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Abstract. We describe a prototype ontology-driven information system (ODIS) that exploits what we 

call Portion of Reality (POR) representations. The system takes both sensor data and natural language 

text as inputs and composes on this basis logically structured POR assertions. The goal of our prototype 

is to represent both natural language and sensor data within a single framework that, in addition to 

axiomatic reasoning, directly supports computations and is capable of discovering and representing 

new kinds of situations and thematic roles, (e.g., roles such as agent, patient and instrument), based on 

new compositions of existing representations. We applied our prototype in an intelligence analysis use 

case to test the hypothesis that a framework of this sort can produce usefully structured information 

from combined natural language and sensor data inputs. We further tested our hypothesis by adding an 

enhanced US Air Force ontology framework to our ODIS in order to (1) process a collection of sensor 

data, intel reports, and mission plans; (2) build composite POR representations from these data; and (3) 

machine analyze the fused results to infer mission threats. 

Keywords: Ontology-driven information system (ODIS), data fusion, sensor data, natural language 

understanding, intelligence analysis, Basic Formal Ontology (BFO) 

1. Introduction 

To address information-intensive tasks such as the dynamic re-planning of a military 

mission or the on-going assessment of threats to the operations of a large corporation we need 

to be able to (1) make sense of incoming data, whether in the form of sensor feeds, database 

records, or natural language texts; (2) reconcile these data with stored knowledge; and (3) 

respond accordingly.  

Ontologies are increasingly leveraged for all of these tasks. Current systems typically match 

text elements (for instance, nouns and verbs) with ontology terms and relations. Increasingly, 

such systems involve the use of suites of ontology modules linked together through a top-level 

ontology such as BFO (Arp, Smith, and Spear, 2015), DOLCE (Gangemi, et al., 2002), or 

SUMO (Niles and Pease, 2001). Here, reflecting requirements flowing from the Air Force 

ontology framework within which this work is being carried out, we focus on ontologies 

conformant to Basic Formal Ontology.   

Ontology-Driven Information System (ODIS) applications of relevance here start by 

mapping strings as they appear in texts to terms as they appear in ontologies. The system then 

processes the results of such mappings in actions such as routing alerts to appropriate analysts. 
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By drawing on the contents of ontologies built for this purpose, such systems produce 

relatively simple descriptions of entities by interpreting simple sentences or sentence 

fragments extracted from more complex text (Schoening et al., 2015). Thus far, however, there 

are no ontology-based information systems that can produce the sorts of descriptions that 

would represent the world as interpreted by humans on the basis of complex sentences. And, 

a fortiori, there are no such systems that are able to reason over combinations of text inputs 

with the sorts of quantitative data provided by sensors. 
It was in the spirit of extending BFO-conformant ontologies beyond the single term focus 

in order to enable treatment of whole sentences that the term ‘portion of reality (POR)’ was 

coined.1  As defined by Ceusters and Smith (2015), ‘POR’ denotes anything that exists, 

whether simple or complex, tangible or intangible, universal or particular; including more or 

less complex combinations of all of these. This includes, most importantly for our purposes 

here, the sorts of combinations – sometimes called ‘facts’ or ‘states of affairs’ – to which 

simple and complex true empirical sentences correspond, including sentences expressing 

quantitative data. Representations, in whatever form they take, are at best descriptions of 

certain parts or aspects of a POR.  

For the building of an ODIS whose goal is to be able to compose (and then reason with) 

these more complex representations of PORs, we wish to use the top level of a BFO-

conformant ontology (i.e., the level comprising the children of the root term ‘entity’ or 

‘thing’2) to supply a collection of ontological dimensions that, for the ODIS at least, are 

common to all POR representations. Doing so allows us to take a combinatoric approach to 

building an ODIS that relies solely on iteration, recursion and specialization operators for the 

composition of new POR representations from those that already exist.  

 

1.1. Motivating goal 

Our goal is to extend BFO conformant ontologies to the portions of reality represented by 

natural language sentences and other more complex expressions. To illustrate the challenges 

of composing these more complex representations, consider the following two sentences, both 

of which are composed almost exclusively of BFO terms (italicized) and relational 

expressions.   

 
1. Some particular independent continuant that is bearer of some specifically dependent 

continuant is bearer of a particular role in an occurrent whose terminal process 
boundary occurred at a particular temporal instant.  

2. Some particular role with some zero-dimensional continuant fiat boundary is realized 
in a certain relational quality in a one-dimensional temporal region.   

                                                      
1 Ceusters and Smith (2015) use the machinery of PORs to solve the problem of how two sentences, for 

example “Trump is President of the United States” and “Trump is President of Russia” can differ in their truth 

value even though both are made of constituent elements that refer to entities in reality. See also Smith, 

Kusnierczyk, Schober, and Ceusters (2006) and Ceusters and Manzoor (2010).  
2 In Basic Formal Ontology this level comprises Continuant and Occurrent. In the BFO-conformant ontology 

we used for our project, there are four dimensions covering time, space, object and process.  Our model ontology 

specializes and allows recombinations of these four dimensions in order to facilitate the machine composition of 

POR representations. The ontology and its grounding in computable representations that allows for computing with 

POR representations is described later in this paper.       
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Sentence 1. is a valid composition of BFO terms because, with an appropriate substitution 

of specific terms for BFO classes (for example, ‘car’ for ‘independent continuant’), the 

sentence could represent a POR (for example, a red car participating in a race). The same 

cannot be said for sentence 2. There is no substitution of specific terms for BFO classes that 

would make this sentence represent any kind of POR. This is because BFO roles are not 

realized by qualities.  

The specification of the ways in which different ontological terms can be combined to form 

representations of PORs (e.g., a process boundary must occupy a temporal instant, a role 

cannot be realized by a relational quality) may be called an ontological grammar. Grammars 

can be more or less complex depending on the regularity of the rules by which representations 

of ontology classes may be combined. The fewer the rules and the fewer the classes, the 

simpler the grammar.  

In this paper, we describe an ontological grammar we developed for use by a machine to 

combine representations of entities of all kinds into meaningful structured assertions about 

PORs. The goal is to interpret text and sensor data in a way that will, for example, allow 

immediate comparison of incoming messages with assertions already interpreted at earlier 

stages some of which may have come directly from sensors.  

As part of that effort, we created a compact BFO-conformant ontology for the purpose of 

facilitating the machine composition of assertions about PORs relevant to our application 

domain. Our model ontology has four principal ontological classes: Time, Space, Object, and 

Process, each of which comprehends more specialized ontology subclasses at multiple levels 

of granularity and generality.3 Important among these are units of measure classes such as Day 

or Kilometer, which are subclasses of Time and Space, respectively. The principal ontological 

classes may not only be subclassed but also combined into composite classes, which may be 

subclassed in their turn. For example, Speed is a sub-class of a composite of Space and Time. 

Attribute classes such as Mass, Color, and Texture are likewise built into the ontology as 

subclasses of composites of the four principal classes.  

In addition to the four principal classes in the model ontology we also assert a fifth class 

comprehending what we call ‘computing dimensions’. This comprises as subclasses 

mathematically computable dimensions such as Boolean, Categorical, Integer, Rational, 

Array, and Graph. Each simple and composite subclass under the principal ontological classes 

is then implemented by means of some computing dimension or combination thereof – for 

example Time may be implemented as a Rational, Speed as the ratio of two integers. An 

ontological Date-Time dimension that includes a (1) year, (2) day-of-year, (3) hour-of-day 

and (4) minute-of-hour may be represented for computing purposes by combining four 

integers. Thus the computational properties (or semantics) for all ontological classes (and their 

subclasses and composites) are determined by the computing dimensions in terms of which 

they are implemented.    

The PORs within the scope of our application are represented by assertions formed by some 

combination of terms corresponding to each of the principal classes of the model ontology. In 

other words, every POR is assumed to have some temporal aspect, some spatial aspect, some 

object aspect, and some process aspect.  

Our system recognizes assertions about the relations between classes, called ‘POR class 

assertions’. Examples are: ‘jet fighter is_a plane’ and ‘jet fighter dodging surface-to-air fire is 

                                                      
3 A mapping from our model ontology to BFO may be found at this URL: https://bit.ly/2Ecv2Cc   

https://bit.ly/2Ecv2Cc
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a plane evading anti-aircraft fire’. In addition, the system recognizes what we call ‘POR 

instance assertions’, which are instance-level counterparts of POR class assertions.4 Consider: 

 

1.  the maximum strike distance of Argonaut Class surface-to-air missiles is 5 vertical 

miles  

2. a fighter jet was shot down yesterday at an altitude of 8 miles by an Argonaut Class 

surface-to-air missile 

 

Here the information represented in POR class assertion 1. conflicts with observational 

information expressed as POR instance assertion 2. When our system encounters such a 

conflict it is forced to attempt some reconciliation. This may involve discovering information, 

for example, to the effect that the plane was flying lower than stated, or that the surface-to-air 

missile was of a different class, or that the maximum range of the class X surface-to-air 

missiles was, in fact, greater than had been assumed, and so on. As one of our goals is to 

recognize when current reality diverges from what prior knowledge deemed most likely, a 

minimal requirement for our system is that it is able to compare POR class assertions with 

POR instance assertions.  

Given that each ontological class is associated with one or more appropriate computing 

dimension, the associated operators and compositional rules can be applied also to the 

ontological classes. Thus, for example, the ability to specify temporal relations such as before 

and after between temporal instances of a temporal unit subclass of the Time class is inherited 

from the ability to specify numeric relations between the instances of a computing dimension 

such as integer. The grounding of all ontological classes and expressions in terms of 

computing dimensions and expressions also allows compositions of ontological terms into 

POR assertions to be carried out by the computer without further effort.  

1.2. Motivating scenario 

Air Force mission planning occurs on a recurring cycle known as the Air Tasking Order 

(ATO) cycle (US Air Force, 2016).
5
 The information systems that support the ATO cycle 

allow periodic bulk updates to reflect new information coming into the system from the 

outside. Among the many tasks required to maintain the relevance and viability of the overall 

mission plan is the ongoing review of intel reports to identify information that could impact 

mission success. Ideally, intel reports would be interpreted and reasoned over in near real time, 

with inference results implying a threat to a planned mission being sent to the appropriate 

mission planners for immediate inclusion in updated mission plans. Currently, however, there 

are simply too many generated reports to allow rapid processing by human analysts. For this 

reason, the Air Force has been exploring the value of using an ODIS to speed up information 

extraction, interpretation, and reasoning processes.  

The functioning of such a system involves the use of standing searches such as:  

 
Select all sentences in intel reports containing references to 

                                                      
4 The difference between POR class and instance assertions is not always relevant.  This is the case, for example, 

in descriptions of ontological grammar, as such descriptions apply equally across class and instance assertions; in 

such cases we use the more general term ‘POR assertion’. 
5  A link to the ATO cycle can be found at http://www.dtic.mil/dtic/tr/fulltext/u2/a451239.pdf  

http://www.dtic.mil/dtic/tr/fulltext/u2/a451239.pdf
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• instances of continuant classes C1,  … , Cn standing in the located_in relation to one or more instances of geospatial 

location classes referenced in the current mission plan 

• instances of occurrent classes O1,  … , On standing in has_participant relation to one or more instances of continuant 

classes identified in search 1 

 

where ‘continuant classes’ refers for example to persons, vehicles, and aggregates thereof, and 

‘occurrent classes’ to movements of troops, weapons, and so forth.  

To illustrate the level of reasoning that is supported by such ontology-driven term extraction, 

consider the following simple text fragments, where ‘IR’ denotes an Intel Report and ‘MP’ 

denotes a Mission Planning report:  
 

• IR 1: Seven anti-aircraft missiles seen yesterday transported towards Raqqa 

• IR 2: Though verified not operational, SAM launchers seen near de facto ISIS capital 

• IR 3: Having left Airbase Bravo at 0500, special forces last seen approaching Raqqa en route to disabling Raqqa SAM 

launchers 

• IR 4: Hyperspectral analysis shows ISIS fighters hiding in tunnels below the streets and in water tanks on the roofs 

• IR 5: Village sentiment no longer on the rise as militants infiltrate tribal leadership  

• MP 1 Start time 0500. Send special forces to disable SAMs near Raqqa 

• MP 2 Start time 1600. Send squadron to attack ISIS positions near Raqqa 

 

The goal of analysis is then to extract from the IRs all information from which it could be inferred that 

the success of the missions described in the MPs is at risk.  

For MP 1 and 2 the following standing searches might be used by an ODIS to extract the sorts of 

key information items that need to be routed to appropriate analysts: 

Search 1: Select all reports that contain  

• Raqqa AND (SAM OR anti-aircraft missile)  

• and route them to air operations planners 
 

Search 2: Select all reports that contain  

• ISIS fighters OR fighting OR resistance  

• and route them to ground operations planners 

Use of such search strategies brings immediate benefits. For example, it provides an easily 

extendible set of terms, enhanced through synonymy, parent-child and other relations, which 

can be used for the consistent indexing of very large bodies of IR content in a way that allows 

rapid discovery of salient data (Smith et al., 2012). By allowing the proper selection of search 

terms and their Boolean combinations, it can support filtering out of what are likely to be 

irrelevant reports (for example, search 1 ignores IRs 4 and 5) and thereby present human 

analysts with smaller piles of potentially relevant reports to sift through.  

1.3. Shortfalls of existing ontology-based approaches 

Current ODIS software leverages ontologies to identify relevant entities and relations and 

distribute associated intel reports to analysts. Unfortunately, existing ontology-driven 

approaches have a difficult time moving beyond such entity- and relation-based processing to 

support the sorts of inferencing required to alert mission planners about the need to re-plan 

missions in real time based on the kind of criteria that are in fact used by human analysts. 

These criteria work not just at the level of single entities, and single search terms, but also at 

the higher levels of PORs. A human analyst, for example, would recognize that IR 2 is_about 

the same portion of reality as IR 1, a portion of reality involving Raqqa and its relation to ISIS 
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in virtue of its role as the de facto ISIS capital. More generally, human analysts know how to 

go back and forth between names of the instances existing in their respective domains of 

expertise and descriptions of these instances linking them to background information.  

A human analyst would recognize that IR 2 provides more detailed and more credible 

information than IR 1 about some POR – in this case about the status of certain observable 

SAMs. (IR 1 only asserts the presence of SAMs; IR 2 asserts their operational status.) For this 

capability to be replicated in the ODIS, differences in level of detail (and thus in relative 

believability) of assertions about a given POR need to be accounted for. Human analysts 

would also recognize that if certain PORs are logged – for example, that (a) the SAMS near 

Raqqa are not operational, or (b) a makeshift hospital is near the target – then certain other 

PORs follow: for example, (a) that there is no need to disable the SAMS and therefore no need 

to continue with MP 1, or (b) that the mission needs to be re-assessed to avoid unintended 

civilian casualties. Human analysts would need further to be able to generate warnings where 

there is a temporal dependency between PORs that is relevant to mission success, for example 

to infer that a mission to send a squadron to attack ISIS positions near Raqqa (MP 2) should 

be realized only when (but as soon as possible after) the SAM threat is neutralized (MP 1). 

To replicate such reasoning, ontologies would need to be held in the ODIS representing for 

example the structures of plans and the different ways in which plans may be modified or 

aborted. The ODIS would also need to be able to extract not just terms and relational 

expressions from report data but also compose these into POR instance assertions referring to 

complex PORs, assertions that combine sensor data and the contents of planning documents 

with times, locations, phases of mission execution, and observed outcomes on the side of 

reality. 

Imagine, therefore, a POR instance assertion representing the portion of reality in Raqqa on 

a specific day D that unfolds according to IR 1–4 as follows: 

p1 instance_of observation process  

AND p1 has_target transport process p2  

AND p1 results_in p3  

AND p3 instance_of report-issuing process  

AND p3 has_output IR 1  
AND p2 instance_of transport process  

AND p2 has_direction towards Raqqa  

AND p2 has_initial_temporal_boundary temporal_part_of D – 1 

  AND p4 instance_of observation process  

  AND p4 verifies p1  

AND p4 has_target missile launchers o1 in Raqqa  

AND p4 has_content o1 are non-operational  

AND p5 instance_of hyperspectral observation process  

AND p5 has_target (ISIS fighters with_location below ground)  

AND p5 has_target (ISIS fighters with_location on top of buildings)  

In our treatment of our motivating scenario, we are accumulating data in the form of POR 

instance assertions such as these, relating to the sorts of cases where discovery of changes in 

the zone of operations will imply the need to modify or abort a planned mission because risk 

to mission or collateral damage is unacceptable. We are designing our ODIS in such a way 

that it can use such data to draw inferences in the form of warnings of potential mission threats 

that can be useful to planners and commanders.  
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2. Related work 

2.1. Early work on situations and events 

There are many significant prior attempts to represent information, especially from textual 

sources, in ways that allow the drawing of inferences of the mentioned sorts. One of the 

earliest such attempts was the situation calculus (McCarthy, 1969), which used ‘event’ as its 

central primitive, together with a universal meta-predicate ‘holds’ signifying that an event 

occurred at a given time. In this framework, all events have antecedents and consequences.  

 The approach suffered from a major problem, however, turning on its lack of a mechanism 

for inferring the continuity of properties. The event calculus (Kowalski and Sergot, 1986) was 

created, at least partially, to provide a solution to this problem. Kowalski (1986) formalizes 

the effects of events on objects. This approach distinguished between events, which have 

actors and involve actions, and states, which are assumed to hold unless a terminating event 

takes place. Unfortunately, the assumption that there is stasis simply because there is no 

explicit representation in the system of a property-changing event itself proved problematic—

a case of the now well-recognized frame problem.  

 The frame problem arises with the question of how to represent, within a logical system, the 

relevant effects of actions, given the large number of relevant but not obvious potential effects. 

Today, this problem is no longer considered an insurmountable obstacle to progress in 

knowledge representation, and various strategies have been presented for addressing it within 

both open and closed world frameworks.  

 One prominent example is Reiter (1991), building on work by Pednault (1989) and Schubert 

(1990). This utilizes the idea of fluents as properties that can change over time, as for example 

the property operational, and it requires a completeness assumption for the set of fluents so 

that it can be determined for each action whether or not it will lead to a specified successor 

state. Finzi, Pirri and Reiter (2000) demonstrated that this approach could be used to construct 

a forward reasoning planner for systems under the open world assumption. However, there 

are substantial efficiency concerns with this approach, and it requires positing a domain-

dependent predicate used to filter out ineffective plans.  

 More recently, Baclawski et al. (2017) develop an approach to situation analysis in an 

ontology-driven system that includes both a theoretical framework and declarative language 

support for decision-making processes. The top classes in their ontology are intended to 

support decision-making within the OODA (Orient, Observe, Decide, Act) loop framework. 

These classes include: fact, hypothesis, perception, and directive; and the authors provide case 

examples demonstrating how they may be used to track steps used in decision-making in 

different domains. However, some of their choices seem questionable (such as requiring that 

all instances of a class of activity invoke only one instance of a reasoning process, as well as 

recognizing two distinct top nodes in their ontology). The authors also did not address the idea 

of incorporating into their framework a top-level ontology that would enable integration with 

other ontology resources.  

 Also relevant to our project is earlier foundational work by Schank (1973), Fillmore (1968), 

and others on frames and slots. Schank (1973) focused not on some general form for a POR 

representation, but rather on specific composable primitives. He introduced the notion of 

‘conceptual cases’, conceived by analogy with grammatical cases (also called case roles). The 

idea is that each action type comes with a set of associated dimensional slots where each slot 

denotes a case role, so that when an action of this type is represented in an assertion then each 
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of these slots must have some value regardless of whether or not this is made explicit in the 

assertion.  

Unfortunately, Schank’s work on conceptual cases is not grounded in anything like an 

ontology of process and time on the side of reality. Rather, it remains always at the level of 

linguistic representations. As his starting point, outlined in his original seminal paper, he takes 

a list of fourteen primitives, which were intended to be composed into what he called 

‘conceptual structures’, roughly corresponding to what we are here calling ‘POR 

representations’. On this basis, he showed how many seemingly simple events, such as buying 

a car, involve multiple correlated sub-events (such as seller exchanging a car for money, 

buyer exchanging money for a car, seller wanting a car, and so on). Schank’s framework also 

recognizes the distinction between mere changes in location and those exchanges that involve 

a transfer of ownership or control. But his system was restricted by its starting point in 

grammar, or more precisely, in the grammatical subject-verb-object structure. This made it 

hard for him to represent PORs that are more complex, for example transformations (as when 

a baker converts flour, sugar, and butter into cookies).  

Schank’s treatment of causality, too, which rests on a contrast between physical action and 

what he called a physical translation, has problems. A physical action such as pushing a 

bookcase is asserted to cause the physical translation that is a change in location of the 

bookcase. However, it is not the case that there is here a first process – the action of pushing 

– which then causes a second process – the movement of the bookcase towards the wall. The 

two processes are one and the same. 

2.2. Work on Fundamental kinds of events 

A valuable contribution to grounding the aforementioned approaches in an ontology of 

process and time is provided in the work of Galton (2006; 2012) and Borgo and Mizoguchi 

(2014), who have tried to incorporate what is of value in the situation and event calculi within 

a broader framework resting on a distinction between events (which are heterogeneous and 

have beginning and endings) and processes (which, in their idiolect, can in principle endure 

without end and whose temporal parts have the same structure as the whole).  

Galton (2006) offers on this basis a representation of causal relations. For example, in the 

act of moving a wheelbarrow he identifies four events: starting to push, starting to move, 

stopping to push, stopping to move, alongside two (simultaneous) processes: pushing and 

moving, where the latter are seen as being joined together by a causal relation operating, 

somehow, a-temporally. 

We are to understand that hammering is an event, where pushing is a process, because the 

temporal parts of hammering are not homogeneous whereas the temporal parts of pushing are. 

Yet an act of pushing a wheelbarrow may very well include portions of pulling because the 

wheel gets stuck, or of twisting because the ground slopes, and so forth. One might counter 

that pushing can in theory, at least, be imagined to be homogeneous whereas hammering 

cannot. But even then, pushing, if examined carefully, involves a feedback loop where the 

agent doing the pushing assesses any changes in resistance and thereby changes the amount 

of force required to push. 

More generally, it is far from clear that pushing and moving (or any of the other events or 

processes discussed by Galton, et al.) really lack beginnings and endings. At the very least, 

they are bounded in time by the existential constraints on whatever or whomever is doing the 

pushing.   



E. Thomsen and B. Smith / Ontology-based fusion of sensor data and natural language 

 

Galton’s atemporal Schank-like analysis of causality, too, seems to us to be unintuitive. 

Pushing a wheelbarrow involves exerting force, gripping, and walking. If pushing fails, 

moving does not occur. But moving is not caused by pushing; rather, moving is pushing under 

certain conditions, as we see from the following more careful analysis of the processes 

involved (where process is to be understand, now, in BFO terms as any occurrent entity 

extended in time that involves material participants):  

t0 John intends to push and the wheelbarrow is stationary 

t1  John begins to attempt to execute a pushing process against the wheelbarrow; the electrical impulses have not yet 

contracted his triceps  

t2  John’s exertional force exceeds the wheelbarrow’s stationery force and the wheelbarrow begins to move; its motion 

is a part of a successful pushing process 

t3  John’s exertional force continues to exceed the force required to move the wheelbarrow and the wheelbarrow 

continues to move 

t4  John intends to stop pushing the wheelbarrow 

t5  John’s exertional forces drop below the level of the wheelbarrow’s stationary forces and the wheelbarrow ceases to 

move. 

 

The fact that John attempted to execute a pushing process against the wheelbarrow at t1, 

combined with the fact that the force he exerted in pushing exceeded the inertial forces of the 

wheelbarrow at t2 – t4, is, we believe, a more accurate causal assay of a movement of this sort.  

 Assumptions of homogeneity and of succession of causes and effects may, it is true, be 

deeply rooted in our natural language. But an acceptable ontology should not conflate 

linguistic conventions with ontological representations of the underlying PORs.    

 

2.3. FrameNet and related work 

Since at least Whorf (Carroll, 1956) and more importantly Fillmore (1968), it has been 

understood that the linguistic roles (of subject, direct object, and so on) are independent of the 

thematic roles of an object in an event (for example, that some object is agent or patient). 

Consider ‘Billy hit the tree’ and ‘The tree was hit by Billy’. Although linguistic roles flip 

between the two sentences (the tree moves from being object to being subject), the thematic 

roles are constant (Billy remains agent in both cases). Yet for the past fifty years, efforts to 

formalize linguistic frames for the purposes of information processing have incorporated some 

variant of thematic roles (e.g., agent, patient, instrument, theme) without ever integrating the 

latter into a more general formal ontological framework that integrates other POR information 

(for example pertaining to time and space). In other words, the treatment of thematic roles 

remains unconnected to an ontological framework governing the rest of the POR 

representation. Fillmore acknowledged as much in his seminal paper (Fillmore, 1968). 
The problem is clearly illustrated in FrameNet (Baker, Fillmore, and Lowe, 1998), which 

has its roots in Fillmore’s paper (1968), and which is perhaps the most widely used software 
resource for representing machine extracted meaning from sentences. Using the terms 
introduced above, FrameNet can be understood as a framework that provides targets for 
natural language processing by enabling multiple sentences, expressed using different 
linguistic conventions, to map to a single POR representation.  

FrameNet is a verb-centric approach. Each of its over 1000 semantically related complexes 
called ‘frames’ is based on a verb or verb class and is comprised of a small number of core 
and optional thematic roles for nouns. The frames within this collection are then related to 
each other through a multi-hierarchy descending from a single root frame called ‘event’.  
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 FrameNet is built to support semantic extraction processes that associate nouns and noun 
phrases in sentences with their thematic roles in such events. The event itself is understood as 
being represented by the sentence as a whole, and thus corresponds to what we are here calling 
a POR. FrameNet thereby opens the door to statistical approaches to thematic role labeling, 
also called semantic role labeling, as articulated for example, in Palmer, Gildea, and Xue 
(2010). One of the first such approaches aligned the results of a Collins parser (Collins, 1999) 
with FrameNet roles and built a probabilistic model to identify the start and end words in a 
contiguous sequence of words that collectively mapped to a FrameNet (i.e. a verb phrase) role 
(Gildea and Jurafsky, 2002). 
 This statistical work then motivated numerous POR representation projects, including the 
Simple Event Model (Van Hage and Ceolin, 2013), the Penn TreeBank (Marcus, 
Marcinkiewicz, and Santorini, 1993), PropBank (Palmer, Kingsbury, and Gildea, 2005), News 
Reader (Agerri et al., 2014), AMR (Banarescu et al., 2013), ESO (Segers et al., 2015), and 
more (reviewed in Kalita, 2016). Unfortunately, none of these projects provides an ontological 
grounding for thematic roles. The Simple Event Model, for example, used also by News 
Reader, simply assumes static roles for actor, time, and place within an event.  

3.  A compositional approach to POR representations 

3.1. Overview  

The goal of our ODIS is to use compositions of our ontological dimensions to represent all 
incoming data (e.g., natural language and sensor data), all calculations made with that data 
(e.g., mapping text into a canonical form, disambiguating text, entity resolution, numeric 
analyses), any and all background or newly discovered knowledge about the PORs that are 
the source of the data (e.g., typical range of a particular class of surface-to-air missile) so-
called meta information (e.g., how recent the data is, how precise it is, the source from which 
it came, etc..), and gaps between prior knowledge and current POR representations (e.g., 
missing thematic roles).   

From a software architecture perspective there are four major components to our ODIS as 
shown in Figure 1: 

(1) The assimilator is responsible for taking new data (e.g., sensor data or natural 
language), extracting lexemes, associating those lexemes with their possible 
meanings (expressed in types and schemas), selecting an actual meaning in the context 
of surrounding lexemes, merging extracted expressions into larger schemas that are 
then merged into the POR representation manager.   

(2) The POR representation manager is responsible for storing any new POR 
representations as well as performing all calculations on those POR representations.  
It is also responsible for reconciling prior knowledge with new information.   
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(3) The responder produces data that can be consumed by persons or machines. 
(4) The dimension manager is responsible for all modifications to any of the three other 

components (e.g., adding a new term to an ontological dimension, modifying an 
axiom), and to schemas composed of ontological dimensions.     

 
 We here attempt to take the kind of logical rigor currently found in work with axiomatized 
ontologies such as BFO and apply it to the messier world of data and computations where 
classifications may be probabilistic, where data sources may disagree, where knowledge has 
gaps and where data attained at a later point in time may disagree with beliefs acquired at 
earlier times with no clear method for determining how such differences are to be resolved.   
 Our ODIS was built to master complex POR representations under these conditions. It 
works on the basis of the idea of structured POR assertions whose constituent terms belong to 
combinations of four primitive ontological classes forming the four primitive dimensions6 of 
Time, Space, Object, and Process.  In addition to these four, we will often refer to the non-

                                                      
6 Although it is common to see the major branches of an upper ontology referred to as classes (and subclasses 

etc.), the term ‘class’ does not adequately capture the full range of computational capabilities we are trying to 

develop in our ODIS. This is because it is most often associated with Categorical or Set operations such as negation, 

union and disjunct rather than numeric or graph operations. In software engineering environments, ‘type’ (as in: 

Floating point types, Boolean types, Integer types, Array types, and so on) is commonly used. At the semantic, 

world-referencing level – for example as found in databases providing repositories of information about entities in 

the world – the most common terms are ‘dimension’ and ‘attribute’. We use here the term ‘dimension’ because of 

its neutrality between the computing and world-referencing aspects of our framework. 

Figure 1. Overview of our ODIS. 
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primitive dimensions of Attribute7 and Process. Each ontological dimension comprehends a 
collection of different qualitative (e.g., textual) or quantitative (e.g., numeric) representations. 
Time, for example can be captured by variables ranging over expressions such as ‘today’ or 
‘next year’ or by simple or compound quantitative variables ranging over expressions such as 
(for dates) ‘1952’ or ‘June 4, 1952’ or (for times-of-day) ‘13:59:59’, and so on. Space, 
similarly, can be captured by variables ranging over expressions such as ‘London’, or 
‘London, Ontario’, or over numerical Longitude/Latitude specifications. Information along 
the Object dimension is indexed by a variable ranging over object instance or object class 
labels such as ‘Emmanuel Macron’ or ‘bicycle’ or ‘surface-to-air missile (SAM)’. Information 
along the Process dimension is similarly indexed with a process variable ranging over 
expressions such as ‘flying’, ‘fueling’, and ‘aborting mission’.  As with BFO, subclass and 
part-whole relations are supported for all values of all ontological dimensions.  

POR representations may vary in the number of values specified for any particular 

ontological dimension. Thus, a POR representation may contain more than one Object 

dimension value (where we have information concerning interactions between multiple 

objects) or more than one Process dimension value (where we have information that an object 

or objects participate in more than one process). However, all ontological dimensions included 

in a POR representation will be drawn from the four we have listed, or from their combinations 

or from sub-dimensions of one or other of these – as when we distinguish under Space sub-

dimensions such as Geographic, Astronomic, and so on. 

PORs also vary in the degree to which their ontologically dimensioned variables are 

associated with values of greater or lesser specificity. At one extreme, are variables whose 

associated values have a very high degree of specificity, which may be either quantitative 

(47.366 Celsius) or individuative (‘Paul McCartney’, ‘Eiffel Tower’). At the other extreme, 

there are no values at all, but only dimensioned ontological variables (captured in expressions 

such as ‘something’, ‘somewhere’, ‘sometime’, ‘somehow’).  

An ontological grammar specifies which collections of ontological dimensions and values 

can be composed into a POR representation and under what conditions. In our work here, we 

start from the simplifying assumption that PORs occupy some space-time interval, thus 

excluding from our purview not only POR representations of abstract structures such as 

numbers or geometrical shapes putatively outside space and time, but also POR 

representations consisting only of time or only of space dimensions. This does not mean that 

spatial or temporal statements (“Jessie’s house is 15 meters wide”; “Yesterday’s race was run 

in less than 10 seconds”) cannot be made in isolation. The applicability of a spatial dimension 

is, however, taken to imply the applicability of a temporal dimension and vice versa.  

3.1.1. An informal initial example 

Consider Figure 2 which portrays an illustrative POR representation intended to resemble 

the kind of data table that one might find in any database application (with column headers 

which identify the ontological dimension; and a row, or perhaps many rows of data 

underneath). A more formal vocabulary is introduced following the description of a formal 

grammar in section 3.3.1. POR representations can be incrementally specified by successively 

assigning (which means: filling in) values for their ontologically dimensioned variables. In 

any given specification step, we add a value to what had hitherto been unspecified – for 

                                                      
7 For our model ontology, the term ‘attribute’ was introduced because it matches the language of practitioners 

in the database community with whom we were interacting. ‘Attribute’ generalizes ‘specifically dependent 

continuant’ in BFO.   
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example by replacing ‘something’ in an Object cell with ‘Grace’, as in Figure 2. We refer to 

the starting point of each such process as a POR template.8 The results of specification of such 

templates are what we have already recognized as POR instance assertions. The process is 

iterative, so that a POR instance assertion in an earlier specification step may itself serve as a 

POR template for a later step. Formally, whenever a specification step occurs, as in Figure 3, 

the cells already specified – here: ‘Grace’ – form the argument. The value asserted (i.e., newly 

filled in) – here ‘Smiling’ – forms the logical predicate of the assertion. And in Figure 4, Grace 

and Smiling both form a part of the argument which might form the backdrop for a sentence 

such as ‘When Grace is smiling she puckers her cheek’.   

We are to imagine Figure 2 as the starting POR template for the task: to collect data about a 

certain object Grace. The Object dimension is accordingly assigned the value ‘Grace’; the 

italicized letters t, s, a, and p stand in for variables along their respective dimensions. 

Figure 3 shows the additional value ‘Smiling’ assigned to the Attribute dimension as the 

result of a first specification step (#1). This corresponds formally to the POR instance assertion 

Smiling(Grace) generated as an interpretation of a text input from an observer, such as “Grace 

is Smiling”. Grey highlighting is used for those values in a POR representation that are 

asserted – here the Attribute Smiling.  

 A single POR template may contain one or more unspecified variables. And a 

corresponding POR assertion may contain one or more asserted predicates (shown in these 

examples as cells with grey highlighting). 

 

Figure 4 shows the same POR representation as in Figure 3, but now serving as a template 

for a further assertion in a new specification step (#2), with ‘Smiling’ de-highlighted. 

 

 
Time Space Object  Attribute  Process  

t s Grace Smiling p 

Figure 3. A POR representation functioning as a POR instance assertion 

for specification step #1. 
 

Time Space Object  Attribute  Process  

t s Grace Smiling p 

Figure 4. The POR representation asserted in step #1 now serving 

as a POR template in step #2. 

 
Time Space Object Attribute Process 

t s Grace Smiling Walking 

Figure 5. The POR instance assertion in specification step #2 
 

Finally, Figure 5 shows the POR instance assertion generated in specification step #2; an 

assertion to the effect that Grace participates in a walking process.  

                                                      
8 The POR representation can be more formally depicted as a mathematical function or relation, the vocabulary 

for which we will introduce beginning in section 3.3.1. 

Time Space Object Attribute  Process 

t s Grace a p 

Figure 2. An initial POR representation functioning as a POR template. 



E. Thomsen and B. Smith / Ontology-based fusion of sensor data and natural language 

 

 

Formally, the result of combining the POR instance assertions in Figures 3 and 5 can be 

expressed as a simple conjunction: Smiling(Grace) and Walking(Grace). 

3.1.2. Adding sensors 

Imagine, now, that our ODIS is connected to a video sensor. A POR representation might 

incorporate dimensions representing the system time for each instant of a received video as 

well as the spatial location (and perhaps also other features such as orientation) of the video 

sensor, as captured in Figure 6. 

If the sensor has on-board classifiers for Object and Attribute recognition, the sensor might 

classify its video imagery at the given time as video of: object Grace with attribute Smiling, 

thereby generating the POR instance assertion depicted in Figure 7. The representation of the 

sensor’s classification would depend on how the classifier functions were implemented. For 

example, recognition of Smiling might be dependent on the prior representation of the specific 

person involved. The formalized representation would then take the form of a sequence 

beginning with ‘Grace(09:32:01, 45.32, 52.63)’ and moving from there to 

‘smiling(Grace(09:32:01, 45.32, 52.63))’. In the former ‘Grace’ plays the role of predicate, in 

the latter ‘Grace’ is part of the argument, reflecting our use of the semantic type freedom 

approach of Common Logic (Menzel, 2013).  

 

If the sensor is simultaneously connected to a text feed, and also has knowledge that enables 

it to classify time and space regions not merely quantitatively but also qualitatively (for 

example, using terms such as ‘morning’ or ‘next fall’ or ‘my backyard’) then this may result 

in a POR template as in Figure 8:  

 
  

Time Space Object Attribute  Process 

09:32:01 45.32, 52.63 o a p 

Figure 6. A POR template generated by an ODIS connected to a sensor feed. 
    
 

Time Space Object Attribute  Process 

09:32:01 45.32, 52.63 Grace Smiling p 

Figure 7. A POR instance assertion connected to a sensor feed. 
 

 

Time Space Object Attribute  Process 

Morning Backyard o a p 

Figure 8. A POR template connected to a text feed. 
 
 

Time Space Object Attribute  Process 

Morning Backyard Grace Smiling p 

Figure 9. An initial POR instance assertion connected to a text feed. 
 

If the system now receives as input the sentence: “There’s Grace smiling in the backyard”, 

then with the POR template in Figure 8 as starting point this would be captured as a POR 

instance assertion as in Figure 9, formalized (roughly) as Backyard(Grace, Morning) AND 

Smiling(Grace, Morning, Backyard). 
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Depending on the purposes served by the ODIS, different POR representations may contain 

0, 1, or more Object dimensions; 0, 1, or more Attribute dimensions; 0, 1, or more Process 

dimensions; and so on. For example, to facilitate the sensor data capture, the ODIS facilitates 

POR representations based on incremental recognition steps along multiple dimensions such 

as are involved in solid object detection, heat source detection, moving object detection, and 

so forth.  

3.1.3. Composing POR assertions 

 The process by means of which our prototype ODIS creates POR representations from text 

or sensor data passes through three main stages. In a first stage, text or sensor data are mapped 

to candidate ontological dimensions and dimension values. In a second stage, each candidate 

ontologically dimensioned value is mapped to candidate POR representations.  In a third stage, 

the most plausible candidate POR representations are selected using an algorithm that looks 

for the smallest collection of most detailed POR representations required to subsume all input 

data.9 The selected representations are then combined together.   

 This three-stage process runs in cycles (as described in the appendix), with a new cycle 

being initiated with each new data input. POR templates and assertions identified at any given 

stage will form the context within which attempts will be made to interpret new information 

in such a way as to achieve a single consistent collection of POR representations that properly 

extends the collection yielded at the conclusion of the prior stage. Sometimes, of course, the 

process of identifying a single most plausible POR candidate will fail. Where this occurs, 

alternative POR templates (populated through prior POR instance assertions) will be identified 

and tested for viability in successive cycles.  

 

 

                                                      
9 Our stage-three algorithm is a variant of a similar algorithm for extracting semantics from data for which we 

have been awarded a patent (https://patents.google.com/patent/US20100169758). 

Figure 10. POR instance assertion composed from sensor data 

https://patents.google.com/patent/US20100169758
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Figure 10 illustrates two further aspects of POR composition. First, it illustrates how one 

POR representation can serve to capture the contents of an agent’s mental acts or states (for 

instance perceptions or assertions or beliefs). This is indicated here by the small dotted lines 

with arrows. Second, it illustrates how sensor data – here in the form of imagery – can serve 

as inputs for POR instance assertions. 

The solid lines with arrows connect sensor data with the appropriately matching candidate 

ontologically dimensioned values. For the Process dimension, Figure 10 shows the selecting 

of one value (‘= Firing’) and the rejecting of another value (‘≠ Being Destroyed’). What this 

means is that the classifier determined both that constraints associated with classifying the 

image as depicting a process of firing matched what was found in the image and that 

constraints associated with classifying the image as depicting a process of being destroyed 

conflicted with what was found in the image. And analogously for the Object dimension (‘= 

Missile’ and ‘≠ Carrot’). In our ODIS described in the appendix there are typically many 

rejected options.  

The dashed arrows track how ontological dimension values selected at an early stage (on 

the left of Figure 10) are inserted into a POR template to compose a POR instance assertion 

at a later stage (on the right). Only certain POR template values will be introduced in any 

given case, either because they are set by the user or because they are inherited from earlier 

steps; seeded values (‘ODIS’ and ‘Seeing’ in POR 1 and ‘Enemy’ as Agent in POR 2) are 

shown here in bold.  

The ODIS generating the output sketched in Figure 10 is set to work with a reconnaissance 

sensor observing enemy activities in a specific location. The POR representation variables are 

shown in italics, with asserted POR values shown in grey highlight. Seeded values in the POR 

template are used to build a linked pair of POR representations, with POR 1 having the form: 

ODIS is seeing POR 2; and POR 2 the form: agent of Process in target area has Attribute: 

enemy. One consequence of this seeding is that, were the ODIS to observe friendly troops 

firing missiles, it would incorrectly attribute the missile firing to enemy agents. The ray-

shaped pair of dotted lined arrows indicate that the value of the POR variable (some POR) in 

the nesting POR representation is specified by the entirety of the nested POR representation. 

From the POR 2 template for missile firing, the system knows that missiles are fired at some 

target. The ODIS does not observe/identify the target and so leaves the variable some target 

unspecified.  

Figure 11 shows a similar composition process, where an otherwise equivalent POR 

instance assertion originates with textual data. Starting with the sentence “Satellite shows 

missiles fired” as input, the ODIS matches each symbol to its dictionary of ontologically 

dimensioned values where, as minimally illustrated here, there would typically be multiple 

possible senses of each symbol or word each corresponding to a different ontologically 

dimensioned value. The symbol ‘satellite’, for example, could mean: a secondary planetary 

body such as the moon in its relation to the earth, or (as here) a reconnaissance satellite 

containing an ODIS. Similarly, the symbol ‘shows’ could mean a plurality of cultural events 

or (as here) the result of a process of seeing. 
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As in the process of origination of a POR instance assertion from sensor data, so also here: 

the ODIS selects ontologically dimensioned values (the values identified with an equals sign) 

from a repertoire of candidates. These values are then composed into the composite POR 

instance assertion shown in the right-hand portions of Figure 11. The composite assertions 

differ between the two figures in the fact that the nesting (upper) portion of the composed 

POR instance assertion in Figure 10 was seeded with the fixed knowledge that an ODIS was 

seeing some POR, where in Figure 11, because the source information is text data – in this 

case, the sentence beginning with ‘satellite shows’ shown in the left column of Figure 11 – 

neither the agent nor the process is fixed in advance. Here, it came from processing the words 

‘satellite’ and ‘shows’.  

Although the kinds of ambiguity that need to be resolved differ between the sensor-based 

and text-based composition of POR instance assertions, the two resolution processes can still 

yield matching composed POR instance assertions, which are thus independent of the 

modality (sensor or text, direct visual observation or signals intelligence) by which they were 

obtained. At the same time, data relating to the paths by which the two POR instance assertions 

were arrived at are important. Our ODIS uses POR representations to capture such provenance 

information also, following the strategy outlined in (Ceusters and Manzoor, 2010). As we shall 

see, information of this type is of particular importance in those cases where the ODIS yields 

conflicting POR instance assertions, for example in a case where a sensor classifies the 

observed missiles as participating in a process of being destroyed (the option marked as 

rejected in Figure 10). 

Figure 11. POR instance assertion composed from textual data 
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3.2.  Ontological dimensions of a POR representation 

 We adapt the term ‘dimension’ in the previous section from the language of 

multidimensional databases (Thomsen, 2002). Our ‘POR instance assertion’ is an abstraction 

of the concept of a ‘tuple in a database’ as the latter phrase is used, for example, in relation to 

a database of products whose ‘dimensions’ might be: Name, Category, Line, Size, Price, and 

so on (Date, 2003). As already noted, the same dimension can be involved multiple times in a 

single POR instance assertion. In the firing of a missile, for example, there is a composite 

spatial dimension incorporating geolocations for both source and destination. 

 The ontological dimensions used to compose POR representations – Space, Time, Object, 

Process (and Attribute as a non-primitive dimension), are built in a manner that is conformant 

with BFO,10 so enabling us to import other BFO-conformant information. However, while 

conformant, the ontological dimensions we developed for this project extend beyond not just 

the upper level terms found in BFO, but also beyond what are typically called ontological 

items in general. This is because we were looking for a unified treatment of all information 

(and all associated computations) from sensor data to general knowledge as encoded in natural 

language. 

In our approach, the Space dimension encompasses all possible spatial units and their 

compositions, and the time dimension encompasses all possible temporal units and their 

compositions. Similarly, the object dimension encompasses all possible object sub-classes and 

compositions of subclasses, and the process dimension encompasses all possible process sub-

classes and compositions of subclasses. In addition to compositions within a dimension (e.g., 

a composition of time units to form a date, or a composition of one-dimensional spatial lengths 

to form an area), our approach supports compositions between dimensions (e.g., a spatial unit 

and a temporal unit to form a velocity) 

In our model ontology, Space encompasses BFO’s notions of both spatial regions and sites 

and ‘Attribute’ is in effect a generalization of BFO’s ‘specifically dependent continuant’. For 

BFO, and for us here, Attributes may be either unary or relational. Unary attributes are for 

example the mass of a vehicle or the range of a missile; relational attributes are for example 

the ownership of object A by person B, or the hostility shown by group C against group D.  

Ontological dimensions naturally constrain expressions. Through suitable changes of 

instance or of unit any temporal value can be transformed into any other; for example, ‘2 

minutes’ into ‘120 seconds’; ‘2018 + 1 year’ into ‘2019’.  But no such transformation can 

convert a temporal unit into a spatial unit or into a unit of mass. Similarly, through changes in 

attributes of size, material composition, shape, and so on, any object representation can be 

converted into any other. But an object representation cannot be converted into a process 

representation.      

On common parlance, we distinguish between qualitative and quantitative values – 

corresponding roughly to the opposition between text and sensor outputs. Qualitative values 

used in the ODIS may come from natural or technical languages or from standard coding 

systems, for example when places are designated using ISO Country Codes. In many cases, 

we are dealing with common nouns, which are used as labels for determinate or determinable 

classes, for example, when the value along the Object dimension is specified as ‘Artifact’, or 

‘Ball’, or ‘Cricket Ball’, and so forth.  

                                                      
10 Details are provided in the BFO-CORE-S mapping document at https://bit.ly/2Ecv2Cc . 

https://bit.ly/2Ecv2Cc
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On closer examination, however, we can recognize that the qualitative-quantitative 

opposition is not so simple, since qualitative values are often associated with numerical 

information.11 Most commonly this is implicit, as for example where common nouns are 

associated with an implicit count datum, with count = 1 for singular nouns and > 1 for plurals. 

Sometimes this is explicit, as in ‘Seven anti-aircraft missiles’. Sometimes it is more subtle, as 

when an assertion such as “Mary is arriving later” is followed up with a question – “Do you 

believe she will get here before 7pm?” – indicating that the information associated with the 

qualitative term “later” may be compared with the quantitative term 7pm.  

To take account of such associations we treat qualitative and quantitative values in a 

uniform way by extending the term ‘unit’ to apply not merely to measurement units in the 

traditional sense but also to what we can think of as atoms or minima on the qualitative side 

(Bittner and Smith, 2003). For any given context, such atoms or minima are always involved 

in the process of providing information about reality, for example because of the physical 

limitations of the measuring devices used. Thus, when formulating qualitative data along the 

Attribute dimension, for example relating to color or mass, we employ in each case a granular 

scale such as the RGB cube for color or grams for mass. 

3.3. Making ontological dimensions computable  

 The ontological dimensions we have discussed point outward into the world in the sense 
that they correspond, via the POR representations in which they are composed, to PORs that 
live outside the system of representations. Each POR instance assertion consists of an 
argument (one or more values of known ontological dimension – for example: SAM launcher) 
and a predicate (one or more values of another known dimension – for example: moving 
towards Raqqa). As we see them on the screen (or in the figures that follow) argument and 
predicate appear as strings of symbols. Behind these symbols, however, is an additional layer 
– pointing inward to the system itself – that includes computing operators such as ‘+’ applied 
to values of Integers or Rationals.  
 Axiomatized ontologies are computable up to a point. The major dimensions (i.e., the 
hierarchies that stem from the root encompassing in BFO continuant, independent continuant, 
material entity, and so on) support computing using generalization, specialization, and using 
the parthood and whatever other relations are built into the axioms of the ontology. This is 
sufficient for navigating between terms and for testing whether the axioms associated with a 
term are consistent with the overall body of axioms. But one cannot use such an axiomatized 
ontology, for example, to calculate the average across a collection of sensor data or to compare 
this average with prior knowledge to decide whether to trigger an alert. Computations of these 
sorts are not performed by traditional ontology software. They do however form part of the 
properties of PORs represented by our ODIS, which adds to traditional ontology precisely the 
capacity to view entities through a much broader range of types of computation to which they 
are susceptible. One area of land, for instance, can be ten times larger than another. But the 
color of a shirt or the name of a town cannot be ten times larger than some other color or name.  
The following kinds of calculations, similarly, belong outside the realm of ontology software 
as currently conceived. 

 
1. Operational status of enemy controlled SAM in 6 hours = operational status now + chance 

of repairing SAM in 6 hours 

2. Position of vehicle in one hour = inside a radius of 100 miles based on current position  

                                                      
11 In the next section, we reduce the quantitative/qualitative dichotomy at the ontological level to differences in 

fundamental computing dimensions and the comparisons they support.  
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 For the ODIS to work on real data it must be concretized in some computing machinery, 
with inputs deriving (for example) from observations, outputs consisting (for example) of 
messages to the commander, and a central processing unit (CPU) that executes instructions 
related to the information being processed. These instructions might be to store a new 
expression, to compare a new expression with an existing expression, to infer a new expression 
from a given one, to execute an expression – if it has the form of a command, and so forth. 
From the perspective of this CPU, received expressions may trigger one or more CPU actions 
(store, compare, execute, and so on).      
 Suppose, for example, that the ODIS receives a field report concerning an observed satellite. 
The CPU converts this report into a POR instance assertion p and then executes operators to 
compare the dimension values that make up the argument of p with dimension values in POR 
instance assertions that the ODIS derived from satellite imagery relating to the same time and 
place. It will then compare the dimension value(s) making up the predicate of p with the 
dimension values found in the stored instance assertion and, assuming that what the ODIS has 
stored is of higher confidence than p, yields the value TRUE if there is a match between the 
two sets of dimension values.  

Each ontological dimension in a POR representation reflects a corresponding computable 

dimension in the computation layer that is built out of physical (which means here: 

computable) dimensions (such as Boolean, Categorical, Integer, Rational, Array, Hierarchy, 

Graph) and combinations thereof.  

Computable dimensions define corresponding operators, values and compositional rules 

realized within the context of computational processes. All values of computable dimensions 

are generatable by their operators: Booleans by assertion or negation; Integers by addition or 

subtraction; Categoricals for example by joint negation (which defines for a Categorical 

dimension with n distinct values an n+1st value vn+1 = Not(v1 or v2 or … or vn)), and so on. 

By examining how information is provided to the ODIS in terms of computable dimensions 

and associated units, we can now identify the computable dimensions corresponding to 

different sub-dimensions of the four principal ontological dimensions of our POR 

representation framework (plus two commonly composed dimensions of attribute and 

process). Table 1 illustrates examples of such computable dimensions for sub-dimensions of 

Space, Time, Attribute and Process. In each case, units (given in curly brackets) are associated 

with the computable dimensions used in formulating the associated information. Note that 

units may be the result of combining other units, as in ‘Meters/Second’. 

Important for our motivating scenario was the testing of the hypothesis that, by factoring an 

upper ontology such as BFO into primitive dimensions within which comparisons could be 

made but between which comparisons could not be made, and by grounding that refactored 

upper ontology in a computing dimension layer, we can provide a compositional grammar that 

allows machine composition and analysis of POR assertions. 

The constraint that needs to be met is that the units of every sub-dimension can be calculated 

from the units of some other sub-dimension(s). For example, spatial units of Kilometers can 

be calculated by  

 
 

Table 1. Examples associating ontological and computable dimensions via ontological 

sub-dimensions and units (R = Rational, I = Integer, C = Categorical) 

Ontological  

Dimension   

Ontological Sub-Dimension  

and Associated {Unit} 

Computable  

Dimension 
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Space Geography {M2} R2 

Geography {100M2} R2 

Longitude {minutes} R 

Latitude {minutes} R 

Geography {county} Categorical  

Time Time {Month-of-Year} Integer Mod12 

Time {Year} Integer > 1800 

Time {Year, Day-of-Year, Hour-of-

Day} 
Integer Composite12  

Attribute Soil_Temperature {°C} R > K 

 Soil_Moisture {Grams/M3}  R ≥ 0  

Process  CH4 flux {NG /M2 /HR} R ≥ 0 

 

 

multiplying spatial units of Meters by 1000. A Euclidean metric of M2 can be calculated from 

a spatial unit of Meters by composing the Cartesian product of two spatial units of Meters.13  

Along the Object dimension we can distinguish sub-dimensions for: warfighter, vehicle, 

weapon, and so on. Each of these may generate further sub-dimensions (for weapon these 

might be handgun, shotgun, and so on). Along the Process dimension sub-dimensions might 

be: logistics, operations, intelligence, and so on.  

Sub-dimensions of Time have been discussed already. To enable computation with those 

varieties of time information that are associated with Integer-based computable dimensions 

we leverage the Allen Interval Calculus (Allen, 1984), but modified to allow computations 

over multiple resolutions or scales (Thomsen, 2002). Such computations may involve a variety 

of concrete temporal units, from nanoseconds to millennia. They may also be linear (as in the 

case of hours and years) or cyclical (for days and months). 

We also need to support computations that pertain to mixtures of both temporal intervals 

and points. Thus, when we ask how many riots occurred in 2016, we are treating ‘2016’ as 

referring to an interval. When we ask how many riots occurred before 2016, we are treating 

the same data element ‘2016’ as proxy for a temporal instant (roughly: midnight on December 

31, 2015). We need further to support computations that relate to composite representations 

as in the case of a date – such as ‘February 15, 2016’ – composed of three conjoined 

representations of instances of month-of-year, day-of-month, and year, and incorporating 

combinations of both cyclical and linear units. We also need to compute effectively with 

ellipses as in ‘February 15’ or ‘the 15th’ or ‘tomorrow’ by inferring missing information from 

the wider context. 

                                                      
12 Formally speaking, the computing dimension is more complex. When we refer to a year, for example, we 

typically employ an integer with a constraint identifying an earliest and latest year that defines an outer interval. 

Day-of-year is an Integer Modulo 365 or 366 and needs its own composite time to define the constraint (thus if 

year is divisible by 4 then Day-of-year is Integer modulo 366 Else modulo 365). Hour-of-day, similarly, is Integer 

modulo 24 with constraints on the result of ‘increment by 1’ that reflect, when applicable, the time changes of 

daylight savings time.  
13 Practically speaking, our approach supports the considerable units work already in the public domain such as 

is found at Astropy (http://docs.astropy.org/en/stable/units/index.html).  
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3.3.1. A grammar for composing computing dimensions 

 Within the context of any given POR assertion, each ontological dimension is associated 
through its units with a single computing dimension. Each computing dimension is composed 
out of three elements, namely: 

 

– Computing dimension values (for example the values 2, 3 and 4 of the Integer 

dimension) 

– Computing dimension identifiers (such as ‘Boolean’ ‘Integer’) 

– Computing dimension processes (for values along the Rational dimension, the process 

of incrementing (+), decrementing (–), and dividing (/) , and so on) 

 Because computing dimension processes are realized in time and exhibit temporally 

differentiated states – as the state of being executable obtains before the state of executing 

which obtains before the state of having been executed – they are fundamentally more complex 

than values or identifiers. Each realization of a dimension process takes one or more input 

dimension values and produces one or more output dimension values.  

 Computing dimension processes thus have two interrelated aspects – a function aspect: 

what function is performed on input values in order to produce output values, and a relation 

aspect: how the output data values are related to the input data values. These aspects need to 

be treated as distinct for three reasons: (1) natural language distinguishes function and relation 

words, the former typically capturing a more dynamic perspective, the latter a more structural 

perspective; (2) sensor data can distinguish temporal patterns (which commonly represent the 

realization of the function aspects of computing dimension processes) from spatial patterns 

(which commonly represent relations); (3) the ODIS can know the function that will be applied 

without yet having information about the output, and it can know the relation between input 

and output without knowing how one value could be converted into the other; thus the way it 

tests an asserted function is different from the way it tests an asserted relation. To see how 

this works, consider the sentences: 

 
1. The bunker was bombed into rubble. 

2. The rubble has a different hyperspectral signature than the bunker.  

 To understand 1., the ODIS would need to know that the term ‘bombing’ denotes a function 

which, when applied to an input object labeled ‘bunker’, typically produces an output object 

‘rubble’. To test the validity of 2., an ODIS might inspect field reports or analyze relevant 

sensor data.  

 To understand 2., the ODIS would need to know that ‘greater than’ is a relation between 

quantitative values and that entropy is measured as a quantitative value. To validate 2., an 

ODIS would need to have information about the hyperspectral signature of a bunker and the 

hyperspectral signature of the kind of rubble that would be produced by bombing the bunker, 

compare the two, and then compare the resulting comparative assertion with the asserted 

comparative assertion. 

 As we have outlined, PORs, when viewed on the level of computation, take on one of two 

aspects depending on whether what is asserted is a function or a relation. Where the former 

captures a more dynamic perspective, the latter captures that structural feature of the POR that 

is unfolded by a given POR assertion. The following terms are used to formally represent the 

computing dimension elements in terms of which functional and relational POR assertions are 

expressed:    
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• Upper case Roman letter terms ‘N’, ‘M’, … are used to refer to computing dimensions for 

example as in: N = Integer, M = Boolean  

• The terms ‘N:v’, ‘M:w’,  are used to denote values (instances) of dimensions N, M. 

• The terms ‘N:v’, ‘M:w’ (with v and w italicized) are variables along dimensions N, M.  

• The complex term ‘◄ f( )’ is used to represent a function-like process (hereafter called a 

function) that takes one or more dimension values within the parentheses as inputs and 

produces one or more dimension values to the left of the ◄ for output. 
 

 As an example: ‘N:v ◄  f(M:w)’ means: executing the function ‘f’ on the argument (M:w) 

produces N:v as output, where ‘v’ and ‘w’ (non-italic) are values. Thus ‘7 ◄ square root(49)’ 

asserts that 7 is generated as output by executing the function square root on the input 49.  

 When in addition to the function, dimension value(s) are only given for inputs, the 

expression as a whole expresses an executable command. Thus ‘N:v ◄ Square root(49)’ 

means: take the square root of 49 and assign that output value to the variable (with v italic): 

N:v.14 
 

• A complex term of the form ‘ρ( , )’ is used to represent the relation aspect  (hereafter called: 

relation) between two or more values of a given dimension. 
 

 As an example: ‘ρ(N:v, M:w)’ means: the argument N:v stands in the relation ρ to the 

argument M:w.  Thus the function assertion 7 ◄ square root(49) could be represented as the 

relation square_root(7, 49). 

 These two forms of POR assertions amount to what we shall call a grammar of allowable 

combinations of elements for computing dimensions. This grammar has been implemented in 

our prototype ODIS as described in the Appendix, below All and only those interpretations of 

text or sensor data whose  

                                                      
14 Both the function and the relation assertions are, in computer science terms, expressed with equality operators, 

denoted in C and in Java) by the double equals sign ‘==’. See for example 

http://www.gnu.org/software/octave/doc/v4.2.0/Comparison-Ops.html. This is in contrast to executable 

commands expressed with an assignment operator typically denoted by the single equals sign ‘=’. Note that 

‘function’ in the text is used in the sense in which this term is used in mathematics and in computing, rather than 

in the (biological and engineering) sense defined in BFO.  

Table 2. POR instance assertion forms that can be computationally processed. 

Assertion 

form 

Interpretation and examples 

ρ(N:v, M:w) 

N:v stands in the relation  ρ  to the argument (M:w) Integer:6 is smaller than 

(Integer :9)  

• Object:video_sensor is more reliable than (Object: satellite image)  

• Object:Mary is commanding officer of (Object:Bill) 

• Object:Bill is child of (Object:Mark) 

N:v ◄ f(M:w) 

Executing the function f on the argument (M:w) produces the output N:v  

• Integer:9 ◄ +(Integer:6, Integer:3)  

• Object:Scott ◄ Get_author(Object:Intel Report)  

• Object:Rubble ◄ Bomb (Object:Building) 



E. Thomsen and B. Smith / Ontology-based fusion of sensor data and natural language 

 

corresponding ontological dimensions adhere to these two patterns of computing dimension 

elements constitute POR assertions within our framework. Table 2 illustrates how these two 

POR assertion forms can be used to formally represent a variety of sentences covering 

numeric, sensor and text examples.  

 Of course, these purely grammatical restrictions for computing dimensions do not exhaust 

the requirements which combinations of ontological dimension elements must satisfy if they 

are to compose POR instance assertions. There are, as we shall see, also purely ontological 

constraints (e.g., subatomic particles have no color; human-sized objects fall towards 

planetary-sized sources of gravitation). There are also what we might think of as empirical 

constraints, deriving from the fact that computation will of course standardly occur not over 

the content of one single POR instance assertion but rather over collections thereof. We might, 

for example, infer computationally that Mary is commanding officer of (Bill) because we have 

ingested POR representations of military personnel organized by ranks and units. 

3.4. The general form of a POR representation 

 We focus here for illustrative purposes on representations of PORs of finite and connected 
spatial and temporal extent comprising one or more objects that may change shape over time. 
Each object may be represented as having one or more attributes and as participating in one 
or more processes each having one or more attributes in turn.  

3.4.1. Atomic POR representations 

Imagine that we are using a sensor to track an object (On), for example a SAM, as it changes 

location and orientation over time. All data representing position and orientation of such an 

object will have a certain minimal time and space resolution depending on the sensor 

technology used. This implies that we can conceive of POR representations which are atomic 

in the sense that they represent what is for a given technology the smallest discriminable 

change along each of the five ontological dimensions of Time, Space, Object, Attribute, and 

Process. 

Figure 12 is the first in a sequence of visually depicted POR representations of a POR 

labeled En, which are atomic in this sense. 

Along the Time dimension, τ(En) is the smallest time interval within which the whole of the 

POR represented in En is contained; μ(En) is the smallest temporal unit determined by the 

resolution of the sensor. Information about μ(En) is required to allow the system to drive the 

use of clocks to mark off just the right amounts of the right sized units of time. (See Table 3.)  

Figure 12. A simple POR representation En at time Tn. 
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 Along the Space dimension, the maximal spatial region σ(En) observable by the sensor is 
represented by the entire grid in Figure 12 and the minimal discriminable spatial region ν(En) 
by the cells in the grid.  

 Along the Object dimension, En has a single object On, whose centroid CR(On) and outer 
surface SR(On) are illustrated, respectively, by the center and circumference of the oval in the 
Figure 12. The POR has one attribute An(On), represented by the color of the oval. 

3.4.2. Minimal POR representation of change 

The POR representation illustrated in Figure 12 represents an atomic POR of minimal 

temporal extent involving no change in its object On.   
 Now, however, we can extend En to incorporate the case in which exactly one change occurs 
along some single dimension. There are exactly four possible unidimensional changes of this 
sort for the family of PORs we are treating, of which two are changes involving motion.  
 The first atomic motion change is a change ΔS in spatial location of the centroid of On across 
some time interval ΔT. Here ΔS is the distance between the positions occupied by the centroid 
at times Tn and Tn+1 separated by the time interval ΔT. ΔS can be expressed as the absolute 
value in some unit of S(CRn,Tn) minus S(CRn,Tn+1). On’s velocity at Tn can be expressed 
correspondingly as ΔS/ΔT. 
 The second atomic motion change is a change in the orientation of the object On while its 
centroid is fixed, captured as a change in the location of its surface (SR).15 Assertions about 
motion of objects salient to intel reports can be represented in these terms by taking advantage 
of specializations, for example for SAMs, replacing ‘movement’ by ‘movement along flight 
path such-and-such.’ Assertions about the re-orientation of SAM launchers or radar antennae 
or solar panels can be represented similarly.  
 The third atomic motion change is a change in some attribute, for example troop strength 
or morale.  

                                                      
15  Our ‘motion of centroid’ is roughly equivalent to the ‘path predicate’ described in Pustejovsky and 

Mozkowicz (2011). ‘Motion about centroid’ is however more atomic than their ‘manner of motion’ expressed 

using verbs such as ‘bike’ or ‘run’, since the latter presupposes a certain complexity of structure. The description 

of what constitutes a biking manner of motion, for example, needs to reference the movement of certain body parts 

(feet, lower legs, knees, upper legs) in relation to a relatively fixed body part (the torso). A manner of motion can 

be independent of the act of movement from one place to another. Thus one can bike or run in place, and then the 

movement is of an object about its centroid in contrast to movement of this centroid. In each case the movement 

needs to be described relative to some frame of reference, either as a change in the position of the centroid relative 

to this frame (when the object moves in space) or as a change in the position of parts of the object (for example the 

surface) relative to a frame of reference (for example when the object rotates on an axis).  

Table 3. Syntax for describing temporal and spatial dimensions of POR instance assertions 

τ(En) unit-specific representation within En of the smallest time interval within which the whole of the 
POR represented by En occurs  

μ(En) unit-specific representation within En of the smallest temporal unit used in En. (This is the 
information required to allow the system to drive the use of clocks to mark off just the right amounts 
of the right sized units of time.)  

σt(En) unit-specific representation, for each time t in μ(En), of the smallest connected spatial region within 
which all the objects participating in the POR represented by E:n during t are located  

νt(En) unit-specific representation, for each time t in μ(En), of the smallest spatial region represented as 
containing objects existing during t. (Corresponds to resolution, for example of satellite imagery.) 
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 The fourth and last sort of atomic motion change is change of identity, exemplified for 
example when a plane or a building is destroyed, or when a pontoon bridge is constructed out 
of shallow-draft boats.  

We call these four cases of unidimensional change, plus the one case of no change illustrated 

in Figure 12, the five atomic POR representations. 

Based on representational flexibilities inherent in computing dimensions, each of the four 

atomic changes can be represented in two ways: either as the implicit difference captured by 

two POR representations each of which represents reality at a different time point, or as that 

which is represented by a single differential expressed relative to a single minimum time 

interval. For example, if on day one, enemy troops are of high morale and after two weeks of 

fighting their morale is low, then the two assessments can be represented as two attribute 

values each associated with a different time point within a composite POR representation. 

Such assessments could also be represented as a single differential at a single point in time, as 

when an intel report taken on day 5 calls out that troop morale is plummeting. Likewise, speed 

can either be inferred through two measurements of position or it can be measured at a point 

in time.  
 As the number and complexity of objects in a POR grows, so too does the number of 
interdependencies between the objects, the processes in which they participate and the 
associated attributes within the relevant space-time interval. These interdependencies rest on 
a series of ontological constraints such as, for example, that inanimate objects cannot be the 
agents of reproductive processes. Processes that require time to execute cannot be a response 
mechanism for interacting with an environment that changes at 100 times that rate. Liquid 
objects cannot provide a surface for solid metals to stand. Bulky objects cannot fit in 
microscopic space intervals. And so on. We naturally learn these constraints, however 
approximately, by interacting with the world.  
 By incorporating such constraints into our ODIS, we can supplement the general form of a 
POR representation with a range of different sorts of specializations. In this way, we can build 
a repertoire of increasingly complex POR representations relating to objects, processes and 
attributes of specific types and, importantly, the specialized roles that different kinds of objects 
may play in different kinds of processes. Our strategy in building our ODIS is to allow easy 
creation of new POR representations at any given stage as new sorts of data about new sorts 
of PORs are incorporated into the framework.  

3.5. Composition of POR representations and ontologically grounded thematic roles 

To illustrate the feasibility of our approach we have thus far incorporated POR 

representations mapping over 300 English verbs. We have created for this purpose an 

ontologically grounded and composable representation of the thematic roles (agent, patient, 

instrument, and so on) identified by Fillmore (1968) and his successors. This allows us to 

assign thematic roles to the objects participating in given composite processes and to generate 

new thematic roles from prior roles in order to deal with new sorts of PORs not adequately 

represented by the existing POR representations.  

Where PORs are comprised of two or more objects participating in the realization of a single 

process, the mapping of a sentence about that POR to its POR representation in our system 

requires some method for assigning the objects referenced in the sentence to their respective 

process roles (such as agent and patient) in the POR representation. This in turn requires a 

description of the roles themselves (for example that one agent moves first) that can be used 

for purposes of inference.  
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The challenge is to develop an account that will allow new thematic roles to be identified 

as the system goes to work, for example in responding to new kinds of sensor inputs. We will 

illustrate how this is effected by our system in two stages. First, we will show how two atomic 

POR representations may be merged to form a single composite POR representation within 

which new thematic roles naturally emerge. Second, we will provide a series of examples 

approximating what happens when our ODIS is exposed to new kinds of PORs.  

3.5.1. Composition through merging POR representations   

 Consider a simple case of the construction of a composite POR representation through a 

process that begins with the merging of data deriving from multiple sources – in our example 

from: 

(a) a field analyst’s report that enemy troops are moving on the ground – illustrated in the upper 

panel E1 of Figure 13, representing a unit On of enemy troops with two observed positions at two 

times Tα and Tω, from which a velocity was calculated for which the directional component is 

shown with a green arrow,  

combined with: 

(b) a satellite report that unarmed civilians are holding 50 miles south – illustrated by the stationery 

object Om in the lower panel E2 of Figure 13.  

Composition of these proceeds through a series of steps, each of which must succeed for 

composition to be successful.  

The first step is composition of the Space and Time dimensions of the two representations 

in order to compare the outer spatial and temporal intervals for each of the two POR 

representations. If the two sets of dimensions use the same units, or if they can be made to 

match through an appropriate unit transformation, then the corresponding intervals can be 

merged without further ado. If the spatial dimensions do not match – as in a case where we 

have (1) two-dimensional spatial tracking information about a missile but need to use (2) a 

three-dimensional space for situational awareness – then for composition to succeed the 

unspecified spatial dimension in (1) must be assigned some value (Thomsen, 2002). 
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In the second step, to which the system proceeds only if the space-time dimensions 

successfully merge, the information along the object dimension of the two POR 

representations is tested to see whether it can be integrated without violating any ontological 

constraints, for example by verifying whether distinct solid objects are represented as 

occupying distinct spatial locations. If no ontological constraints of this sort are violated, then 

composition can take place.  

Third, is testing whether the merger of attributes violates any constraints. Since the time 

intervals across the two POR representations may be different, identical attributes need to 

match only if they are taken from the same time interval. If the time intervals are different, 

then empirical constraints (for example concerning how fast an attribute like color or size or 

velocity can change) are used to determine how great a difference in attribute values is 

composable across disparate time intervals. 

Based on the successful matching of the space and time units and intervals of E1 and E2 

from Figure 13, the two POR representations are composed into a single POR representation 

shown in the left panel E12 of Figure 14, whose containing space and time intervals match 

those of E1 and E2. Finally, the right panel E12, which is inferred by the system, shows the 

consequences of enlarging E12’s time dimension and the incorporation of predicted inferred 

Figure 13. Initial POR representations 

Figure 14. Merger of E1 and E2. 
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positions for On and of a predicted time when the enemy troops, On, encounter the unarmed 

civilians, Om. 

 While both On and Om were treated in the foregoing as objects with no complexity of 

structure, the system can infer such complexity over time as further information is acquired. 

Suppose, for example (incorporating different elements from our motivating scenario in 

section 1.1):  

• Attributes of the second object change: chemical weapons make a village uninhabitable  

• The centroid position of the second object changes: troops moved the SAM to a new location 

• Orientation about the centroid of the second object changes: the enemy redirected the SAM 

• Identity of the second object changes: the missile destroyed the plane. 

In the POR representations that would reasonably be constructed to represent these PORs, a 
new thematic role appears: what is typically referred to as that of being a patient or of being 
acted upon.  
 In the right panel of Figure 14, On is the participant in the motion that results in contact with 
the stationary Om. Om is from this perspective acted upon in its relation to On. We call this 
kind of POR, which represents some object which changes in some way followed by another 
object which changes (or perhaps does not change) in some way, a sequenced change. In a 
sequenced change, the ontologically grounded distinction between the object that moved first 
and the resulting contact with a second object then allows further specialization, for example 
to: On hit Om; On pushed Om; On spun Om, and so on.  
 Regardless of whether On slid, or ran, or flew, the fact that it participated in a process of 
change in position of its centroid means that certain corresponding spatiotemporal information 
must be specifiable. Depending on how On moved, there must be some substance towards 
which, away from or over or under or through which it moved. And while these secondary 
thematic roles, linguistically termed ‘prepositions,’ are treated by many standard extraction 
technologies as words that can be ignored, we treat them here as a significant type of 
ontological glue that binds individual PORs into larger composites.  
 Many prepositions form part of the common-sense human process vocabulary that 
presupposes that the POR being represented is within the gravitational field of a planetary 
body, typically Earth, much larger than the objects depicted in a POR representation. We call 
the larger object and its associated POR the Object frame of reference; we call the smaller 
object and its associated POR the referenced Object. From this point on, we assume the 
ontological constraints that follow from the presence of gravity, and focus on referenced 
objects and their associated PORs.  

3.5.2. Composition through specification of composite POR representations  

We now provide a summary specification of an illustrative series of POR representations 

that build on the five atomic POR representations described in section 3.4.2.16 

Each of our example POR representations involves the specification (using the computable 

dimension grammar we have introduced) of a process composed of simpler processes (either 

atomic or previously specified in our sequence of examples). We use ‘Change(Obj:n)’ as 

shorthand for any atomic change occurring in an object labelled ‘1, 2, 3 etc.’ T0, T1, T01 in 

what follows are in each case subdimensions of our Time dimension; The letters v, w, and x 

refer to arbitrary specific values of any subdimension of Time. ‘T0:v’ then refers to a specific 

                                                      
16 For the interested reader there is a companion document at https://bit.ly/2QGZiX3 outlining 25 of the simplest 

POR representations that build off the atomic ones.  

https://bit.ly/2QGZiX3
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value along the T0 dimension. ‘T0’ signifies the time value just before, ‘T1’ just after, and 

‘T01’ the interval during the execution of a process. We use T01:α to refer to the first time 

value (of the smallest discriminable units) in the interval denoted by T01; we use T01:v or 

T01:w for any given value in the interval denoted by T01; and we use T01:Ω to refer to the 

last time value (of the smallest discriminable units) in the interval denoted by T01. Note that 

the values associated with T0, T1 and T01 are specific to a given process. Thus, the T0 value 

of one process may occur after the T1 value of a different process. We use the shorthand Sp 

to refer to Space and the letters ‘q’ and ‘r’ to refer to values of Sp as in Sp:q or Sp:r. We use 

the shorthand Att to refer to an arbitrary attribute (e.g., color, mass, density, etc.). And we use 

the letters ‘a’ and ‘b’ to refer to values of an arbitrary attribute as in Att:a or Att:b. We use the 

shorthand Pr to refer to processes and the digits 1,2,3, etc. to refer to specific processes. When 

referring to the count of objects or processes or attributes, or when specifying a relation 

between the values of a dimension, we omit the symbol for the value as in: Count(Obj:) = 1, 

which reads: “The count of objects = 1”, or in: ≠((Att: , (Obj:1)), (Att: , (Obj:2,)), which 

reads: the attribute value for object 2 is not the same as the attribute value for object 1. 

We use ‘◄’ as shorthand for ‘◄ f ( )’ to signify that the assertion in which it is included is 

a function assertion and the ontological term to the right of the ◄ term is the label for the 

function.  When the argument inside the parentheses and the output are each relative to some 

context, the context is set in its own parentheses (as illustrated in the example below, where 

the Ontological dimensions for Object and Time provide the context for Attribute). Thus for 

example: 

(Att:b, (Obj:1, T1:w)) ◄ Change(Att:a, (Obj:1, T0:v)) ; 

asserts that some change in an Attribute of Obj:1 which at time T0:v has a value of v, results 

in a change in attribute value from v to w. We use ‘ρ( , )’  to signify that an assertion of this 

form is a relation assertion, for example as in: 

≠((Att:, (Obj:1, Sp:q)), (Att:, (Obj:1, Sp:r)); 

which says that the attribute value b of Obj:1 at Sp:q is not the same as the attribute value a 

of Obj:1 at Sp:r). We use the semi-colon to demarcate the end of a POR instance assertion. 

Our goal is to provide an ontological grammar that is fully grounded in computing 

dimensions so that all aspects of ingesting, interpreting and reasoning over sensor and text 

data can be carried out by the ODIS. To achieve this goal, we introduce a label assignment 

computing function that has a POR representation as argument and a labeled POR instance 

assertion as output. These label assignment functions come in three kinds, assigning 

 
• Function assertion (FA-),  

• Relation assertion (RA-), and  

• Thematic role (TR-)  

Labels, respectively  

The major enablers of POR complexity are the number of objects, the number of attributes 

and the number of processes involved in a given POR (counts being made always relative to 

a given level of granularity). As we have seen, when there is only one object with one attribute 

participating in one process, then there are only a small number of possible PORs and POR 

representations. Accordingly, we begin our series of examples with collections of POR 

instance assertions where it is the number of each kind of entity in the POR that is being 

represented. The second collection of examples specifies the object changes unique to a given 
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POR representation. The third collection of assertions assigns thematic role labels to kinds of 

processes (object behaviors). 

3.5.2.1. A POR representation for sequenced change   

Consider a POR involving 2 objects, 3 processes and 0 attributes: 

 
  ≥(Count (Obj: , 2);  

  =(Count (Pr: , 3); 

  ≥(Count (Att:, 0); 
  Function:1 ◄ FA-Label((Obj:1, T1:w) ◄ Change(Obj:1, T0:v));  
  Function:2 ◄ FA-Label((Obj:2, T1:w) ◄ Change(Obj:2, T0:v));  

  Function:3 ◄ FA-Label(Union(Function:1, Function:2)  

  WHERE ≤ (Time(T1:w, Function:1),Time(T0:v, Function:2))); 

 

 The line beginning ‘Function:1’ asserts that the label Function:1 is the result of assigning 

an FA-label to the assertion embedded in the parentheses, which itself asserts that the change 

applied to Obj:1 at one time yields Obj:1 at a later time. ‘Function:1’ is thus the simplest 

possible labeled POR instance assertion that asserts a change in some object that is identity-

preserving (for example because it is a change in color).  

 Taken together with the line beginning ‘Function:2’ it asserts that the change in question 

finishes before or at the same time as Function:2 begins (think of a case where we are dealing 

with real time feeds of sensor data into the ODIS). 

 The line beginning ‘Function:3’ then asserts that Function:3 is the labeled union of the 

realizations of Functions:1 and :2 occurring in sequence.  
   

Participant.1st changer ◄ TR-Label(Obj:1, Function:1);   

Participant.2nd changer ◄ TR-Label(Obj:2, Function:2);  
 

are POR instance assertions which label the objects participating in this union of processes 

using distinct thematic roles. The two roles in a POR representation for sequenced change are 

the role of the object as 1st changer (often called actor or agent) and as 2nd changer (often 

called the acted upon or patient). Both 1st and 2nd changer are specializations of the thematic 

role participant which, following BFO, is the all-encompassing thematic role for all objects 

participating in any way in some process.  

 Sentences such as “The cue ball hit the eight ball (into the pocket)” or “The bomb destroyed 

the bunker” can be interpreted as POR representations for sequenced change.  The cue ball 

and the bomb are the objects that change first; the eight ball and the bunker are the objects 

that change second. 

3.5.2.2.  A POR representation for transformation of one object by another   

 Objects can transform or appear to transform themselves, as when metals rust or bodies of 

gas lose entropy. Objects can transform or appear to transform something other than 

themselves as when a bomb transforms a bunker into rubble or a body of heat transforms ice 

into water. We use ‘transformations of one object by another’ to express POR representations 

of processes of this sort and classify them as sequenced changes where the bearer of the 2nd 

changer role changes its identity.  
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 Imagine the two-object case where some change in Obj:1 occurs at time T0:v prior to an 

identity change of Obj:2 so that at T1:w, Obj:2 no longer exists but instead there exists some 

Obj:3.  

 
=((Count (Obj:, (T0:v)), 2);   

=((Count (Obj:, (T1:w)), 2);  

=((Count (Obj:, (T01:x)), 3); 

 

Function:1 ◄ FA-Label((Obj:1,T1:w)◄ Change(Obj:1, T0:v)); 

Function:2 ◄ FA-Label((Obj:3, T1:w) ◄ Change(Obj:2, T0:v)); 

Function:3 ◄ FA-Label(Union(Function:1, Function:2))  

WHERE  ≤ (Time(T1:w, Function:1),Time(T0:v, Function:2)) 

AND WHERE ≠((Obj:, T1:w), (Obj:, T0:v)); 
 

The line beginning ‘Function:1’ asserts that Function:1 is the result of assigning the FA-label 

to the assertion embedded in the parentheses in a way analogous to our previous example. The 

line beginning ‘Function:2’ asserts that whatever Obj:2 was at time T0:v, by time T1:w it had 

changed in such a way that it transformed into Obj:3. 

 Function:3 is again defined as the union of Function:1 and Function:2, and the first 

WHERE clause again asserts that they proceed in sequence. The second WHERE clause 

asserts that the identities of Objs:2 and :3 are different. Thematic roles are then assigned by 

the system as follows: 
 

Participant.1st changer ◄ TR-Label(Obj:1, T01:v)   

Participant.2nd changer.input ◄ TR-Label(Obj:2, T0.v) 

Participant.2nd changer.output◄ TR-Label(Obj:3, T1.w) 

 

Note the bifurcation of the 2nd changer (acted upon) role introduced in our earlier example. 

We now have 2nd changer input and 2nd changer output roles. 

 Transformation is at the basis for describing not just destructive acts but also civilian and 

military production and consumption, as for example, when a portion of meat is transformed 

into a hamburger, or a portion of cheese and two portions of bread are transformed into a 

cheese sandwich. 
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3.5.2.3. A POR representation for motion of centroid between endpoints   

When we have an object with two identified locations, we may speak of the motion of the 

centroid of the object relative to these locations. Consider Figure 15, which depicts simple 

two-dimensional sensor data that has been classified as identifying locations and objects. 

Figure 15 displays three snapshots of a single process – one just before a motion-of-centroid 

process begins, bearing the time stamp T0n; one during this process, bearing the time stamp 

T01n; and one just after the process, bearing the time stamp T1n. The union of the three 

snapshots comprises a sensor representation of a POR labeled En. Imagine an ODIS had in a 

given context seen many motion-of-centroid PORs (as described in section 3.4.2) but had 

never associated the motion of a centroid with locations for the beginning and ending of the 

motion. This could be important because an analyst might wish to know something about these 

locations. Had the end location taken fire? How many civilians were left in the start location 

after Aid agencies removed those they could? Now, with sensor data as in Figure 15, the ODIS 

is able to catalog the presence of two additional objects or locations in addition to the object 

whose motion of centroid was observed. The POR instance assertions that follow build on the 

atomic POR representation for the motion of the centroid of an object by adding beginning 

and ending locations. 

 
≥(Count(Obj:,(T01:v)), 1) 

=(Count(Location:,(T01:v)), 2) 

Function:1 ◄ FA-Label((Sp:w, Obj:1, T01:v+1) ◄ Motion-of-centroid(Sp:v, Obj:1, T01:v)) 

Relation:1 ◄ RA-Label(>(ΔS/ΔT01(Obj:1, T01.v), 0)) ; 

Relation:2 ◄ RA-Label(near-or-inside(Space(Centroid(Obj:1, T0:v)), Space(Location:1, T0:v) 

AND (near-or-inside(Space(Centroid(Obj:1, T1:w)), Space(Location:2, T1:w)); 
 

 The line beginning ‘Function:1’ is to be interpreted as in the previous example, except that 

the function label is now assigned to a POR instance assertion to the effect that the motion-

Figure 15. POR representation for motion of centroid between endpoints 
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of-centroid function, when it is applied to on Obj:1 at S:w and at time T01:v, results in Obj:1 

being at S:w at time T01:v+1. A similar constraint as imposed by Function:1 could have been 

imposed through a relation assertion such as:    

 
Relation:0 ◄ RA-Label(≠(S:, (Obj:1, T01:v+1)),(S:, (Obj:1, T01:v))) 

 

which asserts that the space position of Obj:1 at time T01:v+1 is not the same as the space 

position of Obj:1 at time T01:v.  The relation assertion expresses the comparison between the 

space position of the Obj:1 at two times; but it does not point to a process whose execution 

resulted in the change.  It amounts to saying that at those two times the object is not in the 

same place.  Even though the function called ‘motion-of-centroid’ is not yet associated with 

ontological attributes such as motion of centroid by running, by flying and so on, it provides a 

root placeholder that can be later filled when further information is received. Beyond that, 

given their basis in spatial comparisons, relational assertions express difference in location 

but not in motion-of-object (for example an object might disappear from space position 1 and 

reappear in some space position 2 without moving). Mathematically, the assertion of a spatial 

relation is not temporally differentiable. In contrast, a motion of centroid function describes 

the process of change occurring continuously through time and so is temporally differentiable.  

 The line beginning ‘Relation:1’ assigns the relation label to a POR instance assertion to the 

effect that Obj:1 is moving (i.e., ΔS/ΔT > 0) during the motion-of-centroid process in S:q and 

T01:v. The line beginning ‘Relation:2’ assigns the same label to a POR instance assertion to 

the effect that Obj:1 was near or inside Location:1 at the beginning of this process and that 

that same object is near or inside Location:2 at the end of the process. The lines:  
 

Participant ◄ TR-Label(Obj:1,T01:w));   

Start location ◄ TR-Label(Location:1, T0:v);  

End location ◄ TR-Label Label(Role((Location:2, T1:x);   

Figure 16. POR representation for Transportation between Endpoints 
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are to be interpreted along the same lines.  

3.5.2.4. A POR representation for transportation between endpoints 

Imagine the ODIS has an understanding of the thematic roles involved in the process of motion 

between endpoints as described, and that its sensors are confronted with a situation captured 

in the series of snapshots in Figure 16 whose union comprises the POR representation we have 

labeled En. The POR depicted here differs from that in Figure 15 through the incorporation of 

an additional object – Obj:2 –located on top of Obj:1.  Informally we say that Obj:1 transports 

Obj:2 between Location:1 and Location:2. Sentences such as ‘The train carried the troop unit 

from the city square to the front line’, or ‘The plane transported the injured from the war zone 

to safety’ would be interpretable in this fashion.  

 The ODIS might describe the classified sensor data through a series of POR representations 

as follows: 
 

≥(Count(Obj:, (T01:v)), 2);  

=(Count(location:, (T01:v)), 2); 

 

Function:1 ◄ FA-Label((Sp:w,:1, T01:v+1) ◄ Motion-of-centroid(Sp:v, Obj:1, T01:v)) 

Relation:1 ◄ RA-Label(>(ΔS/ΔT01(Obj:1, T01.v), 0)) ; 

Relation:2 ◄ RA-Label(near-or-inside(Space(Centroid(Obj:1, T0:v)), Space(Location:1, T0:v) 

AND  

(near-or-inside(Space(Centroid(Obj:1, T1:w)), Space(Location:2, T1:w)); 

Relation:3 ◄ RA-Label(On(Obj:2, T01), (Obj:1, T01)) 
 

 The simplest description of Obj:2 and of the process in which it is a participant would take 

the form of an atomic POR relation assertion, namely one of stasis in the spatial relationship 

of Obj:2 relative to Obj:1. As to the emergent thematic roles, the process of transporting, with 

the required existence of two or more objects, bifurcates into two sub-processes.  As shown 

in what follows, the generic participant identified in the motion of centroid between endpoint 

example bifurcates into a participant that transports and a participant that is transported. 
 

Participant.transporter ◄ TR-Label(Obj:1,T01:v))   

Participant.transportee ◄ TR-Label(Obj:2,T01:v))   

Start location ◄ TR-Label(Location:1, T0)  

End location ◄ TR-Label Label(Role((Location:2, T1)   
 

 It might seem tempting to branch the thematic roles that emerge during this transport 

example from those of sequenced changes introduced in our first example, which would mean 

that Obj:1 here is treated as 1st changer (actor, transporter) and the transported Obj:2 as 2nd 

changer (patient, transportee). But such a characterization would impose a temporal 

sequencing on what is an atemporal relation, namely one of ongoing stasis. Absent additional 

information we do not know whether Obj:2 controls its spatial relationship to Obj:1 or vice 

versa, or whether we are dealing with some combination of the two. We do know however 

that the spatial relation so maintained is the reason why Obj:2 moves in unison with Obj:1, 

not slightly after as would need to be the case were the act of transport more accurately 

represented as a branching of sequenced change. 
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3.6. Conclusion 

We hope that through this series of examples of composite POR representation construction 

for sequenced change, transformation of one object by another, motion of the centroid of an 

object between endpoints, and transportation between endpoints of one object by another – 

we have demonstrated that it is possible to ontologically ground thematic roles and to generate 

new roles from roles already defined by branching (i.e., creating differentiated specializations) 

from an initial set of atomic POR representations. We do not assert that this particular 

sequence of definitional assertions amounts to the sole correct account for any of the 

composite POR representations presented. On the contrary, the entire approach incorporates 

a great deal of flexibility, corresponding to the flexibility built into the ways in which both 

natural language and evolving sensor technology represent the corresponding portions of 

reality and owing to the dual process aspects of function and relation as found in grammar for 

composing computing dimensions.   

We also hope to have shown that it is possible to imbue ontological dimensions with 

computational capabilities (not just those associated with axiomatic reasoning) thereby 

enabling ontological representations to reach all the way to empirical data and to the formulas 

by which data are gap filled, correlated, predicted and otherwise used for decision making.  In 

other words, to produce an information system that is fully driven by ontology (a true ODIS). 

Finally, we hope to have shown that it is possible to construct a grammar for composing 

ontological dimensions that is grounded in a grammar of computing dimensions; and that this 

grounding can enable machines to reason in terms of POR representations. 

Appendix: The multi-interpreter prototype ODIS   

 To implement our POR representation model and test its underlying hypotheses, we built 

an ODIS called Multi-Interpreter (MI). MI provides two distinct subsystems for processing 

information whether coming from sensors, natural language or databases: a POR assertion slot 

manipulator that processes  

information at the deeper level of computing dimensions, and a POR assertion slot filler that 

processes information at the ontological (and empirical) level. The ODIS-based process of 

interpretation passes   

 Figure 17, a diagram from MI’s technical manual, illustrates how a sequence of symbols 

is processed according to separate slot manipulating (i.e., computing dimension) and slot 

filling (i.e., ontological dimension) criteria. In the slot manipulating component of Figure 17, 

En refers to an arbitrary expression, Lnn refers to the nth argument slot in En, Cnn refers to the 

nth predicate slot in En. The Trs inside the boxes associated with Lnn and Cnn represent the 

dimension roles (called type roles in MI) associated with symbols that are assigned to either 

argument or predicate slots. The slot filling role component of the Figure 17 (whose detailed 

description is beyond the scope of this paper), illustrates how surface lexical features or sensor 

data output (called physical representations in MI) combine with dimension role classifiers 

for the purpose of associating symbols with slot filling dimension roles. 

 

 

 MI comprises: 

 



E. Thomsen and B. Smith / Ontology-based fusion of sensor data and natural language 

 

Word to symbol mapping: One module in MI consists in a large collection of salient words, 

each of which is matched with one or more symbols used internally by the ODIS. Each symbol 

is associated with one or more ontological dimension values (e.g., a time value, a space value, 

an object identifier). And each conjunctive collection of co-occurring ontological dimension 

values is associated with one or more POR instance assertion templates corresponding to 

sentences containing corresponding words. These POR representation templates will in turn 

specialize one or more general POR representation templates. The combination of dimension 

values and general POR representation templates is called the ontological sense of the word. 

InformationBase IB: This module stores axioms and definitions from BFO-consistent 

ontologies and analogous assertions from empirical data related to our intel scenario. Together 

these are used for language processing and reasoning. 

Word Sense Disambiguation: All related information both within the target sentence 

where the word appears and in nearby paragraphs, as well as salient information from the IB, 

is used to identify the most likely ontological sense(s). 

Simple POR instance assertion Extraction: Simple POR instance assertions may be 

composed of complex entities (e.g., nations or armies) but they have only one predicate. 

Because MI is grounded in a small collection of ontological dimensions, there is a 

correspondingly small number of possible simple POR instance assertions. A single sentence 

(as shown in Figure 11) may generate one or more simple POR instance assertions. We 

describe in what follows how MI uses its understanding of possible simple POR instance 

assertions to look for and extract them from external inputs.   

Composite POR instance assertion Construction: Based on our hypothesis that sentences 

have the same compositional properties as PORs, and that prepositions and logical connectives 

are the means by which sentences and sentence fragments are bound into larger units of 

meaning that correspond to larger  

and more composite PORs, MI uses ontological relations (e.g., spatial, temporal, control) and 

logical connectives, identified during word-to-symbol mapping as the links by which the 

simple POR instance assertions extracted from sentences and sentence fragments are merged 

into larger, composite POR instance assertions  These extracted POR instance assertions are 

then internally stored as graphs. 

 POR Assertion Reasoning: A constraint propagation engine is used to merge newly 

constructed composite POR assertions with the prior time collection of POR assertions and to 

execute queries against the POR assertions and associated ontologies. 

A.1 POR assertions templates and word class sequences 

First, MI needs to decide when an N-adic collection of dimensions (e.g., a collection of time 

dimensions or a collection of object dimensions) represents N-adic aspects of an 

argument/predicate versus N distinct arguments/predicates. As a general rule, MI treats senses 

related by granularity (as hour is related to minute) and space, time and object process senses 

as N-adic aspects. Thus, in a sentence such as  

On Thursday, Jan. 15th at 3:00pm on the 10th floor of the Sears tower an unexpected 

demonstration took place 

the collection of variables in the italicized portion of the sentence all contribute to one location, 

namely the space-time interval within which the demonstration occurred. So for MI, the 

spatiotemporal argument would be a single N-adic argument: f(a123). In contrast in a sentence 

such as  
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Monday, Tuesday and Wednesday at 3:00pm on the 10th floor of the Sears tower an unexpected 

demonstration took place. 

 

the relationship between days (shown italicized) is not one of granularity and so there would 

effectively be three arguments, one for each of the three days. Figure 18 shows the similarities 

of physical representations across surface languages – in this case, English and Russian – and 

how they can be interpreted by the same POR assertion within the ODIS. 

Second, MI understands that prepositions and pronouns such as ‘that’, ‘who’, ‘where’ have 

more than one sense. Specifically, MI makes use of these terms as markers for determining 

when a new symbol indicates the presence of a new POR assertion and thus the need to spawn 

a new physical representation matching process. In response, it determines what kind of link 

binds the two physical representations. For example, seeing a ‘who’ or a ‘that’ might trigger 

a nested expression link to a new physical representation matching process. Being able to 

extract and differentially represent nested from nesting information is important because it 

separates background, implicit assumed-to-be-shared information and from those new 

statements whose successful conveyance is predicated on the prior, shared information.  

Figure 18. Language Invariant POR assertion 
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 Third, MI matches collections of tokens against its simple POR assertions we have 

described. In implementing our model, we abstracted out from our physical representations 

those ontological dimensions which could appear in any order in the target language – here 

English. Time, for example can appear almost anywhere in an English sentence (e.g., Jessie 

went shopping on Tuesday. Tuesday Jessie went shopping. And Jessie on Tuesday went 

shopping.) This is why Time does not appear in the POR templates but is a part of the unary 

Table 4. Simple POR templates and their word class sequence templates 

Abbreviations   POR templates Word class sequence templates  

argument arg  A (Obj, Attr) Arg-Attr-Obj 

predicate prd  B (Prs, Attr) Attr-Prs-Attr 

object 
obj 

 C 
Obj, Rel (A) 

(Arg-Attr-Obj)-Prd-Rel) - Neg-(Arg-Attr-
Obj) 

process prs  D Attr(A) (Arg-Attr-Obj)-Prd -Attr 

attribute att  E B(A) (Arg-Attr-Obj)-Attr-Prs-Attr 

POR role evr  F Obj, Evr(A) (Arg-Attr-Obj)-Prd-(Evr)-(Arg-Attr-Obj) 
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markers. Table 4 shows six of our thirty elementary POR templates and the word class 

sequence templates they match.17 

Word sequences found in text are continuously compared with simple composable word 

class sequences comprised of word classes referring to objects, processes, times and so forth 

belonging to different POR representation dimensions. Each such word class sequence is what 

we called in the main body of the paper a POR assertion. It is a specific physical representation 

(for example using English) of some POR representation aspect (e.g., of an attribute asserted 

of an object or of a process and role asserted of an object or of an object asserted of a space 

etc..) and comes in one of a range of different types called word class sequence templates, 

corresponding to On located in Sn, Pn occurs during Tm, and so forth.  

Consider for example the event frame aspect: On has attribute An during Tm (for example 

“SAMs undefended at Tm”). When the MI system sees a corresponding word sequence in the 

text, it allows that the object On may come to acquire one or more further attributes that are 

not referred to in the current assertion, allowing a move, for example, to “Undefended SAMs 

secured by Blue Force at Tm+1,” and so on. The system knows also that the object On may be 

pre-associated with attributes, for instance that the undefended SAMs at Tm were enemy 

SAMs; that they had been positioned to defend an enemy airbase; that they had not been 

detected earlier, and so forth.  

 The thirty word class sequence templates are used by the system to classify not merely 

assertions of an attribute of an object but also assertions about relations between objects, 

assertions about processes realized by objects, assertions concerning how an object 

participated in a process, and so on. The templates in addition accommodate different numbers 

of objects and different numbers of attributes per object (big, old, friendly Bill), and so on. To 

capture the ways in which sequentially more complex POR assertions are made, the templates 

involve both logical and ontological markers.  

We move from simple POR assertions to complete POR representations by treating those 

dimensions of a POR representation not filled in the relevant POR assertion as variables (as 

shown in Figures 2 through 11); thus if we have an IR to the effect that ‘airplanes are above 

Raqua’, then the corresponding POR assertion is expanded to a complete POR representation 

by adding ‘at some time’, ‘moving with some velocity’, ‘in some direction’, and so on. As it 

sees more text MI will then try to fill in these blanks. 

A.2  Illustration of multi-interpreter output and test example 

 Figure 19 shows the analysis of a sentence in an intel report depicting the matching word 

class sequence templates and the words that matched them. The POR assertion aspects are 

arranged vertically across the rows. They are separated by dark horizontal lines. The words 

are arranged horizontally across the columns with the matches at the intersections. Note that 

the preposition with is part of the original sentence but does not appear matched to a template. 

This is because MI holds the preposition as a link to be used for merging simple POR 

assertions into composites 

                                                      
17 The complete set of templates may be found at https://bit.ly/2QGZiX3. 
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 To test MI, we ingested an Air Force ontology generated in OWL and comprising over 

1000 entities including red and blue force assets and protocols and built event frames for a 

synthetic collection of about 200 intel wire reports (of about 3 sentences per report) and for a 

representative mission plan (containing over 50 mission targets in the form of a Joint 

Integrated Prioritized Target List or JIPTL) with the intent of discovering whether the 

activities reported might threaten any impending missions.  

 The following is representative of an intel wire report. We highlighted prepositions in 

boldface to illustrate their importance for building composite POR assertions 

 
Recent Reporting indicates that enemy is expediting the deployment of mobile surface to air missiles 

to the front lines. In line with this reporting, imagery from May141715 shows one SA-T Tel with 

three missiles loaded, one straight flush fire control radar, and two support vehicles IVO 12345N 

1143335W.  

  

Potential threats were defined in our ontology as: weapons controlled by the enemy that were 

in an operational state whose use could destroy an airplane in flight. Actual threats were 

potential threats located in an area that could attack a planned air mission.  

 MI successfully interpreted over 90% of the reports and found 8 of the 10 genuine threats 

and produced two false positives. False positives were produced when unanticipated 

inferences were needed to understand that a weapon was not in an operational state. (These 

results were manually verified for evaluation purposes.) 

Figure 19. MI screenshot showing partial view of word class sequence matching. 
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