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Abstract

In attempting to form rational personal probabilities by direct infer-
ence, it is usually assumed that one should prefer frequency informa-
tion concerning more specific reference classes. While the preceding
assumption is intuitively plausible, little energy has been expended in
explaining why it should be accepted. In the present article, I address
this omission by showing that, among the principled policies that may
be used in setting one’s personal probabilities, the policy of making
direct inferences with a preference for frequency information for more
specific reference classes yields personal probabilities whose accuracy
is optimal, according to all proper scoring rules, in situations where all
of the relevant frequency information is point-valued. Assuming that
frequency information for narrower reference classes is preferred, when
the relevant frequency statements are point-valued, a dilemma arises
when choosing whether to make a direct inference based upon (i) rela-
tively precise-valued frequency information for a broad reference class,
R, or upon (ii) relatively imprecise-valued frequency information for
a more specific reference class, R′ (R′ ⊂ R). I address such cases, by
showing that it is often possible to make a precise-valued frequency
judgment regarding R′ based on precise-valued frequency information
for R, using standard principles of direct inference. Having made such
a frequency judgment, the dilemma of choosing between (i) and (ii) is
removed, and one may proceed by using the precise-valued frequency
estimate for the more specific reference class as a premise for direct
inference.
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The reference class problem, Imprecise probabilities, The principle of indif-
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1 Introduction

Direct inference typically proceeds from two premises of the following sort:
The first (minor) premise states that a given object, c, is an element of
a reference class R. The second (major) premise states that the frequency
with which members of R are members of a respective target class, T, is
r. The conclusion of the direct inference is then that the probability that
c is a member of T is r. In order to abbreviate the description of such
inferences, I use the notation “PROB” to refer to a probability function
that takes propositions as arguments, and is understood as designating the
(potentially imprecise) personal probabilities (or degrees of belief) that are
rational for a respective agent, given the evidence that the agent has. So
the injunction to infer a given personal probability statement, PROB(α) =
r, is tantamount to the injunction to infer that the personal probability r
is rational for the proposition α, given one’s evidence. I use the notation
“freq” (for “frequency”) to refer to a function that takes a pair of sets as
an argument, and returns the relative frequency of the first set among the
second. So “freq(T|R) = 0.5” expresses that the relative frequency of Rs
(elements of R) that are Ts (elements of T) is 0.5. Given this notation,
typical instances of direct inference satisfy the following schema:

From c ∈ R and freq(T|R) = r infer that PROB(c ∈ T) = r.

Instances of the preceding schema are, of course, defeasible. A particular
condition under which instances of the schema are (usually taken to be)
defeated is the central concern of the present article. In particular, it is
typically held that, in cases where two instances of the preceding schema
yield conflicting conclusions regarding the probability of some proposition
c ∈ T, one should form one’s conclusion regarding the value PROB(c ∈ T)
by the direct inference that employs the narrower reference class, provided
the reference class for one of the two direct inferences is narrower than the
other (according to the proper subset relation).1

The doctrine that one should prefer frequency information for more spe-
cific reference classes in conducting direct inference is intuitively plausible.
The prior intuitive plausibility of the doctrine probably explains why its
advocates haven’t taken much care to argue for it, including Venn (1866),

1In fact, further qualifications are required in order to exclude degenerate direct infer-
ences (cf. Pollock 1990, Kyburg & Teng 2001, Thorn 2012). The problem of excluding
degenerate direct inferences does not arise within the simple sorts of population model
considered in Section 2. In Section 3.5, I will say a little bit about the problem of excluding
degenerate direct inferences.
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Reichenbach (1949), Kyburg (1974), Pollock (1990), Bacchus (1990), Ky-
burg and Teng (2001), and Thorn (2012).2 My primary aim in the present
article is to address this omission. From the outset, I acknowledge that many
may find the prior intuitive plausibility of the doctrine that one should favor
more specific reference classes to be greater than some of the assumptions
that I will make in defending the doctrine. But my goal is not, merely, to
preach to the converted, i.e., those that find the doctrine highly plausible
solely on the basis of prior intuitions. Rather, my goal is to provide inde-
pendent reasons for the policy of preferring more specific reference classes.
To this end, I show that the policy of using direct inference with the most
specific applicable reference classes yields personal probabilities whose accu-
racy is optimal, according to all proper scoring rules. The optimality results
presented here are similar to the accuracy based considerations adduced by
Joyce (1998) in favor of probabilism. The proposed defense of direct infer-
ence, with a preference for more specific reference classes, is also similar to
the defense of updating by conditionalization by appeal to expected accu-
racy maximization, as found in (Greaves & Wallace 2006) and (Leitgeb &
Pettigrew 2010b), and generalized in (Easwaran 2013).

The following section of the paper presents the basic optimality results
for the policy of preferring frequency information for more specific reference
classes in conducting direct inference. While the results are suggestive, they
properly apply only to situations where an agent has access to point-valued
frequencies (for the relevant target class) for the most specific relevant ref-
erence classes. Section 3 introduces several measures that are aimed at
mitigating the limitations of the results presented in Section 2. First, ana-
logues of the results of Section 2 are introduced that show that the policy of

2Pollock (1990, 86) asserts that the preference for narrower reference classes is a ‘kind
of’ total evidence requirement. This may be. However, there is no straightforward way to
direct the force of arguments in support of Carnap’s Principle of Total Evidence in order
to support a preference for narrower reference classes. Indeed, Carnap’s Principle of Total
Evidence (1962, 211) prescribes that one’s posterior probability for a proposition α be
identical to one’s prior probability for α conditional on one’s complete body of evidence.
So in a case where one’s complete body of evidence consists of freq(T|R) = 0.6, freq(T|R′)
= 0.9, R′ ⊆ R, and c ∈ R′, Carnap’s principle prescribes that one’s posterior probability
for c ∈ T be identical to one’s prior probability for c ∈ T conditional on freq(T|R) = 0.6
∧ freq(T|R′) = 0.9 ∧ R′ ⊆ R ∧ c ∈ R′. However, since one’s prior probability for c ∈ T
conditional on freq(T|R) = 0.6 ∧ freq(T|R′) = 0.9 ∧ R′ ⊆ R ∧ c ∈ R′ need not be 0.9, the
preference for narrower reference classes does not follow from Carnap’s principle. Perhaps
rational personal probabilities are structured in such a way as to generate a preference
for narrower reference classes, when updating by conditionalization (cf. Thorn 2014).
Whether this is the case is something that would need to be argued for, independently of
the Principle of Total Evidence.
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making direct inferences (with a preference for narrower reference classes)
based on expected frequencies maximizes expected accuracy. Similar to the
results of Section 2, the results concerning direct inference based on ex-
pected frequencies apply only to situations where an agent has access to
point-valued expected frequencies for the most specific relevant reference
classes. To mitigate this limitation, two methods of inferring precise-valued
expected frequencies are introduced. In a wide range of cases, the meth-
ods permit one to infer a precise-valued expected frequency for a reference
class, R′, based on precise-valued frequency information for a set R that is
a superset of R′. Both methods proceed by locating R′, itself, in an appro-
priate reference class (a set of subsets of R), and then drawing a series of
conclusions (by direct inference) about the probability that the frequency of
T among R′ takes various values. These conclusions are then used to infer
the expected frequency of T among R′. As I will explain, in Section 3, the
two proposed methods are of independent interest (beyond mitigating the
limitations of the described optimality results), since they are applicable to
addressing the general problem of choosing between direct inferences based
on (i) precise-valued frequency information for broad reference classes, ver-
sus (ii) imprecise-valued frequency information for more specific reference
classes.

2 The Optimality of Preferring More Specific
Reference Classes

In order to demonstrate the virtues of reasoning by direct inference using
the most specific applicable reference classes, I propose that we use a simple
‘test environment’, in order to evaluate various ‘policies’ for forming personal
probabilities. For this purpose, I introduce the notion of a population model
M, which is a triple 〈U, T, Π〉, consisting of a domain of objects U, a subset
T of U (where “T” stands for “target class”), and a partition Π = {π1, ...,
πn} of U, where Π corresponds to the set of maximally specific descriptions
within which we are able to assign elements of U.3

3In the circumstance of making a judgment about the probability that an object c is
a member of T, it is always possible to introduce a description of maximal specificity,
which denotes the unit set consisting of the very object about which one is reasoning. It is
reasonable to ignore such descriptions, in cases where we have no substantive information
concerning the value of freq(T|{c}). So, in the present section, I take the reasonable course
of ignoring such descriptions. But see Section 3.3, which considers the proper treatment
of reference classes for which one has no prior frequency information, and provides a more
adequate treatment of the present issue.
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The task of respective policies will be to recommend accurate probability
judgments concerning which members of U are in T. In making their rec-
ommendations, our policies may avail themselves of information about the
relative frequency of membership in T among objects falling within various
categories. While Π specifies the most specific categories that are distin-
guishable, our policies may consider the relative frequency of membership
in T among the broad class of categories consisting of the algebra of subsets
of U that is formed by unions of elements of Π. I call this algebra “F”, which
is defined: F = {f : f = ∪A ∧ A ⊆ Π}.4

I begin by considering the case where it is known which objects are
elements of which elements of Π, and our policies have access to the relative
frequency of T among each and every element of Π, where freq(T|π) = |{x :
x ∈ π ∧ x ∈ T}|/|{x : x ∈ π}|, for all π in Π. For each object, x, in U, the
task of a policy is to recommend a degree of belief in the proposition that x
is in T. In other words, the task is to recommend a (credence) function from
U into [0, 1], which represents degrees of belief regarding the truth value of
x ∈ T, for each x in U. My intention here is to demonstrate the optimality
of the following policy, δ, which corresponds to using direct inference with
the most specific applicable reference classes:

Relative to a respective population model M, let δ(x ∈ T) = freq(T|π), for
all x, where π is the element of Π containing x.

The policy corresponding to δ is not optimal in comparison to all possi-
ble policies, with respect to all possible population models (for example, in
comparison to the ‘oracular’ policy, ν, that precisely tracks the truth value
of all relevant propositions, i.e., ν(x ∈ T) = 1, if x ∈ T, and ν(x ∈ T) = 0,
otherwise). However, δ is optimal (given a restriction on admissible accu-
racy measures) in comparison to (the policies represented by) the following
credence functions, whose value assignments are ‘principled’:

Definition. A credence function, χ, is principled in M if and only if
∀π∈Π: ∀x,y∈U: if x ∈ π and y ∈ π, then χ(x ∈ T) = χ(y ∈ T).5

The preceding definition tells us that a credence function is principled
just in case, for each pair of objects, the same credence is assigned to both

4Note that the present specification of categories represents a generalization of the case
where F is the set of all subsets of U, which corresponds to the case where of Π = {{x} :
x ∈ U}.

5Easwaran (2013, 124) appeals to a similar condition in showing that updating by
conditionalization maximizes expected accuracy, including the case of probability functions
that are defined over infinite sets of possible worlds.
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elements of the pair, regarding membership in T, if the two objects have
exactly the same properties, among the set of properties that one is able to
distinguish. Notice that δ is principled. On the other hand, the restriction
of our concern to principled credence functions excludes oracles, along with
other policies that succeed by assigning different probabilities to objects that
are indistinguishable, from the point of view of the policy.6

The optimality of δ is dependent on how we measure accuracy. I here
adopt the common parlance, and refer to accuracy measures as “scoring
rules”. Formally, I here treat a scoring rule, S, as a function from pairs con-
sisting of the credence assigned to a proposition, χ(α), and the proposition’s
truth value, as represented by a standard truth-valuation function, ν. So
“S(χ(α), ν(α))” would return the score for the credence function, χ, regard-
ing the proposition, α, given α’s truth value, ν(α). Since we only consider
propositions concerning whether given elements of U are in T (according to
a given population model M), the application of scoring rules, in the present
article, takes the following form: S(χ(x ∈ T), ν(x ∈ T)) (where everything
is implicitly relativized to M).

As it turns out, the optimality of the policy represented by the credence
function δ holds for a broad class of highly esteemed scoring rules, namely
the set of all proper scoring rules. A scoring rule is proper just in case the
expected score earned according to the measure is maximized by reporting
one’s actual personal probabilities, i.e.:7

Definition. S is a proper scoring rule if and only if
∀r,s: S(s, 1)×s + S(s, 0)×(1−s) ≥ S(r, 1)×s + S(r, 0)×(1−s).

This is not the place to summarize all of the arguments that have been
made in favor of particular proper scoring rules (especially quadratic scoring
rules), or proper scoring rules, generally (but see Brier (1950), de Finetti
(1974), Joyce (1998), Selten (1998), Greaves & Wallace (2006), Leitgeb &
Pettigrew (2010a), and Levinstein (2012)). Nevertheless, one consideration
that counts in favor of such accuracy measures is worth mentioning, as
illustrated by the following situation: Imagine circumstances where one is
asked to report one’s personal probability for some proposition, α, upon the
understanding that one will receive a payoff, measured in units of utility,

6Note that the oracular policy, ν, will be principled in some population models, such
as in population models where Π = {{x} : x ∈ U}. In all such cases, δ(x ∈ T) = ν(x ∈
T), for all x in U.

7For the sake of uniformity, negatively oriented scoring rules (such as Brier scoring)
are treated as loss functions, where the scores corresponding to such loss functions are
determined by multiplying the loss earned according to such a rule by −1.
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according to the accuracy of the report, as determined by some scoring rule,
S. If S is proper, then one will expect to do best by accurately reporting one’s
personal probability for α. On the other hand, if S is improper, then one
will expect to do better by reporting a value that differs from one’s personal
probability, in at least some cases. Assume, in the present case, that (1)
one’s personal probability for α is r, (2) S is improper, and (3) one expects
to do better by reporting that one’s personal probability for α is s (s 6= r).
Now since the ‘impropriety’ of improper scoring rules applies irrespective of
whether one’s personal probability is rational, assume that one’s degree of
belief regarding α is rational, given one’s evidence. In that case we have
a curious situation which speaks against treating S (an arbitrary improper
scoring rule) as an accuracy measure, namely: PROB(α) = r is rational,
but the expected accuracy of PROB(α) = s is greater than the expected
accuracy of PROB(α) = r.

Many notable proper scoring rules (e.g., quadratic and logarithmic scor-
ing rules) are sometimes called “strictly proper”. A scoring rule is strictly
proper just in case reporting one’s actual personal probabilities is unique in
maximizing one’s expected score, according to the measure, i.e.:

Definition. S is a strictly proper scoring rule if and only if
∀r,s: if r 6= s, then S(s, 1)×s + S(s, 0)×(1−s) > S(r, 1)×s + S(r, 0)×(1−s).

Since all strictly proper scoring rules are also proper scoring rules, any result
that holds for proper scoring rules holds for strictly proper scoring rules.

The first optimality result regarding δ is as follows (with a proof appear-
ing in the appendix):

Theorem 1. ∀M,χ: if χ is principled in M, then ∀S:

(1) if S is a proper scoring rule, then ∀π∈Π:
Σx∈π S(δ(x ∈ T), ν(x ∈ T)) ≥ Σx∈π S(χ(x ∈ T), ν(x ∈ T)), and

(2) if S is a strictly proper scoring rule and χ 6= δ, then ∃π∈Π:
Σx∈π S(δ(x ∈ T), ν(x ∈ T)) > Σx∈π S(χ(x ∈ T), ν(x ∈ T)).

Theorem 1 derives from the following fact: In situations where one must
assign the same credence, r, to propositions of the form x ∈ T, for each x
in some set R, one is guaranteed to maximize accuracy when r = freq(T|R),
so long as accuracy is measured by a proper scoring rule. The assignment r
= freq(T|R) is unique in maximizing accuracy, if accuracy is measured by a
strictly proper scoring rule.
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Theorem 1 establishes the optimality of reasoning by direct inference and
preferring more specific reference classes, within a restricted range of cases.
Accepting such limitations in applicability, it may still be objected that
Theorem 1 only establishes that δ maximizes the sum of the scores earned
for a set of personal probabilities, and that some χ might be preferable to
δ, in virtue of making judgments that are more accurate in the cases which
‘count for more’, by making judgments that are more accurate regarding
propositions x ∈ T, concerning objects x that one is more likely to encounter,
for example. Although we can imagine the possibility of such a χ, Theorem 1
shows (within the sort of population models to which it applies and assuming
the suitability of proper scoring rules) that there can be no sensible reason for
deviating from credences that conform to δ. Indeed, if χ is principled, then
whatever indicators χ employs as a basis for discerning which elements of
the population ‘count for more’ are already reflected within Π – recall that Π
corresponds to the set of maximally specific descriptions within which we are
able to assign the elements of U. But Theorem 1 asserts that χ’s aggregate
score cannot exceed δ’s regarding any element of Π. So if one limits oneself to
principled strategies, then in any situation where one considered deviating
from δ, regarding some category of propositions (those ones regarded as
counting for more, for example) one could apply Theorem 1, and see that
one would score at least as well, with respect to those propositions, by
adopting credences that conform to δ.

The applicability of Theorem 1 is limited to cases where it is possible
to locate each object within a reference class corresponding to a maximally
specific description (as represented by an element of Π). We can generalize
Theorem 1 to apply to cases where it is not possible to locate each object
within such a reference class, by considering cases where the elements of U
are presented under the guise of descriptions that do not necessarily corre-
spond to membership in an element of Π, but rather merely to an element
of F (i.e., an element of {f : f = ∪A ∧ A ⊆ Π}). In this case, I assume that
our policies have access to the relative frequency of T among each and every
element of F, where freq(T|f) = |{x : x ∈ f ∧ x ∈ T}|/|{x : x ∈ f}|, for all f
in F.

In order to present the proposed generalization of Theorem 1, let popu-
lation models be defined as before. Now consider objects under descriptions,
represented as pairs 〈x, f〉, where 〈x, f〉 functions as a name for x, and f is the
most specific description that x is known to satisfy under the name 〈x, f〉.
It is assumed that all such descriptions are accurate, and that an agent may
be acquainted with the same object under different names without realizing
that the names refer to the same object (so that χ(〈x, fi〉 ∈ T) 6= χ(〈x, fj〉 ∈
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T) may hold of a coherent credence function). Let UF be the set of names
with respect to a population model M, i.e., UF = {〈x, f〉 : x ∈ f ∧ f ∈ F}.
A credence function, χ, regarding UF is then defined as a function from UF

into [0, 1], which (intuitively) represents degrees of belief regarding whether
the bearers of respective names, of the form ‘〈x, f〉’, are elements of T. By
extension, I permit terms and expressions such as: χ(〈x, f〉 ∈ T), and χ(〈x,
f〉 ∈ T) = s, etc. The following generalizes the notion of principledness, in
order to apply in the present context:

Definition. A credence function, χ, is principled in M if and only if
∀f∈F: ∀x,y∈U: if x ∈ f and y ∈ f, then χ(〈x, f〉 ∈ T) = χ(〈y, f〉 ∈ T).

The extension of δ in the present context is as follows: Relative to a re-
spective population model M, let δ(〈x, f〉 ∈ T) = freq(T|f), if x is in f.
The optimality of the policy represented by δ is expressed by the following
theorem:8

Theorem 2. ∀M,χ: if χ is principled in M, then ∀S:

(1) if S is proper, then ∀f∈F:
Σx∈f S(δ(〈x, f〉 ∈ T), ν(x ∈ T)) ≥ Σx∈f S(χ(〈x, f〉 ∈ T), ν(x ∈ T)), and

(2) if S is strictly proper and χ 6= δ, then ∃f∈F:
Σx∈f S(δ(〈x, f〉 ∈ T), ν(x ∈ T)) > Σx∈f S(χ(〈x, f〉 ∈ T), ν(x ∈ T)).

In addition to recommending a preference for direct inferences based
on frequency information for narrower reference classes, Theorems 1 and
2 are applicable to explaining why one should prefer direct inferences that
employ ‘standard’ reference classes (where the object about which one would
like to make a judgment is an element of the reference class) over direct
inferences where the reference class is a partition of the standard reference
class. This preference is relevant to correctly arbitrating between competing
direct inferences. For example, suppose that the members of a certain group
are distributed among the categories small, medium, and large, and one
would like to form a judgment about the likelihood that a particular member
of the group, called “c”, is large. Suppose one’s information is limited, as
follows: One knows that c is a member of the group (but not whether
c is small, medium, or large), and that the ratio of small to medium to
large members of the group is 1:8:1. In that case, it is (apparently) correct
to conclude that the probability that c is large is 0.1. Where the sets of

8The proof of Theorem 2 is identical to that of Theorem 1, where we replace instances
of π and Π, with f and F, and instances of x, xi, and U, with 〈x, f〉, 〈xi, f〉, and UF,
excluding instances of x and xi in the scope of ν.

9



small, medium, and large members of the group are S, M, and L, the direct
inference that yields this conclusion may be expressed as follows: From c ∈
S∪M∪L and freq(L|S∪M∪L) = 0.1 infer PROB(c ∈ L) = 0.1. On the other
hand, someone might reason that one of three classifications is applicable
to c (i.e., S, M, or L), and that the applicability of each classification is
equally likely. Where f(c) denotes the element of {S, M, L} of which c is a
member, we may attempt to underwrite the proposed conclusion by appeal
to the following (highly suspect) direct inference: From f(c) ∈ {S, M, L}
and freq({L}|{S, M, L}) = 1/3 infer PROB(f(c) ∈ {L}) = 1/3 (which entails
that PROB(c ∈ L) = 1/3). Although the latter direct inference is suspect,
its reference class, {S, M, L}, is a partition rather than a superset of S∪M∪L.
Nevertheless, accuracy considerations of the sort encapsulated by Theorems
1 and 2 may be applied in explaining the preference for the former over the
latter direct inference. In particular, the policy of adopting a credence of
0.1 for propositions of the form x ∈ L, for each x in S∪M∪L, yields more
accurate degrees of belief than adopting a credence of 1/3 for propositions
of the form x ∈ L, for each x in S∪M∪L. The point illustrated by the
present example is completely general: The aggregate accuracy of credences
formed by direct inference from point-valued frequency information for a
given reference class is guaranteed to be at least as great as the aggregate
accuracy of credences formed (in the described manner) by a partition of
that reference class (assuming proper scoring).9

It is not my intention to exaggerate the weight of Theorems 1 and 2 in
providing a justification for the policy of forming one’s personal probabili-
ties via direct inference with a preference for more specific reference classes.
Many have argued for the correctness of one or another proper scoring rule
(especially quadratic scoring rules), and the results expressed by Theorems
1 and 2 hold for all such rules. That said, if one is open to linear scoring,
which has some prima facie plausibility, one may be unmoved by Theorems
1 and 2. Moreover, Theorems 1 and 2 (while suggestive) only demonstrate
the optimality of direct inference with a preference for more specific refer-
ence classes, in comparison to principled policies, in cases where an agent
makes an inference about every object in the relevant domain (in the case
of Theorem 1), or about every object under every accurate description (in
the case of Theorem 2).10 Finally, the optimality results expressed by The-

9Note that I have not argued here that all direct inferences based on reference classes
that are partitions are degenerate. I only maintain that there is a preference for direct
inferences that employ ‘standard’ reference classes versus their partitions.

10The results also imply the expected optimality of δ, in the case where an agent makes
inferences about uniformly randomly selected elements of the domain.
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orems 1 and 2 are limited (while suggestive), inasmuch as the theorems are
only properly applicable in cases where one has access to the (point-valued)
frequency of T, for every element of Π and F, respectively. In the following
section, I make some progress in addressing the preceding limitation of the
present results, by presenting analogous results that apply when one is able
to make a judgment about the expected frequency of T for every relevant
reference class. I then go on to show that we are often in a position to
make point-valued expected frequency judgments, in cases where we are not
warranted in accepting a respective point-valued frequency statement.

3 In the Absence of Precise-Valued Frequency
Information

In the preceding section, I offered reasons for forming one’s personal prob-
abilities via direct inference with a preference for more specific reference
classes, in situations where one has access to point-valued frequencies for
all of the relevant reference classes. Assuming that frequency information
for a narrow reference class is preferred over frequency information for a
broad reference class, when the relevant frequency statements are point-
valued, a further dilemma arises when choosing whether to make a direct
inference based upon (i) point-valued frequency information for a broad ref-
erence class, R, or upon (ii) non-point-valued frequency information for a
narrower reference class, R′ (R′ ⊂ R). More generally, there is a dilemma
concerning the choice of direct inferences based upon (i) relatively precise-
valued frequency information for broad reference classes (i.e., cases where
the value of a respective frequency is known to reside within a relatively
narrow interval), or upon (ii) relatively imprecise-valued frequency informa-
tion for narrower reference classes (i.e., cases where the narrowest interval
within which the value of a respective frequency is known to reside is rela-
tively broad). The present dilemma is not inconsequential. When applied
without qualification, the doctrine that one should always prefer direct in-
ference based on more specific reference classes yields the result that one
should always prefer direct inference based on the single element reference
class consisting of the very object about which one would like to draw a
conclusion. But if one should always prefer such single element reference
classes, then it appears that direct inference can never be used to draw an
informative conclusion (cf. Kyburg 1974).

I will here present a new approach to the problem of choosing between
direct inferences based on (i) relatively precise-valued frequency information
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for broad reference classes, versus (ii) relatively imprecise-valued frequency
information for more specific reference classes.11 I address the problem by
showing that it is usually possible to use direct inference to make a (rela-
tively) precise-valued frequency estimate for a more specific reference class
based on (relatively) precise-valued frequency information for a respective
broad reference class. Having made such a frequency estimate, the dilemma
of choosing between (i) and (ii) is removed, and one may proceed by using
the precise-valued frequency estimate for the more specific reference class as
a premise for direct inference. The proposed approach turns on some ob-
servations concerning the combinatorial properties of sets, and on the thesis
that the ‘proper’ statistical statements that may serve as major premises for
direct inference are actually statements of expected frequency.

I will proceed, in Section 3.1, by articulating and defending the claim
that the proper major premises for direct inference are statements of ex-
pected frequency. In Sections 3.2 and 3.3, I propose two methods that
often permit one to infer a (relatively) precise-valued expected frequency
for a more specific reference class, R′, based on (relatively) precise-valued
frequency information for a broad reference class, R (R′ ⊂ R). In Section
3.4, I describe the respective roles of the two methods, and how they work
together. Finally, in Section 3.5, I argue that it is rational to adopt the
expectations generated by the proposed methods.

3.1 Expected Frequencies as the Basis for Direct Inference

The thesis that it is statements of expected frequency that are the proper
statistical premises for direct inference is found in (Bacchus 1990), and de-
fended at some length in (Thorn 2012). I here rehearse some of the consid-
erations adduced in (Thorn 2012) which are sufficient to lend plausibility to
the thesis.

I begin by noting that expected frequencies are simply probability weight-
ed averages of frequencies, relativized to a respective probability function.
So the expected frequency of T among R, written “E[freq(T|R)]”, relativized
to a probability function, PROB, is defined as follows:

E[freq(T|R)] = Σr r×PROB(freq(T|R) = r).

Notice that the use of known frequencies as premises for direct inference
is a special case of the use of expected frequencies, since if PROB(freq(T|R)
= r) = 1, then E[freq(T|R)] = r. More generally, if PROB(freq(T|R) ∈

11For a survey of past approaches to the present problem, including those of Bacchus
(1990), Pollock (1990), and Kyburg & Teng (2001), see Thorn (2012).
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S) = 1 and U is the smallest interval such that S ⊆ U, then E[freq(T|R)]
∈ U (Thorn 2012). It is also of interest to note that expected frequencies
generalize single case probabilities, in the following manner: PROB(c ∈ T)
= PROB(freq(T|{c}) = 1) = E[freq(T|{c})].

A good reason for regarding statements of expected frequency as the
proper statistical premises for direct inference is connected with the as-
sumption one makes when one performs a direct inference. When making a
direct inference, one assumes that the object about which one is reasoning,
c, is as likely to be a member of the respective target class, T, as a uniformly
randomly selected element of the proposed reference class, R. Specifying the
precise conditions under which it is reasonable to make this assumption is
an open problem.12 Regardless, if one does assume that c is as likely to be
in T as a random element of R (selected according to a uniform distribu-
tion), then one is obliged to conclude that the probability that c is in T
is equal to the frequency of elements of T among R, in cases where one is
aware of the value of this frequency. Similarly, one is obliged to conclude
that the probability that c is in T is equal to the expected frequency of T
among R, since the probability that a random element of R is an element of
T is identical to the expected frequency of T among R (provided one makes
the reasonable assumption that independence obtains between what value
freq(T|R) takes and which element of R is selected) (cf. Thorn 2012).

Given the preceding, I now assume that properly formulated direct in-
ferences satisfy the following schemata:

From c ∈ R and E[freq(T|R)] = r infer that PROB(c ∈ T) = r.

From c ∈ R and E[freq(T|R)] ∈ S infer that PROB(c ∈ T) ∈ S.

Since PROB(freq(T|R) = r) = 1 implies E[freq(T|R)] = r, it is also
acceptable to formulate direct inferences using the schema introduced in
Section 1.

It may be observed, at this point, that the results concerning the opti-
mality of direct inference based on more specific reference classes (Theorems
1 and 2) are inapplicable in the case where we base our direct inferences on
expected frequencies. Nevertheless, it is straightforward to generalize the
two theorems, in order to demonstrate that direct inference using expected
frequencies for the most specific relevant reference classes has the highest ex-
pected accuracy among the set of principled policies. These generalizations

12I will touch on this problem briefly in Section 3.5, in connection with the classical
principle of indifference.
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of Theorems 1 and 2 provide further reasons in favor of the claim that it
is statements of expected frequency that are the proper statistical premises
for direct inference.

In order to carry out the generalization of Theorem 1, redefine δ, so that
δ(x ∈ T) = E[freq(T|π)], if x is in π. We then have the following result:

Theorem 3. ∀M,χ: if χ is principled in M, then ∀S:

(1) if S is proper, then ∀π∈Π:
E[Σx∈π S(δ(x ∈ T), ν(x ∈ T))] ≥ E[Σx∈π S(χ(x ∈ T), ν(x ∈ T))], and

(2) if S is strictly proper and χ 6= δ, then ∃π∈Π:
E[Σx∈π S(δ(x ∈ T), ν(x ∈ T))] > E[Σx∈π S(χ(x ∈ T), ν(x ∈ T))].

Theorem 3 is a straightforward consequence of Theorem 1: Theorem
1 tells us that the described inequalities hold regardless of the value of
freq(T|π). Theorem 3 tells us that the inequalities hold for any weighted
average of the values of freq(T|π).

In order to carry out the generalization of Theorem 2, redefine δ, so that
δ(〈x, f〉 ∈ T) = E[freq(T|f)], if x is in f. In that case, we have the following
result (which is a straightforward consequence of Theorem 2):

Theorem 4. ∀M,χ: if χ is principled in M, then ∀S:

(1) if S is proper, then ∀f∈F:
E[Σx∈f S(δ(〈x, f〉 ∈ T), ν(x ∈ T))] ≥ E[Σx∈f S(χ(〈x, f〉 ∈ T), ν(x ∈T))], and

(2) if S is strictly proper and χ 6= δ, then ∃f∈F:
E[Σx∈f S(δ(〈x, f〉 ∈ T), ν(x ∈ T))] > E[Σx∈f S(χ(〈x, f〉 ∈ T), ν(x ∈ T))].

Theorems 3 and 4 demonstrate that the policy of forming one’s per-
sonal probabilities by direct inference based on expected frequencies for the
most specific relevant reference classes yields personal probabilities whose
expected accuracy is maximal, among the field of principled competitors.
So if one cares about the expected accuracy of one’s personal probabilities,
then it behooves one to form one’s personal probabilities in the described
manner. The urgency of the present injunction is, of course, contingent
upon the ‘correctness’ of the probabilities with which one’s expectations are
defined. In the present case, the relevant probabilities are fixed by one’s
expected frequencies for the relevant reference classes. So the force of the
injunction to form one’s personal probabilities by direct inference based on
expected frequencies (for the most specific relevant reference classes) is, in
some sense, dependent on the correctness of one’s expected frequencies.
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Beyond considerations of ‘normative’ applicability, the formal applicabil-
ity of Theorems 3 and 4 is contingent upon forming point-valued expected
frequency judgments for all of the relevant reference classes. This marks
an improvement over Theorems 1 and 2, whose applicability was contingent
on having access to the actual frequencies for all of the relevant reference
classes. Despite this improvement (or extension of applicability), it is still de-
manding to suppose that one is generally in a position to make point-valued
expected frequency judgments for all relevant reference classes, especially if
one’s concern is to make expected frequency judgments that are rational, as
measured by some appropriate normative standard. While I doubt that one
is always in a position to make a rational point-valued expected frequency
judgment for every reference and target class, my aim in the following sub-
sections is to outline two methods that permit one to make point-valued
expected frequency judgments in a wide range of cases.

3.2 Inferring Expected Frequencies for More Specific
Reference Classes: Method I

It is intended that the methods proposed in the present and following sub-
section be applied in reasoning from information concerning the incidence
of T among a reference class R to a conclusion concerning the value of
E[freq(T|R′)], where R′ ⊂ R. In the cases that interest us, our aim is to
form a personal probability about the proposition c ∈ T, for an object c,
where c is a member of a reference class R′, R′ is a subset of R, and we are
not in a position to make a point-valued judgment concerning the value of
freq(T|R′). By assumption, the relative frequency of T among R is known.
For the moment, I also assume that for some numeric value z, we are war-
ranted in accepting |R| = z. I will explain, below, how to dispense with this
assumption.

In applying the proposed method in order to form a judgment about the
value of E[freq(T|R′)], we proceed in two steps.

Step 1: Make a series of direct inferences to form conclusions of the form
PROB(freq(T|R′) = vi) = pi, for each vi within the smallest set of numeri-
cally expressed values in which freq(T|R′) is known to lie.

Step 2: Use the conclusions formed in Step 1 to infer the expectation of
freq(T|R′), according to the equation: E[freq(T|R′)] = Σi vi×pi.

Executing the first step of the proposed method is somewhat compli-
cated. Before providing a general description of how to proceed in Step 1, I
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illustrate the proposed method using the following simple example.
Suppose we are trying to assign a probability to the proposition that a

member of Company B, named “Bill”, is an NCO. Suppose we know that
25% of the 100 soldiers in Company B are NCOs. However, suppose we
also know that Bill is a member of the command unit of Company B, which
has 10 members, and we know that either 20% or 30% of the members
of the command unit are NCOs, and we do not know which. (Suppose
the percentage of NCOs in command units varies according to whether a
respective company is an artillery or infantry company, and we do not know
whether Company B is artillery or infantry.) The problem now is to draw
a conclusion about the expected frequency of NCOs among the command
unit of Company B (which can then be used to infer the probability that
Bill is an NCO).

By assumption, the frequency of NCOs among the command unit of
Company B takes one of two possible values, namely, 0.2 or 0.3. So we
could draw a conclusion about the expected frequency of NCOs among the
command unit, if we could draw a conclusion about the probability that
the frequency of NCOs among the command unit of Company B is 0.2, and
a conclusion about the probability that the frequency of NCOs among the
command unit of Company B is 0.3. As a basis for drawing the needed
conclusions, notice that the command unit of Company B is an element
of the reference class composed of the ten membered subsets of the set of
soldiers in Company B whose frequency of NCOs is either 0.2 or 0.3. Next
notice that we are in a position to compute the values of the following
frequencies concerning this reference class: (1) the frequency of sets with a
frequency of 0.2 NCOs among the ten membered subsets of the set of soldiers
in Company B whose frequency of NCOs is either 0.2 or 0.3, and (2) the
frequency of sets with a frequency of 0.3 NCOs among the ten membered
subsets of the set of soldiers in Company B whose frequency of NCOs is either
0.2 or 0.3. Given that there are 100 soldiers in Company B, and 25 are NCOs,
the former frequency is identical to the number of ways of selecting 2 of the
25 NCOs along with 8 of the 75 non-NCOs divided by the sum of the number
of ways of selecting 2 of the 25 NCOs along with 8 of the non-NCOs and the
number of ways of selecting 3 of the 25 NCOs along with 7 of the non-NCOs.
The former frequency is, thus, (

(
25
2

)
×
(
75
8

)
) / (

(
25
2

)
×
(
75
8

)
+
(
25
3

)
×
(
75
7

)
) ≈ 0.515.

The latter frequency can also be computed via straightforward combinatorial
methods. That frequency is (

(
25
3

)
×
(
75
7

)
) / (

(
25
2

)
×
(
75
8

)
+
(
25
3

)
×
(
75
7

)
) ≈ 0.485.

Armed with the preceding frequency statements, we are in a position
to (use direct inference) to draw conclusions about the two probabilities
that are required for computing the expected frequency of NCOs among the
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command unit of Company B, as follows:

1. The set of soldiers in the command unit of Company B is a ten membered
subset of the set of soldiers in Company B whose frequency of NCOs is
either 0.2 or 0.3. Among the ten membered subsets of the set of soldiers in
Company B whose frequency of NCOs is either 0.2 or 0.3, about 51.5% have
a frequency of 0.2 NCOs. So it is reasonable to infer (by direct inference)
that the probability is (about) 51.5% that the frequency of NCOs among
the command unit of Company B is 0.2.

2. The set of soldiers in the command unit of Company B is a ten membered
subset of the set of soldiers in Company B whose frequency of NCOs is
either 0.2 or 0.3. Among the ten membered subsets of the set of soldiers in
Company B whose frequency of NCOs is either 0.2 or 0.3, about 48.5% have
a frequency of 0.3 NCOs. So it is reasonable to infer (by direct inference)
that the probability is (about) 48.5% that the frequency of NCOs among
the command unit of Company B is 0.3.

The preceding two direct inferences license assignments of probability to
the two propositions concerning the possible frequencies of NCOs among the
command unit of Company B. Given these conclusions, we can compute the
expected frequency of NCOs among the command unit of Company B (Step
2), namely: The expected frequency of NCOs among the command unit of
Company B is 0.2 times the probability that the frequency of NCOs among
the command unit is 0.2 plus 0.3 times the probability that the frequency of
NCOs among the command unit is 0.3. In accordance with the two above
direct inferences, the present sum is approximately 0.2×0.515 + 0.3×0.485
= 0.2485. The conclusion that the expected frequency of NCOs among the
command unit of Company B is (approximately) 0.2485 can now be used to
draw a conclusion regarding the probability that Bill is an NCO, namely:
From the fact that Bill is a member of the command unit of Company B
and the fact that the expected frequency of NCOs among the command unit
is (approximately) 0.2485 infer that the probability that Bill is an NCO is
(approximately) 0.2485.

The two step procedure that was used to infer the expected frequency
of NCOs among the command unit of Company B is completely general.
The complicated part of the procedure is Step 1, which (in the general case)
involves drawing a conclusion of the form PROB(freq(T|R′) = vi) = pi,
for each vi within the smallest set of numerically expressed values in which
freq(T|R′) is known to lie. In the case of the command unit of Company B,
the smallest set of values in which freq(T|R′) was known to lie was {0.2, 0.3}.
In the general case, the set of possible values of freq(T|R′) may be larger. As
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in the case of Company B, we will have to make a direct inference concerning
the value of PROB(freq(T|R′) = vi), for each such vi. In order to comply
with considerations of specificity, the reference class for the direct inferences
will be {S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}, where W and V are the
smallest sets of numerically expressed values in which |R′| and freq(T|R′),
respectively, are known to lie. As with the two direct inferences used in
the case of the command unit of Company B, the direct inferences, in the
general case, take the following form:

From R′ ∈ {S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V} and
freq({S : freq(T|S) = vi}|{S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}) = pi
infer that PROB(R′ ∈ {S : freq(T|S) = vi}) = pi
(i.e., infer that PROB(freq(T|R′) = vi) = pi).

As in the case of Company B, we are in a position to make the described
direct inferences, since R′ is an element of the respective reference class,
and since we are in a position to compute the value of pi, for each major
premise, by appeal to elementary combinatorial principles. The following
theorem outlines a means of computing the value of pi, given vi, freq(T|R),
and |R|:

Theorem 5. ∀T,R,W,V,vi: freq({S : freq(T|S) = vi}|{S : S ⊆ R ∧ |S| ∈ W

∧ freq(T|S) ∈ V}) = Σw∈W
(|R|×freq(T|R)

w×vi

)
×
(|R|×(1−freq(T|R))

w×(1−vi)
)

/

Σw∈W,v∈V
(|R|×freq(T|R)

w×v
)
×
(|R|×(1−freq(T|R))

w×(1−v)
)
.13

The described method permits inference to a numeric point-valued con-
clusion about the value of E[freq(T|R′)], in cases where one is warranted
in accepting |R| = z, for some numeric value z. When the latter condition
is not met, we may apply a variation of the proposed method, so long as
there is a smallest finite set of (finite) numeric values, Z, such that we are
warranted in accepting that |R| is in Z. In such situations, we reason by
cases. Figure 1 illustrates how such reasoning would proceed in the case of
the command unit of Company B, in a situation where we did not know the
number of soldiers in Company B, and knew only that there was either 100
or 120 soldiers. In that case, we would apply two instances of Method I:
one according to the assumption that there is 100 soldiers in Company B,
and another according to the assumption that there is 120. We would then

13Both of the mentioned values are identical to: |{S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) =
vi}| / |{S : S ⊆ R ∧ |S| ∈ W ∧ freq(T|S) ∈ V}|.
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⇓
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Figure 1: Inference by cases with embedded applications of Method I

accept the disjunction of the two (hypothetical) conclusions. Fortunately,
the size of |R| has only a limited bearing upon the value of E[freq(T|R′)] as
determined by the basic form of the proposed method. As a consequence,
our inability to make a precise-valued judgment about the value of |R| will
not prevent us from making a relatively precise judgment about the value of
E[freq(T|R′)]. For example, if we hold all other features of the example of
Bill of Company B fixed, but suppose that the size of Company B may take
any value within the sequence of values ranging from 20 to 2,000,000,000,
then we may reason by cases in order to infer that the expected frequency
of NCOs among the command unit of Company B lies within the interval
[0.231, 0.262].

Before proceeding, note that the just described case-based application
of the proposed method is very general. In addition to applying in the case
where we are not warranted in making a point-valued judgment about the
value of |R|, we may reason in a similar manner when we are not warranted
in making a point-valued judgment about the value of freq(T|R). Further,
in the absence of point-valued information concerning the value of both |R|
and freq(T|R), we may proceed by treating the combinations of possible
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values of |R| and freq(T|R) as hypothetical assumptions for a case-based
application of the proposed method. Evidently, it would also be reasonable
to apply a variant of such case-based inference, in situations where we are in
a position to assign probabilities to the respective cases. In such situations,
our judgment concerning the value of E[freq(T|R′)] would be determined by
taking a weighted average of the hypothetical conclusions reached within the
respective cases, where the respective weights are the probabilities assigned
to the corresponding hypothetical assumptions.

Proper (non-case-based) applications of Method I permit inference to a
point-valued conclusion concerning the value of a respective expected fre-
quency, E[freq(T|R′)], thereby extending the applicability of the optimality
results presented in the preceding subsection. Beyond this, case-based ap-
plications of Method I are of general interest, since they are applicable to
removing the dilemma of choosing between direct inferences based upon
precise-valued frequency information for broad reference classes, and direct
inferences based upon imprecise-valued frequency information for more spe-
cific reference classes.

3.3 Inferring Expected Frequencies for More Specific
Reference Classes: Method II

The method proposed in the present subsection represents a streamlined
variant of the method of the preceding subsection. The limitation of the
streamlined variant is that it is only applicable in cases where one is not
warranted in accepting that freq(T|R′) ∈ v, for any set of numerically ex-
pressed values, v, such that v ⊂ {0/|R′|, 1/|R′|, ..., |R′|/|R′|}. In such cases,
the method permits one to infer that E[freq(T|R′)] = freq(T|R). For ex-
ample, in a situation where we had no information about the frequency of
NCOs in the command unit of Company B, we could use the method to infer
that the expected frequency of NCOs in the command unit of Company B
is identical to the frequency of NCOs in Company B.

As with Method I, Method II follows a two step procedure in inferring the
expectation of freq(T|R′). In Step 1, we make a series of direct inferences,
in order to draw a conclusion of the form PROB(freq(T|R′) = vi) = pi, for
each vi in {0/|R′|, 1/|R′|, ..., |R′|/|R′|}. In Step 2, we use the conclusions
formed in the first step in order to infer the expectation of freq(T|R′). The
main difference between the two methods is in the reference class used in the
first step. In the case of Method II, the reference class simply consists in the
set of subsets of R whose size is identical to the size of R′. For example, in a
situation where we had no information about the frequency of NCOs in the
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command unit of Company B, the reference class used in the first step would
be: the subsets of the members of Company B, whose size was identical to
the size of the command unit of Company B. Using this reference class, we
would make one direct inference for each of the eleven possible frequencies
of NCOs among the command unit of Company B (i.e., 0.0, 0.1. 0.2, ..., 0.9,
1.0), as follows:

1. The set of soldiers in the command unit of Company B is a subset of
the set of soldiers in Company B whose size is identical to the size of the
set of soldiers in the command unit of Company B. About 4.8% of the sets
among this reference class have a frequency of 0.0 NCOs. So it is reasonable
to infer (by direct inference) that the probability is (about) 4.8% that the
frequency of NCOs among the command unit of Company B is 0.0.

2. The set of soldiers in the command unit of Company B is a subset of
the set of soldiers in Company B whose size is identical to the size of the
set of soldiers in the command unit of Company B. About 18.1% of the sets
among this reference class have a frequency of 0.1 NCOs. So it is reasonable
to infer (by direct inference) that the probability is (about) 18.1% that the
frequency of NCOs among the command unit of Company B is 0.1.

Etc.

Written formally, the preceding direct inferences are instances of the
following schema:

From R′ ∈ {S : S ⊆ R ∧ |S| = |R′|} and
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}) = pi
infer that PROB(R′ ∈ {S : freq(T|S) = i/|R′|}) = pi
(i.e., infer that PROB(freq(T|R′) = i/|R′|) = pi).

As I already mentioned, Method II always yields the result that E[freq(T|R′)]
= freq(T|R). To see why this is so, notice that the content of the conclusions
of the direct inferences made in the first step may be re-written as follows:

PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).

Given the set of such conclusions, the antecedent of the following theorem
is satisfied, thereby permitting us to infer that E[freq(T|R′)] = freq(T|R):

Theorem 6. ∀T,R,R′: if R′ ⊆ R and ∀i: PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}), then E[freq(T|R′)]
= freq(T|R).
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Theorem 6 is based on the fact that, for any sets T and R, the average
value of the frequency of T among subsets of R of any given size is identical to
the frequency of T among R. For example, if (as in the case of Company B)
the size of R is 100, and 25 elements of R are elements of T (i.e., freq(T|R) =
0.25), then the average number of elements of T among 10 element subsets of
R will be 2.5 (and the average frequency of T among such sets will be 0.25).
Now notice that such an average is, obviously, identical to the average of the
possible frequency values for such subsets, weighted according to the number
of subsets having the respective frequency value. So, in the case of Company
B, the average of the (eleven) possible values of the frequency of T among
the 10 element subsets of R, weighted according to the number of subsets
having the respective frequency, is 0.25. Theorem 6 weds the preceding
observation to the fact that expectations are (probability) weighted averages,
and provides a means of inferring the expected frequency of T among R′,
when R′ is a subset of R. In particular, Theorem 6 tells us that if, for each
value i/|R′|, we identify the probability that freq(T|R′) takes that value
with the frequency with which subsets of R (of size |R′|) take that value as
their frequency of T, then E[freq(T|R′)] will be identical to freq(T|R). The
latter identity holds, since the average value of the frequency of T among the
subsets of R of size |R′| (or of any size), weighted according to the number
of subsets having the respective frequency, is freq(T|R).14

In applying Method II to infer the expected frequency of NCOs among
the command unit of Company B, it was assumed that we knew the sizes
of R and R′, i.e., the size of Company B and the size of the command unit
of Company B. A key advantage of Method II is its applicability even when
we lack such knowledge. In such cases, we may treat the respective pi, that
appear in the major premises and conclusions of the direct inferences of Step
1, as constants that are introduced according to the following definition:

pi = freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).

In that case, the major premises of the direct inferences made in Step 1
are analytic, and the conclusions of the direct inferences may be re-written
(once again) as follows:

PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}).

14A proof of Theorem 6 is given in the appendix.
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Given the set of such conclusions, we are in a position to apply Theorem
6, in order to infer that E[freq(T|R′)] = freq(T|R).15

In cases where we are in a position to see, in advance, that it is possible
to use the proposed method, it is practical to reason in accordance with the
following defeasible inference schema:

From R′ ⊆ R and freq(T|R) = r infer that E[freq(T|R′)] = r.

The present method is, thus, of theoretical interest, since in the case where
R′ = {c}, it recapitulates the inference schema introduced in Section 1,
which is equivalent to:

From {c} ⊆ R and freq(T|R) = r infer E[freq(T|{c})] = r.16

Now note that the present method for inferring the value of E[freq(T|R′)]
generalizes to the case where our inferences are based on a judgment con-
cerning the value of E[freq(T|R)], rather than the value of freq(T|R). In this
case, it is possible to infer that E[freq(T|R′)] = E[freq(T|R)]. Our inference
to the value of E[freq(T|R′)], in such cases, proceeds by direct inferences of
the following form:

From R′ ∈ {S : S ⊆ R ∧ |S| = |R′|} and
E[freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S|] = |R′|}) = pi infer that
PROB(freq(T|R′) = i/|R′|) = pi.

The value of E[freq(T|R′)] then follows by the following theorem:

Theorem 7. ∀T,R,R′: if R′ ⊆ R and ∀i: PROB(freq(T|R′) = i/|R′|) =
E[freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|})], then E[freq(T|R′)]
= E[freq(T|R)].

Theorem 7 is a straightforward consequence of Theorem 6: Theorem 6
tells us that the identity expressed in its consequent holds regardless of the
value of freq(T|R), given an assignment of probabilities according to the
frequencies mentioned in its antecedent. Theorem 7 tells us that a corre-
sponding identity holds for any weighted average of the values of freq(T|R),

15In cases where the size of |R′| is unknown, let s+ be the least upper bound that one
is warranted in accepting regarding the size of |R′|. In Step 1, we then make one direct
inference for each value of i in {0, ..., s+}.

16Recall that PROB(c ∈ T) = E[freq(T|{c})].
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given an assignment of probabilities according to a corresponding weighted
average of the frequencies mentioned in the antecedent of Theorem 6.

It is noteworthy that Theorem 7, in conjunction with its intended ap-
plication, illustrate how one may derive (using terms introduced by Pollock
(1990)) non-classical direct inference from classical direct inference, as rep-
resented by the following defeasible inference schema:

From R′ ⊆ R and E[freq(T|R)] = r infer that E[freq(T|R′)] = r.

So the present method yields a picture of direct inference that stands in
contrast to the accounts of direct inference articulated by Pollock (1990)
and Bacchus (1990), which propose to derive classical direct inference from
non-classical direct inference. Furthermore, the present method allows us to
uphold the doctrine that E[freq(T|R)] = E[freq(T|R′)] = E[freq(T|{c})] =
r, for all non-gerrymandered R′, such that {c} ⊆ R′ ⊆ R, in cases where it
is appropriate to use direct inference to infer that PROB(c ∈ T) = r, based
on frequency information for the reference class R.17

A worry regarding Method II concerns the peculiar use of constants, in
cases where the sizes of R and R′ are unknown. In order to dispel this
concern, I will now show that the use of such constants is not essential
to reaching the conclusions licensed by the proposed method. Indeed, it
is possible to infer those conclusions using case-based inference of the sort
introduced in the preceding subsection. I adapt an example of Bradley and
Steele (2014) in order to illustrate how such inferences proceed.18

According to the example of Bradley and Steele (2014), we know that
there are 10 black marbles and 10 white marbles, which are divided between
two urns, with each urn containing 10 marbles. Our task in Bradley and
Steele’s original example is to judge the probability that a given ball drawn
from the ‘first urn’ (an urn selected at random) is white. In order to gen-
erate additional uncertainty, I here consider a variant of the example that
introduces uncertainty both concerning the total number of marbles, and
the number of marbles in the first urn: Rather than know that there are 10
black marbles and 10 white marbles, assume we know that there is either
(case 1) 10 black marbles and 10 white marbles, or (case 2) 20 black marbles

17The restriction in the applicability of theorem 7 to cases where one is not warranted
in accepting that freq(T|R′) ∈ v, for any v, such that v ⊂ {0/|R′|, 1/|R′|, ..., |R′|/|R′|} is
also suggestive of where past accounts of direct inference (with the possible exception of
Thorn 2012) go wrong in the face of Stone’s Ace Urn example (Stone 1987, 251).

18The example of Bradley and Steele (2014) is meant to serve as a plausible example
of credence dilation. If the present treatment of the example is correct, it cannot serve as
an example of rational credence dilation.
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and 20 white marbles. Next, suppose we know that one of the urns contains
more balls than the other. In particular, suppose we know that the first urn
contains 40% of the balls (subcase A), or that the first urn contains 60% of
the balls (subcase B). In this situation, we can infer the expected frequency
of white balls among the first urn using case-based reasoning of the sort
introduced at the end of subsection 3.3, where hypothetical conclusions are
determined by applying Method II, rather than Method I. There are four
cases (1A, 1B, 2A, and 2B). Where M is the set of marbles in the two urns,
U the set of marbles in the first urn, and W the set of white marbles, our
objective is to compute the value of E[freq(W|U)], within each case. We
proceed, according to the assumed values of |M| and |U|, as given by the
relevant case, by conducting a direct inference of the following form, for each
of the possible values of i (i ∈ {0, ..., |U|}):

From U ∈ {S : S ⊆ R ∧ |S| = |U|} and
freq({S : freq(W|S) = i/|U|}|{S : S ⊆ R ∧ |S| = |U|}) = pi
infer that PROB(freq(W|U) = i/|U|) = pi.

For each such direct inference, it is possible to directly compute the value
of the respective pi, as follows:

freq({S : freq(W|S) = i/|U|}|{S : S ⊆ M ∧ |S| = |U|}) =(|M|×freq(W|M)
i

)
×
(|M|×(1−freq(W|M))

|U|−i
)

/

Σk∈{0,...,|U|}
(|M|×freq(W|M)

k

)
×
(|M|×(1−freq(W|M))

|U|−k
)
.

Since instances of the preceding equation contain no numeric constants
whose values are unknown within the respective cases, it is possible to di-
rectly calculate the value of pi, for each possible value of i, within each case.
Before embarking on such a cumbersome calculation, Theorem 6 informs
us of the result of concluding that PROB(freq(W|U) = i/|U|) = freq({S :
freq(W|S) = i/|U|}|{S : S ⊆ M ∧ |S| = |U|}), for all i ∈ {0, ..., |U|}, namely:
E[freq(W|U)] = freq(W|M) = 0.5. Since the preceding identities hold in
every case, it is correct to conclude that E[freq(W|U)] = 0.5.

The treatment of the preceding example provides an illustration of how
we could have reached the conclusions outlined by Method II by directly
computing the values for the major premises that underpin the method,
despite being unable to make a precise-valued judgment about the sizes of
R and R′.

As with Method I, applications of Method II permit inference to a point-
valued conclusion concerning the value of a respective expected frequency,
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thereby extending the applicability of the optimality results presented in
Section 3.1. Similar to Method I, applications of Method II may also be
embedded within case-based inferences of the sort described at the end of
Section 3.2. Such embeddings permit inference according to the following
schemata:

From R′ ⊆ R and freq(T|R) ∈ S infer that E[freq(T|R′)] ∈ S.

From R′ ⊆ R and E[freq(T|R)] ∈ S infer that E[freq(T|R′)] ∈ S.

Such case-based applications of Method II are of general interest, since
they are applicable to removing the dilemma of choosing between direct
inferences based upon precise-valued frequency information for broad ref-
erence classes, and direct inferences based upon imprecise-valued frequency
information for more specific reference classes.

3.4 Combining the Two Methods

It is intended that the methods of the preceding subsections have their
own ‘spheres of influence’. Before outlining the respective spheres (and
the manner in which the two methods combine), it is helpful to observe
the manner in which a variant of Method I may be used in order to form
a judgment about the value of E[freq(T|R′)], given frequency information
concerning two nested reference classes R1 and R2, where R′ ⊂ R1 ⊂ R2. In
such cases, one would first make a series of direct inferences (of exactly the
sort one makes in Step 1 of typical applications of Method I), in order to form
an assignment of probabilities to the possible values of freq(T|R1) (given
one’s frequency information for R2). One would, then, apply a case-based
variant of Method I, where each case yields a hypothetical conclusion about
the value of E[freq(T|R′)], given a particular assumption about the value
of freq(T|R1). One’s final conclusion concerning the value of E[freq(T|R′)]
is then determined by weighting one’s hypothetical conclusions about the
value of E[freq(T|R′)], according to the probabilities previously assigned to
the assumed values of freq(T|R1). Similar applications of Method I may also
be used in order to form a judgment about the value of E[freq(T|R′)], given
frequency information concerning three, or more, nested reference classes.

There are, in fact, many possible variants of Method I that one may
apply according to the particularities of one’s available information (where
reference class selection is driven by considerations of specificity). Indeed, as
a step to forming a conclusion about a proposition, c ∈ T, by direct inference,
Method I should be regarded as an instance of a general strategy for inferring
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the value of E[freq(T|R′)], where R′ is the narrowest (non-gerrymandered)
reference class containing c for which we have genuine frequency information
(i.e., the narrowest reference class about which one is warranted in accepting
freq(T|R′) ∈ v, for some set of numerically expressed values, such that v ⊂
{0/|R′|, 1/|R′|, ..., |R′|/|R′|}). Having used Method I (or variants) to infer
the value of E[freq(T|R′)], for the narrowest (non-gerrymandered) reference
class, R′, for which we have genuine frequency information, it is time for
Method II to take over. Given the value of E[freq(T|R′)] (or a set of values),
Method II may be used to infer the value of E[freq(T|R*)] (or a set of values),
for all non-gerrymandered R*, such that {c} ⊆ R* ⊆ R′.

3.5 Are the resulting expectations rational?

In proposing the applicability of the methods of the preceding subsections,
my guiding assumptions were: (1) that non-degenerate direct inferences
provide defeasible reasons for accepting their conclusions, and (2) that one
should prefer non-degenerate direct inferences based on more specific ref-
erence classes (and, similarly, non-degenerate direct inferences based on
‘standard’ reference classes versus their partitions), in the case where non-
degenerate direct inferences yield conflicting conclusions. Notice that the
applicability of (1) and (2) is limited to non-degenerate direct inferences.
There are, I think, two sorts of degenerate direct inferences. I briefly dis-
cuss each sort, in turn.

One sort of degenerate direct inference involves gerrymandered reference
or target classes. I am reasonably confident that it is possible to give formal
criteria for identifying such direct inferences, but I will not attempt that
task here (but see (Thorn 2012) which purports to provide such criteria).
As an alternative, I describe two paradigmatic examples. The first type of
example involves a reference class, R, that is formed by taking the union of
two sets R1 and R2, where (i) R1 is much larger than R2, (ii) the frequency
of members of the relevant target class, T, among R1 is known to be very
high (or low), (iii) R2 is known to contain the object, c, about which we
wish to form a judgment, and (iv) we are only warranted in making an
imprecise-valued judgment about the frequency of members of T among R2.
For example, in the case of Bob of Company B, consider the reference class
formed by the union of the set of NCOs in Company B, and the unit set
containing Bob. The frequency of NCOs among this set is in {25/26, 25/25}.
As with other reference classes that could be generated in accordance with
the preceding recipe, it is clear that the described reference class should not
be used in drawing a conclusion about the probability that Bob is an NCO.
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Similar problems can be generated by forming target classes by disjunction.
For example, suppose we know that more than 90 percent of Mondays are
workdays. This implies that more than 90 percent of Mondays are either
workdays or Aristotle’s birthday. Now suppose that we know that next
Monday is a holiday. In that case, it would be inappropriate to use the latter
frequency statement to infer that next Monday is very probably a workday
or Aristotle’s birthday, and thus very probably Aristotle’s birthday.

Another sort of degenerate direct inference involves the use of a reference
class consisting of a partition of the set of all possible worlds. Such direct
inferences correspond to applications of the traditional principle of indiffer-
ence (cf. White 2009, 169-71). These direct inferences are rightly regarded
as problematic since they inherit the defect characteristic of the traditional
principle of indifference, namely: It is always possible to re-partition the
set of possible worlds in order to form new reference classes, for new direct
inferences, that yield conclusions that conflict with the ones licensed by the
original partition, and there is no analogue of specificity conditions that can
serve as a principled means of arbitrating between such direct inferences.
Due to their unprincipled nature, it is sensible to suppose that direct in-
ferences whose reference class consists of a partition of the set of possible
worlds (or a partition of a similar infinite set) are degenerate. More precisely,
I propose that we regard a direct inference as degenerate if it is formulated
using a reference class that is a partition of an infinite set. Regarding this
proposal, it should be acknowledged that it is often possible to ‘emulate’ a
regular direct inference, whose reference class is not a partition of an infi-
nite set (or even a partition of a set), by a series of direct inferences whose
reference class consists of a set of mutually exclusive and jointly inclusive
propositions (i.e., a partition of the set of all possible worlds).19 However,
there is no reason to regard the emulatability of a regular direct inference
by direct inferences whose reference class is a partition of an infinite set as
impugning the regular direct inference. Beyond this, it is apparent that the
proposed degeneracy condition prohibits those direct inferences that it was
intended to prohibit (i.e., those direct inferences that would be sufficient

19Consider a regular direct inference of the form: From c ∈ R and freq(T|R) = r infer
that PROB(c ∈ T) = r, where r = i/|R|. To achieve such an emulation of this direct
inference, proceed as follows: (i) Introduce a set of names {c1, ..., ci, ci+1, ..., c|R|} for the
elements of R, where c1 through ci denote elements of T, and ci+1 through c|R| do not.
(ii) Form the reference class Rπ = {c=c1, ..., c=c|R|}. (iii) Where V is the set of all true
propositions, make direct inferences of the form: From c=cj ∈ Rπ and freq(V|Rπ) = 1/|R|
infer that PROB(c=cj ∈ V) = 1/|R|, for each j in {1, ..., i}. (iv) Given the conclusions
of the direct inferences made in step (iii), deduce that PROB(c ∈ T) = i/|R|.
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to emulate unprincipled applications of the traditional principle of indiffer-
ence), while not accosting regular direct inferences. So it appears that the
proposed degeneracy condition provides an adequate means of disentangling
a sensible fragment of direct inference from unprincipled applications of the
traditional principle of indifference.20

It is relatively clear that the direct inferences underlying the proposed
methods are not degenerate. Neither their reference nor target classes are
gerrymandered, nor do their reference classes consist of partitions of an
infinite set. This is not to say that the direct inferences underlying the
proposed methods are not subject to defeat. Indeed, (2) acknowledges one
sort of case where non-degenerate direct inferences are subject to defeat,
and there are surely others. For example, I assume, as is usually assumed,
that non-degenerate direct inferences to conflicting conclusions are mutu-
ally defeating, in cases where specificity considerations are not applicable
in yielding a preference for one or the other of the two direct inferences.
Nevertheless, (1) generates a presumption in favor of the direct inferences
underlying the proposed methods: If there is no reason to think that these
direct inferences are defeated, then they are not. One could, of course, ob-
ject to (1) and (2). I will not take that objection too seriously. I have
already provided some reason to accept the two theses, by appeal to opti-
mality results. To the extent that those results are suggestive of the virtues
of forming our personal probabilities by direct inference with a preference
for narrower reference classes, they provide support for the application of
the two proposed methods for inferring expected frequencies, in cases where
the direct inferences underlying the methods employ the narrowest relevant
reference class. As an alternative, we can fall back to the commonly held
‘raw’ intuition that something very like (1) and (2) must be correct.

Given (1) and (2), the proposed methods do not generally yield unde-
feated reasons for accepting respective expected frequencies. Indeed, since
the methods are based on direct inferences, and direct inferences based on
more specific reference classes are to be preferred, the direct inferences un-
derlying the proposed methods will be defeated in some cases. A more
significant worry is that the outputs of the proposed methods are always
(or nearly always) defeated. This would be the case if there were ‘worthy’
competing methods that normally generated different expected frequencies.
For the reasons that follow, I am optimistic that there are no such methods.

There are plenty of methods/algorithms that one could employ in order

20The present issue obviously deserves are more detailed and careful treatment than is
given here. For reasons of space, I leave this task to another occasion.
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to ‘assign’ a value to a respective expected frequency. But typical methods
for assigning values do not yield reasons for accepting the respective value
assignments. In other words, genuine competitors for the proposed methods
would be backed by inference methods that confer reasons for accepting their
conclusions. The set of possible genuine competitor methods can be divided
into two classes: (i) ones that depend wholly on instances of direct inference
(along with deduction), and (ii) ones that do not. It is plausible to think
that there are ‘part time’ competitors of the latter sort, which apply in
some cases. For example, it is plausible that one could form a judgment
about the value of E[freq(T|R′)], for respective T and R′, based on (some
form of) enumerative induction from an observed sample, in some cases.
However, one is not normally in a position to form such judgments. Beyond
this, it is fair to say that there are no known inference methods, excluding
ones grounded in direct inference, that generally (or nearly always) provide
reasons for accepting such expected frequencies. The partition dependent
methods proposed by objective Bayesians represent a possible exception to
the preceding claim. But these methods are generally, and rightly, regarded
with skepticism. For this reason, I assume that such methods do not provide
reasons for accepting their outputs (at least not in cases where one is in
a position to make a competing judgment based on empirical data). In
any case, given the problem of partition selection involved in applying such
methods, we ought to explore alternatives, such as the methods proposed
here.

It is clear that it is possible to formulate methods that are grounded
in direct inference that are competitors to the methods proposed here. It
appears that all such competitor methods fall into one of three categories.
First, there are competitor methods that depend on direct inferences based
on broader reference classes (or on reference classes that consist of partitions
of the reference classes upon which the proposed methods are based – recall
the discussion of such cases that immediately followed Theorem 2). For this
reason, the direct inferences underlying the methods proposed in the present
paper should be preferred. Second, it is possible to formulate alternatives
that employ gerrymandered reference classes. These direct inferences, unlike
the ones proposed here, are degenerate. Third, there are direct inferences
whose reference class consists of a partition of the set of possible worlds.
Such direct inferences, unlike the ones proposed here, are also degenerate.

The preceding considerations count in favor of the wide spread (though
not universal) applicability of the proposed methods. That said, the adduced
considerations are not conclusive, since they fall short of demonstrating the
non-existence of a genuine competitor that normally generates reasons for
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accepting different expected frequencies.

4 Conclusion

In the present article, I offered reasons in favor of the policy of forming
personal probabilities by direct inference using the most specific applicable
reference classes. The main considerations in favor of the policy were pre-
sented in Section 2, where it was shown that, among the set of principled
policies that could be used in setting one’s personal probabilities, the policy
of reasoning by direct inference using the most specific applicable reference
classes yields personal probabilities whose accuracy is optimal, according to
all proper scoring rules, in all situations where all of the applicable frequency
information is point-valued. In Section 3, methods were introduced that of-
ten permit one to infer point-valued expected frequencies for subsets of sets
for which one has point-valued frequency information. These methods go
some distance in extending the applicability of the kind of optimality results
presented in Section 2. The methods of Section 3 also apply to the dilemma
of choosing between direct inference based on relatively precise-valued fre-
quency information for broad reference classes, and direct inference based on
relatively imprecise-valued frequency information for more specific reference
classes.
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5 Appendix

Theorem 1. ∀M,χ: if χ is principled in M, then ∀S:

(1) if S is a proper scoring rule, then ∀π∈Π:
Σx∈π S(δ(x ∈ T), ν(x ∈ T)) ≥ Σx∈π S(χ(x ∈ T), ν(x ∈ T)), and

(2) if S is a strictly proper scoring rule and χ 6= δ, then ∃π∈Π:
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Σx∈π S(δ(x ∈ T), ν(x ∈ T)) > Σx∈π S(χ(x ∈ T), ν(x ∈ T)).

Proof. Part (1): Consider an arbitrary π in Π, and an arbitrary xi in π. We
have Σx∈π S(δ(x ∈ T), ν(x ∈ T)) = |π|×[S(δ(xi ∈ T), 1)×δ(xi∈ T) + S(δ(xi
∈ T), 0)×(1−δ(xi ∈ T)], and Σx∈π S(χ(x ∈ T), ν(x ∈ T)) = |π|×[S(χ(xi
∈ T), 1)×δ(xi ∈ T) + S(χ(xi ∈ T), 0)×(1−δ(xi ∈ T)] (since δ and χ are
principled). Since S is proper, we have for all x: S(δ(x ∈ T), 1)×δ(x ∈ T)
+ S(δ(x ∈ T), 0)(1−δ(x ∈ T)) ≥ S(χ(x ∈ T), 1)×δ(x ∈ T) + S(χ(x ∈ T),
0)(1−δ(x ∈ T)).� Part (2): For some π, we have δ(x ∈ T) 6= χ(x ∈ T), for
all x in π (since δ and χ are principled and δ 6= χ). Consider such a π. For
such a π, S(δ(x ∈ T), 1)×δ(x ∈ T) + S(δ(x ∈ T), 0)×(1−δ(x ∈ T)) > S(χ(x
∈ T), 1)×δ(x ∈ T) + S(χ(x ∈ T), 0)×(1−δ(x ∈ T)), for all x in π, since S
is strictly proper.�

Theorem 6. ∀T,R,R′: if R′ ⊆ R and ∀i: PROB(freq(T|R′) = i/|R′|) =
freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}), then E[freq(T|R′)]
= freq(T|R).

Proof. Let T, R, and R′ be arbitrary sets such that R′ ⊆ R. Note that, for
all i, freq({S : freq(T|S) = i/|R′|}|{S : S ⊆ R ∧ |S| = |R′|}) =

(
g
i

)
×
(|R|−g
|R′|−i

)
/
( |R|
|R′|

)
, where g = freq(T|R)×|R|. So, for all i, PROB(freq(T|R′) = i/|R′|) =(

g
i

)
×
(|R|−g
|R′|−i

)
/
( |R|
|R′|

)
. So E[freq(T|R′)] = Σi∈{0,...,|R′|} i/|R′|×PROB(freq(T|R′)

= i/|R′|) = Σi∈{0,...,|R′|} i/|R′| ×
(
g
i

)
×
(|R|−g
|R′|−i

)
/
( |R|
|R′|

)
= 1/|R′| × 1/

( |R|
|R′|

)
×

Σi∈{0,...,|R′|}
(
g
i

)
×
(|R|−g
|R′|−i

)
×
(
i
1

)
= 1/|R′| × 1/

( |R|
|R′|

)
×

(
g
1

)
×
(g+|R|−g−1
|R′|−1

)
[by Van-

dermonde’s Identity (cf. Gould 2010, 6.17)] = 1/|R′| × (|R′|!×(|R|−|R′|)!)/|R|!
× g × (|R|−1)!/(|R′−1|!×(|R|−|R′|)!) = g/|R| = freq(T|R).�
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