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Abstract   Formal and empirical work on the Wisdom of Crowds has extolled the virtue of diverse 

and independent judgment as essential to the maintenance of ‘wise crowds’. In other words, com-

munication and imitation among members of a group may have the negative effect of decreasing the 

aggregate wisdom of the group. In contrast, it is demonstrable that certain meta-inductive methods 

provide optimal means for predicting unknown events. Such meta-inductive methods are essentially 

imitative, where the predictions of other agents are imitated to the extent that those agents have 

proven successful in the past. Despite the (self-serving) optimality of meta-inductive methods, their 

imitative nature may undermine the ‘wisdom of the crowd’, since these methods recommend that 

agents imitate the predictions of other agents. In this paper, I present a replication of selected results 

of Thorn and Schurz, illustrating the effect on a group’s performance that may result from having 

members of a group adopt meta-inductive methods. I then expand on the work of Thorn and Schurz 

by considering three simple measures by which meta-inductive prediction methods may improve 

their own performance, while simultaneously mitigating their negative impact on group perfor-

mance. The effects of adopting these maneuvers are investigated using computer simulations. 
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1  Introduction 

 

In several recent papers (2008, 2009b), Gerhard Schurz proposed a response to Hume’s problem of 

induction, based on meta-induction. In its various forms, meta-induction proceeds by considering 

the past track record of other agents (and/or prediction methods), and makes predictions of future 

events by reasoning that agents (and/or prediction methods) that have been successful in the past 

will be successful in the future. Schurz demonstrated that, under plausible conditions, various forms 

of meta-induction are guaranteed to yield optimal results, in the sense of having predictive success 

rates that converge to the success rate of the meta-inductivist’s most successful competitor.  

 The optimality of meta-induction appears to provide a strong prescription for would-be pre-

dictors. But the matter is, perhaps, not so simple. The core injunction of meta-induction is to copy 

the strategies and predictions of those individuals who have proven most reliable. The prescriptions 

of meta-induction are thus in tension with prescriptions implicit in recent formal and empirical work 

on the Wisdom of Crowds. Such work emphasizes the importance of agents making their predic-

tions (and judgments) independently of the predictions of other agents. 

 Francis Galton’s account of a contest that occurred at the 1906 West England Fat Stock and 

Chicken Exhibition is a popular touchstone for discussions of the Wisdom of Crowds, and serves as 

compelling, if anecdotal, illustration of the ‘wise crowd effect’. In the contest recounted by Galton, 

attendees at a livestock exhibition could observe a mature ox, and had the opportunity to guess its 
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weight. Seven hundred and eighty seven persons entered the contest, and offered wide-ranging 

guesses. The remarkable fact about these guesses resided in their average, the ‘judgment of the 

crowd’. The crowd guessed that the ox would weigh 1,197 pounds, while the ox weighed 1,198 

pounds. 

 Empirical studies have illustrated that the judgments of crowds (i.e., the average value of the 

judgments of a group’s members) are remarkably reliable in the face of certain types of query 

(Surowiecki 2004, 5-22; Page 2007, 178). It is also straightforward to construct formal models of 

individual judgment wherein the average value of the judgments of a group tends to be very accu-

rate. Recent empirical studies also show that the accuracy of a crowd’s judgment can be compro-

mised when agents within the group are aware of the judgments made by other group members (and 

are thus able to imitate other group members) (Lorenza et al. 2011). Similarly, well known formal 

models of ‘wise crowds’ require that the judgments of a group’s members be stochastically inde-

pendent of the judgments of other members of the group (conditional on the value of the predicted 

event). So select empirical and formal results suggest that imitating the judgments of other group 

members is, contra meta-induction, a bad thing.  

 In a recent paper, Thorn and Schurz (2012) presented results concerning the impact on a 

group’s performance that may result from having members of a group adopt meta-inductive meth-

ods (cf. Schurz 2012). In this paper, I replicate a selection of those results, illustrating that, in a va-

riety of circumstances, the adoption of meta-inductive methods can decrease the accuracy of the 

aggregate judgment of the group. I then expand on previous work by considering three simple 

measures by which meta-inductive prediction methods may improve their own performance, while 

simultaneously mitigating their negative impact on the aggregate judgment of the group.  

 

 

2  The Optimality of Global Meta-Induction  

 

To demonstrate the optimality of meta-induction, Schurz (2008, 2009b) introduced the notion of a 

prediction game, consisting of: 

 

(1) An infinite sequence (e) = (e1,e2,) of events, whose values are drawn from the unit interval, 

i.e., en[0,1], for each round, n, of the game (and from {0,1} in the case of binary prediction 

games).  

 

(2) A finite set of players, , whose task in each round is to predict the value of the next event. 

“pn(P)” denotes the prediction of player P at time n, which is delivered at time n1. The players in 

 include: one or several meta-inductivist players of various kinds (see below), and a finite set of 

non-MI-players players P1,,Pm. It is assumed that the MI-players make their predictions after the 

non-MI-players, and may thus imitate the predictions of the non-MI-players. 

 

 Within prediction games, the deviation of a prediction pn from the event en is measured by a 

normalized loss function l(pn,en)[0,1]. A prominent loss-function measures the absolute difference 

between event and prediction, |enpn|, but the optimality theorems described below are not restricted 

to this loss function: Theorem 1 holds for monotonic loss-functions, and theorem 2 holds for convex 

loss-functions. The score, s(pn,en), obtained in round n is defined as 1l(pn,en). The success rate, 

sucn(P), of player P, at time n, is (1in s(pi(P),ei)/n. Finally, maxsucn is the maximal success rate of 

the non-MI-players at time n.  

 The simplest type of meta-induction is called “imitate-the-best”. In each round, bMIs (play-

ers who employ imitate-the-best meta-induction) imitate the prediction of the non-MI-player with 

the so-far highest success rate. bMIs change their favorite player as soon as another player achieves 

a higher success-rate. If there are several best players, bMIs chooses her favorite by a predefined 
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ordering of the non-MI-players. The central result concerning imitate-the-best prediction method is 

as follows: 

 

Theorem 1 (Schurz 2008): For every prediction game ((e),{P1,,Pm,bMI}) that contains a best non-

MI-player, B, after some round nB (i.e., sucn(B) > sucn(Pi) for all n  nB and PiB), the following 

holds:  

(1.1) Short run: For all rounds n, sucn(bMI)  maxsucn  (nB/n). 

(1.2) Long run: As n approaches , sucn(bMI) converges to maxsucn. 

 

 The assumption of Theorem 1 that there is a best non-MI-player, B, after some finite number 

of rounds is rather strong. A satisfactory solution to Hume’s problem calls for a meta-inductive 

strategy whose performance is optimal when this assumption does not hold. Weighted meta-

induction fills this role. wMIs (players who employ weighted meta-induction) predict a weighted 

average of the predictions of the so-far ‘most attractive’ players. The attractivity atn(P) of player P 

at time n is P’s surplus success-rate compared to the wMI’s success: atn(P) = sucn(P) – sucn(wMI), 

provided sucn(P) > sucn(wMI), otherwise atn(P) = 0. A wMI’s predictions are defined as pn+1(wMI) 

= P(atn(P)pn+1(P))/P(atn(P)), where P ranges over all accessible players. (If no player has positive 

attractivity, the wMI makes a random guess.) The following establishes weighted meta-induction’s 

long-run optimality: 

 

Theorem 2 (Schurz 2008, cf. Cesa-Bianchi and Lugosi 2006): For every real-valued prediction 

game ((e),{P1,,Pm,wMI}) whose loss-function l(pn,en) is convex in the argument pn, the following 

holds:  

(2.1) Short run: n1: sucn(wMI)  maxsucn (m/n). 

(2.2) Long-run: As n approaches , sucn(wMI) converges to maxsucn. 

 

 Theorem 2 does not apply directly to binary prediction games, because a wMI’s predictions 

are real-valued. However, theorem 2 can be generalized to binary valued predictions, by positing a 

population of sufficiently many, say k, meta-inductivists, who imitate the predictions of each attrac-

tive non-MI-player, P, with a population share that is approximately equal to P’s attractivity. The 

mean success rate of such populations approximates the maximal success rate of the most attractive 

non-MI-players, with an additional maximal short-run loss of 1/(2k) (Schurz 2008, 2009a, 2009b). 

Similar convergence results hold for the expected success-rate a meta-inductivist who predicts re-

spective outcomes with probability equal to the population shares represented among such groups.   

 

 

3  The Wise Crowd 

 

Following in the footsteps of some recent monographs (Surowiecki 2004; Page 2007, 179), I will 

say that the judgment of a crowd with respect to query is the average response of its members 

(rounded if necessary), treating affirmation as one and disaffirmation as zero, in the case of binary 

predictions. Along with the preceding convention, I say that a crowd is wise to the extent that its 

judgments are accurate.  

 Anecdotes such at Francis Galton’s (section 1) are relatively widespread, and it is clear that 

the judgment of a crowd with respect to some kinds of query frequently exhibits uncanny accuracy 

(i.e., the wise crowd effect). In this same vein, Jack Treynor illustrated the wise crowd effect by 

having groups of students guess the number of jelly beans contained in a large jar (Surowiecki 

2004, 5). Various markets, from stock exchanges to professional football betting lines (Surowiecki 

2004, 12-15), and prediction markets such as the Iowa Electronic Markets and the Hollywood Stock 
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Exchange have demonstrated the accuracy of groups of independently acting individuals in making 

various kinds of prediction (Surowiecki 2004, 17-22; Page 2007, 178).  

 An early mathematical model that exhibits a sufficient condition for a wise crowd is de-

scribed by the Condorcet Jury Theorem. The theorem considers a group of individuals, where for 

each member of the group the probability is r (r > 0.5) that that member of the group will make a 

correct judgment regarding the truth value of some proposition. It is further assumed that each indi-

vidual’s likelihood of making a correct judgment is stochastically independent of whether other 

members of the group make correct judgments. Under these conditions, the theorem tells us that the 

likelihood that the majority response of its members is correct converges to one as the size of the 

group approaches . 

 The Weak Law of Large Numbers suggests an obvious means of modeling wise crowds in 

the case of real-valued events. Where  is any number greater than 0, and Xn is a sample of n inde-

pendent identically distributed random variables with mean , the Law of Large Numbers tells us 

that the probability that the mean value of the elements of Xn differs from  by more than  con-

verges to zero as n approaches . We may thus conceive of the sample Xn as a set of predictions 

made by a group of n individuals about the value some unknown quantity , where the elements of 

Xn are independently and identically distributed around . In that case, the Law of Large Numbers 

tells us, for all >0, that the probability that the group’s judgment about the value of  differs from 

 by more than  goes to zero as n approaches . 

 The Condorcet Jury Theorem and the Law of Large Numbers provide models describing 

how the average judgment of a group’s members can be extremely accurate, provided the group is 

large and its members have some truth-bias, i.e., under the condition that there is a better chance 

than not that each group member makes a true judgment in the case of true/false queries, and under 

the condition that each group member’s judgment is distributed around the true value with a mean 

value that is identical to the true value, in the case of real-valued queries.
1
 

 While the wise crowd effect recommends that forecasters make their predictions inde-

pendently, the optimality of meta-induction suggests that forecasters should imitate the most suc-

cessful forecasters whose predictions are accessible. So there is a tension between the preconditions 

for wise crowds, and the injunctions of meta-induction. In the face of this tension, Thorn and 

Schurz (2012) evaluated the impact on group performance that may result from having members of 

a group adopt meta-inductive methods. Their results illustrate a variety of conditions under which 

replacing non-imitative players by meta-inductivists reduces the accuracy of the aggregate judg-

ment of the group. After introducing the formal framework of (Thorn and Schurz 2012), I summa-

rize some of their results. I then consider three simple measures by which meta-inductive prediction 

methods may improve their own performance, while simultaneously mitigating their negative im-

pact on group performance.  

 

 

4  The Formal Setup 

 

Departing slightly from the prediction games described in section 2, the simulations described here 

include the following elements: 

 

(1) A quadratic grid consisting of 100100 = 10,000 cells. Each cell corresponds to an individual 

player.  

 

                                                 
1

 The independence assumptions under which the two theorems apply limit the applicability of the corresponding mod-

els. A more realistic formal model is found in (Page 2007), drawing on work by Krogh and Vedelsby (1995). 
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(2) For some simulations, each agent has access to the success rates and the present judgment of 

every other player. In other simulations, each player only has access to information concerning the 

players in her Moore-neighborhood, i.e., to herself and the eight immediately surrounding players. 

 

(3) The event sequence is either: a random sequence of values chosen according to a uniform prob-

ability distribution on the unit-interval [0,1], or a binary event sequence generated by rounding the 

elements of a sequence of the preceding sort, where values greater than 0.5 are rounded to 1. In the 

case of a binary event sequence, players are required to predict that the true value of any event is 0 

or 1. In the case of the real-valued event sequence, players may predict any real number (thereby 

permitting the possibility of arbitrarily large errors). 

 

(4) In the case of a binary event sequence, each player has a predefined independent reliability, r,  

which is the player’s probability of making a correct prediction in any given round (as determined 

by Bernoulli trials), assuming she bases her predictions solely on her own abilities, and inde-

pendently of other players. Each player’s independent unreliability, u, is 1r. In the case of a real-

valued sequence, each player’s prediction is assumed to be normally distributed with a mean identi-

cal to the true event-value, where the mean absolute deviation is the player’s independent unrelia-

bility, u.
2
 

 

(5) The game consists of rounds, but now in addition, each round consists of successive cycles, in 

which predictions may be updated by imitating the predictions of other accessible players. 

 

(6) In addition to their independent prediction abilities, some players apply one of the following 

imitative prediction methods to other accessible players:  

  (a) Weighted meta-induction wMI
3
: In the face of a real-valued event sequence, wMIs predict the 

attractivity weighted average of the predictions of those players accessible to the wMI. In the case 

of binary event-sequences, wMIs predict the rounded attractivity weighted average of the predic-

tions of those players accessible to the wMI. In face of both real-valued and binary event sequences, 

wMIs predict by independent means in the first round, in the first cycle of each round, and whenev-

er they themselves have the highest success rate. 

  (b) Peer-imitation: Peer-imitators predict an unweighted average of the predictions of those players 

accessible to the peer-imitator.  

 

 In contrast to the sort of prediction games described in section 2, the present setup allows for 

mutual imitation between imitative players. Since a player can imitate another player only after that 

player has made a prediction, the imitation process is now modeled via successive update cycles, in 

which players may imitate the predictions that her favorite(s) delivered in the previous cycle. In the 

first cycle of each round, each player delivers a prediction based on her independent abilities. In all 

following cycles, independent players repeat their initial prediction, while imitative players apply 

their imitative prediction method to the predictions made by accessible players in the previous cy-

cle. This continues until a preselected maximum number of cycles is reached. After the final predic-

tions for a round are determined, the actual success rate for each player is updated, and a new round 

(with a new sequence of prediction cycles) begins, until the final round of the game is reached.  

 

 

                                                 
2

 So the standard deviation of an agent’s independent guess is u(2/), since (2/) is the ratio of the mean absolute 

deviation to the standard deviation in the case of normal distributions. 
3

 As space is limited, I focus exclusively of weighted meta-induction, which performed better than imitate-the-best 

meta-induction in the simulations studied in (Thorn and Schurz 2012). 
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5  Groups with Universal Accessibility 

 

In the present section, I replicate results from (Thorn and Schurz 2012) in order to illustrate some 

effects which ensue when members of a group adopt weighted meta-induction, in cases where the 

predictions and success rates of all agents are accessible to all agents. Figure 1 presents results for 

binary predictions, comparing populations composed wholly of independent predictors to ones 

composed wholly of wMIs, in games that lasted 1000 rounds, with 2 cycles per round. The inde-

pendent unreliability of the agents is the independent variable. The respective mean error rate (i.e., 

the mean linear distance between predicted and actual values) is the dependent variable. 

 

 

Fig. 1   

Binary Events,  

Universal Access,  

No Experts 

 

 

 

 

 

 

 

 

 

 
 
 

 Figure 2 presents results analogous to figure 1 for real-valued predictions. Note that for all 

the figures concerning real-valued predictions, the scale for the intervals [0,1], [1,5], and [5,20] dif-

fers in order to magnify small differences in the values of the dependent variable that occur particu-

larly in the interval [0,1]. 

 

Fig. 2   
Real-Valued Events,  

Universal Access,  

No Experts 

 

  

 

 

 

 

 

 

 

 

 

 The results represented in figures 1 and 2 reflect the fact that the mean individual error rates 

of non-imitators converge to their independent unreliabilities. We also observe (as predicted by the 

Condorcet Jury Theorem and the Law of Large Numbers) that the mean group error for non-

imitators is usually quite low. In the binary case, setting individual unreliability, u, to be somewhat 
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less than 0.5 is sufficient to make it a practical certainty that the crowd is very wise (while setting u 

to be somewhat higher than 0.5 is sufficient to ensure that the crowd is very unwise). In the real-

valued case, even a modest truth bias, such as u = 20, is sufficient to achieve a relatively low mean 

group error.  

Noteworthy patterns characterize groups composed wholly of wMIs. In the case of binary 

prediction games, where the independent unreliability, u, is less than 0.5, we observe no wise crowd 

effect. In these cases, the populations of wMIs tend to reach an equilibrium state where a single 

wMI is distinguished as ‘most successful’, while the remaining wMIs have identical success rates, 

with the result that each prediction made by members of the group is identical to the prediction of 

the wMI who is most successful. These cases are in contrast to the binary case where u is greater 

than 0.5, where we observe a ‘reverse wise crowd effect’, similar to the effect observed in the case 

of non-imitators (with the additional effect of surging individual error rates). In contrast to the bina-

ry case, wMIs exhibit a wise crowd effect in the case of real-valued event sequences. The effect is 

slightly weaker than in the case of independent predictors, since some diversity is lost through imi-

tation. The reward for the increase in mean group error is a large decrease in mean individual error.  

The scenarios represented in figures 1 and 2 are unrealistic in assuming that all of the pre-

dictors in the group are equally reliable. This unrealistic assumption is biased against wMIs, whose 

strength consists in imitating the predictions of those predictors whose predictions are the most ac-

curate. The simulations represented by the following figures differ from the ones represented by 

figures 1 and 2, by including a 10% subpopulation of (expert) independent predictors, with an inde-

pendent unreliability of 0.1. Note that the independent variable is the independent unreliability of 

the non-expert members of the population, while the mean error rates are derived from the predic-

tions of both experts and non-experts. 

 

 

 

Fig. 3   
Binary Events,  

Universal Access,  

10% Experts 

 

 

 

 

 

 

 

 

 

 

 

Once again, non-imitators have mean individual error rates that converge to their mean in-

dependent unreliabilities (which is higher due to the inclusion of subpopulation of highly reliable 

experts). The impact on the mean individual error rate is much greater when we replace the less 

reliable subgroup of non-imitators with wMIs: The prediction strategy of the wMIs yields the result 

that the individual error rates of the wMIs approximates the independent unreliability, u = 0.1, of 

members of the highly reliable subgroup (which translates into low group error rates). More gener-

ally, applying weighted meta-induction results in lower individual error rates (as compared to inde-

pendent predictors), so long as we assume the wMIs have the opportunity to imitate truth-biased 
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predictors whose independent reliability exceeds their own. The present assumption is typically 

plausible.  

 

Fig. 4   
Real-Valued Events,  

Universal Access,  

10% Experts 

 

  

 

 

 

 

 

 

 

 

 

 

 

6  Groups with Restricted Accessibility 

 

In the present section, I replicate results from (Thorn and Schurz 2012) in order to illustrate some 

effects that ensue when members of a group adopt weighted meta-induction, in cases where players 

only have access to the predictions and success rates of agents in their Moore-neighborhood. In all 

of the simulations considered in this section, each game lasted 1000 rounds, and had 10 update cy-

cles per round. Within these simulations, the performance of peer imitation is compared with 

weighted meta-induction. Peer-imitation has some connection to the wise crowd phenomena inas-

much as the predictions of a peer-imitator will be identical to the judgment of the group, in the case 

where the peer-imitator has access to the judgments of all members of a group. The added effect of 

peer-imitation over non-imitation, in the case of universal access, is that accurate (or inaccurate) 

judgments on the part of the group translates into accurate (or inaccurate) judgments on the part of 

the peer-imitator. In cases where access is limited (as described in figures 5-8) the connection be-

tween the accuracy of the group and the accuracy of the peer-imitator is weakened, but we still ob-

serve a tendency of peer-imitators to emulate the judgment of the group, resulting in improved indi-

vidual accuracy in cases where the group’s accuracy is high, and poor individual accuracy where 

the group’s accuracy is poor. Peer-imitation also has a small effect in decreasing the diversity of the 

group, and thereby on the accuracy of the judgments of the group (in comparison to non-imitation). 

 Figure 5 presents results for binary prediction games, comparing populations composed 

wholly of peer imitators to ones composed of wMIs. Figure 6 presents results analogous to figure 5 

for real-valued predictions. 

In cases where the independent unreliability, u, of all players is identical and truth-biased 

(i.e., in all the cases described in figures 5 and 6, save the case where u=0.55), peer-imitators per-

form at least as well as wMIs, with respect to individual and group error rates. As it turns out, peer-

imitators (within groups of peer-imitators) are incredibly adept in pooling the independent predic-

tions of players with whom they do not have direct access, by taking the average of the predictions 

neighbors, who took the average of the predictions neighbors, etc. The performance of the wMIs is 

considerably improved in the case where the wMIs have the opportunity to imitate players with 

high independent reliabilities. Figures 7 and 8 presents results analogous to figure 5 and 6, save that 

10% of the population consists of (expert) independent predictors, with u=0.1. 
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Fig. 5   
Binary Events,  

Limited Access,  

No Experts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6   
Real-Valued Events,  

Limited Access,  

No Experts 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 7   
Binary Events,  

Limited Access,  

10% Experts 
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Fig. 8   
Real-Valued Events,  

Limited Access,  

10% Experts 

 

 

 

 

 

 

 

 

 

 

 

 

 In all the cases described in figures 7 and 8, where we include a subpopulation of expert 

predictors, we observe that the performance of wMIs matches or exceeds that of peer-imitators.  

 

 

7  Meta-Induction with Safeguards 

 

While wMI performed well in many of the simulations conducted in (Thorn and Schurz 2012), it 

performed poorly in others: In binary games with universal accessibility, the mean group error for 

wMIs was significantly larger than that of independent predictors, in cases where the independent 

unreliability of the wMIs was low. The mean individual error rates for wMIs were also greater, in 

the case of binary prediction games where the independent unreliability of the wMIs was high, in 

the absence of experts. When accessibility was limited, the mean individual and group error rates 

for wMIs were greater than those of peer-imitators, in all cases where experts were absent and the 

independent unreliability of the wMIs was low.   

 I here propose three measures in an attempt to improve the performance of wMIs.
4
 The first 

two measures involve the inclusion of ‘virtual’ players within the player set available to wMIs as a 

basis for imitation. First, the MI-players studied in this section, wMI*s, include, as an imitable 

player, a player that predicts the unweighted average of the predictions of all non-virtual players 

accessible to the respective wMI*. Second, in the case of binary prediction games, wMI*s consider, 

as imitable players, the ‘inverse’ player of each non-virtual players that is accessible to the respec-

tive wMI*, where an inverse player always predicts of the opposite of her respective ‘non-inverse’. 

While the former maneuver reflects a self-conscious awareness of the wise crowd phenomena (and 

attempt to harness it), the latter maneuver aims to make a virtue of systematic error (in the case 

where u > 0.5). The third measure employed by wMI*s is to base their attractivity weights for ac-

cessible players on the predictions made in the second to last cycle of each round, which accords 

with the fact that wMIs are not actually able to imitate the predictions made in the final cycle. The 

following figures are analogous to figures 1, 2, 5, and 6, and illustrate the effect of the three 

measures,  within  those  simulations  that  were  the  most  difficult  for  regular  wMIs,  i.e.,  those         

 

                                                 
4

 An alternate variant of weighted meta-induction is considered in (Thorn and Schurz 2012). The variant considered 

here performs significantly better in several of the situations considered in (Thorn and Schurz 2012). It is also possible 

to construct situations where the variant from (Thorn and Schurz 2012) performs significantly worse than regular 

weighted meta-induction, which is not the case for the variant considered here. 
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Fig. 9   
Binary Events,  

Universal Access,  

No Experts 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10   
Real-Valued Events,  

Universal Access,  

No Experts 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11   
Binary Events,  

Limited Access,  

No Experts 
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situations where the population contained no highly reliable experts. The performance in simula-

tions that include experts is similar to regular weighted meta-induction. 

 

 

Fig. 12   
Real-Valued Events,  

Limited Access,  

No Experts 

 

 

 

 

 

 

 

 

 

 

 

  

In all of the situations considered here, wMI*s performed better or (almost) as well as inde-

pendent predictors, and peer-imitators, respectively. Cases where the wMI*s trailed behind their 

competitors are largely the result of losses earned in the early rounds of the game. While better per-

formance could be achieved within the situations considered here, the required measures would be 

complicated, and would yield only marginal improvements. The performance of wMI*s will also be 

relatively good within variations of the situations considered here, so long as the (un)reliabilities of 

the independent predictions of the participating players converge to limits, at a pace commensurate 

to the length of the respective games.  

 

 

8  Conclusion 

 

Much recent formal and empirical work on the Wisdom of Crowds has extolled the virtue of inde-

pendent and diverse judgment as essential to the maintenance of ‘wise crowds’. In contrast, recent 

work by Schurz (2008, 2009b) demonstrates the optimality of meta-induction as a method for pre-

dicting unknown events and quantities. Inasmuch as meta-induction is an imitative prediction meth-

od whose application reduces diversity among the predictions of a group, the application of meta-

induction may have a negative effect on the accuracy of the average of a crowd’s judgment. How-

ever, as we saw in the preceding section, it is possible to safeguard meta-inductive methods by sim-

ple measures which allow meta-inductive prediction methods to improve their own performance, 

while simultaneously mitigating their negative impact on group performance.  
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