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Meta-Induction and the Wisdom of Crowds*

Abstract: Meta-induction, in its various forms, is an imitative prediction method,
where the prediction methods and the predictions of other agents are imitated to
the extent that those methods or agents have proven successful in the past. In past
work, Schurz demonstrated the optimality of meta-induction as a method for predicting
unknown events and quantities. However, much recent discussion, along with formal
and empirical work, on the Wisdom of Crowds has extolled the virtue of diverse and
independent judgment as essential to maintenance of ‘wise crowds’. This suggests that
meta-inductive prediction methods could undermine the wisdom of the crowd inasmuch
these methods recommend that agents imitate the predictions of other agents. In this
article, we evaluate meta-inductive methods with a focus on the impact on a group’s
performance that may result from including meta-inductivists among its members. In
addition to considering cases of global accessibility (i.e., cases where the judgments of
all members of the group are available to all of the group’s members), we consider cases
where agents only have access to the judgments of other agents within their own local
neighborhoods.

1. Introduction

In a number of recent papers (2008; 2009c), Gerhard Schurz proposed a new
solution to Hume’s problem of induction, which emphasizes the importance of
meta-induction. In its various forms, meta-induction proceeds by considering
the past track record of other agents (and their prediction methods), and makes
predictions of future events by reasoning that the agents (and prediction meth-
ods) that have been successful in the past will be successful in the future. Schurz
demonstrated that under natural conditions various forms of meta-induction are
guaranteed to yield optimal results, in the sense of having predictive success
rates that converge to the success rate of the meta-inductivist’s most successful
competitor. These results (which we describe in the following section) do not
entail that meta-induction is guaranteed to be a successful prediction strategy.
Rather the results guarantee that if any method is successful, then prediction
via meta-induction will closely approximate the success of that method.

* Work on this paper was supported by the DFG financed EuroCores LogiCCC project The
Logic of Causal and Probabilistic Reasoning in Uncertain Environments, and the DFG project
The Role of Meta-Induction in Human Reasoning (SPP 1516).
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The optimality of meta-induction appears to provide a strong prescription
for would-be predictors. But the matter is, perhaps, not so simple. The core
injunction of meta-induction is to copy the strategies and predictions of those
individuals who have proven most reliable. The prescription of meta-induction
to copy others is prima facie in tension with prescriptions implicit in recent
formal and empirical work on the Wisdom of Crowds. This work emphasizes
the importance of agents making their predictions (and, more generally, their
judgments) independently of the predictions of other agents.

Francis Galton’s account of a contest that occurred at the 1906 West England
Fat Stock and Chicken Exhibition is a popular touchstone for discussions of the
Wisdom of Crowds, and serves as compelling, if anecdotal, illustration of the wise
crowd effect. In the contest recounted by Galton, attendees at a local livestock
exhibition could observe a large mature ox, and had the opportunity to guess
the weight of the ox (in particular, the weight of the ox’s remains after slaughter
and dressing). Seven hundred and eighty seven persons entered the contest, and
offered wide-ranging guesses. The remarkable fact about these guesses resided
in their average (the aggregate judgment of the crowd, as it were). The crowd
guessed that the ox would weight 1,197 pounds, and was almost exactly right,
as the ox weighted 1,198 pounds.

Empirical studies have illustrated that the judgments of crowds (i.e., the
average value of the judgments of a group’s members) are remarkably reliable in
the face of certain types of query. It is also straightforward to construct formal
models of individual judgment wherein the average value of the judgments of a
group of individuals tends to be very accurate (and much more accurate than the
average accuracy of the group’s individual members). Recent empirical studies
also show that the accuracy of a crowd’s judgment can be severely compromised
when agents within the group are privy to the judgments made by other group
members (and are thus able to imitate the judgments of other group members)
(Lorenza et al. 2011). Similarly, well known formal models of ‘wise crowds’
require that the judgments of a group’s members be stochastically independent
of the judgments of other members of the group. So select empirical and formal
results suggest that imitating the judgments of other group members is, contra
meta-induction, a bad thing. Whether and to what extent this prima facie
tension is genuine is the major question addressed in this paper.

2. The Optimality of Global Meta-Induction

While induction is central to scientific method, the problem of justifying induc-
tion is notoriously difficult, and was thereby described by C. D. Broad as “the
glory of science and the scandal of philosophy”. It was David Hume who showed
that all standard methods of justification fail when applied to the task of justi-
fying induction. In particular, the reliability of the inductive method cannot be
justified by induction, by arguing that induction has been successful in the past,
whence—by induction—it will be successful in the future, for this argument is
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circular, and circular arguments are without justificatory value (cf. Salmon 1957,
46; Schurz 2009b, §3.2).

Today most epistemologists are skeptical concerning the possibility of a direct
solution to Hume’s problem. In Schurz (2008; 2009c) an approach to Hume’s
problem is developed that is based on meta-induction. This approach is com-
patible with Hume’s diagnosis that no non-circular argument can establish the
reliability of induction. What the approach claims to show is that meta-induction
is an epistemically optimal prediction method, in the sense that its predictive
success is maximal among all methods of prediction that are accessible to any
given agent. Epistemic optimality arguments are a game-theoretical general-
ization of Reichenbach’s best-alternative argument for induction (Reichenbach
1949, §91). Even in radically skeptical scenarios where meta-induction is unreli-
able, meta-induction can still be optimal in the sense of being ‘the best of a bad
lot’. Moreover, the mathematical (or a priori) justification of meta-induction
proposed in Schurz (2008) establishes a non-circular a posteriori justification of
object-induction (i.e., induction applied to objects or events), by the following
argument: We know from experience that object-inductive prediction methods
have so far been more successful than non-inductive ones, whence it is meta-in-
ductively justified to favor object-inductive methods in the future.

Many philosophers and cognitive scientists are skeptical concerning the pos-
sibility of universal optimality arguments (cf. Norton 2003; Gigerenzer et al.
1999). However, the arguments of these authors are concerned with methods
at the object-level, not at the meta-level. The crucial difference is that meta-
methods take the results of other methods as their input and may learn from
them. The optimality of meta-induction is restricted to those methods whose
output is accessible to the given agent(s). Of course, there might be methods (or
forecasters) that do not reveal their predictions, but keep them secret. What the
optimality theorems show is that among all accessible prediction methods, meta-
inductivist strategies are the best choice. The restriction to accessible methods
is not a genuine drawback, because methods whose output is not accessible are
irrelevant to the epistemic decision problem.

To demonstrate the optimality of meta-induction, Schurz (2008; 2009c) in-
troduced the notion of a prediction game. It consists of:

(1) An infinite sequence (e) := (ej, ea,...) of events (e.g., daily weather con-
ditions or stock values) whose valued are drawn from the unit interval, so
that e,, € [0, 1], for each round, n, of the game.

(2) A finite set of players II, whose task in each round is to predict the value
of the next event. ‘p,(P)’ denotes the prediction of player P at time n,
which is delivered at time n — 1. It is assumed that admissible predic-
tions are elements of [0, 1]. The players in II include: (i) one or several
meta-inductivists, denoted ‘xMI’, of a certain type x (see below), and (ii)
a finite set of other players Py, ..., P,, (so-called non-MI-players) who
may either be ordinary inductivists (scientists), or alternative players (e.g.,
God-guided fortune-tellers). In para-normal worlds, the alternative players
may have any success rate one wishes.



342 Paul D. Thorn and Gerhard Schurz

We assume cognitively finite agents who can simultaneously access only finitely
many methods, so the player set is thus assumed to be finite. The predictions
of all non-MI-players (or their respective methods) are assumed to be accessible
to the meta-inductivists of the considered type xMI. This means that the meta-
inductivists are permitted to make their predictions after all the other (non-MI)
players have made theirs.

Further notation: The deviation of a prediction p, from the event e, is
measured by a normalized loss function I(p,, e,) € [0, 1]. The natural loss-
function is the absolute difference |p,—e,|. However, the optimality theorems
described below are not restricted to natural loss functions: Theorem 1 holds for
all monotonic loss-functions, and theorem 2 holds for all convex loss-functions.
The score obtained in round n is defined as s(pn, €,) := 1 — I(pn, €,). The
absolute success a,(P) achieved by player P until time n is P’s sum of scores
until time n (X1<i<n s(p:(P), €;)). The success rate suc, (P) of player P at time
n is defined as suc,, (P) := a,,(P)/n. Finally, maxsuc,, is the maximal success rate
of the non-MI-players at time n. Binary prediction games consist in a special
case where events and predictions are elements of {0, 1}. Here, suc,, (P) coincides
with the relative frequency of P’s correct predictions until time n.

The simplest type of meta-induction is called ‘imitate-the-best’. A player
who employs this method is called a ‘bMI’. In each round, bMIs imitate the
prediction of the non-MI-player with the so-far highest success rate. bMIs change
their favorite player as soon as another player becomes strictly better. If there
are several best players, bMIs choose the first best player by an assumed ordering
of the set of all players. The central result about the imitate-the-best prediction
method is as follows:

Theorem 1: For each prediction game ((e), {P,...,P,,, bMI}) that contains a
best non-MI-player, B, after winning time ng (i.e., suc,(B) > suc,(P;) for all n
> np and P; # B), the following holds:

(1.1) Short run: For all rounds n, suc,(bMI) > maxsuc, — (ng/n), i.e., the
bMTI’s short-run loss compared to the best non-MI-player is never greater
than ng/n.

(1.2) Long run: The bMI’s success rate approximates the maximal success of
the non-MI-players as n approaches oc.

The size of the possible short run loss for a bMI derives from the fact that when-
ever a bMI recognizes that her present favorite P has earned a loss compared
to some new best player P*, the bMI also receives this loss, before switching
from P to P*. These losses may accumulate. The assumption of theorem 1
that P,...,P,,, bMI includes a best non-MI-player B, with a winning time np,
excludes the possibility that bMI can have more than finitely many losses due to
switching favorites, since when the winning time np is reached, bMI sticks to the
best player B forever. This assumption is violated whenever the success rates
of two or more leading non-MI-players oscillate endlessly around each other.
The worst case of endlessly oscillating success rates is produced by so-called
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systematic deceivers, who are clairvoyant, and (by definition) deliver a max-
imally wrong prediction whenever the meta-inductivist chooses them as their
favorite, and deliver a maximally correct prediction otherwise. Systematic de-
ceivers not only cause a breakdown in the optimality of simple imitate-the-best
meta-induction, but of all kinds of so-called one-favorite meta-induction (such
as e-meta-induction; cf. Schurz 2008, 288), that base their predictions in each
round on only one favored player or method. When a one-favorite method plays
against systematic deceivers, her success rate converges to zero, while that of
the deceivers is never smaller than 1/2.!

The optimality of imitate-the-best meta-induction and other one-favorite
meta-inductive methods is very general, but not universal: Their long-run op-
timality is restricted to prediction games with a best player (or finite set of
‘e-best’ players; cf. Schurz 2008, th. 2), and their short-run behavior is good
only if the winning time of the best player occurs sufficiently early. A complete
solution to Hume’s problem calls for a meta-inductive strategy whose predic-
tions are optimal in the case of systematic deceivers. Weighted meta-induction
fills this role. A player who employs this method is called a “wMI”.2 A wMI
predicts a weighted average of the predictions of the so-far ‘most attractive’
players. The attractivity at,(P) of player P at time n is P’s surplus success
rate compared to the wMDI’s success: at,(P) = suc,(P) — suc,(wMI), pro-
vided suc,(P) > suc,(wMI), otherwise at,(P) = 0. A wMI’s predictions are
defined as pp41(WMI) = > i (atn (P;) prt1(Py)) / Y i(at, (P;)), where P; ranges
over all accessible players. In words: a wMI’s prediction for the next round is
the attractiveness-weighted average of the attractive players’ predictions for the
next round. (If no player has positive attractivity, the wMI makes a random
guess.) The following establishes weighted meta-induction’s universal long-run
optimality:

Theorem 2: For every real-valued prediction game ((e), {P1, ..., P,,, wMI})
whose loss-function {(p,, e,) is convex in the argument p,,, the following holds:

(2.1) Short run: ¥n>1: suc,(wMI) > maxsuc, — /m/n.

(2.2) Long-run: suc,(wMI) approximates the non-MI-players’ maximal success
as n approaches co.?

Theorem 2 does not directly apply to binary prediction games (and games with
discrete-valued events), because a wMI’s predictions—being weighted averages—
are not binary, but are real values between 0 and 1. Theorem 2 can nevertheless
be generalized to binary (and discrete) valued predictions, by assuming a popula-
tion of sufficiently many, say k, meta-inductivists, who imitate the predictions of
each attractive non-MI-player, P, with a population share that is approximately

L Theorems and descriptions of relevant computer simulations are found in Schurz 2008,
§84-6; 2009a, §84-6.

2 This method is based on results in machine learning theory (cf. Cesa-Bianchi/Lugosi
2006).

3 In the application of weighted meta-induction, predictively equivalent non-MI players can
be identified, without undermining the validity of theorem 2.
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equal to P’s attractivity (at the given time). Schurz calls this strategy ‘collective
weighted meta-induction’. The mean success rate of a population of collective
weighted meta-inductivists will approximate the maximal success rate of the
most attractive non-meta-inductivist players, with an additional maximal short-
run loss of 1/(2-k).* Under the assumption that a group of collective weighted
meta-inductivists share their success, collective weighted meta-induction is also a
universally optimal strategy for each individual agent. Without this cooperation
assumption, theorem 2 can be applied to a single agent in a binary or discrete
prediction game by assuming that single collective weighted meta-inductivists
imitate the predictions of each attractive non-MI-player P with a probability
that is equal to P’s attractivity (at the given time). However, this probabilistic
variation is optimal only under the restriction that the environment is not ‘de-
monic’, i.e., under the condition that the future event e, 11 does not react to the
wMTI’s imitation-choice for the given round n.

All the explained results about prediction games apply equally to action
games. In that case, the partition of possible predictions is replaced by a par-
tition of possible actions: At each time, n, each action, a, has a certain payoff
pr(a) (that may change over time), and the score of an action in round n is com-
puted by a loss function [(a, (P), max,), where ‘max,,’ is the maximal payoff of
the accessible actions at time n.?

3. The Wise Crowd

Following in the footsteps of some recent monographs (Surowiecki 2004; Page
2007, 179), we will say that the judgment of a crowd with respect to a true/false
query is the (rounded) average response of its members, treating affirmation as
one and disaffirmation as zero (thereby identifying the crowd’s judgment with
the majority response of its members, rounding to zero, disaffirmation, in the
case of ties). Similarly, we say that the judgment of a crowd with respect to
a scalar multiple choice query is the average response of its members (rounded
as necessary).® In line with the preceding conventions, we say that a crowd
is wise to the extent that its judgments are accurate. The question of how
accurate a crowd’s judgments must be in order to be considered wise is left
open. In adjudicating claims to the effect that a given crowd is wise, it is
often useful to make comparisons of the crowd’s accuracy to the accuracy of its
individual members, or to how accurate the crowd’s judgments would have been
within a salient counterfactual, such as one where some or all of the crowd’s
members make their judgments after having the opportunity to imitate some
other members of the crowd.

Anecdotes such at Francis Galton’s are relatively widespread, and it is clear
that the judgment of a crowd with respect to some kinds of query frequently

4 For theorems and computer simulations, see Schurz 2008, §§7-8; 2009a, §7; 2009c, §5.

5 Details of this generalization are found in Schurz 2012a.

6 We here omit consideration of non-scalar multiple choice queries, which may require subtle
treatment.
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exhibits uncanny accuracy (what we call “the wise crowd effect”). In the same
vein as the task Galton described, Jack Treynor and others have illustrated the
wise crowd effect by having groups of students guess the number of jelly beans
contained in a large jar (Surowiecki 2004, 5). Invariably, the judgment of the
crowd is very accurate, and exceeds the accuracy of all but a small handful of its
members. Various markets, from stock exchanges to professional football betting
lines (Surowiecki 2004, 12-15), and prediction markets such as the Iowa Elec-
tronic Markets and the Hollywood Stock Exchange (that were self-consciously
designed to harness the wise crowd effect) have demonstrated the accuracy of
groups of independently acting individuals in making various kinds of predic-
tion (Surowiecki 2004, 17-22; Page 2007, 178). Recent empirical work has also
demonstrated the tendency of crowds to make accurate judgments, as well as
demonstrating the fact that even modest information about the judgments of
other group members can undermine the wise crowd effect (Lorenza et al. 2011).

An early mathematical model that exhibits a sufficient condition for a wise
crowd is described by the Condorcet Jury Theorem. The theorem considers a
group of individuals, where for each member of the group, the probability is
r that that member of the group will make a correct judgment regarding the
truth value of some proposition «. It is further assumed that each individual’s
likelihood of making a correct judgment is stochastically independent of whether
other members of the group make correct judgments. Under these conditions,
the theorem tells us that the likelihood that the group is wise (i.e., that the
majority response of its members is correct) converges to one as the size of the
group n approaches co.

The Weak Law of Large Numbers suggests an obvious means of modeling
wise crowds in the case of scalar multiple choice queries. Where € is any number
greater than 0, and X,, is a sample of n stochastically independent identically
distributed random variables with mean u, the Law of Large Numbers tells us
that the probability that the mean value of the elements of X,, differs from p by
more than e converges to zero as n approaches co. We may thus conceive the
sample X,, as a set of predictions made by a group of n individuals about the
value some unknown quantity p, where the elements of X, are independently and
identically distributed around p. In that case, the Law of Large Numbers tells
us that, for any e greater than zero, the probability that the group’s judgment
about the value of p differs from p by more than e goes to zero as the size of the
group n approaches oo.

The Condorcet Jury Theorem and the Law of Large Numbers provide models
describing how the average judgment of a group’s members can be extremely
accurate, provided the group is large and its members have some truth-bias
(i-e., under the condition that there is a better chance than not that each group
member makes a true judgment in the case of true/false queries, and under the
condition that each group member’s judgment is distributed around the true
value with a mean value that is identical to the true value, in the case of scalar
multiple choice queries). We will say that such a truth bias is the smaller, the
larger the variance of the judgements around the true value. Observe that the
assumption of even a ‘small’ truth bias is a ‘strong’ assumption inasmuch as it
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excludes systematic errors, in which case the mean value of the judgements of a
group would not agree with the true value.”

Generally speaking, the assumptions under which the two theorems apply
(such as the assumption that the accuracy of the judgments of agents are stochas-
tically independent, for example) are rather unrealistic. A more realistic formal
model of wise crowds is found in Page (2007), drawing on work by Krogh and
Vedelsby (1995). The model of Krogh and Vedelsby dispenses with all assump-
tions about the character and interrelations of the probability distributions gov-
erning the judgments of a group’s members. Their model simply assumes a
group of agents who make judgments about the value of some unknown event
(or object) x. Each agent, «, produces a judgment, V*(x), corresponding to each
event x. The judgment of the group, V(x), is defined as the weighted average
of its member’s individual judgments: V(x) = > V®(x)-(1/n), where n is the
size of the group.® The ambiguity of the input x for an agent « is defined as
D(x) = (V¥(x) — V(x))?, and the average ambiguity for the group as D(x) =
Y aD¥(x)-(1/n) = Y o0(V¥(x) — V(x))?(1/n). Where f(x) is the true value of
x, the quadratic error of an individual, a, is E¥(x) = (f(x) — V¥(x))?, and the
quadratic error of the group’s judgment is E%(x) = (f(x) — V(x))2. The average
quadratic error for the members of the group is E(x) = >, E*(x)-(1/n) = > 4
(f(x) - V¥(x))2:(1/n). Krogh and Vedelsby’s simple, but important, observation
is as follows:

Theorem 3: E%(x) = E(x) - D(x).

An immediate consequence of Theorem 3 is that E“ (x) < E(x), i.e., the quadratic
error of the group is no greater than the average of the quadratic error of the
group’s members. The difference between the two quantities is described by
the average variance of the judgments of the group’s members, as measured by
D(x). In other words, the more diverse the judgments of a group, the more the
accuracy of the group’s judgment exceeds the accuracy of its average member
(as measured by quadratic error).

Krogh and Vedelsby result holds for a more realistic model of judgments
among groups. The result also represents a more balanced assessment of the
value of diverse judgment. If we could hold E(x) fixed and vary D(x) (a measure
of the diversity of a group’s judgment), then we maximize the degree to which
a crowd is wise by maximizing diversity. But diversity is, literally, one half of
the equation: While increasing (or maintaining diversity) benefits the wisdom of
the crowd, so does decreasing the average of the quadratic error of the group’s
members. If there were a means decreasing the value of the latter quantity
while incurring relatively smaller decreases in diversity, then we could decrease
diversity while at the same time increasing the wisdom of the crowd. In many

7 Rather than assume that the judgements of each member of the population (or crowd) is
symmetrically distributed around the truth, we could also produce a more realistic model of
the wise crowd effect by assuming that the judgment of each agent has a systematic bias and
that these systematic biases are themselves symmetrically distributed around the truth. The
exploration of this model is left as future work.

8 We here assume that each agent’s judgment receives weight 1/n. Krogh and Vedelsby’s
results hold generally where the weights assigned to the members of the group sum to one.
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cases, introducing meta-inductivists into a group is a prime means of reducing
the average error-rate among the group. As we will see (in the following section),
there are also cases where the decrease in the average error rate among a crowd’s
members outstrips the ‘damage’ to the crowds’ wisdom resulting from a loss in
diversity.

Before proceeding we would also like to suggest, in contradiction to Page
(2007, 208), that collective diversity (as measured by D(x)) is not as important as
individual ability (as measured by E(x)) to the wisdom of a crowd (as measured
by E%(x)). To begin, we note that increasing diversity, D(x), is relatively easy,
while reducing mean individual error, E(x), may be practically impossible. More
importantly, decreasing E(x) to zero is sufficient (independently of the resulting
effect on diversity, D(x)) for decreasing E“(x) to zero, while increasing diversity
(independently of the resulting effect on E(x)) is not sufficient for decreasing
E%(x). The first point is obvious, and recommends the application of imitate-
the-best meta-induction as a means to achieving a wise crowd in any case where
one member of the group is correctly identified as a perfect predictor. To see the
second point, suppose we have a group of two agents attempting to predict the
value of an unknown quantity p. Suppose that g = 0, and the first of the two
agents has judged that © = 5. If the second agent has judged that p is certainly
greater than 5, then he can increase diversity by guessing that p is quite high
(e.g., p = 100, x = 1,000, or x = 1,000,000). But the more our agent strives
to increase diversity, D(x), the more the resulting disproportionate increase in
E(x) and in E%(x).

4. The Relations between Meta-induction and the
Wise Crowd

While the wise crowd effect recommends that forecasters (or players of a game)
make their predictions independently from each other, meta-inductive learning
suggests that forecasters should imitate the most successful forcasters whose
predictions are accessible, and if they do this, their predictions are no longer
independent of each other. So there is a tension between the injunctions of
meta-induction and the preconditions for wise crowds. In the face of this ten-
sion, we evaluate meta-inductivist methods by considering the success of meta-
inductivists within groups, and the impact on group performance that may result
from including meta-inductivists among its members. In line with those persons
that extol the virtues of diverse and independent judgment (e.g., Surowiecki
2004; Page 2007, and Lorenza et al. 2011), we describe a variety of conditions
where replacing non-imitative players by meta-inductivists of certain sorts does
indeed compromise the wisdom of the crowd, by reducing the accuracy of the
average value of the judgments of that group of individuals. Note, however, that
the investigated cases don’t represent a shortfall in the individual performance of
meta-inductivists, but simply situations where the precondition of independence
does not hold, whence the crowd is less wise than it might otherwise have been,
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i.e., the ‘judgments of the crowd’ are less accurate than they might have been.
This interpretation of our results is underscored by three points:

First: None of our simulations are in contradiction to the results on the
optimality of meta-induction described in section 2.

Second: It makes a big difference whether the meta-inductivists replace or en-
rich existing strategies. As emphasized in Schurz (2008a; 2009¢), meta-induction
is parasitic on already existing independent prediction strategies (which are also
called ‘object-strategies’ in Schurz, in distinction to ‘meta-strategies’ that im-
itate other strategies). The optimality theorems described above imply that
whatever strategies are accessible to a given agent, it is always wise to apply
meta-induction to them. In other words, adding meta-inductive strategies can
only improve and will never diminish the maximal success rate, though replacing
independent strategies by meta-inductive ones may reduce the maximal success
rate, because such replacement may result in the exclusion of successful indepen-
dent strategies.” For this reason, it is not generally recommendable to replace
independent strategies by meta-inductive ones, but only to enrich them. If the
independent strategies are not replaced but complemented by meta-inductivists,
then the strategy WC, for ‘wisdom of the crowd’, i.e., the strategy of predicting
the average of values of the independent predictions of a group’s members, could
be imitated by meta-inductive players. So the wisdom of the crowd, as defined
by the average of the independent predictions of the group’s members, would not
be lost in such a population, while the use of meta-inductive strategies would
improve the success rates of the individuals.

Third: The judgment of a crowd is not assumed by us to be a strategy that
is accessible or applied by any individual player. Indeed, if we do assume that
at least one member of a population plays the strategy WC (by accessing the
independent predictions of all forecasters and predicting their mean value), then
the theorems about meta-induction explained in section 2 can be applied. It
follows from these theorems that in all scenarios in which the strategy WC is
optimal, the meta-inductivist strategies will approximate the success of WC (i.e.,
the mean success of meta-inductivists having access to the strategy WC will be
as good as the strategy WC). As this is a consequence of already existing results,
we focus here on the situation in which no individual plays the strategy WC, and

9 The result that social learning is parasitic on individual learning was recently confirmed
by Rendell et al. 2010. This paper investigates the result of a tournament of computer-
programmed strategies within a scenario called “multi-armed bandit”. Within such scenarios,
every player (or strategy) may choose, in each round, one of many possible actions with
unknown payoffs. Each player/strategy had the possibility to choose, each round, between
three options: (a) individual learning (observe the payoff of one of many possible actions that
you perform by yourself), (b) social learning (observe the payoffs of the actions of several
other population members), or (c) exploit (perform a strategy whose payoffs had been learned
by simple induction). The payoffs were assumed to be constant; so simple observation of
observed payoffs was guaranteed to be relatively successful. Within the tournament, it turned
out that social learning strategies (strategies that applied social learning (b) much more often
than individual learning (a)) were the most successful. However, in a second tournament in
which the strategies had to play within homogeneous populations, where all players adopt the
same strategy, the effect was reversed: The social strategies were the worst and the individual
strategies the best. This is also called “Roger’s paradox” (Rendell et al. 2010, 72).
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ask what happens to the wisdom of the crowd when meta-inductivists or other
social learners replace independent forecasters. The effect of such replacements
on the wisdom of the crowd is neither trivial nor entailed by already existing
results on meta-induction and other forms of social learning (e.g. Schurz 2012b;
Hegselmann /Krause 2005; 2009; Hartmann et al. 2009).

We also acknowledge that the most difficult epistemological situations for
meta-inductive strategies are ones in which neither the event frequencies nor
the success rates converge to limits in the long run (n—o0), but are endlessly
oscillating. However, in this paper we will make the simplifying assumption of
converging event frequencies and converging success rates. This is justified be-
cause our focus is on a different theme, namely what happens with the mean
success rate of a crowd when social learning strategies replace independent strate-
gies. Investigation of scenarios with permanently changing event-frequencies and
success-rates is left for future work.

In contrast to the single shot prediction games described by Galton (guess-
ing the weight of an ox) and Treynor (guessing the number of jelly beans), we
envision an iterated prediction game where players may obeserve the accuracy
of the predictions made by other players in previous rounds of the game. We
furthermore envision a game where players have the opportunity to observe the
opinions of other players at given moments, and thereby imitate the opinions
and predictions of other players. Given these features, we may regard our simu-
lations as modelling a variation of the prediction games described by Galton and
Treynor, where the game is iterated, and players have the opportunity to observe
the predictions and performance of (at least some) other players, and thereby
imitate other players on the basis of those obervations. The simulations are also
adequate to modeling similar predictions about, for example, future stock prices,
such as predictions about whether a given stock price will be up at the close of
trading on the following day (a binary-valued prediction), and what the price of
a given stock will be at the close of trading on the following day (a real-valued
prediction). The precise details are described in the following section.

5. The Formal Setup

To assess the impact of including meta-inductivists in a crowd (or of having
members of a crowd adopt meta-inductive methods), we used computer sim-
ulations (programmed in Visual Basic.NET). Departing slightly from the sort
of prediction games described in section 3, our simulations were based on the
following ingredients:

(1) A quadratic grid consisting of 100x100 = 10,000 cells. Each cell corre-
sponds to an individual player.

(2) For some simulations, we assumed that each agent in the grid has ac-
cess to the success rates and the present judgment of every other player.
In other simulations, we assumed that each player only has access to in-
formation concerning the players in her Moore-neighborhood, i.e., to the
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neighborhood consisting of the player herself plus the eight immediately
surrounding players

The event sequence is either: (i) a random sequence of values chosen ac-
cording to a uniform probability distribution on the unit-interval [0, 1],
or (ii) a binary event sequence generated by rounding the elements of a
sequence of the sort described in (i), where values greater than 0.5 are
treated as 1, and the remaining values are treated as 0. In the case of a
binary event sequence, players are required to predict that the true value
of any event is 0 or 1. In the case of the real-valued event sequence, play-
ers may predict any real number. Our assumption is that players are not
aware that the values of the actual event sequence are drawn from the unit
interval.

In the case of a binary event sequence, each player has a predefined in-
dependent reliability, r, which is the player’s hypothetical success rate in
the long run, assuming she bases her predictions solely on her own abilities
(and does not imitate other players). (A player’s indepedendent unreliabil-
ity, u, is 1-r.) In the case of a real-valued event sequence, we distinguish
two kinds of players: truth-biased players and ignorant players. Each
truth-biased player has a predefined independent unreliability u, where u
is the limiting average absolute deviation of the agent’s predictions from
the true values, assuming she bases her predictions solely on her own abil-
ities. We also assumed that a truth-biased agent’s independent judgments
in the real-valued case are normally distributed with a mean identical to
the true event-value (so that the standard deviation of an agent’s indepen-
dent guess is u-y/2/m). (1/2/7 is the ratio of the mean absolute deviation
to the standard deviation in the case of normal distributions.) In contrast
to truth-basised players, the predictions of ignorant players are chosen by
a uniform distribution on the unit interval. (In the case of a binary event
sequence, we would treat ignorant players as blind guessers, who predict
that the next value in the event sequence is 0 or 1 with equal probability.)

Again the game consists of rounds, but now in addition, each round consists
of successive cycles, in which predictions may be updated by imitating the
predictions of other accessible players.

In addition to their independent prediction abilities, some players may
apply one of the following imitative prediction methods to other accessible
members within the grid:

(a) Imitate-the-best meta-induction: Such players (bMIs) imitate the
player whose present success rate is greatest among all accessible play-
ers. In the first round, and in the first cycle of any round bMIs predict
by independent means. Subsequent to the first round, bMIs select a
favorite whose success rate is highest among all accessible players,
and switch favorites only when another player’s success rate exceeds
the success rate of her current favorite. (In the second round when
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mutiple players have the highest success rate, or in a subseqeuent
rounds where multiple players have success rates which exceed the
success rate of her current favorite, bMlIs choose the nearest player
among the most successful players to be her new favorite. In the case
where nearness does not break all ties, the new favorite is chosen by
a predefined ordering of all players.)

(b) Weighted meta-induction wMI: In the face of a real-valued event se-
quence, wMIs predict the attractivity weighted average of the pre-
dictions of those players accessible to the wMI. In the case of binary
event-sequences, we required the ‘weighted’ meta-inductivist to de-
liver binary-valued predictions. So in the case of a binary-valued event
sequence, wMIs predict the rounded attractivity weighted average of
the predictions of those players accessible to the wMI, where values
greater than 0.5 are rounded to 1, and values of 0.5 or less are rounded
to 0. Thus for binary event types a wMI predicts what the majority
of the attractive forecatsers predict. In face of both real-valued and
binary event sequences, wMIs predict by independent means in the
first round, in the first cycle of any round, and whenever they them-
selves have the highest success rate (with the result rounded in the
binary case).

¢) Peer-imitation: Peer-imitators predict an unweighted average of the
g g
predictions of those players accessible to the peer-imitator (with the
result rounded in the binary case).

Compared to the sort of prediction games described in section 2, the present
setup allows for mutual imitation between imitative players of various sorts.
Since a player can imitate another player only after that player has made a pre-
diction, the imitation process is now modeled via successive update cycles, in
which every player imitates the predictions that her favorite(s) delivered in the
previous cycle. In the first cycle of each round, each player delivers a prediction
based on her independent method. In all following cycles, independent play-
ers repeat their initial prediction, while imitating players apply their imitative
prediction method to the predictions made by accessible players in the previous
cycle. This continues until the process of cycling reaches an equilibrium state
(i.e., a state that is not changed by further updating), or until a preselected
deadline, i.e., a maximum number of cycles, is reached. The predictions in the
last cycle of a round are called the final predictions of that round. After the final
predictions for a round are determined, the actual success rate for each player
is updated, and a new round (with a new sequence of prediction cycles) begins,
until the final round of the game is reached.
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6. The Meta-Inductivist in the Crowd with Universal
Accessibility

In the present section, we illustrate some effects of including meta-inductivists
in a crowd, in cases where the predictions and success rates of all agents are
accessible to all agents. As a baseline, we consider populations composed wholly
of independent predictors (i.e., players who always and only predict according
to their independent prediction abilities). The results are presented in table 1.
Note that we present the results of the simulations in terms of the predefined
unreliability of the independent predictions of players, and in terms of the av-
erage size of the error of the predictions made by all players within a game and
the average size of the error of the group’s judgment (which we call the “average
global error”.)

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

# of cycles 2 2 2 2 2 2 2 2 2 2 2 2

event type binary | binary | binary binary binary binary real real real real real real
% independent 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) %) (20) @)

average individual

error 0.4703 | 0.4801 | 0.4899 | 0.4990 0.5000 0.5500 | 0.5000 | 0.7499 | 1.0005 | 4.9974 | 19.9979 | 0.3291

average global
group error

0.0000 | 0.0000 | 0.0186 | 0.4297 0.4943 1.0000 | 0.0050 | 0.0075 | 0.0102 | 0.0516 | 0.1904 | 0.2422

Table 1

Our simulations reflect the fact that the mean individual error rates of non-
imitators converge to their independent unreliabilities. We also observe (as pre-
dicted by the Condorcet Jury Theorem and the Law of Large Numbers) that
the average global group error (i.e., the mean group error over the 1000 rounds
considered for each simulation) for non-imitators is quite low, with some excep-
tions. In the binary case, setting individual unreliability, u, to be somewhat less
than 0.5 is sufficient to make it a practical certainty that the crowd is very wise.
On the other hand, setting u to be somewhat higher than 0.5 is sufficient to
ensure that the crowd is very unwise. In the real-valued case, even a modest
truth bias, such as u = 20 (i.e., the limiting mean absolute deviation for an
agent’s prediction from the true value is 20), is sufficient to achieve a relatively
low average global group error. An interesting comparison, in this case, is to
ignorant non-imitators who predict values selected via a uniform distribution on
the unit interval. Since the mean difference between two values selected via a
uniform distribution on the unit interval is 1/3, we see that the average indi-
vidual error converges to 1/3. The average group error converges to 1/4, since
average group prediction is 1/2, and the average distance between 1/2 and a
value selected via a uniform distribution on the unit interval is 1/4. This is an
instantiation of the effect of additive variance illustrated by the model of Krogh
and Vedelsby (and theorem 3), which assumes neither truth-bias nor indepen-
dence. It is perhaps surprising that the mean group error for non-imitators with
very low independent unreliability, such as u = 20, is less than that of ignorants
(who are not so ignorant inasmuch as their predictions fall within the same range
as the true values, namely [0, 1]). The result illustrates the remarkable effect
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of assuming that the predicted values for agents have a mean value identical to
the true value. Indeed, the present simulations provide a stochastic model of
the wise crowd effect, which is exhibited by the anecdotes of Galton (guessing
the weight of an ox), and Treynor (guessing the number of jelly beans), and by
various prediction markets.

We next consider populations composed wholly of bMIs, which replace the
independent predictors; so only the bMTI’s predictions and their success rates are
accessible to the members of the population. In comparison with populations
of non-imitators just considered, we may regard the data concerning these bMIs
as representing a counterfactual wherein the non-imitators had instead been
bMIs (i.e., a population of independent predictors with a fixed independent
unreliability, u, is replaced by a population of bMIs whose independent prediction
unreliability is also u). The results are presented in table 2.

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2

event type binary | binary | binary binary binary binary real real real real real real

% bMI 100 100 | 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) 1 %) (20) (i)

average individual

etror 0.4780 | 0.4767 | 0.4906 | 0.4959 0.5017 0.5664 | 0.4952 | 0.7436 | 1.0081 | 5.1173 | 19.9985 | 0.3379

average global

0.4768 | 0.4763 | 0.4895 | 0.4952 0.5009 | 0.5658 | 0.4947 | 0.7429 | 1.0071 | 5.1123 | 19.9784 | 0.3377
group error

Table 2

Within the described populations of bMIs, the average group error converges
to the average individual error. This occurs since one of the bMIs eventually
achieves a success rate higher than all of her peers, and thereafter all of the bMIs
imitate that bMI (since that imitation pattern is an equilibrium state). This
means that there is no wise crowd effect within any group composed wholly of
bMIs, and that the mean individual error of such groups converges more slowly
to the independent unreliability, u, of the group’s members, as compared to a
population of non-imitators. The fact that the average group error tends to be
slightly smaller than the mean individual error is due to a wise crowd effect
that occurs in the first round (in the binary case) or in the early rounds (in the
real-valued case), prior to the point at which a single bMI distinguishing herself
as the ‘most reliable’.

The absence of the wise crowd effect, in the present case, may be explained
as follows: If a bMI player plays very well in the early rounds of a prediction
game, sufficient to achieve a success rate higher than all of the bMIs for a single
round, then the other bMIs will imitate the predictions of that player from that
point on, regardless of how inaccurate the predictions of the player become.
So for the bMIs, minimal random fluctuations in the error rate of individual
group members are enough to deadlock the population in a trap where each bMI
imitates a single player. To address this problem we introduced a variety of bMI,
ebMI, who switches to a new favorite only if the success of the new favorite is
greater than that of the old favorite by at least €. However, this variation did
not significantly change our result, the disappearance of the wise crowd effect.
This is shown in the following tables:
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# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary | binary binary binary real real real real real real
% ebMI, £ =0.05 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) (5) (20) (i)

average individual
error

0.4733 | 0.4619 | 0.5004 | 0.5366 0.4896 0.5482 | 0.5042 | 0.7672 | 1.0419 | 5.1299 | 19.3489 | 0.3342

average global

0.4690 | 0.4600 | 0.4980 | 0.5380 0.4880 0.5500 | 0.5036 | 0.7664 | 1.0408 | 5.1246 | 19.3291 | 0.3340

group error
Table 3
# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary binary binary binary real real real real real real
% ebMI, £ =0.25 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0,499) | (0.4999) | (0.55) (0..5) (0.75) (1) ®) (20) (i)

ave‘a‘v’zr‘;‘i“"d"‘“l 04717 | 04766 | 0.4875 | 0.5085 | 04786 | 0.5595 | 0.5041 | 0.7587 | 1.0004 | 4.8509 | 19.9751 | 0.3337

average global
group error

0.4720 | 0.4660 | 0.4590 | 0.5140 0.4760 0.5730 | 0.3775 | 0.7124 | 0.9851 | 4.8457 | 19.9552 | 0.2702

Table 4

The explanation of this result for ebMIs is as follows: In each round, only one
of at most a small number of ebMIs will have maximal success rates, and each
individual ebMI player imitates one of those players, so again, the diversity of the
individual predictions made by the ebMIs will be extremely reduced (to one or
a few), whence averaging over these few predictions cannot produce a significant
wise crowd effect.

We next consider populations composed wholly of wMIs. The results are
presented in table 5.

# of rounds 1000 | 1000 | 1000 | 1000 1000 1000 | 1000 | 1000 | 1000 | 1000 | 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary binary binary binary real real real real real real
% wMI 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) | (0.5) | (0.75) 1) ©) (20) (i)
. Bverage 0.4620 | 0.4660 | 0.5030 | 05120 | 05120 | 0.9853 | 0.0149 | 0.0217 | 0.0287 | 0.1455 | 0.5832 | 0.2497
individual error
average global 04611 | 04646 | 05020 | 05120 | 05110 | 0.9991 | 0.0114 | 0.0167 | 0.0220 | 0.1131 | 0.4438 | 0.2494
group error

Table 5

Considering table 5, we notice some remarkable patterns that characterize groups
composed wholly of wMIs. In the case of binary prediction games (e.g., when the
task is to predict whether a given stock price will be up at the close of trading
on the following day), where the independent unreliability, u, of the wMIs is less
than 0.5, we observe no wise crowd effect. This is due to the fact that for binary
events wMIs predict according to the majority of attractive players. In these
cases, the populations of wMIs tend to reach an equilibrium state where a single
wMI is distinguished as the most reliable, while all of the less reliable wMIs have
identical reliability. These cases are in contrast to the binary case where u is
greater than 0.5. In that case, the wMIs did not stratify themselves as they did
in the cases where u was less than 0.5. Instead we observe a sort of ‘reverse wise
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crowd effect’, similar to the effect observed in the case of non-imitators (with
the additional effect of surging individual error rates).

In contrast to the binary case, the wMIs exhibit a wise crowd effect in the
case of real-valued event sequences (e.g., when the task is to predict the price of
a given stock at the close of trading on the following day), so long as the wMI
are not ignorants. The effect is slightly weaker than in the case of independent
predictors, since some diversity is lost through imitation. The reward for the
loss in average group success rate (in comparison to non-imitators) is a large
increase in average individual success rates.

Recall that all of the results presented here depend on our assumption that
the wise crowd prediction strategy (WC) is itself not accessible to the meta-
inductivists (whether bMIs or wMIs). In any case where this strategy is acces-
sible, meta-inductivists would start to imitate it, and thereby make individual
predictions that are as accurate as those of the wise crowd.

The scenarios investigated so far are unrealistic in assuming that all of the
predictors in the group are equally reliable. This unrealistic assumption is also
biased against meta-inductivists, whose forte consists in imitating the predictions
of those predictors whose predictions are the most accurate. In the next three
tables, we present data from simulations for groups in which meta-inductivists
replace independent strategies. These simulations differed from the simulations
describes in tables 1, 2, and 5, by including a subpopulation of highly reliable
independent predictors.

# of rounds 1000 | 1000 | 1000 | 1000 1000 1000 1000 | 1000 | 1000 | 1000 | 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary binary binary binary real real real real real real
% independent A 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) (0.47) | (048) | (0.49) | (0.499) | (0.4999) | (055) | (0.5) | (0.75) 1) ) (20) (i)
% independent B 10 10 10 10 10 10 10 10 10 10 10 10
(unreliability) o1 | ©1n | ©01 | (0.1 (0.1) ©on | ©on | ©on | on | ©n | ©n (0.1)
| average 04331 | 0.4419 | 0.4509 | 04591 | 04598 | 0.5051 | 0.4601 | 0.6851 | 0.9098 | 4.5104 | 18.0132 | 0.3087
individual error
average global | 5300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8620 | 0.0047 | 0.0071 | 0.0095 | 0.0483 | 0.1881 | 0.2236
group error

Table 7

Once again, we see that non-imitators have individual error rates that converge
to their independent unreliabilities. Thus we see only a small (but significant)
decrease in individual unreliability resulting from the inclusion of subpopulation
of very reliable independent predictors (u = 0.1). The crowd’s wisdom also
increases, but the effect is minimal.

The impact on the average individual error rate of players is much greater
when we replace the less reliable subgroup on non-imitators with bMIs or wMIs
(tables 8 and 9). The prediction strategy of the bMIs yields the result that
the individual error rates of the bMIs approximates the error rate, u = 0.1, of
members of the highly reliable subgroup. The bMIs also achieve lower group
error rates, in addition to lower individual error rates (as compared to non-
imitators), in the binary case where u is greater than 0.5, and in the real-valued
case where u is very high (20) or reflects the absence of a truth-bias (i).
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In the case where the less reliable subgroup is composed of wMIs, the average
group error rate is usually lower than that of the bMIs. This difference derives
from the fact that wMIs tend to imitate (via weighting) multiple players, thereby
by preserving greater diversity, which has a positive impact on accuracy in the
case where the imitated players are truth-biased. For similar reasons, wMIs
achieve lower individual error rates, in most cases.

rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary | binary binary binary real real real real real real
% bMI 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) 0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) | (0.5 | (0.75) ) 5) (20) @)
% independent B 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) ©1 | 01 | ©n | ©n (0.1) ©on | ©n | ©on | ©n | ©n | ©) (0.1)

average
individual error

0.0974 | 0.0908 | 0.1144 | 0.0991 0.1017 0.1063 | 0.0961 | 0.1041 | 0.1000 | 0.1065 | 0.1165 | 0.1016

average global
group error

0.0969 | 0.0890 | 0.1150 | 0.0980 0.1010 0.1070 | 0.0856 | 0.0934 | 0.0891 | 0.0921 [ 0.0895 0.0915

Table 8
# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary | binary binary binary real real real real real real
% wMIs 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) (5) (20) (i)
% independent B 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) o1 | ©o1n | ©01 | o1 (0.1) O | ©on | ©on | ©on | ©n | ©n (0.1)

average individual

error 0.0793 | 0.0711 | 0.0784 | 0.0775 0.0703 0.0775 | 0.0235 | 0.0303 | 0.0378 | 0.0966 | 0.2085 | 0.1554

average global

0.0758 | 0.0670 | 0.0750 | 0.0740 0.0659 0.0750 | 0.0101 | 0.0155 | 0.0212 | 0.0762 | 0.1694 | 0.1453
group error

Table 9

Finally, we see that applying imitate-the-best or weighted meta-induction results
in higher individual success rates (as compared to making independent predic-
tions), so long as we assume that the meta-inductivist has the opportunity to
imitate players whose independent reliability exceeds her own. We maintain that
this is a realistic assumption. Under the realistic assumption of heterogeneous
success rates, the application of meta-inductive prediction methods may also
achieve higher group success rates. This tends to occur when many of a group’s
members have independent reliabilities that are not truth-biased.

We can summarize the results so far by considering how groups composed of
the three types of players (non-imitators, bMIs, and wMIs) would perform on
an iterated prediction game. For purposes of illustration, we consider two cases:
(1) the players are predicting whether a given stock price will be up at the close
of trading on the following day (a binary-valued prediction), and (2) the players
are predicting what the price of a given stock will be at the close of trading on
the following day (a real-valued prediction). The performance of individual non-
imitators in either sort of prediction game isn’t very interesting: The individual
performance of such players (as measured by average error) precisely tracks
their individual unreliability. The group performance of such players is more
interesting: a small truth bias is sufficient to translate into group judgments
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that are extremely accurate. Unlike non-imitators, bMIs and wMIs track the
performance of other players and imitate the ones that seem to be doing well.
In the case of both binary-valued predictions (predictions about whether a given
stock price will be up) and real-valued predictions (predictions about what the
price of a given stock will be), bMIs gravitate to imitating the predictions a single
player. The individual accuracy of bMIs is thereby determined by the accuracy of
the group’s most reliable member. Similarly, if bMIs represent the vast majority
of a group’s members, then the accuracy of that group will be identical to the
accuracy of the group’s most reliable member, since all of the bMIs will imitate
that individual. Unlike an bMI, a wMI will imitate all (accessible) players that
are performing better than himself. This feature of wMIs serves to recapitulate
some of the diversity that is present in the independent predictions made by
individuals within groups whose membership is dominated by wMIs, save in the
case binary-valued predictions (e.g., predictions about whether a given stock
price will be up) among a population of wMIs with homogeneous independent
reliability. Outside of such cases, the tendency of wMIs to recapitulate the
diversity found in the independent predictions of group members yields a modest
wise crowd effect, along with reduced individual error rates, so long as there is
a truth bias in the independent predictions of the wMIs.

In the present section, we considered situations where players had the oppor-
tunity to monitor and imitate the predictions all of the members of the group.
In the following section, we consider a more realistic species of situation where
the opportunity to monitor other players is limited.

7. The Meta-Inductivist in the Crowd with Restricted
Accessibility

In the present section, we illustrate the effect of including meta-inductivists in
a crowd, in cases where access to the predictions and success rates of agents is
limited to other agents in their Moorean-neighbourhood. Within these scenarios
we consider peer imitation, in addition to the prediction methods considered in
section 6. We did not run additional simulations with non-imitators, since the
performance of these players is invariant when accessibility is restricted, since
these players never imitate other players.

In all of the simulations considered in this section, we set the maximum
number of update cycles for each round to ten. This means, in effect, that
information about the predictions and success-rates of one agent can travel nine
cells, at most, to reach another agent. To understand why this is the case,
consider figure 1, in which a single perfectly reliable expert is surrounded by
perfectly unreliable bMIs. In the first cycle of the first round, the expert in
the center makes a perfect prediction (with maximal score 1) and the bMIs
surrounding make him a fully imperfect prediction (with score, s, less than 1). In
the next cycle nothing changes, so round 1 immediately converges to equilibrium.
The first cycle of the second round begins as before. But in the second cycle of the
second round the expert will have a slightly higher success rate than the bMIs,
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so the bMIs in the first neighborhood layer will imitate the expert’s prediction of
the first cycle. In the third cycle of the 2nd round nothing further changes. In the
third round, the first-layer of bMIs around the expert have an increased success-
rate (compared to the bMIs more distant from the expert), and so, the bMIs
in the 2nd neighborhood layer imitate the bMIs in the 1st neighborhood layer,
whence in the 3rd cycle of the 3rd round, the expert’s prediction is imitated by
the bMIs in the 2nd neighborhood layer (etc.). In conclusion, it takes n rounds
with n cycles for an experts’ prediction to spread to n — 1 iterated layers of a
neighborhood.

g88888 g88288 PPPPPDP
g8288 EPPPE PPPPP
gegpee EPPPE PPPPP
g8g288g EPPPE PPPPP
gg8g8EE g88EE8 PPPPP
1st round 1st cycle 2nd round 2nd cycle 3rd round 3rd cycle
2nd round 1st cycle 3rd round 2nd cycle etc.

3rd round 1st cycle etc.

etc.

Figure 1: Spread of an expert prediction through cycles and rounds. Center
cell = expert, p = the expert’s prediction, neighboring cells = initially ignorant
bMIs, g = bMI’s predictions.

The propagation of predictive success by local meta-induction in social networks
in which the accessibility is restricted to Moore-neighborhoods, and the advan-
tage of local meta-induction over success-independent social learning methods
such as peer-imitation or authority-imitation, has been investigated in detail in
Schurz (2012b). In that paper, wise crowd effects were not studied; it was rather
assumed that laymen were ignorants (and not truth-biased), so the wise crowd
effect could not arise. In this section, we study the wise crowd effect under the
condition that social learning methods are restricted, due to limitations in what
other players are accessible.

The results of our simulations for populations composed wholly of peer-
imitators, bMIs, and wMIs are described in tables 10, 11, and 12, below. In
addition to presenting the mean group error rate for these simulations (reflect-
ing the judgment of the crowd as a whole), we now include data concerning
the mean error rate of individual Moorean-neighborhoods (reflecting the ‘group
judgments’ of individual Moorean-neighborhoods). We here use the expression
‘average local group error’ to denote the mean error rate of individual Moorean-
neighborhoods. For all simulations, we estimated the value of the average lo-
cal group error rate by randomly sampling ten Moorean-neighborhoods in each
round of each simulation, and compiling for each sampled neighborhood, N, the
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average distance from the true event value from the average of values predicted
by the members of N (with rounding in the binary case).

Peer imitation is a very simple imitative prediction method. The method does
not consider the success rates of its neighbors, but proceeds as if the predictions
of each neighbor is equally credible. The strategy inherent in peer-imitation
has some connection to the wise crowd phenomena inasmuch as the judgment
strategy of peer imitation is similar to the procedure of treating the unweighted
average judgments of a group’s members as the group’s judgment. Moreover, in
the case where a peer-imitator has access to the judgments of all members of a
group, her judgments will be identical to the judgment of the group. The added
effect of peer-imitation over non-imitation, in the latter case of universal access,
is that accurate (or inaccurate) judgments on the part of the group translates into
accurate (or inaccurate) judgments on the part of the peer-imitator. In cases
where access is limited (as described in table 10) the connection between the
accuracy of the group and the accuracy of the peer-imitator is weakened, but we
still observe a tendency of peer-imitators to emulate the judgment of the group,
resulting in improved individual accuracy in cases where the group’s accuracy is
high, and poor individual accuracy when the group’s accuracy is poor. We also
see that peer-imitation has a small effect in decreasing the diversity of the group,
and thereby on the accuracy of the judgments of the group (compared to non-
imitation), in cases where the predicted events are binary (e.g., predictions about
whether a given stock price will be up) and there is a truth-bias in individual
judgment.

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary binary binary binary real real real real real real
% Peer Imitator 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) 5) (20) (i)

average individual

error 0.3599 | 0.4034 | 0.4529 | 0.4952 0.4998 0.7271 | 0.0590 | 0.0885 | 0.1183 | 0.5905 | 2.3659 | 0.2521

average global 4 4000 | 0,0010 | 0.0700 | 04340 | 04930 | 1.0000 | 0.0050 | 0.0073 | 0.0101 | 0.0493 | 0.2026 | 0.2510

group error
average local 03499 | 03995 | 0.4474 | 0491 | 04914 | 0.7338 | 0.0560 | 0.0829 | 0.1110 | 0.5525 | 2.2152 | 0.2516
group error
Table 10
# of rounds 1000 | 1000 | 1000 | 1000 1000 1000 | 1000 | 1000 | 1000 | 1000 | 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary | binary binary binary real real real real real real
% bMI 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) 047) | (048) | (0.49) | (0.499) | (0.4999) | (0.55 | (0.5) | (0.75) 0 ) (20) (i)

average individual

error 0.4708 | 0.4797 | 0.4884 | 0.4978 0.5014 0.5492 | 0.4990 | 0.7505 | 1.0110 | 3.8788 | 14.1567 | 0.3351

average global

0.2570 | 0.3267 | 0.4162 | 0.4710 0.5160 | 0.8320 | 0.0578 | 0.0798 | 0.1130 | 0.5746 | 1.6877 | 0.2548
group error

average local group

error 0.4793 | 0.4798 | 0.4968 | 0.4963 0.5014 0.5485 | 0.43838 | 0.6618 | 0.8742 | 3.3768 | 12.5065 | 0.3212

Table 11
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# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary | binary binary binary real real real real real real
% wMI 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) (5) (20) (i)

average individual
error

0.4665 | 0.4821 | 0.4880 | 0.4979 0.5005 0.5501 | 0.4268 | 0.6380 | 0.8470 | 4.2110 | 16.9375 | 0.3116

average global
group error

0.2630 | 0.3760 | 0.4220 | 0.4850 0.4800 | 0.8350 | 0.0437 | 0.0637 | 0.0813 | 0.4149 | 1.6728 | 0.2509

average local group
error

0.4712 | 0.4840 | 0.4904 | 0.4979 0.4977 0.5482 | 03906 | 0.5812 | 0.7855 | 3.8140 | 15.5949 | 0.3088

Table 12

In cases where the independent unreliability, u, of all players is identical (such
as described in tables 10, 11, and 12), peer-imitators perform at least is well as
bMIs and wMIs with respect to individual and group success rates, so long as u
is truth-biased. In other words, in the case of homogeneous populations, peer-
imitators will be at least as accurate as bMIs and wMIs at predicting whether
a given stock price will be up at the close of trading on the following day (a
binary-valued prediction), and at predicting what the price of a given stock will
be at the close of trading on the following day (a real-valued prediction), so
long as the individual reliability of the group’s members is truth-biased. The
situation is somewhat different in the case where the bMIs and wMIs have the
opportunity to imitate players with higher independent reliabilities. Simulations
of such situations are described in the following tables:

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary binary binary binary real real real real real real
% peer imitator 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) (5) (20) (i)
% independent 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) o1 | ©on | 01 | o1 (0.1) ©on | ©on | ©on | ©n | ©on | o1 (0.1)

average individual
error

0.1660 | 0.1881 | 0.2225 | 0.2478 0.2599 | 0.4117 | 0.0508 | 0.0637 | 0.0783 | 0.3257 | 1.2435 | 0.1318

average global
group error

0.0000 | 0.0000 | 0.0000 [ 0.0000 0.0000 | 0.0000 | 0.0032 | 0.0042 | 0.0055 | 0.0258 | 0.1038 | 0.1182

average local 0.1540 | 0.1783 | 0.2151 | 0.2311 | 02611 | 0.4128 | 0.0425 | 0.0553 | 0.0683 | 0.2966 | 1.1413 | 0.1225

group error
Table 16

rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary binary binary binary real real real real real real
% bMIs 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) Q) (20) (i)
% independent 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) 0.1) 0.1) 0.1) 0.1) 0.1) 0.1) 0.1) 0.1) 0.1) 0.1) (0.1) 0.1)

*“’e”geer‘r’;dr““d“a' 0.1019 | 0.1021 | 0.1030 | 0.1024 | 0.1018 | 0.1030 | 0.1008 | 0.1010 | 0.1017 | 0.1067 | 0.1255 | 0.1008

average global
group error

0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0010 | 0.0059 | 0.0058 | 0.0051 | 0.0045 | 0.0052 | 0.0067

average local
group error

0.0844 | 0.0878 | 0.0932 | 0.0886 0.0867 0.0872 | 0.0755 | 0.0758 | 0.0756 | 0.0791 | 0.0927 | 0.0760

Table 17
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# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary binary binary binary real real real real real real
% wMIs 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) 047) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) | (0.5) | (0.75) ) 5) (20) (i)
% independent 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) ©1 | o | ©01n | oD (0.1) ©on | ©on | ©on | ©n | ©n | ©n 0.1)

average individual
error

0.0969 | 0.0973 | 0.0980 [ 0.0983 0.0973 0.0976 | 0.0977 | 0.0993 | 0.1006 | 0.1153 | 0.1257 | 0.0988

average global

0.0000 | 0.0000 | 0.0000 [ 0.0000 0.0000 0.0010 | 0.0093 | 0.0094 | 0.0090 | 0.0096 | 0.0123 0.0224
group error

average local

0.0850 | 0.0832 | 0.0835 | 0.0872 0.0899 | 0.0909 | 0.0816 | 0.0832 | 0.0824 | 0.0930 | 0.0947 | 0.0839
group error

Table 18

In the cases described in tables 16, 17, and 18, where we include a minority
subpopulation of highly reliable independent predictors, we observe that the
performance of bMIs and wMIs exceeds that of peer-imitators in most situa-
tions. Peer-imitators performed better than meta-inductivists only in the case
of predicting real-valued events (e.g., predicting the price of a given stock at the
close of trading on the following day), where the truth bias of the predictions of
the imitator majority was quite strong.

8. Cautious Weighted Meta-Induction: The Best of
Both Worlds?

The data generated by our simulations illustrate that a group containing bMIs or
wMIs, in the place of non-imitators, normally produces lower average individual
error rates. There are, however, many situations where a group containing bMIs
or wMIs, in place of non-imitators, generates higher group error rates. We also
observed that, in select cases, peer imitators of comparable unreliability can
achieve lower average individual error rates and lower average group error rates.
This pattern is clearest when we compare a population composed wholly of
truth-biased peer imitators with independent unreliability, u, with a population
of bMIs with identical independent unreliability. In this case, the bMIs will
imitate other bMIs whose independent unreliability is no less than their own,
resulting in no decrease in individual unreliability but a precipitous decrease in
diversity. The same effect occurs with wMIs, but to a lesser extent. One obvious
modification of weighted meta-induction that would improve its performance in
a variety of cases would be to increase the range of players to which the wMI
assigns weight in determining her predictions.

Call a player a ‘cautious weighted meta-inductivist’, if she assigns weight to
each accessible player provided, roughly, that it is ‘not likely’ that that player is
less reliable than the cautious weighted meta-inductivist. There are several ways
to make precise what not likely amounts to in the present context. Schematically
we want a cautious weighted meta-inductivist to assign weight to another player’s
prediction provided that player’s score is at least s.—f(n), where s, is the relevant
cautious weighted meta-inductivist’s success rate, n is the round number, and f
is a function, such that f(n) goes to zero as n goes to infinity. (The attractivity of
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an accessible player P would similarly be redefined as: at,,(P) = suc, (P)+f(n)
— suc, (wMI), provided suc, (P) > suc,(wMI)-f(n), otherwise at,,(P) = 0.) For
the sake of simplicity, we assume that f(n) = 1/(logz(n)-3). This assumption
is somewhat arbitrary, but delivers the reasonable result that f(2) = 1/3, f(10)
~ 0.10, f(100) ~ 0.05, and f(1000) =~ 0.03. We denote this species of meta-
induction “w.MI”, and note that under the conditions described in Theorem 2
(above), suc, (w.MI) approximates the maximal success rate of non-MI-players
as n approaches co. Under a broad range of conditions, w.MIs also achieves
better individual performance than non-imitating players and peer imitators,
while at the same time contributing to high group scores. The following tables
summarizes some simulations that we ran (which bear out the preceding claims).

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 2 2 2 2 2 2 2 2 2 2 2 2

event type binary | binary | binary binary binary binary real real real real real real

% wMI 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) (1) ®) (20) (i)

average individual

error 0.0005 | 0.0005 | 0.0240 | 0.4040 0.4955 0.9996 | 0.0056 | 0.0084 | 0.0109 | 0.0598 | 0.2412 | 0.2507

average global

0.0000 | 0.0000 | 0.0240 | 0.4040 0.4900 1.0000 | 0.0051 | 0.0076 | 0.0099 | 0.0545 | 0.2194 | 0.2506
group error

Table 19

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

# of cycles 2 2 2 2 2 2 2 2 2 2 2 2
event type binary | binary | binary | binary binary binary real real real real real real

% W MI 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) 047) | (048) | (0.49) | (0.499) | (0.4999) | (©.55) | ©3) | ©75 | (1) ) (20) @)
% independent B 10 10 10 10 10 10 10 10 10 10 10 10
(unreliability) ©on | ©on | ©n | ©n 0.1 on | on | ©n | ©on | on | on | on

average individual

error 0.0105 | 0.0104 | 0.0271 | 0.0793 0.0793 0.1092 | 0.0152 | 0.0177 | 0.0205 | 0.0628 | 0.1951 | 0.1546

average global | 5500 | 0.0000 | 0.0180 | 0.0760 | 0.0760 | 0.1250 | 0.0048 | 0.0071 | 0.0096 | 0.0482 | 0.1622 | 0.1445

group error
Table 20
# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary | binary binary binary real real real real real real
% weMI 100 100 100 100 100 100 100 100 100 100 100 100
(unreliability) (0.47) (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) (0.5) (0.75) 1 %) (20) (i)

average individual

error 0.3702 | 0.4163 | 0.4570 | 0.4950 0.5006 0.6431 | 0.0597 | 0.0901 | 0.1212 | 0.6867 | 3.8292 | 0.2528

average group

error 0.0020 | 0.0140 | 0.0800 | 0.4490 0.5080 0.9950 | 0.0051 | 0.0078 | 0.0102 [ 0.0593 | 0.3416 | 0.2516

average local

0.3559 | 0.4139 | 0.4558 | 0.4966 0.4987 0.6499 | 0.0560 | 0.0849 | 0.1127 | 0.6440 | 3.5151 0.2530
group error

Table 21

Comparing the performance of w.MIs to that of wMIs, we see that w.MIs ap-
proximate the success rates of wMIs, in those cases where the performance of
weighted meta-induction is the best (i.e., cases where the group contains a sub-
population of highly reliable independent players). When accessibility is univer-
sal, w.MIs approximate success rates of non-imitators, in those cases where the
performance of non-imitation is the best (i.e., cases where the group does not
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contain a sub-population of highly reliable independent players). When acces-
sibility is restricted, w.MIs approximate the success rates of peer-imitation, in
those cases where the performance of peer-imitation is the best (i.e., cases where
the group does not contain a sub-population of highly reliable independent play-
ers).

# of rounds 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# of cycles 10 10 10 10 10 10 10 10 10 10 10 10
event type binary | binary | binary | binary binary binary real real real real real real
% wWMI 90 90 90 90 90 90 90 90 90 90 90 90
(unreliability) 0.47) | (0.48) | (0.49) | (0.499) | (0.4999) | (0.55) | (0.5 | (0.75) ) 5) (20) (i)
% independent 10 10 10 10 10 10 10 10 10 10 10 10

(unreliability) ©on | ©n | ©n | ©n (©0.1) ©.1) ©.1) (0.1) ©on | ©n | ©n 0.1

average individual
error

0.1100 | 0.1128 | 0.1160 | 0.1198 0.1171 0.1290 | 0.0660 | 0.0797 | 0.0880 | 0.1312 | 0.1720 | 0.1045

average group error | 0.0000 | 0.0000 | 0.0000 [ 0.0000 0.0000 0.0010 | 0.0045 | 0.0058 | 0.0064 | 0.0090 | 0.0108 | 0.0890

average local 0.0947 |0.0991 | 0.1034 | 0.1064 | 0.1077 | 0.1194 | 0.0546 | 0.0668 | 0.0752 | 0.1109 | 0.1413 | 0.0956

group error
Table 22

The simulations just described characterize the performance of w.MIs. The
feature of a w.MI that distinguishes her from a wMIs is her tendency to attach
some credence to the judgment of every agent who has not distinguished himself
as being obviously less reliable than the w.MI. This feature of w.MIs inhibits the
tendency of meta-inductive prediction strategies to eliminate diversity within
the judgments of a group’s members (and thereby the wisdom of the group)
without the benefit of a compensating increase in the reliability of the meta-
inductivist. Note that the good performance of w.MIs is independent of the
kind of predictions considered, whether binary-valued (e.g., predicting whether a
given stock price will be up on the following day), or real-valued (e.g., predicting
what the price of a given stock will be at the close of trading on the following
day).

Despite being an attractive prediction method, there are some conditions
under which w.MI fails to perform as well as non-imitating players and peer
imitators in making a contribution to the accuracy of a group. This will oc-
cur when a group of truth-biased w.MIs with independent unreliability, u, find
themselves within a population that contains a small number of truth-biased
agents with independent unreliability, s, where s is somewhat greater than u.

9. Conclusion

Much recent formal and empirical work on the Wisdom of Crowds has extolled
the virtue of independent and diverse judgment as essential to the maintenance of
‘wise crowds’. In contrast, recent work by Schurz demonstrates the optimality
of meta-induction as a method for predicting unknown events and quantities.
Inasmuch as meta-induction is an imitative prediction method whose application
reduces diversity among the predictions of a group, the application of meta-
induction may have a negative effect on the accuracy of the average of a crowd’s
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judgment, in cases where the average of the crowd’s judgment is not accessible
to any of the individual members of the crowd.

Both diversity and individual accuracy contribute to the accuracy of a crowd’s
judgment, and decreases in diversity as a result of meta-induction can result
in simultaneous increases in average individual accuracy and in the accuracy
of the crowd’s judgment. To pursue the issue further, we simulated a variety
of situations, and observed the costs and benefits of applying meta-inductive
predictive methods. In all of the simulations that we ran, we implemented
the assumption that the accuracy of the independent judgments of each player
was stochastically independent of the accuracy of the other players’ judgments.
This assumption is quite unrealistic, and is favorable to the performance of non-
imitation in the generation of accurate group judgments, and to the performance
of peer-imitation in the generation of accurate individual and group judgments.

In the case of a group whose members have identical independent reliabilities
(and the discussed stochastic independence assumption is made), non-imitation
is best at producing a wise crowd, though cautious weighted meta-inductivists
are approximately as good. Even in a group whose members have identical
independent unreliabilities, meta-inductive prediction methods, such as weighted
meta-induction and cautious weighted meta-induction, generate lower individual
error rates, since such meta-inductivists tend to predict an average of the values
predicted by at least some of their peers (and thereby harness the wise crowd
effect).

In the case of groups containing agents with varied independent unrelia-
bilities, all meta-inductive methods are highly useful to the individual. From
the crowd’s view, imitate-the-best meta-induction is the least attractive meta-
inductive method, since it does not harness any form of wise crowd effect.
Weighted meta-induction and cautious weighted meta-induction do harness such
an effect, and thereby generate lower individual and groups error rates, in
some cases. Across the range of cases that we considered, cautious weighted
meta-induction reigns supreme. This method simultaneously approximates the
strengths of non-imitation, peer-imitation, and weighted meta-induction.
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