
The Joint Aggregation of Beliefs and Degrees of Belief1 
 
Abstract: The article proceeds upon the assumption that the beliefs and degrees of belief of 
rational agents satisfy a number of constraints, including: (1) consistency and deductive closure 
for belief sets, (2) conformity to the axioms of probability for degrees of belief, and (3) the 
Lockean Thesis concerning the relationship between belief and degree of belief. Assuming that 
the beliefs and degrees of belief of both individuals and collectives satisfy the preceding three 
constraints, I discuss what further constraints may be imposed on the aggregation of beliefs and 
degrees of belief. Some possibility and impossibility results are presented. The possibility results 
suggest that the three proposed rationality constraints are compatible with reasonable 
aggregation procedures for belief and degree of belief. 
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1. Introduction 
 
There are two sorts of doxastic states that have received considerable attention from 
epistemologists. The first sort of doxastic state is belief. Belief is an all or nothing affair: For 
every proposition, ϕ, one either believes it or one does not. If one does not believe ϕ, one may 
either disbelieve ϕ (which is equivalent to believing not ϕ) or remain uncommitted (neither 
believing nor disbelieving). A second sort of doxastic state is degree of belief. The latter sort of 
state reflects the fact that beliefs may be held with varied degrees of conviction. Degrees of 
belief also correspond to personal (or subjective) probabilities, which are of considerable 
importance to decision theory. In order to cement the link between degree of belief and rational 
action, it is typically assumed that rational degrees of belief satisfy the axioms of probability.  
 
The two sorts of doxastic state give rise to two distinct aggregation problems. The first is the 
problem of aggregating beliefs: Given a group of agents, the problem is to pool individual beliefs 
regarding a domain of propositions, in order to form a collective belief set.2 The second problem 
concerns the aggregation of degrees of belief: Given a group of agents, the problem is to pool 
their individual degrees of belief regarding a domain of propositions, in order to form collective 
degrees of belief.3 The determination of what principles are appropriate in forming a collective 
doxastic state may vary by context, and depend on the relative importance of respecting 
procedural concerns (e.g., for the ‘fairness’ with which individual doxastic states have a bearing 
on the collective) versus veritistic concerns (e.g., for the tendency of the aggregation procedure 
to yield an accurate collective doxastic state). As a rough guide to forming intuitions about the 
relative importance of procedural and veritistic concerns, I will proceed upon the assumption that 
collective doxastic states will serve the purpose of guiding collective decision making (cf. 
Wagner 2010, 336). 
 

1 The final publication is available at Springer via: http://link.springer.com/article/10.1007/s11229-018-01966-0 
2 For an excellent survey of the topic, see Pigozzi (2015). 
3 For excellent surveys of the topic, see Genest and Zidek (1986), and Dietrich and List (2016). 
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Regardless of the importance one attaches to procedural and veritistic concerns, it is clear that 
both sorts of aggregation (i.e., of beliefs and of degrees of belief) have their place. In some cases, 
our goal is to form collective beliefs, on the basis of individual beliefs. Jury trials provide one 
sort of example. In more interesting cases, the members of a group need to aggregate their 
individual beliefs regarding a range of interrelated propositions. Such cases arise when a 
committee is charged with issuing yes/no verdicts regarding each element of a collection of 
related propositions. One example would be of a hiring committee that is charged with 
evaluating which qualifications a candidate meets (Pigozzi 2015). It is easy to imagine cases 
where it would be desirable for the members of a group to aggregate their degrees of belief. In 
fact, since degrees of belief are more fine-grained than beliefs (seeming to encode more 
information about an agent’s doxastic state), it might appear that it would always be preferable 
to aggregate degrees of belief, rather than beliefs. Nevertheless, it is clear that there are many 
circumstances where we want to form collective judgments, but we only have access to the 
beliefs of the members of a group, and not to their degrees of belief. In such cases, we will have 
to settle for aggregating beliefs.4 
 
In addition to the problem of aggregating belief sets, and the problem of aggregating degrees of 
belief, there is the further problem of simultaneously aggregating beliefs and degrees of belief: 
Given a group of agents, the problem is to pool the individual belief sets in order to form a 
collective belief set, while at the same time pooling the individual degrees of belief in order to 
form collective degrees of belief.5 Assuming we accede to some prior constraints on the manner 
in which rational beliefs and rational degrees of belief are related, the ‘joint problem’ of 
aggregating beliefs and degrees of belief is more than the sum of the two component problems. 
Assume, for example, that we endorse the rather modest constraint that it is only rational for an 
agent (or a collective) to believe a proposition, if the agent’s (or the collective’s) degree of belief 
for the proposition is greater than 0.5. If rational degree of belief constrains rational belief in this 
way, and we require that our aggregation procedures respect this constraint, then care must be 
taken in deciding how we aggregate beliefs and degrees of belief. If care is not taken, the result 
of aggregation may fail to satisfy the constraint. 
 
One might dismiss the joint problem of aggregating beliefs and degrees of belief, appealing to 
the claim that degrees of belief are more fine-grained than beliefs. In particular, one might 
maintain that it is possible to provide necessary and sufficient conditions for rational belief 
specified wholly in terms of rational degree of belief. If belief were ‘reducible’ to degree of 
belief in the preceding sense, then one could dispense with (coarse-grained) belief, in favor of 
(fine-grained) degree of belief, in all cases where one had access to all of the facts about a 
relevant agent’s (or a relevant collective’s) degrees of belief. The suggestion is that, in the face 

4 It may be that we could integrate individual beliefs in order to form collective degrees of belief. I will not explore 
that possibility here. 
5 The project of the present paper is similar to a project that was briefly outlined by Cariani (2016, 402-3). Cariani 
considers two alternate approaches to belief aggregation, namely, (i) a Bayesian model that updates a prior 
probability function by conditionalization on expert testimony in order to form a posterior probability function to 
which an acceptance rule is then applied, and (ii) a more standard aggregation model applied to the testimony/beliefs 
of the experts. Cariani considers the issue of whether the two approaches would agree in their results, which 
parallels the problem that is the focus of the present paper. The project envisioned by Cariani differs from the one 
pursued here, since (among other differences) the Bayesian approach considered by Cariani differs markedly from 
the approach to probability aggregation considered here.  
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of the joint problem of aggregating beliefs and degrees of belief, it would be sufficient to 
concern oneself with aggregating the relevant degrees of belief.  
 
There are, of course, arguments against the claim that belief is reducible to degree of belief. One 
line of argument maintains that belief is sensitive to pragmatic and/or contextual considerations 
to which degree of belief is insensitive (Fantl & McGrath 2002, Hawthorne 2004, Weatherson 
2005, Ganson 2008, Hawthorne 2009, Buchak 2014, Leitgeb 2014, Staffel 2016, Thorn 2017). 
Regardless of whether rational belief is reducible to rational degree of belief, it would be of 
value to know how to aggregate beliefs in a way that respects the relationship between rational 
belief and rational degree of belief. The value of such knowledge is analogous to the value of 
knowing the laws of chemistry even if those laws are reducible to the laws of fundamental 
physics. For example, knowledge of the laws of chemistry would be needed (up and above the 
laws of physics) in reasoning about a system for which we possess an adequate chemical 
description, but not a description in the language of fundamental physics. By analogy, 
knowledge of the appropriate principles of belief aggregation would be needed (up and above the 
appropriate principles for aggregating degrees of belief) in reasoning about the collective beliefs 
of a group, in cases where we do not have access to the degrees of belief of the members of the 
group. 
 
The present article investigates the joint problem of aggregating beliefs and degrees of belief. 
My starting assumptions will consist of a number of rationality constraints on the inputs and 
outputs to the joint aggregation process. To begin with, I assume (1) that the belief sets that are 
the inputs and outputs to the aggregation process are consistent and closed under deductive 
consequences. I also assume (2) that the degrees of belief that are the inputs and outputs to the 
aggregation process satisfy the axioms of probability. Finally, I assume (3) that the inputs and 
outputs to the aggregation process satisfy a ‘context dependent’ version of the Lockean Thesis 
(Foley 1993, 2009; Leitgeb 2013, 2014): 
 
The Lockean Thesis: For each individual/collective, there is some r (0.5 < r < 1) such that for 
the individual/collective, and each proposition, ϕ, it is rational for the individual/collective to 
believe ϕ if and only if the individual’s/collective’s rational degree of belief for ϕ is at least r. 
 
The preceding version of the Lockean Thesis differs importantly from the ‘context independent’ 
version of the thesis, which requires some particular bound r that applies to every 
individual/collective. Indeed, as illustrated by the Lottery Paradox, the context independent 
version of the Lockean Thesis leads to inconsistency when combined with the claim that rational 
belief sets are consistent and closed under deductive consequences, and the claim that rational 
degrees of belief satisfy the axioms of probability (Kyburg 1961, 197). A key innovation of 
Leitgeb (2013, 2014) was to show how to consistently maintain the (context dependent) Lockean 
Thesis, while at the same time holding that rational belief sets are consistent and closed under 
deductive consequences, and that rational degrees of belief satisfy the axioms of probability.  
 
The goal of the present article is to press forward with the insights of Leitgeb, and evaluate 
whether (1), (2), and (3) are compatible with reasonable constraints on the aggregation of beliefs 
and degrees of belief. The article will proceed as follows. Section 2 presents a formal framework 
for representing the aggregation of belief sets. Along with presenting a formal framework, I 
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present three principles that any satisfactory belief aggregation procedure should satisfy. Section 
3 parallels Section 2, and presents a framework for aggregating degrees of belief, along with 
three principles that any satisfactory procedure for aggregating degrees of belief should satisfy. 
In Section 4, it is shown that the core principles proposed in Sections 2 and 3 are compatible 
with assumptions (1), (2), and (3). Further possibilities and impossibilities are also described. 
Section 5 summarizes the principal results of the paper. 
 
Before proceeding, I should mention that several previous articles have observed various formal 
similarities between the problem of relating beliefs to degrees of belief and the problem of 
aggregating beliefs (Levi 2004; Douven & Romeijn 2007; Chandler 2013; Briggs, Cariani, 
Easwaran, & Fitelson 2014; Cariani 2016; Dietrich & List 2018). Some papers have imported 
insights concerning the former problem in order to illuminate the latter problem (e.g., Douven & 
Romeijn 2007), while others have imported insights concerning the latter problem in order to 
illuminate the former problem (e.g., Dietrich & List 2018). Of particular interest, the paper of 
Dietrich and List (2018) introduced a means of ‘translating’ the problem of relating beliefs to 
degrees of belief into the problem of aggregating beliefs, which enables them to derive 
impossibility results for the former problem from impossibility results for the latter problem.  
 
While the work presented here is obviously constrained by the impossibility results of Dietrich 
and List, those results will not feature explicitly in the discussion that follows. Indeed, given the 
three rationality assumptions that form the basis of my approach ((1), (2), and (3)), my options 
are very constrained regarding the relationship between rational belief and rational degree of 
belief, forcing me to reject a principle that Dietrich and List call “Propositionwise 
Independence”, which states that whether one believes a proposition should only depend upon 
one’s degree of belief in that proposition and not on one’s degree of belief in other propositions 
(Dietrich & List 2018, 228). In fact, a result of Leitgeb’s (2014), which is described in Section 4 
(below), implies that the acceptance of (1), (2), and (3) comes at the cost of a strong form of 
context sensitivity for belief, such that whether it is rational for one to believe a proposition 
depends, not just upon one’s degree of belief in that proposition, but upon one’s degrees of belief 
in other propositions and upon the very possibilities that are individuated by one’s degree of 
belief function. As acknowledged by Leitgeb, the preceding form of context sensitivity is a 
significant cost (cf. Thorn 2017, Schurz forthcoming). In the present article, I assume that we 
have accepted this cost, and investigate what further costs (if any) are incurred as a result of 
accepting (1), (2), and (3). 
 
 
2. Belief Aggregation 
 
I here consider the belief sets of agents whose belief contents are the elements of an algebra of 
propositions. Where W is the set of possible worlds, consider the algebra of propositions 
generated by a partition Π of W: Π = {w1, …, wk}. The finiteness of Π is taken as a simplifying 
assumption, with all results of the paper generalizing to the case where Π is infinite, except 
where noted. Any proposition, ϕ, expressible within Π, is identified with a subset S of Π, 
namely: ϕ = ∪S. Since our concern is exclusively with agents whose beliefs sets are closed 
under deductive consequences, the belief set of an agent may be identified with the strongest 
proposition believed by the agent. Formally, I characterize the belief set of an agent i using a k-
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tuple of 0s and 1s, namely: bi = 〈𝑛𝑛𝑖𝑖1, … ,𝑛𝑛𝑖𝑖𝑖𝑖〉. Within such tuples, 0s are associated with 
propositions in Π that are disbelieved, and 1s are associated with propositions in Π that are not 
disbelieved. Since the value “1” signifies non-disbelief, 𝑛𝑛𝑖𝑖𝑖𝑖 = 1 does not imply that agent i 
believes wj. Rather the strongest proposition believed by agent i is defined as ϕbi = ∪{wj : 𝑛𝑛𝑖𝑖𝑖𝑖 = 
1}. This definition makes intuitive sense, for the following reasons: Whenever nij = 0, wj is 
disbelieved by i, and its compliment, ¬wj, is believed by i. Further, since the intersection of all 
¬wj such that nij = 0 is the strongest proposition believed by i, the compliment of the union of all 
wj such that nij = 0 is the strongest proposition believed by i, and the latter set is the union of all 
wj such that nij = 1. 
 
In addition to being a tuple, bi will serve as a belief function, defined as follows: bi(ϕ) = 1 (agent 
i believes ϕ), if ϕbi ⊆ ϕ; and bi(ϕ) = 0, otherwise. Note that if bi(ϕ) = 0, then the agent i either 
disbelieves or suspends judgment regarding ϕ (with bi(ϕ) = bi(ϕc) = 0 implying suspension of 
judgment). Given the preceding, the belief set corresponding to a belief function bi is simply {ϕ : 
bi(ϕ) = 1}. Notice that belief sets, so defined, are closed under deductive consequences, relative 
to the algebra generated by Π. Next, notice that the belief set of an individual i is consistent if 
and only if bi = 〈𝑛𝑛𝑖𝑖1, … , 𝑛𝑛𝑖𝑖𝑖𝑖〉 contains at least one “1”. For simplicity’s sake, I assume that our 
concern is only with consistent belief sets, thereby requiring that each tuple 〈𝑛𝑛𝑖𝑖1, … ,𝑛𝑛𝑖𝑖𝑖𝑖〉 contains 
at least one “1”. 
 
The problem with which we are faced is that of aggregating an ordered set, B, of n belief 
functions: B = 〈b1, …, bn〉 (where each bi is defined over a k-sized partition of W). For the 
purpose of regimenting belief aggregation, it is convenient to regard the input to the aggregation 
process as an n by k matrix: 

�
𝑛𝑛11 ⋯ 𝑛𝑛1𝑘𝑘
⋮ ⋱ ⋮
𝑛𝑛𝑛𝑛1 ⋯ 𝑛𝑛𝑛𝑛𝑛𝑛

� 

 
Notice that the rows of the matrix are the elements of B (representing the belief sets of the 
individual agents), while the columns correspond to the elements of Π (the cells of the partition 
of W). The output of the aggregation process is the k-tuple bB = 〈𝑛𝑛1, … ,𝑛𝑛𝑘𝑘〉, which represents the 
strongest proposition believed by the collective. This (strongest believed) proposition is defined 
as ϕB = ∪{wj : 𝑛𝑛𝑗𝑗  = 1}. As with individuals, the fact that the collective believes a proposition ϕ 
is expressed as follows: bB(ϕ) = 1, if ϕB ⊆ ϕ; and bB(ϕ) = 0, otherwise. So, in addition to being a 
k-tuple, bB is a belief function. The belief set of the collective is {ϕ : bB(ϕ) = 1} (which is closed 
under deductive consequences). I also assume that bB = 〈𝑛𝑛1, … ,𝑛𝑛𝑘𝑘〉 corresponds to a consistent 
belief set, and thus contains at least one “1”. In effect, the rational requirements of consistency 
and deductive closure are built into the present framework. 
 
I assume that belief aggregation is determined by a function Fbel (i.e., Fbel(B) = bB = 〈𝑛𝑛1, … ,𝑛𝑛𝑘𝑘〉), 
and espouse three highly plausible principles regarding Fbel. To begin with, I assume that the 
domain of Fbel is unrestricted: 
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Universality (Ub): All ordered sets of belief functions, B, are in the domain of Fbel.6 
 
Next I assume that the order of the elements of B makes no difference to the output of Fbel: 
 
Anonymity (Ab): For all B and g: if g: {1, …, n} → {1, …, n} is a permutation, and                              
B′ = 〈bg(1), …, bg(n)〉, then bB′ = bB. 
 
Similarly, I assume that the order of the elements of Π makes no difference to the output of Fbel: 
 
Neutrality (Nb): For all B and f: if f : {1, …, k} → {1, …, k} is a permutation, B′ = 〈b′1, …, b′n〉, 
and for all i: b′i = 〈𝑛𝑛𝑖𝑖𝑖𝑖(1), …, 𝑛𝑛𝑖𝑖𝑖𝑖(𝑘𝑘)〉, then bB′ = 〈𝑛𝑛𝑓𝑓(1), …, 𝑛𝑛𝑓𝑓(𝑘𝑘)〉. 
 
As an illustration of how Nb places constraints on Fbel, consider the following ordered set of 
belief functions: 
                       w1  w2  w3 

B = �
1 1 1
0 1 0
0 1 0

� 

 
In this case, Nb implies 𝑛𝑛1 = 𝑛𝑛3 (i.e., the collective attitude regarding w1 and w3 is identical). 
Indeed, where B′ is specified by f(1) = 3, f(2) = 2, and f(3) = 1, we have B′ = B, and thus bB′ = 
〈𝑛𝑛3, 𝑛𝑛2, 𝑛𝑛1〉 (given Nb), which implies that 𝑛𝑛1 = 𝑛𝑛3. 
 
As an illustration of how Nb functions in conjunction with Ab, consider the following ordered set 
of belief functions: 
            w1  w2  w3 

B = �
1 1 0
1 0 1
0 1 1

� 

 
In this case, the conjunction of Ab and Nb imply 𝑛𝑛1 = 𝑛𝑛3 (assuming Ub). To see why, consider 
the following ordered set of belief functions: 
 
                                  w1  w2  w3 

B′ = �
0 1 1
1 0 1
1 1 0

� 

 
Since B′ results from switching the first and third rows of B, Ab tells us that Fbel(B′) = Fbel(B) = 
〈𝑛𝑛1, 𝑛𝑛2,𝑛𝑛3〉. Further, where B′′ is specified by f(1) = 3, f(2) = 2, and f(3) = 1, relative to B′, we 
have B′′ = B, and thus bB′′ = 〈𝑛𝑛3, 𝑛𝑛2, 𝑛𝑛1〉 (given Nb), which implies that 𝑛𝑛1 = 𝑛𝑛3. By similar 
reasoning, it follows that 𝑛𝑛1 = 𝑛𝑛2, and so by the consistency requirement on bB, we have bB = 〈1, 
1, 1〉. 

6 I assume that the domain of Fbel includes ordered sets of belief functions of different size (n ≥ 1) over different size 
partitions of W (k ≥ 1).  
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Taken in conjunction, Ub, Ab, and Nb imply the negation of a condition that Douven and 
Romeijn (2007) call “Non-Unanimity at Disparity” (cf. Douven & Williamson 2006). Within the 
framework of this article, a ‘disparate’ set of belief functions, B, is one where |B| = |Π| (where |B| 
is the number of belief functions in B, and |Π| is the number of propositions in Π), and each 
element of B is a tuple 〈𝑛𝑛𝑖𝑖1, … ,𝑛𝑛𝑖𝑖𝑖𝑖〉 that contains exactly one 0, and none of the tuples are 
identical. Non-Unanimity at Disparity demands that there be at least one disparate set of belief 
functions, B, and some proposition, ϕ, such that (i) bB(ϕ) = 1, and (ii) there is some bi ∈ B, such 
that bi(ϕ) = 0. Douven and Romeijn assert that any aggregation procedure that does not satisfy 
Non-Unanimity at Disparity is “awkward”. Contrary to Douven and Romeijn, it is plausible to 
think (given the apparent plausibility of Ub, Ab, and Nb) that there is a class of possible sets of 
belief sets (i.e., disparate ones) where the individual belief sets pull in opposite directions with 
perfect symmetry, with the result that there is no non-arbitrary way of forming a collective belief 
set that includes any contingent claim. 
 
It may now be observed that Nb is similar to a principle that was proposed by List and Pettit 
(2002), namely: 
 
Systematicity (S): There is a function, h, such that for all B and ϕ: bB(ϕ) = h(b1(ϕ), ..., bn(ϕ)).7 
 
Notice that S is stronger than Nb, that is: 
 
Fact 1. S implies Nb, but Nb does not imply S.8 

 
List and Pettit show that S conflicts with the conjunction of Ub and Ab, if one requires 
completeness among the outputs of aggregation, that is, if one requires that for all ϕ and B: bB(ϕ) 
= 1 or bB(ϕc) = 1. Completeness entails that all aggregate belief sets contain an element of the 
partition, Π, over which the aggregate belief set is defined. Given Ub, completeness applies in 
cases where Π is the finest partition of the space of possible worlds that our conceptual resources 
will admit, and demands collective belief in exactly one element of such ultra-fine partitions 
(irrespective of the beliefs of the individuals whose belief sets are the inputs to the aggregation 
process). Completeness is, thus, an extremely strong requirement, and it is apparent that correct 
norms of belief formation demand its rejection. I adhere to those demands and reject 
completeness. Since I do not require completeness, I could consistently accept S, along with the 
other principles that I favor. Nevertheless, there are further reasons for denying that S is a 
plausible constraint on belief aggregation. In particular, S in the presence of Ub and Ab implies a 
highly ‘incredulous’ belief aggregation function, as expressed by the following fact: 
 
Fact 2. If Ub, Ab, and S, then for all B, ϕ: bB(ϕ) = 1 if and only if for all bi in B: bi(ϕ) = 1.9 
 

7 I here follow the definition of Pauly and Van Hees (2006, 573). 
8 This fact is widely known, and follows from the fact that S is equivalent to the conjunction of Nb and another 
principle known as “Independence’, as mentioned by, for example, Pauly and Van Hees (2006), and Douven and 
Romeijn (2007).  
9 A proof of this fact, along with other theorems, is given in Appendix B. 
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Assuming Ub, Ab, and S, Fact 2 tells us that a collective will only believe a proposition if every 
member of the collective believes that proposition. Fact 2 shows that S induces a highly 
incredulous belief aggregation function (in the presence of Ub and Ab), and I believe that this 
counts as a decisive reason for rejecting S. Nevertheless, in what follows, I will remain neutral 
on the question of whether Fbel should satisfy S or merely Nb. As we shall see, it is possible to 
leave one’s options open in this respect, since the possibility results that are presented in Section 
4 allow one to uphold S, if one desires. In fact, the possibility results presented in Section 4 show 
that the Lockean Thesis is compatible with an extremely broad range of belief aggregation 
functions, in the presence of reasonable constraints on degree of belief aggregation. 
 
 
3. Degree of Belief Aggregation 
 
Once again, where W is the set of possible worlds, I consider the algebra of propositions 
generated by a partition Π = {w1, …, wk} of W. As above, propositions are identified with 
subsets of Π, according to the condition: ϕ = ∪S, where S ⊆ Π. Formally, I identify the degree 
of belief function, pi, of an agent i as a k-tuple of real numbers: 〈𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖𝑖𝑖〉. I require that any 
such pi be a probability function on Π, that is: 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ [0, 1] (for all i and j) and ∑j 𝑟𝑟𝑖𝑖𝑖𝑖 = 1 (for all i). 
More generally, i’s degrees of belief are specified by the schema: pi(ϕ) = ∑j 𝑟𝑟𝑖𝑖𝑖𝑖, for j ∈ { j : wj ⊆ 
ϕ}. 
 
Similar to belief aggregation, the problem with which we are faced is that of aggregating an 
ordered set of n probability functions P = 〈p1, …, pn〉 (where each pi is defined over a k-sized 
partition of W). The input to the aggregation process may be represented by an n by k matrix 
(where the rows of the matrix are the elements of P, and the columns correspond to the elements 
of Π):   

�
𝑟𝑟11 ⋯ 𝑟𝑟1𝑘𝑘
⋮ ⋱ ⋮
𝑟𝑟𝑛𝑛1 ⋯ 𝑟𝑟𝑛𝑛𝑛𝑛

� 

 
The output of the aggregation process is then a k-tuple pP = 〈𝑟𝑟1, … , 𝑟𝑟𝑘𝑘〉. As with individual 
degrees of belief, it is assumed that pP is a probability function, that is: 𝑟𝑟𝑗𝑗 ∈ [0, 1] (for all j), and 
∑j 𝑟𝑟𝑗𝑗 = 1. Similarly, pP(ϕ) = ∑j 𝑟𝑟𝑗𝑗, for j ∈ { j : wj ⊆ ϕ}. 
 
As usual, it is assumed that probability function aggregation is determined by a function Fprob 
(i.e., Fprob(P) = pP = 〈𝑟𝑟1, … , 𝑟𝑟𝑘𝑘〉). I also endorse three standard principles regarding Fprob, which 
parallel the ones that I proposed for Fbel: 
 
Universality (Up): All ordered sets of probability functions, P, are in the domain of Fprob.10 
 
Anonymity (Ap): For all P and g: if g: {1, …, n} → {1, …, n} is a permutation, and P′ = 〈pg(1), 
…, pg(n)〉, then pP′ = pP. 
 

10 I assume that the domain of Fprob includes ordered sets of probability functions of different size (n ≥ 1) over 
different size partitions of W (k ≥ 1). 
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Neutrality (Np): For all P and f: if f: {1, …, k} → {1, …, k} is a permutation, P′ = 〈p′1, …, p′n〉, 
and for all i: p′i = 〈𝑟𝑟𝑖𝑖𝑖𝑖(1), …, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑘𝑘)〉, then pP′ = 〈𝑟𝑟𝑓𝑓(1), …, 𝑟𝑟𝑓𝑓(𝑘𝑘)〉. 
 
A principle stronger than Np was introduced by Lehrer and Wagner (1981, 1983), and is similar 
to List and Pettit’s S: 
 
Irrelevance of Alternatives (IA): There is a function, h, such that for all P, wi: pP(wi) = 
h(p1(wi), ..., pn(wi)). 
 
Although similar to S, IA does not lead to incredulity in the manner of S – recall Fact 2. 
Nevertheless, the problems that arise for S provide a reason for treating IA with caution. IA is 
also extremely restrictive, as illustrated by its interaction with the following highly plausible 
principle:11 
 
Zero Unanimity (Zp): For all P: if for all pi in P: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0, then 𝑟𝑟𝑗𝑗 = 0. 
 
Taken together, IA and Z are equivalent to linear weighting, in cases where |Π| > 2 (Lehrer & 
Wagner 1983): 
 
Linear Weighting (LW): There is a set of constants 〈c1, ..., cn〉, such that (i) for all i: ci ≥ 0, (ii) 
c1 + ... + cn = 1, and (iii) for all P and j: pP(wj) = p1(wj)⋅c1 + ... + pn(wj)⋅cn. 
 
While LW appears to be reasonable, we will see below that the principle is incompatible with 
some plausible means of adhering to the Lockean Thesis. Assuming non-dictatorial weights (i.e., 
for all i: ci ≠ 1), LW is also known to be incompatible with other widely endorsed principles, 
including: 
 
Independence Preservation (IP): For all P, ϕ, ψ: if for all pi in P: pi(ϕ∩ψ) = pi(ϕ)pi(ψ), then 
pP(ϕ∩ψ) = pP(ϕ)pP(ψ).12 
 
Commutativity with Learning (CL): For all P, ϕ, ψ: if for all pi in P: pi(ϕ) > 0, then pP(ψ|ϕ) = 
pP′(ψ), where P′ = 〈p1(ψ|ϕ), …, pn(ψ|ϕ)〉.13 
 
Some have cited the incompatibility of LW and IP as grounds for rejecting LW (e.g., Laddaga 
1977), and it is clear that there are some cases where we should require independence 
preservation, contrary to the prescriptions of LW (such as in the case described by Elkin & 
Wheeler 2018). Nevertheless, it is plausible to deny that IP holds generally, since the principle is 
implausible in the case where the probability functions to be aggregated mirror frequencies for 
disjoint and equinumerous samples (a case where LW is plausible). IP is also known to be 
highly restrictive, excluding many plausible aggregation functions (Genest & Wagner 1987). 
 

11 But see Genest and Wagner (1984), who introduce grounds for doubting Zp. 
12 For a proof, see Lehrer and Wagner (1983). 
13 For a proof, see Genest (1984a). See also Brössel and Eder (2014), who outline conditions under which CL is 
compatible with LW. 
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CL tells us that we should reach the same collective degrees of belief, regardless of whether we 
(i) aggregate individual degrees of belief to form collective degrees of belief, and then update the 
collective degrees of belief by conditionalization upon given information ϕ, or (ii) update 
individual degrees of belief by conditionalization upon ϕ, and then aggregate individual degrees 
of belief to form collective degrees of belief. CL is an attractive principle, since it prohibits 
certain order effects that could make an aggregation process subject to manipulation according to 
when information is disclosed.14 While the principle is attractive, it is also highly restrictive, as 
observed by Genest (1984b), with further impossibility results concerning CL introduced by 
Russell, Hawthorne, and Buchak (2015). Because CL is so restrictive, the principle should 
probably be regarded as negotiable – nice to have but not a deal breaker if we have to give it up. 
Thus, we are left with several principles, including CL, IP, and LW, that are of interest, but 
should probably not be regarded as obligatory, due to their restrictiveness. Given the plausibility 
of Z, IA also seems overly restrictive, and should also be regarded as negotiable. 
 
 
4. Belief and Degree of Belief Aggregation Together 
 
I now consider some possibilities for the coordinated aggregation of beliefs and degrees of 
belief. My basic assumption is that rational beliefs and rational degrees of belief are related to 
each other according to the Lockean Thesis.15 In particular, I assume a context dependent version 
of the Lockean Thesis that says that for every individual/collective there is a bound r such that 
for each proposition, ϕ, it is rational for the individual/collective to believe ϕ if and only if the 
individual’s/collective’s rational degree of belief in ϕ is at least r. As shown by Leitgeb (2014), 
the satisfaction of the Lockean Thesis is closely related to the notion of p-stability: 
 
Definition. A proposition ϕ is p-stable with respect to a probability function, p, if and only if for 
all S: if ϕ∩S ≠ ∅ and p(S) > 0, then p(ϕ|S) > 0.5. 
 
Leitgeb (2014) has shown that if we embrace (1) consistency and deductive closure for belief 
sets, (2) probabilistic coherence for degrees of belief, and (3) the Lockean Thesis, then the 
strongest proposition believed by any given agent must be p-stable, where p is the degree of 
belief function for the respective agent. Furthermore, an agent will satisfy the Lockean Thesis 
with the bound r if and only if the strongest proposition, ϕ, believed by the agent is p-stable with 

14 As observed by Russell, Hawthorne, and Buchak (2015), violations of CL can also lead a group to accept a 
diachronic Dutch book, assuming (among other things) that the group re-aggregates their degrees of belief each time 
they are faced with making a collective decision. I do not believe that the observation of Russell, Hawthorne, and 
Buchak provides a decisive reason in favor of CL. In the kind of example presented by Russell, Hawthorne, and 
Buchak, a group accepts a diachronic Dutch book, in a case where each agent updates her degrees of belief by 
conditionalizing on the same proposition. This possibility would be blocked, if the group’s aggregation procedure 
had satisfied CL. However, cases where each agent in a group updates her degrees of belief by conditionalizing on 
the same proposition are not typical, and it is clear that conformity to CL will not prevent a group from accepting a 
diachronic Dutch book in cases where members of the group update on different propositions. I doubt that there is 
any plausible aggregation principle that will protect a group from accepting a diachronic Dutch book, in situations 
where the group members update on different propositions, suggesting that we must look beyond aggregation 
principles, such as CL, as a means of preventing collectives from accepting diachronic Dutch books. 
15 As a point of comparison, Appendix A considers Lin and Kelly’s (2012) symmetric camera shutter rule. The 
contents of Appendix A show that, for the most part, the symmetric camera shutter rule does not offer the 
opportunity of escaping impossibility results that arise for the Lockean Thesis. 
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probability at least r, and all other propositions that are p-stable are deductive consequences of ϕ, 
or have probability less than r. Given the preceding fact, I adopt the following criterion for the 
aptness of a belief function, b, for a probability function, p, relative to a bound r: 
 
Definition. 〈b, p〉 is Lockean at r if and only if (i) p(ϕb) ≥ r, (ii) ϕb is p-stable, and (iii) for all ψ: 
if ψ is p-stable, then ϕb ⊆ ψ or P(ψ) < r. 
 
The goal of the present article is to canvass the possibility of instituting constraints on belief and 
degree of belief aggregation that are compatible with the Lockean Thesis. To simplify matters, I 
will limit my interest to pairs of aggregation functions that ensure the preservation of the 
satisfaction of the Lockean Thesis, under selected ‘appropriate conditions’, in the following 
sense: If the Lockean Thesis is satisfied by (the doxastic state of) each member of a group, and 
other appropriate conditions obtain, then the Lockean Thesis is satisfied by (the doxastic state of) 
the collective. A straightforward principle of the preceding sort omits any demand that 
appropriate conditions obtain, and simply demands that if the Lockean Thesis is satisfied by each 
member of a group, then the Lockean Thesis is satisfied by the collective. In other words: 
 
Strict Preservation of the Lockean Thesis (SL): For all B and P: if for all i: there exists an r: 
〈bi, pi〉 is Lockean at r, then there exists an r: 〈bB, pP〉 is Lockean at r. 
 
Notice that the antecedent of SL is very ‘flexible’ concerning which belief sets are compatible 
with which degrees of belief. Consider, for example, p = 〈0.993, 0.004, 0.002, 0.001〉, along with 
b1 = 〈1, 0, 0, 0〉, b2 = 〈1, 1, 0, 0〉, b3 = 〈1, 1, 1, 0〉, and b4 = 〈1, 1, 1, 1〉. Notice that 〈b1, p〉 is 
Lockean at r = 0.993, 〈b2, p〉 is Lockean at r = 0.997, 〈b3, p〉 is Lockean at r = 0.999, and 〈b4, p〉 
is Lockean at r = 1. The flexibility of the relation between belief and degree of belief tolerated by 
SL allows agents with identical degrees of belief to adopt different beliefs and thereby exert 
differential impact on the beliefs of the collective. This is a good reason to canvas alternatives to 
SL. The flexibility of SL also yields the demand for a very incredulous belief set aggregation 
function, typically demanding that the collective suspend judgment regarding all contingent 
propositions. 
 
An attractive alternative to SL is motivated by the idea that for every context, there is a single 
Lockean threshold, r, that applies to all individuals in that context. For any such context, it is 
plausible to demand that if each individual in the group satisfies the Lockean Thesis with the 
appropriate threshold r, then the collective should also satisfy the Lockean Thesis with the 
threshold r. We may express the present requirement more precisely, as a collection of 
aggregation principles for respective values of r: 
 
Preservation of the Lockean Thesis at Level r (Lr): For all B and P: if for all i: 〈bi, pi〉 is 
Lockean at r, then 〈bB, pP〉 is Lockean at r. 
 
While the preceding constraints are appealing, they are incompatible with reasonable aggregation 
functions for belief and degree of belief, as illustrated by the following impossibility result: 
 
Theorem 1. For all r: if 0.5 < r < 1, then {Ub, Ab, Nb, Up, Ap, Np, Lr} is inconsistent. 
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Theorem 1 shows that it would be too much to demand the satisfaction of instances of Lr. As an 
alternative, I will consider another principle that places different demands on when and how a 
collective should satisfy the Lockean Thesis. As a preliminary, I adopt a particular reductive 
thesis concerning the relationship between belief and degree of belief. According to this 
reductive thesis, an agent, i, counts as believing a proposition, ϕ, just in case ϕ is a logical 
consequence of the strongest proposition, ϕbi, that is pi-stable, where pi is i’s degree of belief 
function. Any agent who conforms to the present reductive thesis is credulous in the sense that 
she believes as many propositions as she can, while still adhering to the Lockean Thesis. The 
present conception of belief, which is endorsed by Arló-Costa and Pedersen (2012, 302), and 
entertained by Leitgeb (2013, 1369-70), is very attractive, assuming one wants to maintain the 
Lockean Thesis along with a reductive account of belief to degree of belief (cf. Cariani 2016, 
402). This reductive thesis also provides us with the opportunity of combining the Lockean 
Thesis with reasonable principles of belief and degree of belief aggregation. In order to apply the 
reductive thesis, I introduce the following definition, which applies to a pair consisting of a 
belief function and a degree of belief function:  
 
Definition. 〈b, p〉 is credulous Lockean (abbreviated CL(b, p)) if and only if (1) ϕb is p-stable, 
and (2) for all S: if S is a subset of Π and ∪S is p-stable, then ϕb ⊆ ∪S. 
 
Since there is a strongest p-stable proposition for each probability function p (Leitgeb 2014), it 
follows that for every p there is a unique belief function, b, such that 〈b, p〉 is credulous Lockean. 
Regarding the joint aggregation of beliefs and degrees of belief, I now propose the following 
principle: 
 
Preservation of Lockean Credulity (PLC): For all B, P: if for all i: CL(bi, pi), then CL(bB, pP). 
 
It is demonstrable that PLC is consistent with the core principles of belief and degree of belief 
aggregation that were introduced in Sections 2 and 3: 
 
Theorem 2. {Ub, Ab, Nb, Up, Ap, Np, PLC} is consistent.  
 
Theorem 2 follows directly from the following (far more general) result: 
 
Theorem 3. For all F: if {F = Fbel, Ub, Ab, Nb} is consistent, then {F = Fbel, Up, Ap, Np, PLC} is 
consistent.16 
 
In considering Theorem 3, note that a statement of the form “F = Fbel” expresses that the 
particular function F is the ‘correct’ belief aggregation function Fbel. So Theorem 3 tells us that 
the conjunction Up, Ap, Np, and PLC is compatible with any choice of belief aggregation 
function, so long as that function satisfies Ub, Ab, and Nb. In other words, Theorem 3 shows that 
our options are completely open regarding what further constraints we may adopt regarding Fbel, 
given our commitment to the conjunction Up, Ap, Np, and PLC. On the other hand, our options 

16 In the case where Π is countably infinite, we must modify the antecedent of Theorem 3 (and Theorem 6) to 
require that {F = Fbel, Ub, Ab, Nb, Zb} is consistent, where Zb requires that for all B: if for all bi in B: 𝑛𝑛𝑖𝑖𝑖𝑖 = 0, then 𝑛𝑛𝑗𝑗 
= 0. 
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are far more constrained when it comes to Fprob. For example, PLC (in conjunction with other 
reasonable principles) is incompatible with linear weighting, LW, and Irrelevance of 
Alternatives, IA: 
 
Theorem 4. {Ub, Ab, Nb, Up, LW, PLC} is inconsistent. 
 
Corollary: {Ub, Ab, Nb, Up, IA, Zp, PLC} is inconsistent.17 
 
The failure of PLC to cohere with IA and LW is inconvenient, but tolerable to the degree that 
IA and LW are dubitable.18 Despite the failure of PLC to cohere with IA and LW, it is 
demonstrable that PLC does cohere with other, less dubitable, principles. In fact, if we wish to 
maintain the claim that PLC is compatible with reasonable aggregation functions, it is essential 
to go beyond Theorem 3, since the ‘substantive’ principles cited by Theorem 3, namely, Ab, Nb, 
Ap, and Np, only require that acceptable aggregation functions be indifferent to the way that 
individuals and the elements of Π are ordered. Reasonable aggregation functions would also 
incorporate requirements to the effect that the ‘direction’ of the attitudes of the individuals in a 
collective exert the right sort of impact on the attitudes of the collective. The following four 
principles encapsulate some important ‘directionality’ requirements: 
 
Unanimity (UNb): For all B, j: if for all i: 𝑛𝑛𝑖𝑖𝑖𝑖 = 0, then 𝑛𝑛𝑗𝑗 = 0, and if for all i: 𝑛𝑛𝑖𝑖𝑖𝑖 = 1, then 𝑛𝑛𝑗𝑗 = 1. 
 
Weak Dominance (WDb): For all B, j, k: if for all i: 𝑛𝑛𝑖𝑖𝑖𝑖 ≥ 𝑛𝑛𝑖𝑖𝑖𝑖, then 𝑛𝑛𝑗𝑗 ≥ 𝑛𝑛𝑘𝑘. 
 
Unanimity (UNp): For all P, j: if for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0, then 𝑟𝑟𝑗𝑗 = 0, and if for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 1, then 𝑟𝑟𝑗𝑗 = 1.19 
 
Weak Dominance (WDp): For all P, j, k: if for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖𝑖𝑖, then 𝑟𝑟𝑗𝑗 ≥ 𝑟𝑟𝑘𝑘. 
 
The compatibility of PLC with the preceding principles is encapsulated by the following 
theorems: 
 
Theorem 5. For all F: if {F = Fbel, Ub, Ab, Nb, UNb} is consistent, then {F = Fbel, Up, Ap, Np, 
UNp, PLC} is consistent. 
 
Theorem 6. For all F: if {F = Fbel, Ub, Ab, Nb, WDb} is consistent, then {F = Fbel, Up, Ap, Np, 
WDp, PLC} is consistent. 
 

17 The corollary is a straightforward consequence of Theorem 4, given the result of Lehrer and Wagner (1983) 
mentioned in the preceding section. 
18 If we consider the least restriction of the domain of Fprob that is consistent with geometric and multiplicative 
opinion pooling (requiring at least one j, such that, for all i, rij > 0), then these two sorts of pooling are also 
inconsistent with the conjunction of Ub, Ab, Nb, and PLC. The preceding is demonstrable by the example of B = 〈〈0, 
0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉〉 and P = 〈〈0, 0.1, 0.9〉, 〈0.1, 0.9, 0〉, 〈0.9, 0, 0.1〉〉. It is an open question whether some natural 
restriction on the domain of Fprob (e.g., for all i and j, 𝑟𝑟𝑖𝑖𝑖𝑖  > 0) would be sufficient to make some form of geometric or 
multiplicative opinion pooling consistent with Ub, Ab, Nb, and PLC. See Dietrich (2010) and Dietrich and List 
(2016) for excellent discussions of geometric and multiplicative opinion pooling. 
19 The more general unanimity condition that applies for all values in [0, 1] (rather than merely in {0, 1}) does not 
cohere with PLC, in the presence of other reasonable principles. 
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Theorem 7. For all F: if {F = Fbel, Ub, Ab, Nb, UNb, WDb} is consistent, then {F = Fbel, Up, Ap, 
Np, UNp, WDp, PLC} is consistent.20 
 
Although Theorems 5 through 7 are reassuring, it is demonstrable that both Independence 
Preservation (IP) and Commutativity with Learning (CL) are inconsistent with PLC, in the 
presence of other reasonable principles, as expressed by the following theorems (where Zb 
consists of the first conjunct of UNb): 
 
Theorem 8. {Ub, Ab, Nb, Zb, Up, PLC, CL} is inconsistent. 
 
Theorem 9. {Ub, Ab, Nb, Zb, Up, Ap, Np, PLC, IP} is inconsistent. 
 
If one doubts that Zb is plausible, then one might dismiss the preceding theorems. Note, 
however, that maintaining either {Ub, Ab, Nb, Up, PLC, CL} or {Ub, Ab, Nb, Up, Ap, Np, PLC, 
IP} (whose consistency is easily demonstrable21) will require frequent violations of Zb. 
Accepting such violations of Zb, in the presence of Ab and Nb, will lead to a very incredulous 
belief set aggregation function (i.e., a belief set aggregation function that typically demands that 
the collective suspend judgment regarding all contingent propositions).  
 
 
5. Conclusion 
 
The present paper began by introducing the ‘joint problem’ of aggregating beliefs and degrees of 
belief. The joint problem is significant, because it is a potential source of constraints upon both 
belief aggregation and degree of belief aggregation. Indeed, if rational degree of belief and 
rational belief are subject to mutual constraints, then care must be taken in how we aggregate 
beliefs and degrees of belief, lest the result of joint aggregation be collective beliefs and degrees 
of belief that fail to satisfy the constraints.  
 
In exploring the joint problem, the main goal of the paper was to investigate whether the 
Lockean Thesis is compatible with reasonable belief and degree of belief aggregation functions. 
While the Lockean Thesis is dubitable (see, e.g., Buchak 2014), it is typically regarded as highly 
attractive, because, among other reasons, it forbids cases where the rational degree of belief in 
one proposition, ϕ, is greater than the rational degree of belief in another proposition, ψ, and yet 
it is rational to believe ψ and it is not rational to believe ϕ. As shown by Leitgeb (2014), the 
Lockean Thesis is also very demanding: Assuming (1) consistency and deductive closure for 
belief sets, and (2) probabilistic coherence for degrees of belief, the Thesis implies that the 
determination of whether it is rational for an agent (or a collective) to believe a respective 
proposition is dependent, not just upon the agent’s degree of belief in the proposition, but also 
upon the agent’s degrees of belief in other propositions and upon the very possibilities that are 
individuated by the agent’s degree of belief function. Given the demandingness of the Lockean 
Thesis, it would have been reasonable to expect the Thesis to place significant constraints upon 
belief aggregation and/or degree of belief aggregation. The results of the preceding section bear 
out this expectation.  

20 The proof of Theorem 7 proceeds via elements of the proofs of Theorems 3, 5, and 6.  
21 For all i: simply let pP(wi) = 1/|Π| and bB(wi) = 1. 
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In evaluating the tenability of the Lockean Thesis in the context of the joint problem, I 
considered three ‘preservationist’ principles concerning when and how acceptable aggregation 
functions should yield collective beliefs and degrees of belief that satisfy the Lockean Thesis. 
Two of the principles proved to be unsatisfactory. One principle, SL, is unappealing, because it 
permits individuals within a group to have different beliefs, while having identical degree of 
belief functions. A second principle, Lr (for any setting of r in (0.5, 1)), is just too demanding, as 
it would require that we abandon at least one non-negotiable aggregation principle (as illustrated 
by Theorem 1). In the end, my investigation focused on a principle called Preservation of 
Lockean Credulity (PLC), though it is possible that I have overlooked other principles that 
warrant exploration. 
 
As encapsulated by PLC, Theorem 7 shows that the Lockean Thesis is compatible with an 
ensemble of principles that may plausibly be regarded as specifying the non-negotiable core of 
belief and degree of belief aggregation, namely: universality of inputs (Ub and Up), anonymity 
(Ab and Ap), neutrality (Nb and Np), unanimity (UNb and UNp), and weak dominance (WDb and 
WDp). Theorem 7 also shows that our options are very open regarding the sort of belief 
aggregation function we may adopt, assuming a commitment to PLC. On the other hand, PLC 
closes off some other significant principles concerning degree of belief aggregation: Theorem 4 
and its corollary show that Irrelevance of Alternatives (IA) and Linear Weighting (LW) are 
problematic, while Theorems 8 and 9 show that Independence Preservation (IP) and 
Commutativity with Learning (CL) are problematic. The impossibility results presented in 
Section 4 (i.e., Theorems 4, 8, and 9) bear out the claim that acceptance of the Lockean Thesis 
would place significant constraints on what degree of belief aggregation function one may adopt. 
On the other hand, the possibility results presented in Section 4 (i.e., Theorems 3, 5, 6, and 7) 
show that the cost of accepting the Lockean Thesis might well be tolerable.  
 
 
Appendix A: Lin and Kelly’s Symmetric Camera Shutter Rule 
 
Motivated by the fact that there is no consistent context independent version of the Lockean 
Thesis with a threshold r < 1, Lin and Kelly (2012) proposed what they call the symmetric 
camera shutter rule. Like the Lockean Thesis the rule of Lin and Kelly includes a parameter r (0 
< r < 1) that reflects an agent’s degree of credulity. Given a particular value r, the symmetric 
camera shutter rule demands the following relation between belief an degree of belief, where 
σ(wi) = p(wi) / maxj p(wj): 

b(wi) = 0 if and only if σ(wi) ≤ 1 − r. 
 
In line with this condition, we can say that 〈b, p〉 is shutter fit at r (abbreviated SFr(b, p)) just in 
case for all i: b(wi) = 0 if and only if σ(wi) ≤ 1 − r. 
 
It is straightforward to define analogues of Lockean Credulity and PLC that apply to the 
symmetric camera shutter rule:  
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Definition. 〈b, p〉 is credulous shutter fit (abbreviated CSF(b, p)) if and only if (1) there exists an 
r (0 < r < 1): 〈b, p〉 is shutter fit at r, and (2) for all b′: if ϕb′ ⊂ ϕb, then for all s (0 < s < 1): 〈b′, p〉 
is not shutter fit at s. 
 
Preservation of Shutter Fit Credulity (PSFC): For all B, P: if for all i: CSF(bi, pi), then 
CSF(bB, pP). 
 
It is, then, straightforward to demonstrate the analogue of Theorem 3 (and similarly for 
Theorems 5, 6, and 7): 
 
Theorem 10. For all F: if {F = Fbel, Ub, Ab, Nb} is consistent, then {F = Fbel, Up, Ap, Np, PSFC} 
is consistent.22 
 
Beyond the preceding, it turns out that the symmetric camera shutter rule is ‘more stable’ than 
the Lockean Thesis, as demonstrated by the behavior of the following analogues of the instances 
of Lr: 
 
Preservation of Shutter Fit at Level r (SFr): For all B and P: if for all i: 〈bi, pi〉 is shutter fit at 
r, then 〈bB, pP〉 is shutter fit at r. 
 
Unlike instances of Lr (for all r in (0.5, 1)), instances of SFr are consistent with {Ub, Ab, Nb, Up, 
Ap, Np}, and more generally:  
 
Theorem 11. For all F, r in (0, 1): if {F = Fbel, Ub, Ab, Nb} is consistent, then {F = Fbel, Up, Ap, 
Np, SFr} is consistent. 
 
However, both PSFC, along with all instances of SFr, are still incompatible with LW (in the 
presence of other plausible principles): 
 
Theorem 12. {Ub, Ab, Nb, Up, Ab, Nb, LW, PSFC} is inconsistent.23 
 
Theorem 13. For all r in (0, 1): {Ub, Ab, Nb, Up, LW, SFr} is inconsistent. 
 
Proof: For all r in (0, 1), we show that {Ub, Ab, Nb, Up, LW, SFr} is inconsistent. Consider an 
arbitrary r in (0, 1). Take the least n such that ((1− (3√(n)/n))/(n−1))  / (3√(n)/n)  ≤ 1− r. Let |Π| = 
n. Let B = 〈b1, …, bn〉, where, for all i, bi has the value 1 in the ith position, and the value 0 in all 
other positions. Let P = 〈p1, …, pn〉, where p1 has the value v in the first position, and the value 
(1−v)/(n−1) in all other positions, where v  = 3√(n)/n. For all i > 1: let pi have the value 1 in the 
ith position and the value 0 in all other positions. Notice that Ab and Nb imply that bB is a series 
of 1s, and so bB(w1) = 1. Next notice that for all i: 〈bi, pi〉 is shutter-fit at r. (In particular, for all i 
> 1: σp1(wi) = (1− (3√(n)/n))/(n−1))  / (3√(n)/n)  ≤ 1− r.) So SFr implies that 〈bB, pB〉 is shutter-fit 

22 The proof of Theorem 3 is annotated to indicate the modifications required to prove Theorems 10 and 11. 
Analogues of Theorems 5, 6, and 7, for PSFC in place of PLC are also straightforward. 
23 The proof of Theorem 4 is annotated to indicate the modifications required to prove Theorem 12.  
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at r. For reasons that follow, this implies that c1 > 1/n. Assume c1 ≤ 1/n, then pP(w1) ≤ 
(3√(n)/n)(1/n), and there exists an i such that pP(wi) ≥ (1− (3√(n)/n))/(n−1))(1/n) + 1/n, so that 
σP(w1) ≤ (3√(n)/n)(1/n)  / ((1− (3√(n)/n))/(n−1))(1/n) + 1/n). But for all n > 1: (3√(n)/n)(1/n)  / 
((1− (3√(n)/n))/(n−1))(1/n) + 1/n) ≤ ((1− (3√(n)/n))/(n−1))  / (3√(n)/n). Assume not. Then for some 
n > 1: 3√(n2)((n − 2)/n) + 3√(n)((n + 1)/n) − n > 0, which is absurd.  So σP(w1) ≤ 1− r. The latter 
implies that bB(w1) = 0, which contradicts bB(w1) = 1. So c1 > 1/n. By similar reasoning 
concerning permutations of B and P, it follows that for all i: ci > 1/n, which contradicts LW.� 

PSFC, along with all instances of SFr, are also incompatible with CL and IP (in the presence of 
reasonable principles): 
 
Theorem 14. {Ub, Ab, Nb, Zb, Up, PSFC, CL} is inconsistent. 
 
Theorem 15. For all r in (0, 1): {Ub, Ab, Nb, Zb, Up, SFr, CL} is inconsistent. 
 
Theorem 16. {Ub, Ab, Nb, Zb, Up, Ap, Np, PSFC, IP} is inconsistent. 
 
Theorem 17. For all r in (0, 1): {Ub, Ab, Nb, Zb, Up, Ap, Np, SFr, IP} is inconsistent. 
 
The proofs of Theorems 8 and 9 are annotated to indicate the modifications required to prove 
Theorems 14, 15, 16, and 17. 
 
 
Appendix B: Proofs 
 
Fact 2. If Ub, Ab, and S, then for all B, ϕ: bB(ϕ) = 1 if and only if for all bi in B: bi(ϕ) = 1. 
 
Proof. The right to left direction of the consequent follows from the consistency requirement on 
bB. To establish the left to right direction, it is sufficient to show that for all n, m: if 0 ≤ m < n, 
then there exists some sets of belief functions B, such that 𝑛𝑛1𝑗𝑗 + …+ 𝑛𝑛𝑛𝑛𝑛𝑛 = n − m, and 𝑛𝑛𝑗𝑗  = 1. If 
there are such sets of belief functions, then we have, for all m, such that 0 ≤ m < n, a proposition 
¬wj, that is believed by m of n agents, but not by the collective. It is straightforward to show that 
all of the needed B exist. By Ub, we have for all n and m, such that 0 ≤ m < n, some B such that 
the columns of B are the set of permutations of m 0s and n − m 1s. For each such B, 𝑛𝑛𝑖𝑖 = 1, for 
all 𝑛𝑛𝑖𝑖 in bB, given Ab and Nb. The preceding holds, since, for each such B, each 𝑛𝑛𝑖𝑖 must take the 
same value, given Ab and Nb, which must be 1, by the consistency requirement on bB.� 
 
Theorem 1. For all r: if 0.5 < r < 1, then {Ub, Ab, Nb, Up, Ap, Np, Lr} is inconsistent. 
 
Proof: Notice that for all r: if 0.5 < r < 1, then there exists n and ε: 0 < ε < 1/n and r = 
((n−1)/n)+ε. In light of the preceding, consider the instances of the following schema, for all n 
and ε: 0 < ε < 1/n. Let Π = {w1, …, wn}. Let Bn = 〈b1, …, bn〉, where bi has the value 0 in the ith 
position, and the value 1 in all other positions. Let Pn = 〈p1, …, pn〉, where pi has the value 
(1/n)−ε in the ith position, and the value (1/n)+(ε/(n−1)) in all other positions. In this case, Ab 
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and Nb imply that bBn has the value 1 in every position, and Ap and Np imply pPn has the value 
1/n in every position. Notice that for all i: 〈bi, pi〉 is Lockean at ((n−1)/n)+ε, but 〈bBn, pPn〉 is not 
Lockean at ((n−1)/n)+ε.� 
 
Theorem 3. For all F: if {F = Fbel, Ub, Ab, Nb} is consistent, then {F = Fbel, Up, Ap, Np, PLC} is 
consistent. 
 
Proof: To demonstrate the result, we show how to define a function Fprob that satisfies Up, Ap, 
Np, and PLC, given any aggregation function Fbel that satisfies Ab and Nb. Given any P, we 
define B* = 〈b*1, ...,  b*n〉 to be the (unique) set of belief functions, such that for all i: CL(b*i, pi) 
[or such that CSF(b*i, pi) or SFr(b*i, pi) for the proofs of Theorems 12 and 13, respectively]. We 
then define Fprob by 𝑟𝑟𝑗𝑗 = 1/(𝑛𝑛∗1 +…+ 𝑛𝑛∗𝑘𝑘), if 𝑛𝑛∗𝑗𝑗  = 1, and 𝑟𝑟𝑗𝑗 = 0, if 𝑛𝑛∗𝑗𝑗  = 0 
(where 𝑛𝑛∗1 through 𝑛𝑛∗𝑘𝑘 are determined via Fbel, given Ub). [Notice that, in the preceding step, we 
require that |{𝑛𝑛∗𝑗𝑗 | 𝑛𝑛∗𝑗𝑗  = 1}| is finite, which holds if Π is finite, but also assuming Zb, since all p-
stable sets are finite (Leitgeb 2013, 1366).] It follows immediately from the definition of Fprob 
that the combination of Fbel and Fprob satisfy PLC [or PSFC or SFr, respectively]. The inputs to 
Fprob are not restricted; so Up is also satisfied. Ap requires that for all P and g: if g: {1, …, n} → 
{1, …, n} is a permutation, and P′ = 〈pg(1), …, pg(n)〉, then pP′ = pP. We assume for arbitrary P and 
g, that g: {1, …, n} → {1, …, n} is a permutation, and P′ = 〈pg(1), …, pg(n)〉. We show that pP′ = 
pP. To begin with, notice that P determines B*, and P′ determines B′*, so that b′*i = b*g(i). But 
Ab, so B′* = B*, and thus pP′ = pP, given the definition of Fprob. So Ap is satisfied. Np requires 
that for all P: if f: {1, …, k} → {1, …, k} is a permutation, P′ = 〈p′1, …, p′n〉, and for all i: p′i = 
〈𝑟𝑟𝑖𝑖𝑖𝑖(1), …, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑘𝑘)〉, then pP′ = 〈𝑟𝑟𝑓𝑓(1), …, 𝑟𝑟𝑓𝑓(𝑘𝑘)〉. We assume for arbitrary P and f, that f: {1, …, k} 
→ {1, …, k} is a permutation, P′ = 〈p′1, …, p′n〉, and for all i: p′i = 〈𝑟𝑟𝑖𝑖𝑖𝑖(1), …, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑘𝑘)〉. We show 
that pP′ = 〈𝑟𝑟𝑓𝑓(1), …, 𝑟𝑟𝑓𝑓(𝑘𝑘)〉. To begin with, notice that P determines B*, and P′ determines B′*, 
such that b*i = 〈𝑛𝑛𝑖𝑖1, …, 𝑛𝑛𝑖𝑖𝑖𝑖〉 and b′*i = 〈𝑛𝑛𝑖𝑖𝑖𝑖(1), …, 𝑛𝑛𝑖𝑖𝑖𝑖(𝑘𝑘)〉. But Nb, so pB′* = 〈𝑛𝑛𝑓𝑓(1), …, 𝑛𝑛𝑓𝑓(𝑘𝑘)〉. So 
pP′ = 〈𝑟𝑟𝑓𝑓(1), …, 𝑟𝑟𝑓𝑓(𝑘𝑘)〉, given Fprob. So Np is satisfied.� 
 
Theorem 4. {Ub, Ab, Nb, Up, LW, PLC} is inconsistent. 
 
Proof. Let Π = {w1, w2}. Consider B1 = 〈〈1, 0〉, 〈0, 1〉〉, and P1 = 〈〈0.51, 0.49〉, 〈0.01, 0.99〉〉. Next 
consider B2 = 〈〈1, 0〉, 〈0, 1〉〉, and P2 = 〈〈0.99, 0.01〉, 〈0.49, 0.51〉〉. Notice that Ab and Nb imply 
that bB1 = bB2 = 〈1, 1〉. Notice that PLC (and similarly PSFC) imply that pP1 = 〈0.5, 0.5〉, which, 
according LW, holds only if 0.51⋅c1 + 0.01⋅c2 = 0.5, and so where c1 = 0.98 and c2 = 0.02. But 
PLC (and similarly PSFC) also imply that pP2 = 〈0.5, 0.5〉, which, according LW, holds only if 
0.01⋅c1 + 0.51⋅c2 = 0.5, and so where c1 = 0.02 and c2 = 0.98, which is a contradiction.� 
 
Theorem 5. For all F: if {F = Fbel, Ub, Ab, Nb, UNb} is consistent, then {F = Fbel, Up, Ap, Np, 
UNp, PLC} is consistent. 
 
Proof. The proof proceeds as the proof of Theorem 5, save that we make the further assumption 
that UNb, and show that Fprob satisfies UNp. Assume not. Then there is a case where (i) 𝑟𝑟𝑗𝑗 ≠ 0 and 
for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0, or a case where (ii) 𝑟𝑟𝑗𝑗 ≠ 1 and for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 1. In case (i), we have for all i: 
𝑛𝑛∗𝑖𝑖𝑖𝑖  = 0, given for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0 (by the definition of B*). So 𝑛𝑛∗𝑗𝑗  = 0, given UNb. And so 𝑟𝑟𝑗𝑗  = 0, by 
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the definition of Fprob. In case (ii), we have for all i: 𝑛𝑛∗𝑖𝑖𝑖𝑖 = 1 and for all i, k ≠ j: 𝑛𝑛∗𝑖𝑖𝑖𝑖 = 0, given for 
all i: 𝑟𝑟𝑖𝑖𝑖𝑖 = 1 (by the definition of B*). So 𝑛𝑛∗𝑗𝑗  = 1, and for all k ≠ j: 𝑛𝑛∗𝑘𝑘 = 0, given Ub and UNb. 
So 𝑟𝑟𝑗𝑗 = 1, by the definition of Fprob.� 
 
Theorem 6. For all F: if {F = Fbel, Ub, Ab, Nb, WDb} is consistent, then {F = Fbel, Up, Ap, Np, 
WDp, PLC} is consistent. 
 
Proof. The proof proceeds as the proof of Theorem 5, save that we make the further assumption 
that WDb, and show that Fprob satisfies WDp. Let P, j, and k be arbitrary, with for all i: 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖𝑖𝑖. In 
that case, for all i: 𝑛𝑛∗𝑖𝑖𝑖𝑖 ≥ 𝑛𝑛∗𝑖𝑖𝑖𝑖, by the definition of Fprob. So 𝑛𝑛∗𝑗𝑗  ≥ 𝑛𝑛∗𝑘𝑘, given WDb. So 𝑟𝑟𝑗𝑗 ≥ 𝑟𝑟𝑘𝑘, by the 
definition of Fprob.�  
 
Theorem 8. {Ub, Ab, Nb, Zb, Up, PLC, CL} is inconsistent. 
 
Proof. Let Π = {w1, w2, w3}. Consider B = 〈〈1, 0, 0〉, 〈0, 0, 1〉〉, and P = 〈〈0.9, 0.09, 0.01〉, 〈0.01, 
0.09, 0.9〉〉. Notice that Ab, Nb, and Zb imply that bB = 〈1, 0, 1〉. Without loss of generality, 
assume that pp = 〈a, b, c〉. Then PLC implies that a > b, since CL(〈1, 0, 0〉, 〈0.9, 0.09, 0.01〉) and 
CL(〈0, 0, 1〉, 〈0.01, 0.09, 0.99〉) [and similarly CSF(〈1, 0, 0〉, 〈0.9, 0.09, 0.01〉) and CSF(〈0, 0, 1〉, 
〈0.01, 0.09, 0.99〉)24]. Now consider P′ = 〈〈90/99, 9/99, 0〉, 〈1/10, 9/10, 0〉〉, and B′ = 〈〈1, 0, 0〉, 〈0, 
1, 0〉〉. Notice that Ab, Nb, and Zb imply that bB′ = 〈1, 1, 0〉. Now notice that CL implies that pp′ = 
〈a/(a+b), b/(a+b), 0〉. Finally, notice that CL(〈1, 0, 0〉, 〈90/99, 9/99, 0〉) and CL(〈0, 1, 0〉, 〈1/10, 
9/10, 0〉) imply that CL(〈1, 1, 0〉, 〈a/(a+b), b/(a+b), 0〉), which is absurd, since CL(〈1, 0, 0〉, 〈 
a/(a+b), b/(a+b), 0〉), given a > b [and similarly with CSF in place of CL].�  
 
Theorem 9. {Ub, Ab, Nb, Zb, Up, Ap, Np, PLC, IP} is inconsistent. 
 
Proof. Let Π = {w1, w2, w3, w4}. Consider B = 〈〈0, 0, 0, 1〉, 〈1, 0, 0, 0〉〉, and P = 〈〈0.01, 0.09, 
0.09, 0.81〉, 〈0.81, 0.09, 0.09, 0.01〉〉.25 Notice that Ab, Nb, and Zb imply that bB = 〈1, 0, 0, 1〉. 
Now notice that Ap and Np imply that pP(w1) = pP(w4) and pP(w2) = pP(w3), and this implies that 
pP(w1∪w2) = pP(w1∪w3) = 1/2. Now notice that CL(〈0, 0, 0, 1〉, 〈0.01, 0.09, 0.09, 0.81〉) and 
CL(〈1, 0, 0, 0〉, 〈0.81, 0.09, 0.9, 01〉) [and similarly CSF(〈0, 0, 0, 1〉, 〈0.01, 0.09, 0.09, 0.81〉) and 
CSF(〈1, 0, 0, 0〉, 〈0.81, 0.09, 0.09, 0.01〉)]. So PLC implies that CL(〈1, 0, 0, 1〉, PP) [and similarly 
CSF(〈1, 0, 0, 1〉, PP)], which implies that pP(w1) > pP(w2), and thus pP(w1) > 1/4. Finally, notice 
that p1((w1∪w2)∩(w1∪w3)) = p1(w1∪w2)p1(w1∪w3) and p2((w1∪w2)∩(w1∪w3)) = 
p2(w1∪w2)p1(w1∪w3). So IP implies that pP((w1∪w2)∩(w1∪w3)) = pP(w1∪w2)pP(w1∪w3). But 
pP((w1∪w2)∩(w1∪w3)) = pP(w1), and, since pP(w1∪w2) = pP(w1∪w3), pP(w1) = 1/4, which is 
absurd.� 
 
 

24 For the proof that {Ub, Ab, Nb, Zb, Up, SFr, CL} is inconsistent, for given r in (0, 1), simply select the least z such 
(1−z)/z ≤ 1 − r, and then the least y such that y + x = 1 – z and x/y ≤ 1 − r, and let P = 〈〈x, y, z〉, 〈z, y, x〉〉. 
25 For the proof that {Ub, Ab, Nb, Zb, Up, Ap, Np, SFr, IP} is inconsistent, for given r in (0, 1), simply select the least 
z such (1−z)/z ≤ 1 − r, and let P = 〈〈x, √x − x, √x − x, z〉, 〈z, √x − x, √x − x, x〉〉. 
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