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The immanent contingency of physical laws in Leibniz’s dynamics 

Tzuchien Tho 

 

1. Introduction 

The contemporary philosophical legacy of Leibniz’s work is most visible in the domain of 

modality. The concept of possible worlds was already deployed systematically during Leibniz’s 

“middle years” in the Discours de métaphysique (1686) and the ensuring correspondence with 

Arnauld, and in the later period, playing a central role in the Essais de Théodicée (1710). It was 

not only influential during its time but continues to have significance in the recent revival of the 

idea by David Lewis, his followers and opponents (Armstrong, Dretske, Tooley, Maudlin). It is, 

however, too obvious to bear repeating that in a time of Kripke semantics and possible worlds 

realism, contemporary possible worlds discourse bears only a distant family resemblance to 

Leibniz’s use of the concept. Be this as it may, the question of the modality of natural laws is 

shared by Leibniz and contemporary analytic philosophers.  

 Lewis famously argues for a grounding of natural laws through the inductive and 

experimental conclusions we can draw from the arrangement of physical facts in the actual 

world. Natural laws, in this view, supervene (qua Humean supervenience) on the “mosaic” of 

facts that constitutes a given possible world.1 Physical laws are different in different possible 

worlds because facts, different in these worlds, inductively constitute different laws. The 

contingency of natural laws is thus derived from the more basic ontological constitution of the 

possible world that these laws are “about”. This is of course disputed. A number of theorists, 

represented today by the position of Tim Maudlin, have argued that possible worlds may be 

individuated by a set of natural laws.2 The debate concerns whether facts or laws should be 

ontologically prioritized in understanding the fundamental constitution of a possible world and, 

in turn, how these different conceptions of the constitution of worlds determine the semantic 

content of natural laws. Of course this is not how Leibniz would have posed the problem. 

Certainly Leibniz does present possible worlds in terms of series of singular events and facts like 

“Caesar crossed the Rubicon” or “Cain killed Abel” that constitute the timeline (or “worldlines") 

of a possible world. However, these singular facts are, for Leibniz, mediated by the idea that 

what were fundamentally created by God were substances that logically contain these 
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properties and events. Facts, properties and events are predicates that belong, in the first place, 

to substances that then act in space and time. Although Leibniz does distinguish worlds through 

the presence or absence of a particular fact or event, the idea of a possible world as constituted 

by “worldlines” or a set of facts is foreign to Leibniz’s work. 

By saying that Leibniz had a different approach to the relation between possible worlds 

and natural laws is not to say that Leibniz could provide a better solution to contemporary 

problems. Our enigmas are our own. However, by looking at how Leibniz saw modality as 

significant in evaluating natural laws, we gain some needed distance from the closely nested 

problems discussed in the contemporary literature. In turn, what was the central issue 

concerning the contingency of natural laws was, for Leibniz, the capacity to distinguish between 

the necessary (geometrical laws) and the contingent (physical) laws of nature. This distinction 

implies the capacity to be able to separate the different kinds of causes equally at work in reality. 

In particular, for Leibniz, the fact that some laws of nature are contingent entails the fact that a 

form of causation beyond mechanical or efficient causes exists.   

Now, within the context of Leibniz’s scientific work, the distinction between contingent 

and necessary truths constitutes the fundamental role that the principle of sufficient reason 

plays in knowledge. In terms of physics, the extensional geometrical relations between physical 

things constitute a domain of necessary truths. Insofar as geometrical truths are necessary, they 

do not require the principle of sufficient reason. That is, since geometrical truths could not be 

otherwise, they need no sufficient reason to determine why they are one way rather than 

another. However, geometry does not determine the vast majority of physical laws such as 

gravitation, collisions or optics. Hence laws of nature are logically distinct from necessary 

geometrical laws. 

The distinction between necessity and contingency in Leibniz’s natural laws thus could 

be reduced to a choice between possible worlds. To put it simply, whereas geometrical truths 

cannot be otherwise, God creates the actual world according to a set of laws that could be 

otherwise but are chosen through divine wisdom. This relegation of natural laws, via sufficient 

reason, to a “choice” of possible worlds sustains a view of the natural world of bodies operating 

mechanically through a contingent set of laws and a contingent set of initial conditions. This was 

not quite Leibniz’s view. The contingency of natural laws does not merely come down to the 

choice of laws. Rather, Leibniz saw the status of natural laws as arising from the action internal 

to physical substances.  Hence, the actuality of physical laws is instantiated by the causal power 

inherent in substances rather than merely constituted by the divine arrangement of external 

relations between physical objects. It is with the aim of presenting this counterintuitive idea of 

the “immanence” of contingency that we proceed here.  

In what follows, I will provide an interpretation of the distinction between necessary 

and contingent physical laws in terms of the causal structure that it implies. The aim is to make 

clear that, for Leibniz, the contingency of natural laws implies that final causes, beyond 

mechanical and efficient causes, operate in physical processes and relations. In turn, physical 

laws do not supervene but are instead the principles through which physical events and their 

aggregate effects are engendered. Here final causation is implied by the contingency of natural 

laws. This is of course incongruous with the range of causal theories we find acceptable today. 
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More than this, Leibniz was also, in his own time, arguing against the grain of his 

contemporaries, like Descartes, Hobbes and Spinoza, who sought to leave final causation behind 

with the Scholastics. Nonetheless, we grasp from this the role that Leibniz assigned to the 

concept of possible worlds for natural science. That is, our actual world can be evaluated against 

a number of possible worlds precisely because the actual physical laws realize the teleological 

optimality imbued into the world in divine creation. The meaning of contingency in Leibniz’s 

physical theories is nothing other than final causation.  

 In order to argue for this interpretation, I shall proceed in three sections. In the first 

section I examine the distinction between final and efficient cause insofar as it maps onto 

physical and geometrical principles. This is to be found in the Leibniz’s optical studies. Here I 

establish the difference Leibniz makes between geometrical and physical principles. In so doing, 

I provide the grounds for Leibniz’s argument that efficient causation cannot suffice for a 

complete explanation of physical phenomena simply because physical relations realize the 

“optimization” of geometrical relations. From this, we see that the role played by contingency is 

to allow for a theory of optimality in the determination of scientific theories. In the second 

section I expand this theory of optimization to the case of collisions. Since the theory of 

collisions stood as the central terrain for the presentation of natural laws as such, I will examine 

the role that contingency plays in the nature of collision and rebounding. Here, continuity and 

elasticity are not taken to be necessary features of bodies. Rather, the geometrical realities that 

result from the phenomena of collision are the result of sufficient reason. Again, mere 

geometrical relations are inadequate at providing the needed account for the continuity of the 

laws of collision. Thirdly, I will turn to the role that contingency plays in the measure of 

Leibnizian force. Taking up only one of the many aspects of the problem of the measure of 

Leibnizian force, I will argue that beyond the idea of a supramundane selection of natural laws in 

divine creation, Leibniz places final causes within the physical systems themselves. Instead of 

blindly unfolding from a set of laws and initial conditions chosen by the divine in creation, 

bodies actively rather than passively realize the optimum. This final claim of course cannot be 

fully defended here but is instead explained in order to underline the centrality that contingency 

plays in Leibniz’s natural philosophy. Nonetheless, what I demonstrate below is the claim that 

contingency is a central concept in Leibniz’s physics and implicated within the operations of 

physical systems themselves. The contingency of physics is inseparable from the inherent 

actions of bodies.   

 

2. The geometrical and the physical in the optics 

 This section provides a first perspective on the role of contingency in Leibniz’s physical 

theories.  To provide a first very general gloss, we rely on a very simple and abstract distinction 

between what is necessary and contingent in physical theories. The truths of geometry are 

taken to be necessary whereas physical laws are contingent. This simple distinction maps onto 

Leibniz’s distinction between two kinds of principles: those that follow from the principle of 

non-contradiction (geometry, arithmetic and the like) and those that follow from the principle of 

sufficient reason (laws of nature). Leibniz’s view here appears to satisfy current ad hoc views of 

such a distinction. But this was not an obvious view in Leibniz’s time. Descartes, against whom 
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Leibniz often directed his criticisms, held that arithmetic truths were, in some sense, contingent 

insofar as God might have made an “eternal” reality where “it was not true that twice four make 

eight.”3 Of course, Descartes’ view on this problem of the omnipotence of God was complicated 

and we shall not enter into it here. However, Leibniz was famously unequivocal in denying the 

“voluntaristic” view of God and held that we misunderstand the omnipotence of God when we 

assert that mathematical truths (broadly construed) could have been otherwise. The 

omnipotence of God is misunderstood when it implies the trespassing of logical limits. In other 

places, he argues against the distinction between abstract geometrical relations and concrete 

spatial relations. What is spatially concrete, Leibniz argues, cannot differ from what is 

geometrically abstract since geometrical truths cannot be otherwise. As he argues in the 1703 

Nouveaux essais sur l’entendement humain: 

[T]here is no need to postulate two extensions, one abstract (for space) and the other 

concrete (for body). For the concrete one is as it is only by virtue of the abstract one: 

just as bodies pass from one position in space to another, i.e. change how they are 

ordered in relation to one another, so things pass also from one position to another 

within an ordering or enumeration. 4 

From a modal standpoint, we can argue that the principle of non-contradiction and the principle 

of sufficient reason can be used as a test to distinguish between those necessary principles that 

God will always uphold and those contingent principles where divine wisdom (sufficient reason) 

is required.  

 From this we have a rather simple epistemological picture. First there is a set of 

necessary logical and mathematical laws determined with respect to the principle of non-

contradiction. At a second level, there are laws and principles whose (contingent) truth is owed 

to the wisdom and will of God. This remains an abstraction, of course, and we require a further 

step to concretize the distinction between these two levels of necessity and contingency. In this 

section, I will attempt this concretization, at least in Leibnizian terms, through the problem of 

optics.  

 An examination of Leibniz’s optics is not the most direct way to view his approach to 

natural laws but it is the easiest path to grasp his use of the distinction between necessity and 

contingency in natural science.5 The aim here is to provide a simple presentation of the 

necessity-contingency distinction in order then to understand why contingency is so crucial to 

the Leibnzian theory of physical causation.  

 Leibniz began his research on optics as early as 1671. Critical notes collected in the 

Akademie edition of his works reveals a study on a wide range of optical writings from Francesco 

Lana, Cavalieri, Dechales, Fabri, Descartes, Rohault and others.6 In draft optical treatises of 1673, 

Leibniz had already attempted to formulate a theory of the uniformity of the laws of both 

                                                           
3 Descartes, CSM II 294. AT VII, 436. 
4 A VI, 6, 127; GP V, 115; Leibniz, Gottfried Wilhelm. 1981. New Essays on Human Understanding. Ed. and 
trans. by Peter Remnant and Jonathan Bennett. Cambridge: Cambridge University Press, 127. 
5 See McDonough, Jeffrey K. 2010. Leibniz’s optics and contingency in Nature. Perspectives on Science 
18(4): 432-455.  
6 See A VIII 1, 139-242. 
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refraction and reflection on the basis of the medium against which light strikes.7 According to 

what we call the Snell-Descartes law, a mirrored surface reflects light at an angle (to the normal) 

equal to its angle of incidence (to the normal).8 Refraction is a little bit more complicated. Light 

is refracted such that the proportion of the sine of the angle of incidence (to the normal) and 

the sine of the angle of refraction is inversely related to the “refractive indices” (to use an 

anachronism here) of the two media n1 and n2:  

sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
   

 

FIGURE 1 

Now, moving past the history of the development of this law, we note that Descartes 

and Fermat famously disagreed as to whether the density of the medium was directly or 

inversely proportional to the speed of the motion of light traveling through it.9 Although they 

did not disagree as to the fundamental proportion, the question of the mechanical cause of this 

result was under dispute. As we noted, the refractive index is determined by an inverse 

proportion of the sines of the angles of incidence and refraction. What this says about their 

speeds however, is a separate but obviously related issue. Although Descartes famously held the 

position of the infinite speed of light (the immediate propagation of light), he also modeled his 

optics on the motion of tennis balls. Within this model, Descartes embraced the counterintuitive 

view that light moves faster through a denser medium.10 In this (erroneous) view, the speeds (v) 

of the law would be: 

                                                           
7 A VIII 1, 168-179. 
8 See figure 1 below.  
9 Descartes, CSM II 162-163; AT VI 103-104. 
10 There may be a point of confusion about the idea of the “motion” of light here and the fact that 
Descartes also held the immediate propagation of light. Nonetheless, the demonstration of the dioptric 
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sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
=

𝑣2

𝑣1
   

This view is one that Leibniz seems to have definitively rejected by 1673.11 

At least until 1681, Leibniz addressed this fundamental law through an account of 

mechanical causation. Here the sine of the gradient of refraction is inversely proportional to the 

density of the medium through which light moves. Although Leibniz is careful to criticize 

Descartes and others in these writings concerning the proportions of the speeds of light, nothing 

suggests that Leibniz aimed to provide any other causal account than the intuitive and 

contemporaneous mechanical view.  

 By 1681, however, we find a simple derivation of the Snell-Descartes law from a 

different perspective. In an untitled text, we find an argument that makes use of what we would 

call an optimization argument in analytic geometry today. Taking the case of refraction, Leibniz 

argues, quite conventionally, that the proportion of the sine angle of incidence and the sine 

angle of refraction is the inverse proportion of the densities through which the light moves. 

However, he argues that the angles can be derived by taking the “minimum” of an equation. I 

shall simplify Leibniz’s argument somewhat. We start with two densities that are proportional 

d/e. Taking the horizontal and vertical components of each line going into and out of point C, we 

have the incidence ray AC in two components, the horizontal x and the vertical l, and the 

refracted ray CB in two components, horizontal f-x and vertical m.  

 

FIGURE 212 

                                                                                                                                                                             
law was modeled after the motion of a hypothesized tennis ball moving in and out of a medium at 
different angles. Although we cannot attempt to synthesize Descartes different models for light 
propagation, it is in this hypothetical sense that we speak of the motion of light.  
11 A VIII 1, n. 22, p. 183-184. 
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From this, Leibniz argues that “It will then be the case that 𝑑√𝑙2 + 𝑥2 + 𝑒√ (𝑚2 + 𝑓2 + 𝑥2 −

2𝑓𝑥) is equal to a minimum.”13 Now, before the eighteenth-century solidification of the concept 

of the function and the functional, what “minimum” means may be ambiguous, but Leibniz then 

asserts a key insight from his infinitesimal calculus. He argues then that:  

2𝑑𝑥/𝑑√𝑙2 + 𝑥2(𝐴𝐶) + (2𝑒𝑥 − 2𝑒𝑓)/√ (𝑚2 + 𝑓2 + 𝑥2 − 2𝑓𝑥)(𝐵𝐶) = 0 

Taking the original equation as a “minimum” means precisely to make the derivative of that 

equation equal to zero. This is familiar to us through the concept of optimization in analysis and 

the principle of least action in physics.14 Having shown this, Leibniz shows trivially that if the 

point C is the center of a circle and CA and CB its rays (of equal length), then the sine of the 

angle of incidence, line segment AD, and the sine of the angle of refraction, line segment EB, will 

“be reciprocal to the medium or densities”.15  

 With this text, it seems that Leibniz moves away from a mechanical argument. Of course 

this argument does not contradict any particular mechanical explanation. However, we see that 

a mechanical argument, like that of Descartes, relied on a mechanical hypothesis that a rare 

medium diffuses the light material and retards it while a dense medium is less “soluble” and 

allows light move faster through it.16 However, rather than engaging with a mechanical 

argument, Leibniz engages in a theory that does not require such mechanical explanation. By a 

theory of the “minimum”, the optimization of the equation of triangles formed by the angles, 

Leibniz produces an explanation of the desired results.   

The 1681 argument from the “minimum” comes very close to an argument from final 

causation. Sufficient reason “selects” the optimal (minimum) magnitude. From the optical texts 

of 1682 onward, Leibniz saw the Snell-Descartes law as determined through final causation. In 

                                                                                                                                                                             
12 Figure reproduced from Leibniz, Gottfried Wilhelm. 1906. Leibnizens Nachgelassene Schriften 
Physikalischen, Mechanischen und Technischen Inhalts. Ed. by Ernst Gerland. Leipzig: B. G. Teubner; 
reprinted 2006. Ann Arbor: University of Michigan University Library, 73. 
13 Leibniz, Leibnizens Nachgelassene Schriften Physikalischen, Mechanischen und Technischen Inhalts, 73; 
translation by Jeffrey McDonough.  
14 For those unfamiliar to optimization in analysis, we can imagine that a voyage from Berlin to Milan can 
be optimized according to three (or more) variables: the cost of travel, the distance travelled and the 
speed travelled. Walking is cheap but lengthy and slow. Train is fast but lengthy. Flight is expensive but 
quick. Optimization analysis treats these three different variables together, given constraints, in order to 
find the “path of least action” between Berlin and Milan. In the rudimentary case here, we can liken the 
optical system as having to “choose” between “optimizing” different variables such as the shortest path, 
the shortest time or another relevant term. Fermat’s historical demonstration appealed to the 
optimization of the shortest time. Recall here that Leibniz’s main target was Descartes’ view that higher 
density of media resulted in greater speed of motion. Hence, Leibniz’s demonstration here is equivalent 
to Fermat’s but does not directly appeal to the same variable (shortest time). Instead, Leibniz assumes 
that given some passage of time t, which can be left out, the diagonals of line segments traced the motion 
of light and the area of the rectilinear figures constituted by those diagonal segments are such that they 
are optimized according to these paths.     
15 Leibniz, Leibnizens Nachgelassene Schriften Physikalischen, Mechanischen und Technischen Inhalts, 73; 
translated by Jeffrey McDonough.  
16 Descartes AT VI 103, CSM 1:163. See Mcdonough, Jeffrey K. 2016. Leibniz’s optics in The Oxford 
Handbook of Leibniz. Ed. by Maria Rosa Antognazza. Oxford: Oxford University Press, 6.   
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the June 1682 publication in the Acta Erutitorum, “Unicum opticae, catoptricae, et dioptricae 

principium”, Leibniz argues, after his presentation of the sine law, “We have therefore reduced 

all the laws of rays confirmed by experience to pure geometry and calculation by applying a 

single principle, taken from final causes if you consider the matter correctly: for a ray setting out 

from C neither considers how it could most easily reach point E or D or G, nor is it directly 

through itself to these, but the Creator of things created light so that from its nature that most 

beautiful result could arise.”17 

 

FIGURE 218 

Leibniz continues this passage with a criticism of the Cartesian rejection of final causes. But even 

examining this argument further, we see from this figure that, at least abstractly, the possible 

paths of motion from C to E, D or G are all coherent hypotheses seen from a geometrical 

perspective. Addressing the same kind of argument that he presented in 1681, Leibniz invokes 

final causality here in order to argue from sufficient reason that light passes through one of 

these paths (the most beautiful) instead of the others.    

Using contingency and necessity as our guide, we can understand that alternative paths 

of motion in the phenomenon of refraction can be logically coherent even if they fail to be true 

in the actual world. As such, mere geometrical truths, mechanical implications, fail to supply the 

“sufficient reason” for determining why the refraction (catoptric) law is true.  

What is most important for our discussion here is that Leibniz’s appeal to final causation 

in physics is explanatory. That is, Leibniz never denies real mechanical realities that bring about 

                                                           
17 Leibniz, Gottfried Wilhelm. 1682. Unicum opticae, catoptricae, et dioptricae principium. Acta 
Eruditorum, June 1682; 1768. Opera Omnia Vol. III. Ed. by L. Dutens. Geneva: Fratres De Tournes, 145-150; 
translated by Jeffrey McDonough.   
18 Figure reproduced from Table IV, figure 17 of Opera Omina III.  
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the desired result. From an epistemological perspective, the superior determination of the law 

of refraction does not, at the same stroke, determine the ontological constitution or mechanical 

realities that constitute such a phenomenon. It is hence important to notice that as Leibniz’s 

optics matures, he continues to be generally agnostic on the ontological or mechanical 

constitution of these results. In the mature works like the Tentamen Anagogicum of 1696, we 

see Leibniz embracing the theory of final causes through the idea that light travels through the 

“most determined” path.19 This does not say much about the mechanics of light propagation. 

Rather it allows Leibniz to hold the view that regardless of the mechanics, the behavior of light 

satisfies the optimization of its “function”.  

 The status of final causation in this examination thus resides on the level of explanation 

and indicates how Leibniz sees the role of divine wisdom in the creation of the world. On this we 

can at least say that God chooses laws that “optimize” the motion of light through the medium. 

In this view, final causes are related only to the level of the choice of reason (ratio) for physical 

phenomenon and how far this extends to the particular behavior of individual bodies is limited. 

From this, we could argue that, for Leibniz, possible worlds are individuated according to natural 

laws optimized against a set of alternatives that are respectively geometrically coherent. We 

have thus established a minimal ground for the understanding of the role of contingency in 

Leibniz’s natural philosophy. In what follows, we will expand this view to examine the 

fundamental role that contingency plays in Leibniz’s determination of natural laws.  

 

3. Modality and the elasticity of collision 

In the discussion above, we have made concrete the idea that geometrical truths form a 

baseline of rigid necessary truths whereas another set of laws, chosen by God, constitute the 

contingent physical laws. Leibniz makes use of this distinction in order to argue for a general 

solution for optical laws - dioptric and catoptrics - through optimization arguments. In this 

section, we expand the idea of final causation by including arguments that are not so 

straightforwardly mathematical. We examine the sufficient reason that grounds why physical 

collision is continuous rather than discrete. 

Now, the problem of corporeal collision was central to seventeenth-century 

investigations of the nature of corporeal motion for a number of different reasons. Although the 

causes of gravity, the shape of motion, and the nature of inertia were all important questions, it 

was within the arena of collision that the basic laws of motion and the key problem of 

conservation were dissected and demonstrated. Galileo famously penned an unfinished and 

unpublished dialogue (the sixth day) of the Dialogo sopra i due massimi sistemi del mondo 

precisely on the topic of collision.20 Descartes spelled out his famous "laws of motion" on the 

basis of bodies in collision in the second book of Principia philosophiae. More pertinently, 

Leibniz read the 1669 entries on the laws of collision by Wallis, Wren and Huygens in the 

                                                           
19 GP VII 274-75; L 479. See Mcdonough, Jeffrey K. 2009. Leibniz on natural teleology and the laws of 
optics. Philosophy and Phenomenological Research 78(3): 505-544. 
20 Galilei, Galileo. 1898. Le opere di Galileo Galilei Vol. VIII. Ed. by Antonio Favaro, Isidoro Del Lungo. 
Florence: G. Barbera, 319-349. 
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Philosophical Transactions around the time when he understood physics as the gateway to his 

larger intellectual ambitions. Although the fundamental question of collision laws concerns the 

quantity conserved under collision, we will look at a related problem here. That is, we will 

examine the related question of the elasticity and continuity of bodies in collision.  

To be clear, what we mean today by elasticity of collision means nothing more than the 

conservation of energy in collision. Leibniz's name is historically linked to this concept of the 

conservation of energy (or energy-work). However, not only is the Leibnizian quantity conserved 

under collision not ½  mv2, his concept of elasticity is not rigorously tied to this quantity. First off, 

Leibnzian force, not to be confused with Newtonian force, is the conserved quantity mv2, 

commonly referred to by near contemporaries and historical commentators as vis viva. This 

Leibnizian force is a conservation quantity and hence constant under physical transformations, 

rather than the cause of momentum change. From this, the Leibnizian force mv2 is best 

analogized by the classical understanding of energy-work. We share with Leibniz the notion that 

it is this quantity that is conserved in elastic collisions. However, for Leibniz, elasticity does not 

primarily refer to collisions that conserve this quantity. Instead, elasticity refers to the 

continuous deformation of bodies in contact collision. More importantly, for Leibniz, as we shall 

examine, elasticity is absolute for all and any collisions. Since elasticity is absolute, it certainly 

follows that Leibnizian force is conserved. In the strictest sense, if elasticity were not absolute 

for collisions, Leibnzian force would, by definition, fail to be "force" because it is not universally 

conserved. We shall see what this means in what follows, but it is important to underline that, in 

this Leibnizian context, elasticity refers to the shape and hardness of bodies under collision 

rather than the conservation of energy in collision.  

With this caveat, we examine the role that modality plays in the collision laws. Although 

collision involves many other issues, the aspect that we shall examine is the continuity of 

collision. That is, within this historical context, the nature of collision was not at all a settled 

matter. Could a pebble with near-infinite speed move a mountain? What is the threshold at 

which a massive body begins to carry off a smaller body? Are collisions continuous? The issue of 

continuity is important because of the context of mechanics within which Leibniz was writing. Of 

course, on the surface, continuity itself does not seem to have much to do with modality. We 

might think here of how nature might choose between different ways that bodies might behave 

in the case of collision. Hence, if we consider various theories of elastic and inelastic collisions as 

having, within themselves, geometric or mechanical coherence, then the different views on the 

elasticity collision will play a significant modal role. That is, only the principle of sufficient reason 

can distinguish between different models of collision as being "optimal" and hence chosen by 

the divine wisdom.  

There is perhaps no easier way to grasp the significance of elasticity for Leibniz than to 

take his argument against the atomists. Physical extended atoms, at least in the way Leibniz 

understands them, are in principle unyielding since deformations imply the motion of smaller 

components under impact.21 Composite bodies may deform in body-to-body impingements but 

                                                           
21 A closer reading of contemporary atomists, especially Gassendi, would reveal that Leibniz’s 
understanding, here and in many other occasions, constitutes a negligent or deliberate misunderstanding. 
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their behavior should be reduced to the more basic atom-to-atom relations which cannot 

exhibit deformation. In this atomistic view, physical transformations during collision in terms of 

speed and direction must be discontinuous. Here, perfect indivisible unities meet, come to rest 

and rebound at discrete times. Leibniz typically argues against this view in noting that atomism 

relies on a notion of mechanical or efficient causation which relies on discontinuity at its most 

basic level. In this sense, collisions in the atomistic world are fundamentally non-elastic. As he 

argues to De Volder in his correspondence of 27 December 1698: 

[H]owever small a body may be, it nonetheless stands in some ratio to a big one, and 

there is some collision force, although a small one I admit. And the flexing of each body 

through the resistance of its elastic element, through which the force of a collision is 

consumed little by little and transferred to the elastic element, must be returned by it in 

the same way, little by little [...] But as for inflexibly hard bodies, such as we imagine 

atoms to be, I, like you, fully believe that there can be no compression in them and no 

conservation of force either. But in turn, I think that there are no such things in nature…. 

I think that elasticity is essential to bodies on the basis of the order of things and 

metaphysical principles: although in nature it is accomplished by nothing other than a 

fluid moving around.22 

Leibniz's theory of the absoluteness of elastic collision certainly provided Leibniz’s main 

reason for his refutation of atomism but it was also aimed against the wider range of different 

theories of collisions. The problem of atomism concerned indivisible hard unities. However, 

Leibniz also held the possibility of inelastic collisions where, due to the softness of bodies, 

energy is lost. As he argues in the same letter to De Volder, “soft bodies absorb force not by 

destroying it but by receiving it into their small particles… as when a bullet is shot through many 

sheets of paper.”23 Here, Leibniz is generally cognizant of the “energy loss” in a system through 

inelasticity and friction but considers these events as micro-phenomena without detracting from 

the basic case of elastic collision. Moreover, if we consider energy loss from the perspective of 

the detachment of smaller parts of bodies in collision under impact, these smaller parts 

themselves remain elastic. In Leibniz's view, bodies are composed of an indefinite aggregation of 

smaller elastic bodies all the way down.  

Given that Leibniz aimed his arguments about elasticity and the continuity of collision 

against more than just atomists, we should note that Leibniz's most concerted effort for 

demonstrating the modal significance of continuity in physics comes from his arguments against 

Descartes. Now we should note that Descartes himself famously opposed the atomism of 

Gassendi and hence we should not see these views as equivalent. However, what Descartes and 

Gassendi shared was a reduction of physical causation to efficient causation. Hence although 

Leibniz sought to defend the actuality of final causation against these positions, his argument 

                                                                                                                                                                             
Leibniz seems to have taken contemporary atomists as theorists of “void space” and paid less attention to 
their positive remarks on the structure of bodies.   
22 Leibniz, Gottfried Wilhem. 2013. The Leibniz-De Volder Correspondences. Ed. and trans. by Paul Lodge. 
New Haven: Yale University Press, 44-47.  
23 The Leibniz-De Volder Correspondences, 44-47. 



12 
 

against Descartes, as we will examine below, was significantly different from the argument 

starting from the composition of bodies in collision.  

 In an in-depth criticism of Descartes’ laws of motion, the 1692 Animadversiones in 

partem generalem Principiorum Cartesianorum, Leibniz moves through the Principia 

Philosophiae systematically.24 We will focus on his remarks on article 53 of the second part of 

the text.25 Here Leibniz takes up the problem of corporeal collision, as Descartes does in these 

sections. According to Descartes’ first rule, bodies of equal mass moving against each other at 

equal speeds will simply rebound from each other in perfectly elastic collisions. But what 

happens when we modulate the masses and speeds of the two colliding bodies? Famously, 

Descartes argues that if one body is more rapid, it will carry the other off in the same direction 

post collision. That is, if bodies B and C collide with B moving at -4v and C at 3v, according to the 

third and seventh rule, the two bodies will both move at -3.5v.26 In the Cartesian view, the 

quantity of motion is divided equally between the two bodies (
4𝑣+3𝑣

2
= 3.5𝑣). Now, to take a 

different case, if the same two bodies were moving in the same direction with 4v and 3v 

respectively, B will eventually meet C and the resulting collision will also result in both bodies 

traveling at 3.5v for the same reason. We can see more clearly from a chart what happens when 

we simply vary speed in the application of Cartesian laws. 

Initial 
conditions 

    Cartesian 
laws 

  

v(B) initial v (C) 
initial 

  v(B) final v (C) 
final 

-4 -4   -4 -4 

-4 -3   -3,5 -3,5 

-4 -2   -3 -3 

-4 -1   -2,5 2,5 

-4 0   3 -1 

-4 1   -2,5 -2,5 

-4 2   -3 -3 

-4 3   -3,5 -3,5 

-4 4   4 -4 

 

[CHART 1] 

 Leibniz grasps that the Cartesian laws are contrary to phenomena but his reasons for 

rejecting them are due to the problem that they do not satisfy the conditions of continuity. Take 

our example above. Two bodies of equal mass in collision will result in a case where the body 

with the greater magnitude of speed carries the other off in its direction. However, what if the 

differences of speed become marginally different? Would a body moving at -4v also carry off an 

opposing body moving at 3.99v? Why would they not simply rebound as in the case of the first 

                                                           
24 GP IV 350-392. 
25 GP IV 381-384. 
26 GP IV 382. 
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law of collision? Another way of saying the same thing is that the first law of collision is 

discontinuous with the other laws. What Leibniz argues in turn is to see the laws of collision as 

continuous with Descartes first law. The elastic rebounding of bodies of equal mass holds in 

cases when speeds are varied.  

 At the time of this text, Leibniz already understood that the Cartesian laws could be 

“fixed” by the addition of direction in the calculation of speeds. Indeed a more complex story 

concerning Leibniz’s work on the laws of motion can be told here. Part of it will be examined in 

the next section. Nonetheless, in 1692 Leibniz sought to make another larger point through his 

examination of Descartes’ laws of collision. By comparing his results of the effects of collisions 

under the same range of initial conditions, Leibniz argued that what occurs under collisions is 

simply the exchange of velocity (speed and direction). If a body B at -4v collides with a body C at 

3v, body B rebounds with velocity 3v and C rebounds with velocity -4v. This holds under 

elasticity or the symmetry of collision in a non-accelerating inertial frame. As such, the chart of 

his experiment would produce the following chart.  

Initial 
conditions 

    Leibnizian 
laws 

  

V(B) initial V (C) 
initial 

  V(B) final V (C) 
final 

-4 -4   -4 -4 

-4 -3   -3 -4 

-4 -2   -2 -4 

-4 -1   -1 -4 

-4 0   0 -4 

-4 1   1 -4 

-4 2   2 -4 

-4 3   3 -4 

-4 4   4 -4 

 

[Chart 2] 

The result here is more apt for a description of the phenomena of collision. However, this is not 

what he emphasizes here. Leibniz argues instead that the Cartesian laws result in a “delineatio 

monstrosa” while his own graph results in a “delineatio concinna”.27  

                                                           
27 GP IV 382-383. 
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[FIGURE 3: Descartes’ delineatio monstrosa] 

 

[FIGURE 4: Leibniz’s delineatio concinna] 

 

This delineatio concinna compared to Descartes delineato monstrosa can be made even clearer 

in seeing that if we take all the infinite continuous values between the initial conditions, the 

same continuous graph would result. Leibniz’s argument thus relies on an appeal to sufficient 

reason. Descartes’ laws, although erroneous and confused, are not logically incoherent. It 

demonstrates geometrical discontinuity, as the graph demonstrates. There is, in principle, 

nothing logically incoherent about the discontinuity of the Cartesian graph. Leibniz argues for 

the greater intelligibility of his graph on the basis of its continuity. In this sense, the presence of 
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continuity is taken to have greater intelligibility insofar as it provides the case for the 

determination of sufficient reason. In this sense, the Leibniz’s laws of collision crucially invoke 

the importance of contingency in his natural philosophy.         

Now, from a larger perspective, Leibniz’s problem with Descartes laws of motion and 

collision has to do with the conservation of energy-work or, more contextually, with Leibnizian 

force. However, in this argument, what Leibniz forgoes is the larger point concerning 

conservation and he concentrates instead on the error involved in the discontinuity in the 

different cases of collision.  

As a rejoinder, this discontinuity of the Cartesian laws is also relevant to historical shifts 

in the concept of inertia. That is, against the earlier Keplerian idea of the inclinatio ad quietem, 

Leibniz held the Galilean and Huygensian view that motion is inertial-frame dependent. This is 

what he called the principle of the “equivalence of hypotheses”, a principle that he used 

throughout his physical writings as early as 1676.28 Hence, from the perspective of a non-

accelerating frame there is no geometrical difference between a body A with velocity v striking a 

body C at rest, and a body A at rest struck by a body C with velocity –v. From this perspective, 

the Cartesian laws of rebounding, insofar as they rely on the absolute speeds of bodies, are 

fundamentally erroneous insofar as it could not take into account this (Galilean-Huygensian) 

relativity of inertial frames. If this “Galilean relativity” were to be in play within the Cartesian 

laws, the phenomenon of a more rapid body carrying off a slower body would be incoherent by 

definition. This indicates that, at least for Leibniz, the modern concept of inertia (the 

equivalence of hypotheses) falls under the domain of the principle of sufficient reason and 

should thus also be filed under the category of contingent rather than necessary laws of nature. 

Nonetheless, what Leibniz sees as resulting from this Cartesian error is the discontinuity of the 

Cartesian collision laws rather than its incoherence. 

Final causation thus plays a fundamental role in Leibniz's collision laws. Among a set of 

different hypotheses about the behavior of masses in collision, Leibniz attempts to show that 

those theories that exhibit continuity are in fact those that are justified by sufficient reason. But 

rather than merely arguing from an appeal to the greater empirical adequacy of his theory, 

Leibniz argues for the higher optimality implied by his view; the more harmonious organization 

of nature, the delineatio concinna, through the continuity of the phenomena of collision.  

The immanent contingency of motion is highlighted here since nothing in this argument 

implies the necessity of the continuity of motion or of the elasticity of collision. Rather, the 

elasticity and continuity of bodies and collision are grounded by the higher appeal to sufficient 

reason. In turn, if we speak in terms of efficient causes, whether the properties of bodies or 

some other mechanism cause this elasticity of collision is not directly addressed or strictly 

implied. The order of Leibniz's reasoning provides that it is sufficient reason that determines the 

absoluteness of elasticity. This determination of elasticity is thus a contingent one. The question 

of whether the continuity of collision is prior to or follows from the elasticity (malleability) of 

bodies is left unaddressed here. Nonetheless, Leibniz affirms only that the elasticity of collision 

                                                           
28 See A VI, 3, 101-111; translated by Richard T.W. Arthur in 2013. The Leibniz Review 23, 101-116. 
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implies the elasticity of bodies (with no atomic elements) and that this follows from the 

principle of continuity.  

 

4. The measure of force and the hierarchy of laws 

 

In the last section we examined how structural physical properties like continuity are 

related to the laws of collision through sufficient reason. The role of contingency here implies, 

for Leibniz, the scientific importance of final causation. However, this view only implies the 

extrinsic determination of laws. Bodies are created to be continuous and collisions are created 

to be elastic under the notion of the creation of the world through the wisdom of God. Final 

causation is affirmed to be the choice of a possible world where these optimal mechanical laws 

hold.  

In this section, we will examine how final causes, the domain of sufficient reason, are 

not only extrinsic determinations but also inherent in substances and how they intrinsically 

realize this teleology. As such, we will point to how nature, for Leibniz, is not only extrinsically 

determined by the modality of the judgment between possible worlds but is also part of the 

activity of the world itself in the realization of its cause.   

At the start of this article, we examined the distinction between “mere” geometrical 

relations and “sufficient” physical laws. From the perspective of measurement and experiment, 

geometrical relations are always the effects of physical events and relations. Until now we have 

not examined the cause and effect relationship that this distinction implies. In this section I will 

argue that physical laws constitute the cause of geometrical effects in physical phenomena. 

Hence, although “mere” geometry is more epistemologically fundamental in an absolute sense, 

physical laws, insofar as causes, precede their effects ontologically. The aim of examining this 

ontological “priority” will allow us to distinguish an important but idiosyncratic aspect of 

Leibniz’s thinking about physical causality: the distinction between “merely” mechanical and 

“higher” mechanical causes.  

 The language of “mere” and “higher” mechanical causes may be rather clumsy. The 

point here is that “mere” mechanical principles are effects in physical phenomena that strictly 

follow geometrical relations while “higher” mechanical causes are due to the specific laws of 

god’s choosing. Leibniz explains in Specimen dynamicum that, “we acknowledge that all 

corporeal phenomena can be derived from efficient and mechanical causes, but we understand 

that these very mechanical laws as a whole are derived from higher reasons. And so we use this 

higher efficient cause only in establishing general and distant principles.”29 

Although Leibniz was always careful to present his various theories of physical causality 

as consistent with a mechanistic account of physics, he stretches the terms in order to suggest a 

second-order notion of a “higher efficient cause” or a “higher reason”. As Leibniz explains 

                                                           
29 AG 126. 
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further, this “higher efficient cause” turns out to converge with final cause. In the very next 

paragraph he explains:  

“In general, we must hold that everything in the world can be explained in two ways: through 

the kingdom of power, that is, through efficient causes, and through the kingdom of wisdom, 

that is, through final causes, through God, governing bodies for his glory.... These two kingdoms 

everywhere penetrate each other without confusing or disturbing their laws, so that the 

greatest obtains in the kingdom of power at the same time as the best in the kingdom of 

wisdom.”30 

Here, the “greatest” and the “best” are mirror properties between the two kingdoms of power 

and wisdom. This provides an indication of the metaphysical scaffolding that Leibniz supplied for 

a theory of optimization, the details of which we will not examine here, that allows us to see the 

“higher efficient cause” as a placeholder for final causality immanent in the physical world. In 

other moods, Leibniz would directly place dynamics in the role of final causes, “My dynamics 

requires a work of its own [...] You are right, Monsieur, to judge that it is in good part the 

foundation of my system, since there one learns the difference between truths whose necessity 

is brute and geometric and truths which have their source in suitability and in final causes.”31 

Hence the distinction between “mere” and “higher” efficient cause reflects the same distinction 

we have been examining throughout this article. On the one hand, we have an account of the 

physical world based on the geometrical relations between effects corresponding to size, shape 

and magnitude. On the other hand, we have an account of the physical world based on the 

sufficient reason for the laws by which geometrical arrangements are produced. It is this latter, 

irreducible to “mere” geometry, that corresponds to the true understanding of nature. Hence, 

despite the generous accommodations that Leibniz made for the mechanistic view of nature, it 

remains clear that “higher efficient causes” were aimed at carving out a space for the role of an 

innovated notion of final causation.  

If we take this notion of “higher efficient causation” qua final cause seriously we should 

examine the aspect of this view that takes final causes to be an inherent aspect of physical 

motion. That is, we should take the physical action of a body as the agent that actualizes or 

realizes the effects of the final causality “impregnated” within it, as Leibniz famously remarks in 

the Monadologie.32 It is this intrinsic activity of bodies that I will examine here.   

Leibniz’s mature physics, the dynamics, is known for its highlighting of the principle of 

energy-work and the conservation of mv2.33 Against the Cartesians, Leibniz argued that quantity 

of motion is not universally conserved but only conserved in horizontal elastic rectilinear 

collisions. Instead he argues that mv2, a near cousin to the ½ mv2 conservation of energy-work, is 

universally conserved in nature. The well-known details of this argument, the ensuing 

                                                           
30 AG 127.  
31 Nicolas Remond on 22 June 1715, GP III 645.  
32 Monadologie §22; GP VI 610; AG 216. 
33 The term “dynamics” was coined by Leibniz in 1689, understood as a science based on the causes of 
motion. The project of the dynamics cannot stand in for the entirety of Leibniz’s mature physical theories 
but certainly forms a central aspect of it from around 1676 to 1701. See Duchesneau, François. 1994. La 
Dynamique de Leibniz. Paris: J. Vrin. 
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eighteenth-century vis viva controversy, and Leibniz’s imprecisions shall be left out of the 

current discussion. What is important for us here is to see how work and gravity are related.  

Now, in all those often-cited passages where Leibniz argues for the universal 

conservation of mv2, he uses the Galilean principle that bodies fall at a rate in quadratic 

proportion to the height from which they fall. This is assumed throughout Leibniz’s published 

articles on the issue. Concerning the error that the speed of a body in freefall is quadratic to the 

duration of fall, instead of the distance of fall, Leibniz seems to have insisted against this view 

even in mature writings.34 Regardless of this error, Leibniz almost always assumes the quadratic 

distance theory to be the more universal one without defending it. Part of the reason for this, 

important for our discussion here, is that gravity was not considered to be the central aspect of 

physics until after Newton. It was one among a number of other fundamental problems of the 

time. Indeed, even Newton himself remained unwilling to provide an ontological account of the 

causes of gravity. Leibniz himself saw gravity as a feature of the larger problem of the vortex 

motion of the plenum-aether. In this, Leibniz used the Galilean law of falling bodies as an 

assumed background for the measure of freefalling bodies. It is against this background that we 

consider one of his standard arguments for the measure of force: 

“Therefore, in order to obtain a measure of force, I considered whether those two bodies A and 

C, equal in size but different in speed, could produce any effects equal in power to their causes, 

and homogeneous with each other. [...] [L]et us assume that bodies A and C are heavy, and that 

their force is converted into ascent, which would come about if, at the very moment when they 

had the speeds they were said to have, a single unit of speed in A, and double that in C, they 

were understood to be at the ends of the vertical pendula[...] Now, it is well known from the 

demonstrations of Galileo and others that if body A, with a speed of one unit, ascents at its 

highest point... of one foot, then body C, with speed of two units, could ascend (at its highest) to 

a height of... four feet.”35 

 

[FIGURE 5]36 

What is important in this argument for the measure of force mv2 is the quadratic relationship 

between maximum velocity and height v2∝h. Comparing maximum speeds and maximum 

                                                           
34 See GM VI 119-123; L 298-302. 
35 GM VI 245 ; AG 128. 
36 Figure recreated from figure 25 from GM VI; AG 128. 
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heights across different pendulums, Leibniz asserts that the linear proportions between speeds 

corresponds to quadratic proportions between heights. This form of measurement depends on 

what Leibniz called the equipollence of cause and effect. When Leibniz first formulated this 

principle definitively in 1676, he placed cause and effect in proportional relations such that, for c 

(cause) and e (effect): 
𝑐

𝑐′
= (

𝑒

𝑒′
)𝑟.37 This was formulated in a context before Leibniz had arrived at 

the quadratic proportion but it shows that Leibniz considered the measure of force through a 

proto-functional view, something we might represent as f(x)=xr where x is the speed (the 

independent variable here) and the dependent variable as height. With respect to the 

“experiment” then, the pendulums represent cases where x is of different values. It turns out, 

insofar as Leibniz relies on an appeal to Galileo’s law of falling bodies, that r=2.      

Considering the demonstration itself then, apart from its underlying methodology, how 

is the quadratic relation between height and speed demonstrated by this form of experiment? 

The work done by the physical system in raising a body upwards to its maximal height 

corresponds to the maximum speed reached by the body as it comes to the base of the swing. 

Leibniz appeals to Galileo without much of a defense or even much detail. However, we can 

grasp the role of the Galilean law by asking: if gravitational acceleration were different, how 

would the pendulum bob behave differently? 

 This was precisely the question that Leibniz entertained when he first came upon the 

adoption of mv2 as the conserved measure of force. In his 1678 De corporum concursu, Leibniz 

began his writing of the physical treatise with a different conservation principle, the Cartesian 

quantity of motion mv. Halfway through the work, he adopted the measure mv2, the quantity 

that would then form the cornerstone of his dynamics. With diligence, he returned to the first 

page of his draft and crossed out the Cartesian principle and noted “This does not follow from 

our system”.38 In the scholium of his demonstration of the quadratic relation between maximal 

speed and maximal height in this text, he argued that perhaps this relationship would be 

different in a world with a different system.  

“In our system, it is necessary that the moments are the square of the speeds because the effect 

is the height that the bodies could attain in their ascent; where the heights of ascent are the 

square of the speeds.  

Perhaps in another system of the world, where the speeds have another relation to heights, 

another measure of forces would have to be made.”39 

Leibniz’s remark here is not very extensive but we can grasp its immediate implications. If 

gravitational acceleration were different, either due to a different motion of the vortex or to the 

different attraction of masses, the relation between the two variables, maximal speed and 

maximal height, would be different according to that value. The conservation quantity mv2, the 

measure of the conservation of work-energy, would thus be contingent, according to this 

account. Now obviously, in cases like the pendulum the physical system in the upward swing is 

                                                           
37 I have heavily revised this expression from Leibniz’s De arcanis motus. A VIII 2, 61.  
38 Leibniz, Gottfried Wilhelm. 1678. De corporum concorsu. In G.W. Leibniz: La réforme de la dynamique: 
De corporum concursu (1678) et d’autres textes inédits, ed Michel Fichant, 71. Paris: J. Vrin. 
39 Leibniz, “De corporum concorsu”, 134. 
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working against the downward force of gravity. We can thus distinguish the concept of work and 

how it operates in different gravitational situations. Following the equipollence of cause and 

effect, the proportion  
𝑐

𝑐′
= (

𝑒

𝑒′
)𝑟 would hold even if the variable r were different. In principle the 

measure of the magnitude of work is a systematic or structural property, its measure is gained 

by the analysis of the transformation of the variable c or cause (the magnitude of speed in this 

case) and the corresponding transformation of the variable e or effect (the magnitude of height).  

 Leibniz’s argument here is coherent as far as it goes. The reasoning here is, however, 

unfortunately circular. As interpreters like Iltis have argued, we should keep in mind that the 

conservation of Leibnizian force mv2 had to already be assumed in order to have been “proved” 

in the first place.40 This is no experimentum crucis. Hence Leibniz’s arguments like that 

pendulums above are at best demonstrations of a theory. However as Duchesneau has also 

argued, this sort of a posteori demonstration of the measure of force was not meant to “prove” 

the conservation of mv2, but only to supply an interpretation of given data.41  

The particularly puzzling circularity is saliently pointed out above by Leibniz’s appeal to 

the contingency implied by “another system of the world”. If gravity behaved differently, then a 

different value for r would hold for the proportion 
𝑐

𝑐′
= (

𝑒

𝑒′
)𝑟. Now, this perspective does not 

directly adjudicate between different hypotheses behind the behavior of gravity. Leibniz 

famously rejected Newtonian “action at a distance” and appealed instead to a vortex-plenum 

theory of subtle matter circulating in the universe. Without getting into the details of the vortex 

theory to which Leibniz dedicated a number of published writings, we can point out that in 

order to spell out just such a vortex-plenum theory, one must first appeal to a fundamental 

theory of how bodies interact. Ontologically speaking, fundamental physical laws must come 

before any account of a plenum that is made up of circulating (subtle) bodies. Of course, for the 

purposes of an a posteriori measure of force, pendulums, insofar as they isolate the relation 

between speed and height (i.e. kinetic energy and work), are a legitimate method of 

demonstration. In its proper context, there is no real problem. Ceteris paribus, force is measured 

in the pendulum experiment against the backdrop of gravitational acceleration regardless of its 

ultimate causal basis. However, for the question of contingency the problem arises: on what 

exactly is the measure of force contingent?  

If this measure is contingent on the system of the world, then it is the extrinsic physical 

relations in the empirical world (considered as a world system) that determine force. On the 

other hand, if the system of the world is constituted by fundamental relations between bodies, 

it appears that the system of the world is contingent on these (other) fundamental relations. In 

other words, Leibniz’s constant appeal to the law of falling bodies calls into question the logical 

integrity of his account of forces. In fact, this circularity was so immediate that it struck J. 

Bernoulli who challenged Leibniz precisely on this point during their correspondence.42 

It is important to underline that there would be no problem here if the measure of force 

were not taken to be contingent. If Leibniz simply argued for the conservation quantity mv2 and 

                                                           
40 Iltis, Carolyn. 1971 Leibniz and the Vis Viva Controversy. Isis 62(1): 21-35. 
41 Duchesneau, La dynamique de Leibniz, 137. 
42 A III, 6, 398-411. 
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the quadratic relationship between speed and work, we would have been faced with a 

straightfoward case of hypothesis, deduction and verification. Instead, what we find in Leibniz is 

an argument for the measure of force that involves a hierarchy of relations, where it appears 

that the measure of force is contingent upon a cosmology with a certain notion of gravitational 

acceleration. From this perspective, we can finally stage the fundamental issue of Leibniz’s 

engagement with the problem of contingency in natural science. Is the problem of contingency 

in Leibniz’s physical theory simply God’s choice of possible worlds? If so then different possible 

systems of worlds can certainly be governed by different gravitational laws. Possible worlds 

could even be individuated by these different gravitational laws. This was, however, not 

Leibniz’s view.  

 Without changing the fundamental scientific claims that constituted Leibniz’s mature 

physical theory, he saw, around 1689, the need to provide a foundational account of the 

intrinsic nature of forces. That is, Leibniz placed forces within the activity of bodies such that the 

theory of forces reached beyond the notion of extrinsic physical relations between bodies in a 

physical system. As such, the causal root of the measure of force could no longer be assigned to 

external laws governing different systems of the world but would instead extend from the 

intrinsic activities of bodies themselves. Here, beyond the assertion of an a posteriori measure 

of conservation, Leibniz pursued another kind of approach, moving to an a priori account for the 

measure of force.  

Leibniz, starting from the 1689 dialogue Phoranomus seu de potentia et legibus naturae 

and repeated in the key treatise of the dynamics, Dynamica de potentia et legibus naturae 

corporeae tentamen scientiae novae, provided a new form of argument. Here the measure of 

force is the action (a) of the physical system in time. In brief, the action (a) of a physical system, 

assuming a one body system, is composed of two components: the displacement of a mass in a 

certain time (mst/t) and the speed of that mass at a certain time (vt). For a one body system, 

unhindered, the action a of the system at time t, at is the product of mst and vt. Since this one 

body system is unhindered, the evolution of s is constant and v is constant across times. Hence 

the action in time is a/t=ms∙v/t. As such, a/t=ms/t∙v=mvv. For a one bodied inertial system, the 

action of the system is mv2. Now, how does this translate into work? In cases where work is 

involved, say a pendulum working against gravity, we can see that the first factor, ms/t, 

decelerates as it reaches the maximum height. Similarly, the evolution of the second factor, v, 

decelerates also. Insofar as a/t=msv/t, the rising pendulum exhibits the same quadratic 

relationship between action and the magnitude of v in this formula: a=mv2. 

Now, this presentation is flawed insofar as it fails to account for just how such a function 

with two factors (ms and v) evolves in time. From an algebraic perspective, however, the 

conception of action as determined by the two factors of ms/t and v preserves the quadratic 

relationship between action and speed. As such, bracketing larger problems, Leibniz does 

provide an a priori demonstration for the quadratic relationship between speed and work. 

 In this sense, Leibniz has produced an a priori argument for an invariant relation 

between work and speed as it temporally evolves in a physical system. The question now is to 

ask whether this is contingent. Despite the a priori status of the theory of action, we can say 

that it is contingent in an absolute sense since this principle of action could have been otherwise. 
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The evolution of action in time a/t remains on the left side of the equation a/t=msv/t. In 

another possible world, a/t=(msv/t)r could have been possible. However, this further 

development allows us to say that the conservation quantity a/t=mv2 is contingent. But it is not 

contingent, or dependent, on the acceleration of gravity. It is, rather, contingent in a more 

fundamental or absolute sense. In other words, the measure of force is contingent in the sense 

that it could be otherwise (in a different possible world). However, it is not dependent on the 

cosmological system of the world or a possible version of the law of falling bodies. To put it 

rigorously, it is the measure of force that determines the law of falling bodies rather than vice-

versa. In the Dynamica Leibniz boldly proposes a derivation of Galileo’s law from an a priori 

account based on this very notion.43 From this perspective it becomes more coherent to see the 

acceleration of gravity, in Leibniz’s account, as contingent on the measure of force. Hence the 

circularity indicated above is, at least on the question of its modality, resolved.     

 With this modal investigation of the role of the relation between the measure of force 

and gravity, we have provided the grounds for understanding the hierarchy between mechanical 

and final causes. Even if we are agnostic about the ontological or cosmological causes of gravity, 

we can find that the relation between work and gravity is a contingent one. More importantly, 

we see how Leibniz could provide a contingent theory of forces, the foundational level of his 

physical theory, intrinsically rooted in the activity of bodies (or systems of bodies) themselves.  

 We have ventured here only to present Leibniz’s view on the intrinsic activity of forces 

rather than to defend it. It does indeed suffer from some defects that we have only indicated. 

Nonetheless, the aim here is only to argue that the contingency of physical reality, for Leibniz, is 

not merely the divine choice between different physical systems under which mechanical 

relations operate blindly according to laws. Rather, the arrangement of physical reality radiates 

outward from the inherent action of bodies that realize the conservation of force qua mv2. As 

such, the contingency of Leibniz’s physical laws is an inherent or intrinsic property of the world 

as such, rather than the extrinsic choice between possible worlds.  

 

4. Concluding remarks 

 In our examination of Leibniz’s theory of contingency in natural laws, we have 

emphasized that he sought to reinvent final causes in a historical context in which they were 

regarded as an old bit of Aristotelian-scholastic folly. The basis of this defense of final causes lay 

in the use of the principle of sufficient reason, which allowed Leibniz to situate natural laws 

where geometrical truths were inadequate. The ground of Leibniz’s argument was to show that 

a deep and formidable gap stood between geometrical-mechanical reality and actual physical 

reality. This gap itself demonstrated the need for a theory of causation beyond that of efficient 

causes. As such, we examined fundamental aspects of Leibniz’s mature physical theory that 

demonstrate the concrete methodological implementation of this distinction between necessity 

and contingency in physical laws.  
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Of course, viewed solely from the principle of sufficient reason, natural laws, even if 

they supersede the scope of necessary geometrical principles, would simply constitute the laws 

governing the external relations between objects in the actual physical system of the world. 

Hence, even if possible worlds could be individuated by sets of natural laws, contingency would 

fundamentally be a property of worlds rather than immanent in things. In view of this, we aimed 

at demonstrating that Leibniz wanted to take a step further, to make the contingency of natural 

laws a feature of the immanent constitution of bodies in action. In this sense, contingency can 

be seen as an immanent feature of the world, extending outward from the things of the world 

rather than simply a property of the order of things in a world system.  

All of this stands in stark contrast not only with the contemporary Laplacian and 

Bayesian notion of contingency in the sciences but also with Leibniz’s own legacy in the Kripkean 

and Lewisian modality of possible worlds. This stands as an obvious warning against reducing 

Leibniz’s scientific heritage to the domain of possible worlds semantics. The lesser regarded 

aspect of Leibniz’s theory of contingency is, however, the use of the principle of sufficient 

reason. In this investigation we have attempted to cast a historical spotlight on this principle and 

the origins of the concept of least action. In the attempt to address the gap between mere 

geometrical-mechanical principles and physical laws, the principle of sufficient reason and the 

theory of (least) action stubbornly defends an isolated citadel of final causation within the early 

modern period. Insofar as the concept of least action remains relevant even for the most 

speculative of contemporary physics, a reexamination of Leibniz on these grounds is pertinent 

and not a simply a visit to the antiquary shop of past curiosities. 

 


