consider the quality of QC−Z inferences in comparison with
non-evidential methods of probability judgment, in particular, methods of
assigning lower probability bounds to the elements of L4 without exploiting
the information that was supplied the four LP systems (in the form of base
conditionals).

We considered three non-evidential methods of setting lower probability
bounds. The first non-evidential method that we considered (ne-method
one) assigned the lower bound 1/2 to each of the conditionals in L4. The
next non-evidential method that we considered (ne-method two) was slightly
more subtle, and assigned the lower bound 10/29 to each conditional in L4,
based on the fact that the average probability of the elements of L4 within
our simulations is 10/29. The final non-evidential method that we considered
(ne-method three) was the most subtle and assigned the lower bound 1/2 to
conditionals with a single conjunct in their consequent, 1/4 to conditionals
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Table 3. EU scores per inference

with pair of conjuncts in their consequent, and 1/8 to conditionals with
three conjuncts in their consequent. Within our simulations, these values
(1/2, 1/4, and 1/8) are the average probabilities for conditionals with the
corresponding number of conjuncts in their consequents. The scores received
by the three non-evidential methods are, of course, independent of variations
in the number of base conditionals provided to the LP systems (and of
their associated minimum probabilities). The average EU score earned per
inference for the three non-evidential methods over one thousand simulations
are presented in Table 4.

As one can see from the data represented in Table 4, the average EU score
earned per inference by each of the non-evidential methods exceeds the scores
earned by QC−Z inferences (but not those earned by Z−P inferences).
We take this to show: (i) that the positive EU scores earned by QC−Z
inferences result from the tendency of the EU measure to reward contentful
judgments, in general, and (ii) that the positive scores earned by QC−Z
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Table 4. EU scores per inference for non-evidential methods

inferences do not reflect a significant capacity of QC−Z inferences to exploit
information about an environment to draw reasonable conclusions about that
environment.

6. Conclusion

Our concern in the present article was to evaluate four well known LP reason-
ing systems in terms of their tendency to draw true informative conclusions
and avoid drawing false or uninformative conclusions. It is known that infer-
ence via systems O and P is correct with respect to strict premise probability
preservation, and improbability-sum preservation, respectively. Due to such
validity results, it is clear that it is reasonable to accept the conclusions
that are licensed by systems O and P (coupled with the lower probability
bounds that one may validly infer via those systems). So we think that the
central issue is whether it is reasonable to go beyond inference by systems
O and P, and reason by system Z or QC (and assign corresponding lower
probability bounds upon the default assumption that the improbability of
an inferred conditional is not greater than the sum of the improbabilities of
the premises required for the inference). Within [17], it is argued that it is
reasonable to reason in accordance with system Z (and assign corresponding
lower probability bounds), but it is not reasonable to reason in accordance
with system QC. As grounds for this conclusion, we appealed to the fact
that (on average) the ACG and sPIR scores earned for QC−Z inferences
are negative.

Since it is possible to raise concerns about the adequacy of the ACG
and sPIR scoring measures, we introduced the EU measure which precisely
reflects the expected value of rational betting in accordance with inferred
lower probability bounds. As with the results presented in [17], the results
presented here support the conclusion that system Z offers the best balance
of error avoidance and inferential power. In contrast to the results presented
in [17], we observe that the additional risks taken by system QC are not
severely penalized by the EU scoring measure (as reflected in the fact that
QC−Z inferences tend to receive positive EU scores in many cases). Never-
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theless, the results presented in Table 4 show that the tendency of QC−Z
inferences to earn positive EU scores (in some cases) does not derive from
the quality of QC−Z inferences, but only from the tendency of the EU
measure to reward contentful judgments, in general. Indeed, unlike Z−P
inferences, QC−Z inferences tend to earn average EU scores that are lower
than various non-evidential methods of setting lower probability bounds.
Nevertheless, since we know that many QC−Z inferences are both false
and highly uninformative, the fact that QC−Z inferences received slightly
positive EU scores on average tells us that many other QC−Z inferences
achieved significant positive EU scores. This consideration supports the
following conclusion: If there are LP reasoning systems whose typical EU
scores are greater than that of system Z, then these systems are presumably
to be found in the class of reasoning systems which are stronger than Z but
weaker than QC.
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