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I am more confident than not that I will go in to my office tomorrow. I’m
not certain that I will go, and I haven’t even hit the point of believing that
I will: it is the summer, I have no courses to teach or students to meet,
I may wake up tomorrow and decide it’s not worth the effort. But I’m
more confident that I will go than I am that I won’t. If I had to place my
confidence on a scale of 0 to 100, I’d put it somewhere above 50.

Credences are numerical degrees of confidence. While they could be
expressed as percentages—between 0 to 100, inclusive—it has become
customary to measure them on a scale from 0 to 1. Credences are also often
called “degrees of belief,” though that name may hold the connotation
that they are a species of ordinary, qualitative belief.

It’s better to think of credence not as a kind of qualitative belief, but in-
stead as a member of the same family as qualitative belief. That family—the
family of doxastic attitudes—also includes certainty, disbelief, suspension
of belief, and probably comparative confidence as well. The members
of this family have a variety of commonalities. For example, we tend to
think of credences as taking the same sorts of objects as outright beliefs.
Many authors take these objects to be propositions, and so classify both
credences and beliefs as propositional attitudes. I will follow that trend
here, but if you think beliefs are adopted towards something other than
propositions (sentences, perhaps?), you will be inclined to the same view
about credences.

The theory of credences was developed to address a number of philo-
sophical problems. One was the proper interpretation of “probability”
locutions. If I say, “The probability that I’ll go to the office tomorrow is
over 50%,” what does this mean, and what are the truth-conditions for my
utterance? A number of interpretations of probability have been offered
and defended (some of which we will discuss in Section 1.6), and it’s not
clear that every use of the term “probability” should be interpreted the
same way. But one prominent suggestion, the “subjective interpretation of
probability,” is that probability statements express the speaker’s degree of
confidence in a proposition. So my utterance expresses a confidence over
0.5 that I shall go to the office.

Yet even if “probability” statements rarely—or never—express an agent’s
degrees of confidence, such degrees of confidence may still exist, and have
philosophical work to do. Degrees of belief play a prominent role in
traditional decision theory, the classic formal approach to rational choice
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(about which more in Section 2.2). Credences also figure in Bayesian
confirmation theory (Section 2.1), an account of evidential support rivaling
other statistical approaches such as frequentism and likelihoodism. And
they can be applied to such further topics as coherentism, Inference to the
Best Explanation, and social epistemology (Section 2.3).

So if we grant that credences exist, what exactly does it take to possess
one? In line with contemporary behaviorist approaches in psychology, de
Finetti (1937/1964) defined the degree of belief assigned to an event by
an individual as the rate at which she’d bet that it would occur (more
about the details in Section 2.2). But as was typical with operationalism,
this definition ran into problems when, say, an agent displayed inconstant
betting behaviors over time, and so was difficult to assign a particular cre-
dence to. Nowadays we may grant than an agent with a particular degree
of belief will, if rational, display particular betting behavior (Christensen,
2004). But we also tend to think of this normative connection less as a
definition of credence and more as one aspect of what it is to possess a de-
gree of confidence. Just as our account of qualitative belief has progressed
beyond behaviorism to a broader functionalism, we think of credence as a
multi-faceted mental state with descriptive and normative connections to
a wide variety of behaviors and other attitudes.

Besides their connections to desires, intentions, and decisions contem-
plated in action theory and decision theory, credences are connected to
other varieties of doxastic attitudes (not to mention emotions, sensations,
and memories). If comparative confidence is a distinct type of mental state,
it clearly is connected to credence: I am more confident of P than Q just in
case my credence in P is higher than my credence in Q. As for qualitative
attitudes, certainty is often identified with credence 1 in a proposition
(though see Section 1.7 below). There must also be links between credence
and outright belief: if I believe P, my credence in P should be higher than
my credence in ∼P.

Can we find a fully general connection between credence and outright
belief? Some authors (e.g., Holton, 2014) maintain that to the extent there
are any credences, to possess credence x in P is just to hold an outright
belief that the probability of P is x. Yet it’s difficult to find a single concept
of probability that applies to every proposition to which an agent might
assign a degree of belief. And it seems agents (such as children) can be
more or less confident of propositions without possessing a concept of
probability. Moreover, whatever concept of probability we select, it seems
conceivable for an agent to adopt a degree of confidence in the proposition
that P has probability x. (We’ll see a further technical difficulty with
the credence-as-outright-belief theory in Section 1.2.) Most theorists now
hold that the numerical value of a credence is an attribute of the attitude
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adopted towards a proposition, not part of the content of the proposition
towards which that attitude is adopted.1

Going in the other direction, the “Lockean Thesis”2 takes outright belief
just to be credence above a particular threshold. The threshold credence is
usually lower than 1 (belief need not be certainty) but well above 1/2, and
may depend on contextual parameters. The main objection to the Lockean
Thesis is that one can describe rationally acceptable credence distributions
which, by way of the thesis, generate rationally unacceptable patterns of
belief. In the Lottery Paradox (Kyburg, 1961) an agent assigns to each
ticket in a lottery a low credence that it will win, while assigning a high
credence (perhaps certainty) that some ticket will win. For any Lockean
threshold less than 1, we can arrange the numbers so that the agent winds
up believing of each ticket that it will lose, while believing that some ticket
will win—a logically inconsistent overall set of beliefs. Similarly, in the
Preface Paradox (Makinson, 1965), an author has high confidence in each
claim made in her book while also being confident that at least one of
those claims is false. Via the Lockean Thesis this becomes belief in each
conjunct of a conjunction coupled with disbelief in that conjunction.

How, then, to relate credence and outright belief in general? The most
radical possibility is to deny either the existence of beliefs or the existence
of credences. More conservatively, one could offer a reduction of one
category to the other, or at least a principle of descriptive supervenience.
Alternatively, one could grant that while beliefs and credences appear in a
variety of configurations in actual agents, normative principles specify how
they’d align in a rational agent. The current consensus is that something
beyond just the Lockean Thesis would be required to make either of these
approaches work; recent attempts to articulate belief-credence principles
can be found in Leitgeb (2017), Douven (2012), and Lin and Kelly (2012).

On the other hand, one could concede that beliefs and credences are
both genuine kinds of mental states an agent can possess, there are some
ways in which they interact (or interact if one is rational), but no systematic
general principles are available. While this stance is available to strong
realists about beliefs and credences, it is especially attractive to theorists
who read belief and credence ascriptions as convenient, simplifying models
of a highly complex cognitive system. The belief-model and the credence-
model are each effective and efficient in different circumstances, and may
be applied toward different ends. In that case, it would be unsurprising if
no universal translation from one to the other were available.

1 Moss (2018) takes the numerical value to be part of a credence’s content, but takes credal
objects to be more complicated than simple propositions.

2 Locke (1689/1975, Bk. IV). See also Foley (1993) for discussion.
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1 rational constraints on credence

Once we understand what a credence is, the next question is what it takes
for a set of credences to be rational.

1.1 The Probability Axioms

The most generally-accepted rational credence norms are Kolmogorov’s
(1933/1950) axioms. Suppose we have a language L of propositions, which
starts with a finite set of atomic propositions and then closes them under
the standard truth-functional connectives. Define a real-valued function c
over L representing the credence values an agent assigns the propositions
in L.3 The precise, real-number values that c assigns each proposition are
the “precise credences” of this entry’s title; I’ll discuss alternative formal
approaches in Section 5 below.

Given this setup, Kolmogorov’s axioms become the following.

Non-Negativity. For any X ∈ L, c(X) ≥ 0.

Normality. For any tautology T ∈ L, c(T) = 1.

Finite Additivity. For any mutually exclusive X, Y ∈ L,
c(X ∨Y) = c(X) + c(Y).

Mathematicians often call these the probability axioms, and call any distribu-
tion satisfying them a probability function. Probabilism is the position that
rational credences form a probability function; in other words, rational
credences satisfy the Kolmogorov axioms.4

The probability axioms set 0 ≤ c(X) ≤ 1 for every X ∈ L. Probabilism
also entails a number of intuitive constraints on rational credence. Here’s
one example.

◦ For any X ∈ L, c(∼X) = 1− c(X).

Suppose you assign a high confidence that anthropogenic global warming
has occurred. This constraint requires you to assign a low confidence
that no anthropogenic warming has occurred. And should you become
more confident that anthropogenic warming has occurred, this constraint

3 While I will consider languages containing propositions, other authors describe credences
as distributed over sentences, or sets of possible worlds, or sets of events, etc.

4 Probabilism is often described as the doctrine that rational agents have credences satisfying
the probability axioms, or (if that’s considered too unrealistic) that ideally rational agents
have probabilistic credences. Both of these formulations make agents (real or ideal) the
targets of evaluation. Strictly speaking, I prefer to evaluate credences (or sets of credences)
for rationality, rather than agents. But for ease of locution I will largely treat the two as
interchangeable here.
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will require your confidence in that proposition’s negation to decrease
accordingly.

Some other intuitive constraints following from the Kolmogorov axioms.

◦ For any contradiction F ∈ L, c(F) = 0.

◦ For any X, Y ∈ L (mutually exclusive or otherwise),

c(X ∨Y) = c(X) + c(Y)− c(X & Y).

◦ For any X, Y ∈ L, if X � Y then c(Y) ≥ c(X).

◦ For any logically equivalent X, Y ∈ L, c(X) = c(Y).

◦ For any finite set of mutually exclusive X1, . . . , Xn ∈ L,

c(X1 ∨ . . . ∨ Xn) = c(X1) + . . . + c(Xn).

The last bulleted constraint has an important consequence when an agent
considers a partition—a set of propositions whose members are mutually
exclusive and jointly exhaustive. Because the disjunction of a partition’s
elements is a tautology, probabilism demands that the credences assigned
to elements of a partition sum to 1.

A further important consequence of probabilism is that credences are
strongly extensional. If an agent is certain that two propositions X and
Y have the same truth-value (that is, if c(X ≡ Y) = 1), then for the sake
of calculating credences X and Y might as well be logically equivalent.
For instance, any credence equation or inequality in which X appears
would remain true were any of its Xs replaced with Ys. Any difference in
meaning, modal profile, etc. is irrelevant to probability once truth-values
are established to be identical.

We can illustrate probabilism with Kyburg’s Lottery example from page
3. Given a lottery with, say, 100 tickets, introduce a language whose atomic
propositions are W1 through W100 (with Wi indicating that ticket i wins the
lottery). If the lottery is fair, an agent might assign c(Wi) = 1/100 for each
Wi. From our first intuitive consequence of the probability axioms, we then
have c(∼Wi) = 99/100; the agent is highly confident of each ticket that it
will not win. However, assuming no more than one ticket can win, our
final intuitive consequence listed above yields:

c(W1 ∨ . . . ∨W100) = c(W1) + . . . + c(W100) = 1. (1)

So our agent is certain some ticket will win, as intuitively she ought to
be.5

5 Notice that none of this solves the Lottery Paradox, which brings full beliefs into the lottery
picture. My goal is just to illustrate how probabilism is compatible with and supportive of
a natural account of rational credences in the lottery case. A similar illustration could be
given for Makinson’s Preface example.
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While proofs in the probability calculus usually proceed from Kol-
mogorov’s axioms, practical problem-solving is often made easier by work-
ing with state-descriptions. Define a literal to be an atomic proposition
of L or its negation, then define a state-description in L to be a maximal
consistent conjunction of its literals. Every noncontradictory X ∈ L then
has a unique disjunctive normal form, a disjunction of state-descriptions
logically equivalent to X.6

Carnap (1950) makes repeated use of the fact that a distribution c
over L satisfies the probability axioms just in case it assigns: (1) non-
negative values to L’s state-descriptions summing to 1; (2) for every
noncontradictory X, a value equal to the sum of the values assigned to the
state-descriptions in X’s disjunctive normal form; and (3) a value of 0 to
every contradictory proposition.7

This result is handy in two ways. First, we can completely characterize
any probability distribution over L by specifying the values it assigns to L’s
state-descriptions. Second, given partial information about a probability
distribution, we can determine what this information says about the values
assigned to state-descriptions, then from there work out the values of (or
constraints on the values of) other propositions.

For example, suppose I tell you that Bob is certain of P ⊃ Q, and is twice
as confident of P as ∼P. It immediately follows that Bob’s confidence in
∼Q is less than or equal to 1/3. Why? Well, the disjunctive normal form
equivalent of ∼Q is (P &∼Q)∨ (∼P &∼Q). Since Bob is certain of P ⊃ Q,
the first disjunct receives credence 0, so for Bob c(∼Q) = c(∼P &∼Q).
But since c(P) + c(∼P) = 1, and c(P) = 2 · c(∼P), we have c(∼P) = 1/3.
The disjunctive normal form equivalent of ∼P is (∼P & Q) ∨ (∼P &∼Q).
By Non-Negativity Bob’s credence in the first disjunct must be greater
than or equal to 0, so the second disjunct receives a credence less than or
equal to 1/3.8

Finally, with the notion of a probability function in hand we can define
the notion of an expectation. Suppose we have a numerical quantity for
which many values are possible. To calculate an agent’s expectation for
that quantity, we multiply each value times the agent’s credence that the
quantity will take that value, then sum over all the values available. For
example, if I’m 10% confident that I’ll go into my office two days this

6 To make the disjunctive normal form unique, we require literals to appear in a state-
description in some canonical order (perhaps alphabetical, if the propositions are desig-
nated by letters), and then we require state-descriptions to appear in disjunctive normal
forms in a canonical order as well.

7 I have never been able to discover whether this result was original to Carnap or not. I
would sincerely welcome any e-mails demonstrating its historical provenance!

8 For more on the mathematical theory underlying this approach, and for a Mathematica
routine that will solve many probability problems once they are reduced to algebra using
state-descriptions, see Fitelson (2008).
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week, 60% confident that I’ll go in just one day, and 30% confident that I
won’t go in at all, then my expectation for the numbers of days I’ll go into
my office this week is:

0.10 · 2 days + 0.60 · 1 day + 0.30 · 0 days = 0.8 days. (2)

1.2 The Ratio Formula

So far we have discussed unconditional credence—an agent’s degree of
confidence that a particular proposition is true in light of her current
understanding of what the world is like. We may also inquire after an
agent’s conditional credence in proposition X given Y; this is the agent’s
credence in X upon making the additional assumption that Y. Notice that
Y may be a proposition in which the agent currently has low unconditional
credence. In asking for her credence in X given Y, we ask her to set aside
her current actual opinion about Y, temporarily add Y to the stock of
propositions she takes to be true, then assess X in light of this enhanced
suppositional set.9

An agent’s conditional credence in X given Y is denoted c(X |Y), and
is usually taken to be governed by the Ratio Formula.

Ratio Formula. For any X, Y ∈ L with c(Y) > 0,

c(X |Y) = c(X & Y)
c(Y)

.

The Ratio Formula can be read as either a descriptive truth or as a norma-
tive requirement. On the former approach, an agent’s conditional credence
X given Y takes a particular value just in case her unconditional credences
in X & Y and Y stand in that ratio. This reading is most natural if one wants
to reduce one type of credence to the other: one could hold that to have a
conditional credence just is to have unconditional credences standing in a
particular ratio; or one could hold that conditional credences are basic and
unconditional credences are a proper subset of those.10 Alternatively, one
could see conditional credence as just another type of doxastic attitude on
equal footing with unconditional credences, then read the Ratio Formula

9 Notice that we are discussing indicative, not subjunctive, conditional credences. The
supposition Y is to be added to the agent’s current set of assumptions about the world, with
the resulting suppositional set assumed to be consistent. Most discussions of conditional
credence concern the indicative form. For a treatment of subjunctive conditional credences,
see Joyce (1999).

10 From the Kolmogorov axioms and Ratio Formula, it follows that for any X ∈ L, c(X) =
c(X |T). So unconditional credences can be thought of as conditional credences conditional
on a tautology. See Easwaran (this volume) for more.
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as a rational requirement on how conditional and unconditional credences
should align.11

Note that as I’ve defined the Ratio Formula, it remains silent when the
agent assigns the condition (proposition Y) a credence of 0. We will return
to credences conditional on credence-0 propositions in Section 1.7.

Combining the Ratio Formula and Kolmogorov’s Axioms yields the
handy Law of Total Probability.

Law of Total Probability. For any X, Y1, . . . , Yn ∈ L such that the
Y1, . . . , Yn form a finite partition,

c(X) = c(X |Y1) · c(Y1) + . . . + c(X |Yn) · c(Yn).

The Law of Total Probability calculates the unconditional credence of X
as a weighted average of X’s credences conditional on members of the
Y-partition, weighted by the unconditional credences in the Ys.12

To illustrate once more with our lottery scenario, suppose B is the
proposition that our agent will benefit from the outcome of the lottery. She
holds tickets 1 through 3, so is sure to benefit if they win. Also, her sister
holds the very last ticket (ticket 100), and the agent is 1/2 confident that
her sister will share the winnings should that ticket come in. Applying
the Law of Total Probability (and recalling that Wi is the proposition that
ticket i will win), the agent’s credence that she will benefit is

c(B) = c(B |W1) · c(W1) + c(B |W2) · c(W2) + c(B |W3) · c(W3)

+ c(B |W4) · c(W4) + . . . + c(B |W100) · c(W100)

= 1 · 1/100 + 1 · 1/100 + 1 · 1/100

+ 0 · 1/100 + . . . + 1/2 · 1/100

= 0.035.

(3)

Conditional credence also plays a crucial role in the notion of credal
relevance. When 0 < c(Y) < 1, all of the following inequalities are equiva-
lent:

c(X |Y) > c(X), (4)

c(X) > c(X | ∼Y), (5)

c(Y | X) > c(Y), (6)

c(Y) > c(Y | ∼X), (7)

c(X & Y) > c(X) · c(Y). (8)

11 For a discussion of how conditional credences interact with an agent’s credences in
conditionals, see Briggs (this volume).

12 Put another way, the Law of Total Probability requires an agent’s unconditional credence
in X to equal her expectation of her credence in X conditional on the true element of the
Y-partition.
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When these inequalities hold, we say that Y is positively relevant to X
on the agent’s credence function. (Since positive relevance is a symmetric
relation, we may also say that X is positively relevant to Y.) Another way
to put this is that the agent takes X and Y to be positively correlated.
Replacing the greater-thans with less-thans describes when Y is negatively
relevant to X (or negatively correlated with X) on an agent’s credences.
On the other hand, when c(X & Y) = c(X) · c(Y) (or any of the other
inequalities above becomes equality), we say that X is irrelevant to Y for
the agent, or probabilistically independent of Y.

These relevance relations are relative to an agent’s credences; they reflect
which propositions she assesses as relevant to each other given her current
understanding of the world. But we can also temporarily enhance her
current set of suppositions about the world, and see whether any relevance
relations change. This takes us from a notion of unconditional relevance
to conditional relevance. Y is relevant to X conditional on Z just in case

c(X |Y & Z) > c(X | Z). (9)

For each of the inequalities above, a corresponding characterization of
conditional relevance can be given by adding Z as a condition to the
expressions on each side.

The notion of conditional relevance underlies a crucial notion in the
philosophy of science: screening off. We say that Z screens off X from
Y when X and Y are unconditionally dependent but the following two
equalities hold:

c(X |Y & Z) = c(X | Z), (10)

c(X |Y &∼Z) = c(X | ∼Z). (11)

In other words, X and Y are independent conditional on each of Z and
∼Z. In a screening-off situation, supposing either Z or ∼Z makes the
correlation between X and Y disappear.13

To illustrate one application of this concept, Reichenbach (1956) argues
that a common cause screens off its effects from each other. Suppose X is
the proposition that my newspaper reports that the Yankees won last night,
Y is the proposition that your newspaper reports that the Yankees won
last night, and Z is the proposition that the Yankees actually won. On the
one hand, while I remain ignorant of Z it would be rational for me to treat
X as relevant to Y. X provides information about Z, and therefore also
provides information about Y. But once the truth-value of Z is established,
X and Y lose the ability to say anything about each other; X and Y become

13 This definition generalizes to the case in which Z is a random variable capable of taking a
variety of values zi. Screening off then occurs when X and Y are unconditionally correlated,
but become independent conditional on each proposition of the form Z = zi.
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independent conditional on any supposition about Z. Thus Z will screen
off X from Y on my credence function.

A proximal cause will also screen off its effect from a distal cause. (Imag-
ine Y states the final score of last night’s Yankees game, Z is the proposition
that the Yankees won, and X is the proposition that my newspaper reports
that they won.) In general, probabilistic correlations (conditional and un-
conditional) can provide useful evidence about the causal relations among
a set of variables. Some philosophers have even defined causality in terms
of probabilistic relations. For more on all of this, see Hitchcock (2012).

One final point about conditional credences. Earlier (p. 2) I mentioned
the theory that a credence of x in P is just the outright belief that the
probability of P is x. There I noted a number of problems for that theory;
now we can add that the theory seems to lack a good way of understanding
conditional credence. A conditional credence c(P |Q) of x cannot be read
as a qualitative belief in the proposition “If Q, then the probability of P is
x,” nor can it be read as the belief that “The probability of ‘If Q, then P’ is
x.” This was established by a series of triviality results initiated by Lewis
(1976).14 For instance, Lewis’ work shows that if we assume c(P |Q) = x
just in case p(Q→ P) = x for some suitable notion of probability p and
some indicative conditional →, then it follows that every proposition is
probabilistically independent from every other! This is obviously absurd. A
conditional credence just isn’t a credence—or a belief—about a conditional.

1.3 Updating by Conditionalization

The rational constraints on credence listed to this point have been
synchronic—when they relate multiple credences, all the credences related
are held at the same time. The degree of belief literature has also proposed
a number of diachronic constraints, governing relations among credences
assigned at different times.

Suppose we have two times, ti and tj, with the latter occurring after the
former. Let ci and cj be the agent’s credence functions at these two times.
The most traditional, well-established, and well-known diachronic credal
constraint is Conditionalization.

Conditionalization. If E ∈ L represents everything the agent learns
between ti and tj, then for any X ∈ L, cj(X) = ci(X | E).

The intuitive idea of Conditionalization is simple. Suppose that at ti you
don’t know whether E is true. I ask you to hypothetically suppose E
(temporarily add it to your stock of assumptions about what the world is
like), then ask for your conditional credence in X given this supposition.

14 For the recent state of the art in this area, see Hájek (2011) and Fitelson (2015).
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You offer some number. Then, between ti and tj, you learn that E is
actually true (and learn nothing else besides). If I now ask you at tj for
your unconditional credence in X, it seems you should offer the same
number you reported as a conditional credence before. After all, the set of
real-world conditions against which you’re assessing X is the same at both
times; it’s just that at ti you were supposing E as a fact about the world,
while at tj you know E to be true.

Conditionalization integrates nicely with our other credal constraints.
For instance, if ci satisfies the Kolmogorov axioms and ci(E) > 0, then
conditionalizing yields a cj distribution that satisfies the axioms as well. So
if an agent begins with a probability distribution and repeatedly updates
by conditionalizing, she is guaranteed to respect probabilism on an ongo-
ing basis. The probability axioms and Ratio Formula also make updating
by conditionalization cumulative and commutative. If you conditionalize
successively on E and then E′, this yields the same result as conditional-
izing just once on E & E′, which means it also yields the same result as
conditionalizing on E′ followed by E.

For a conditionalizing agent, current credences interact in an interesting
way with predictions about future credences. Suppose an agent is certain at
ti that her tj credences will be formed by conditionalizing on a proposition
she will learn from some particular finite partition. (Perhaps she will
conduct an experiment between ti and tj, and the propositions in the
partition represent all of its possible outcomes.) Assuming she meets a few
other plausible side-conditions, such an agent will satisfy the Reflection
Principle.

Reflection Principle. For any X ∈ L, ci(X | cj(X) = r) = r.

This principle, introduced by van Fraassen (1984), sets the agent’s ti un-
conditional credence in X equal to her ti expectation of her unconditional
tj credence in X.15 Notice that although a cj appears in the righthand
expression, the principle governs synchronic credal interactions: it relates
the agent’s ci credences in X to her ci credences about her future credences
in X. Given (again) a few side-conditions, Reflection may be derived from
the Kolmogorov axioms, the Ratio Formula, and the agent’s certainty that
she will update by conditionalizing on some member of a particular parti-
tion. Van Fraassen, however, argues in the opposite direction: he provides
independent motivation for Reflection, then views Conditionalization as
a derivable consequence. For more on the arguments in each direction,
and the specific side-conditions required, see Weisberg (2007) and Briggs
(2009).

15 To see why, return to our formulation of the Law of Total Probability on page 8, and
let each Yi there assert that the agent’s unconditional tj credence in X will take some
particular real value r.
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When an agent repeatedly updates by Conditionalization, she often
finds herself calculating the value of c(X | E). This calculation can be
streamlined by a famous theorem.

Bayes’ Theorem. For any X, E ∈ L with non-zero c-values,

c(X | E) = c(E | X) · c(X)

c(E)
.

Bayes’ Theorem has proved so central to the application of Conditional-
ization that theorists who work with degrees of belief are often called
“Bayesians” (or “subjective Bayesians,” or “Bayesian epistemologists”). In a
moment I’ll describe why Bayes’ Theorem is so useful. But first, it’s worth
noting that Bayes’ Theorem is indeed a theorem, easily derivable from the
Kolmogorov Axioms and Ratio Formula.16 Bayesianism has generated a
great deal of controversy, especially among statisticians. But the contro-
versial claim in Bayesianism isn’t that Bayes’ Theorem is true. Everyone
agrees that the theorem follows from the Kolmogorov Axioms, and that if
an agent is going to generate new credences over time by conditionaliz-
ing, then the theorem provides a handy tool for calculating post-update
credences from pre-update credences. The controversy is whether agents
should really update their credences by conditionalizing, and whether
scientific inference is best understood as a series of conditionalizations.

Setting this controversy aside, why is the particular analysis of c(X | E)
in Bayes’ Theorem so useful? Consider a scientific context, in which a
theorist has a finite partition of hypotheses H1, . . . , Hn about what’s going
on with some phenomenon. The theorist plans to run an experiment that
she hopes will discriminate among the hypotheses. At time ti, before she
has run the experiment, the theorist has a set of unconditional credences ci,
which we call her priors. The theorist runs the experiment between ti and tj,
and let’s suppose the observation she makes is represented by proposition
E. Given this new evidence, Conditionalization helps her calculate her
credences at tj, which we call her posteriors.

Suppose we’re interested in the theorist’s confidence in some particular
hypothesis Hm after the experimental results come in. Applying Condi-
tionalization, Bayes’ Theorem, and then the Law of Total Probability to the
denominator of Bayes’ Theorem, we derive:

cj(Hm) =
ci(E | Hm) · ci(Hm)

ci(E | H1) · ci(H1) + . . . + ci(E | Hn) · ci(Hn)
. (12)

16 The theorem is traditionally attributed to the Reverend Thomas Bayes. Though Bayes never
published the theorem, Richard Price found it in his notes and published it after Bayes’
death in 1761. Pierre-Simon Laplace rediscovered the theorem independently later on, and
was responsible for much of its early popularization.
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Consider the components of the right-hand fraction one at a time. First, we
have a number of expressions of the form ci(Hx). These are the theorist’s
priors in the various hypotheses. Presumably going into the experiment
she has some unconditional levels of confidence in the hypotheses she is
considering; these supply the priors in question. Then we have expressions
of the form ci(E | Hx). An agent’s conditional credence in an experimental
result E given some hypothesis Hx is called her likelihood for that evidence
on that hypothesis. A well-defined scientific hypothesis should make a
prediction for how the theorist’s experiment will come out, or at least
should assign probabilities to various possible outcomes. These inform
the theorist’s likelihoods for various experimental outcomes (such as E)
on the various hypotheses she entertains. Thus Bayes’ Theorem allows the
theorist to form a posterior opinion about each hypothesis Hm that she
entertains, based on the evidence she’s received, her unconditional priors
in the hypotheses, and her ti likelihoods—elements that are plausibly all
easily to hand.

1.4 Jeffrey Conditionalization

Statisticians and philosophers of science often worry that Conditional-
ization allows a scientist’s final verdict on a hypothesis to be influenced
by her initial credence in that hypothesis—her personal degree of belief
in the hypothesis before any evidence came in. Epistemologists worry
about Conditionalization’s conception of evidence. It seems that for Con-
ditionalization to work, it must be possible to identify some proposition
E representing everything the agent learns between ti and tj. Moreover,
the agent must become certain of E between ti and tj, because updating
the agent’s credence in E itself using Conditionalization yields cj(E) = 1.
Finally, once an agent becomes certain of some proposition, subsequent
updates by Conditionalization will retain that certainty forever.17

Conditionalization therefore seems to embody a conception of learning
on which what is learned is explicitly summarizable in propositional form,
becomes certain, and is retained ever after. To epistemologists, this is
reminiscent of foundationalist approaches to evidence abandoned decades
ago. It also violates the Regularity Principle, which deems it irrational for
an agent to assign absolute certainty to an empirical proposition. (After
all, what evidence could ever make you entirely certain that some empirical
claim was true?)

To address these problems, Richard C. Jeffrey offers an updating rule
that generalizes Conditionalization to allow for learning experiences in

17 It’s easy to show that if an agent conditionalizes on E between ti and tj, she will have
cj(E) = 1, and then if she conditionalizes on some other evidence between tj and tk, she
will still have ck(E) = 1 as well.
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which no certainties are gained. He introduces his rule using the following
example.

The agent inspects a piece of cloth by candlelight, and gets the
impression that it is green, although he concedes that it might
be blue or even (but very improbably) violet. If G, B, and V
are the propositions that the cloth is green, blue, and violet,
respectively, then the outcome of the observation might be that,
whereas originally his degrees of belief in G, B, and V were .30,
.30, and .40, his degrees of belief in those same propositions
after the observation are .70, .25, and .05. (Jeffrey, 1965, p. 154)

Discussing the example, Jeffrey writes:

If there were a proposition E in [the agent’s] preference ranking
which described the precise quality of his visual experience in
looking at the cloth, one would say that what the agent had
learned from the observation was that E is true. . . . But there
need be no such proposition E in his preference ranking; nor
need any such proposition be expressible in the English lan-
guage. . . . The description ‘The cloth looked green or possibly
blue or conceivably violet,’ would be too vague to convey the
precise quality of the experience. . . . It seems that the best we
can do is to describe, not the quality of the visual experience
itself, but rather its effects on the observer, by saying, “After
the observation, the agent’s degrees of belief in G, B, and V
were .70, .25, and .05.” (Jeffrey, 1965, pp. 154–5)

Jeffrey proposed an updating rule he called “probability kinematics”;
nowadays everyone calls it “Jeffrey Conditionalization.” The rule applies
when an agent’s experience impinges on her credences by altering her
degree of belief distribution across a particular finite partition in L; any
other changes in her credences are caused by the changes to this partition.
If the originating partition is B1, . . . , Bn, then Jeffrey’s rule is as follows.

Jeffrey Conditionalization. For any A ∈ L,

cj(A) = ci(A | B1) · cj(B1) + . . . + ci(A | Bn) · cj(Bn).

Jeffrey did not mean to rule out the possibility that some learning occurs
by certainty acquisition. He just wanted to allow for the possibility of
other types of learning experiences as well. So in the case where one of
the Bm goes to certainty (and therefore every other member of the parti-
tion goes to credence-0), Jeffrey Conditionalization reduces to traditional
Conditionalization.
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Let’s see how Jeffrey Conditionalization applies to Jeffrey’s cloth by
candlelight example. Suppose the agent is interested in the proposition
M, that the selected piece of cloth will match her couch. She’s certain
that anything violet will match, she’s certain anything green will not, and
she’s 50% confident that a blue cloth will match. (The match depends
on the specific shade of blue.) Let ti be the time before she inspects the
cloth by candlelight. Using the Law of Total Probability and the initial
unconditional credences Jeffrey provides, we have

ci(M) = ci(M | G) · ci(G) + ci(M | B) · ci(B) + ci(M |V) · ci(V)

= 0 · .30 + 0.5 · .30 + 1 · .40 = 0.55.
(13)

Jeffrey also provides the agent’s unconditional credences in G, B, and V at
tj, after the inspection. With these values, Jeffrey Conditionalization yields

cj(M) = ci(M | G) · cj(G) + ci(M | B) · cj(B) + ci(M |V) · cj(V)

= 0 · .70 + 0.5 · .25 + 1 · .05 = 0.175.
(14)

The glimpse by candlelight increases the agent’s confidence that the cloth
is green and decreases her confidence that the cloth is violet, so the Jeffrey-
prescribed posterior that the cloth will match decreases.

Notice how this change in credence is effected. The agent’s visual
experience changes her credences by directly altering her distribution
across the cloth-color partition. Any changes to other propositions in
the agent’s language (such as M) are downstream effects of this direct
alteration. Yet the dependencies between these downstream propositions
and the color propositions remain unaltered: changing the agent’s opinions
about the color of the cloth doesn’t change how confident she is that
particular colors will match the couch. This is why the same conditional
credences appear in both the ci(M) and the cj(M) calculations.

Against the background of the Kolmogorov axioms and Ratio Formula,
Jeffrey Conditionalization is equivalent to the following condition.

Rigidity. For any A ∈ L and any Bm, cj(A | Bm) = ci(A | Bm).

In a Jeffrey Conditionalization, experience alters an agent’s credences
across the B-partition. The agent’s credences in other propositions con-
ditional on the Bms don’t change. So the agent sets her posteriors by
adopting unconditional credences in the Bms from experience, copying
over her old conditional credences, then applying the Law of Total Proba-
bility to calculate her unconditional credences in non-B propositions.

1.5 Further Rational Requirements

We have now seen a variety of putative rational constraints on credence: the
probability axioms, the Ratio Formula, the Reflection Principle, Regularity,
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and the diachronic rules of Conditionalization and Jeffrey Conditionaliza-
tion. Yet there are infinitely many credence distributions (and sequences
of credence distributions over time) compatible with these constraints. Are
all of those distributions rationally permissible? Some of them are quite
strange, and unintuitive—for instance, some assign very high credence to
skeptical scenarios; some will lead agents to reason counter-inductively.

One extreme position about the strength of rational constraints is some-
times called “Objective Bayesianism.” This position endorses the Unique-
ness Thesis (Feldman, 2007; White, 2005) that given any body of evidence,
there is exactly one credence distribution rationally permitted to any agent
with that body of total evidence. At the other extreme, what we might
call “Extreme Subjective Bayesians” hold that any probabilistic credence
distribution is rationally permissible. In between are “Moderate Subjective
Bayesians,” who hold that there are some rational constraints beyond the
ones we’ve described, but not enough to generate a unique permissible
distribution in every case.

What might these further rational constraints be? A constraint that
might considerably narrow the field of what’s rationally permissible is the

Principle of Indifference. If an agent has no evidence favoring any
possibility in a partition over any other, then she should assign equal
credence to each element of the partition.18

The traditional objection to this principle is that it seems to give conflicting
advice when we repartition the same space of possibilities. Following van
Fraassen (1989), suppose I tell you that a cube has been produced from a
factory, and its side length is between 0 and 1 meter. Given the paucity of
further evidence, if I ask how confident you are that the side length is less
than 0.5 meters, the Principle of Indifference seems to require a credence of
1/2. But if I now ask how confident you are that the volume (which must
be between 0 and 1 cubic meter) is less than 0.5 cubic meters, the Principle
of Indifference also seems to require a credence of 1/2. Since a side length
of 0.5 meters corresponds to a volume of 0.125 cubic meters, the only way
to assign both these credences consistently with the probability axioms is
to be absolutely certain that the volume in cubic meters is not between
0.125 and 0.5!19

Another family of putative rational constraints has a member we’ve
already seen. The Reflection Principle directs us to set our current uncon-

18 The basic idea here dates back at least to Laplace (1814/1995), who saw it as an application
of what Bernoulli (1713) called the “principle of insufficient reason.”

19 A more technically-sophisticated cousin of the Principle of Indifference is Jaynes’ (1957a,
1957b) Maximum Entropy Principle. This principle applies more naturally over infinite
partitions, and adapts well to a variety of forms of evidence. Yet it still succumbs to
partition variance problems, and also conflicts with updating by conditionalization in
particular cases. See Seidenfeld (1986).
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ditional credence in a proposition equal to what we’re certain it will be in
the future—or if we’re not certain of our future credences, equal to our
expectation of what they will be. This principle directs us to defer to the
opinions of our future self as if she were some sort of expert. But of course
there are other experts in the world, such as contemporaries who we think
have better judgment or information than ourselves. Following the lead
of the Reflection Principle, Elga (2007) suggests that if ce is the credence
distribution of an agent we consider an expert, then for any X ∈ L (or at
least any X in the expert’s area of expertise) we should assign

c(X | ce(X) = r) = r. (15)

Thinking more metaphorically, an “expert” distribution worthy of our
deference need not even be an agent. It may be rational to align our
credences with certain objective numerical values in the universe. This
brings us to the topic of direct inference principles.

1.6 Direct Inference Principles

Page 1 briefly mentioned interpretations of probability—proposals for the
meaning of “probability” locutions. For example, the classical interpreta-
tion, dating back at least to Laplace (1814/1995), defined probability as the
number of favorable outcomes of a process divided by the total number of
outcomes possible. Later, the frequency theory of probability (associated
most closely with von Mises, 1928/1957), read probability as the frequency
with which an outcome would occur were a particular process repeated
many times.20

My task here is not to assess these notions of probability as proposals in
the theory of meaning, or in the theory of probability. Instead, I want to
ask what these notions have to do with rational credence. Many Bayesians
have endorsed principles of direct inference: principles carrying the agent
from information about some notion of probability to specific credences
in specific events. For example, it might be that if I’m certain a particular
type of experimental setup produces a particular type of outcome with
frequency x, then when an experiment of that type is to be run, I should
have credence x that it will yield an outcome of that type. This would be a
principle of direct inference from frequency facts to credences in outcomes.

Frequency-to-credence principles face notorious difficulties, even when
sketched out as roughly as I’ve just done. For one, a single event (I go

20 The previous section introduced one usage of “Objective/Subjective Bayesian” terminology.
That usage should be carefully distinguished from another usage that often comes up in the
literature about interpretations of probability. In that literature, “Subjective Bayesianism”
describes the position that in everyday talk, “probability” always refers to or expresses
subjective credences. “Objective Bayesianism,” on the other hand, holds that probability
talk refers to something beyond the subject, such as frequencies or chances.
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in to my office tomorrow) can be classed as the outcome of a variety of
experiment types (choosing whether to go in on a summer day, choosing
whether to go in on a Tuesday, etc.), which may yield different frequencies
and therefore different credal recommendations. (This is one version of
the “reference class problem.”21) Also, if we tried to use this principle as a
general credence-setting strategy, we’d have trouble with experiments that
look to be unrepeatable. Before the Large Hadron Collider was switched
on, newspapers prominently reported physicists’ degrees of belief that
doing so would destroy the Earth. It’s difficult to align such credences
with the frequency with which switching on the collider would cause
global destruction; in the event of such destruction, the switching-on only
occurs once.

It may therefore be preferable to link rational credence with “objective
chance.” As a notion of probability, chance is objective, in the sense that its
value is determined by the physical makeup of an experimental apparatus.
Chance may also be applied to events that occur only once. A frequency-
to-credence principle recommends credence 1/6 that a fair die roll will
come up 3 on the grounds that repeating the roll will yield 3 one-sixth of
the time. The objective chance theorist recommends 1/6 on the grounds
that a fair die is physically constituted in a particular manner (equally
weighted on each side, etc.). This would remain true even if the die had
never been rolled before, and was guaranteed to be destroyed after the roll
in question.

The most famous direct inference principle linking credence and chance
is Lewis’ (1980) Principal Principle. Very roughly, and skipping over a
great many details,22 the Principal Principle directs an agent to set

c(A | Ch(A) = x) = x, (16)

unless she possesses inadmissible evidence relevant to A. Here Ch(A) = x
is the proposition that the objective chance of A is x. So—setting aside
the matter of inadmissible evidence for a moment—if the agent is certain
that, say, a particular die has a 1/6 chance of coming up 3, the Principal
Principle will set her credence in 3 at 1/6. If, on the other hand, the agent
knows the die is biased, but splits her credence evenly between the number
3’s having a 1/10 chance and a 1/5 chance of coming up, the Law of Total
Probability will combine with the Principal Principle to yield:

c(3) = c(Ch(3) = 1/10) · c(3 | Ch(3) = 1/10)

+ c(Ch(3) = 1/5) · c(3 | Ch(3) = 1/5)

= 1/2 · 1/10 + 1/2 · 1/5

= 0.15.

(17)

21 See Hájek (2007) for many more versions.
22 See Meacham (2010) for some of those details.
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In other words, her credence that the die will come up 3 is her expectation
of the objective chance of getting a 3. We can therefore think of the Principal
Principle as an expert deference principle in which the expert is objective
chance.

The key innovation of Lewis’ Principal Principle is its treatment of ev-
idence the agent takes to be relevant to the outcome of a chance event.
Lewis divides such evidence into two sorts: admissible evidence is evi-
dence that the agent takes to be relevant to the outcome because it affects
her opinion of the objective chance of the event. For example, information
about the weighting of the die is admissible with respect to the outcome
of the roll—it affects how the agent thinks the roll will come out by way
of affecting what the agent thinks are the chances of a 3. Inadmissible
evidence affects the agent’s opinion in some other way. For instance, if a
confederate tells her how the roll came out, this affects the agent’s opinion
of whether it came out 3, but not by making her think the chances of a 3
were any different going in. Lewis’ insight was that chance facts about an
outcome screen off admissible information relevant to that outcome. So if
E is admissible, the Principal Principle also gives us:

c(A | Ch(A) = x & E) = c(A | Ch(A) = x) = x. (18)

Admissible evidence relates to chances much the way a distal cause relates
to the proximal cause of an event.

1.7 Countable Additivity

Up to this point the examples we’ve considered have typically involved
only finitely many possibilities. But what if an agent considers a parti-
tion of infinitely many possible outcomes, and distributes her credence
equally among all of them? How can this be modeled in our Bayesian
epistemology?

To have a concrete example, let’s suppose that a positive integer has been
selected by some process, and our agent wants to assign equal credence to
each integer’s having been selected. Presumably that should be possible.
But what numerical value might that credence take? It’s easy to show that
the probability axioms prevent its being a positive real. For suppose the
agent assigns

r = c(1) = c(2) = c(3) = . . . . (19)

(Where c(1) is her credence that 1 was selected.23) For any positive real r,
there will exist a positive integer n such that r > 1/n. Now consider the

23 Notice we are now dealing with a language containing infinitely many atomic propositions.
While this is a change from our earlier setup, it’s not too difficult to manage, and is fairly
common in formal models.
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agent’s credence that the selected integer is between 1 and n (inclusive).
If you look back at the list of intuitive constraints following from the
Kolmogorov axioms (Section 1.1), the last principle on the bulleted list
will give us

c(1∨ 2∨ . . . ∨ n) = c(1) + c(2) + . . . + c(n) = r · n > 1, (20)

which violates the axioms.
What other options are available? One popular suggestion is that when

an agent assigns equal confidence to infinitely many possibilities, we
represent that level of confidence as a credence of 0. So we would say that
c(1) = c(2) = . . . = 0.

Using credence 0 in this way introduces a few problems. First, up
until this point we’ve conceived credence 1 as representing certainty in a
proposition, and credence 0 as certainty that the proposition is false. Now
we’ll have to allow an agent to assign c(P) = 0 even if the agent admits
P might be true, and c(∼P) = 1 even if the agent isn’t certain P is false.
And we’ll have to phrase the Regularity principle carefully: we may still
prohibit agents from assigning certainty to empirical propositions, but no
longer ban credences of 1 and 0 in such propositions.

Second, the Ratio Formula we’ve provided only relates the conditional
credence c(X |Y) to unconditional credences when c(Y) > 0. We’ll need
to expand this principle to handle cases in which c(Y) = 0 yet the agent
doesn’t rule Y out. For instance, our agent assigning equal credence to
the selection of each positive integer might assign c(2 | 2∨ 4) = 1/2, even
though c(2∨ 4) = c(2) + c(4) = 0.24

Third and most importantly, we’ll want a way to sum credences over
infinite disjunctions. Finite Additivity only covers disjunctions with finitely
many disjuncts—what if we want to calculate our agent’s credence that
the selected integer is even? A natural extension of Finite Additivity is the
following.

Countable Additivity. For any countable partition {Q1, Q2, Q3, . . .} ⊂
L,

c(Q1 ∨Q2 ∨Q3 ∨ . . .) = c(Q1) + c(Q2) + c(Q3) + . . . .

Countable Additivity is not only natural; it also allows us to establish a
very important constraint on credences.

Conglomerability. For any proposition P ∈ L and partition {Q1, Q2,
Q3, . . .} ⊂ L, c(P) is no greater than the largest c(P |Qi) and no less
than the least c(P |Qi).

24 One way to manage this situation is to take conditional credences as basic. See footnote 10

for more information.
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Given Conglomerability, the c(P |Qi) establish upper and lower bounds
on the value of c(P). This makes sense if you think of c(P) as a weighted
average of the credences the agent would assign to P conditional on all
the different possible Qi. And it’s especially important when the agent has
a partition {E1, E2, E3, . . .} of possible new pieces of evidence she might
receive before her next update. Assuming she plans to update by Condi-
tionalization, she knows that her future credence in P will be one of her
current c(P | Ei); Reflection then demands she satisfy Conglomerability.25

The Conglomerability/Countable Additivity package is attractive. But
it’s inconsistent with assigning a credence of 0 to each positive integer in
our example. The reason is simple: given Countable Additivity, the agent’s
credence that any positive integer will be selected at all is the sum of her
credences in each individual integer. But the former value should be 1,
while the latter individual values are each 0. So advocates of Countable
Additivity have suggested instead that in this situation the agent assign
an infinitesimal value to each integer’s being selected. The infinitesimals
are an extension of the set of real numbers, defined to be greater than
0 but less than any given real number. Thus they don’t fall prey to the
problem of our Equation 20. At the same time, adding up infinitely many
infinitesimals can yield a real number, so we can maintain both Countable
Additivity and a credence of 1 that any integer will be selected at all.

Yet infinitesimals introduce difficulties of their own; for some of the
difficulties, and many of the mathematical details, see Hájek (2003, Section
5), Williamson (2007), Easwaran (2014), and Wenmackers (this volume).

2 applications of credence

I’ve presented the Bayesian study of credence as the study of a doxastic
attitude type, and what it takes to make such attitudes rational. This study
is valuable in its own right, as a contribution to epistemology and the
philosophy of mind. But historically it’s also been pursued to enhance our
understanding of other topics, some of which we’ll discuss in this section.

2.1 Confirmation Theory

A Bayesian epistemologist or philosopher of science studies justification
and evidential support by thinking about “confirmation.” The type of con-

25 Notice that my statement of Conglomerability doesn’t specify the cardinality of the
Qi partition. For finite partitions, Conglomerability can be proven from the standard
probability axioms. Adopting Countable Additivity extends Conglomerability to countable
partitions. For an agent who entertains larger disjunctions than that, Seidenfeld, Schervish,
and Kadane (manuscript) show that at each cardinality we need the relevant Additivity
principle to secure Conglomerability for partitions of that size.
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firmation studied is usually incremental, rather than all-things-considered;
when we say that “evidence E confirms hypothesis H,” we mean that E
provides at least some positive evidential support for H, not that it settles
the matter of H or even pushes H past some crucial threshold.26 For a
Bayesian, confirmation is also always relative to a probability distribu-
tion, and to a background corpus of propositions. Most commonly, the
probability distribution will be some agent’s credence function, and the
background corpus will be the total evidence informing that credence
function. (On a Conditionalization regime, the corpus is represented for-
mally by the set of all propositions X such that c(X) = 1.27) So we take a
given agent at a given time, and ask whether E confirms H for her, relative
to her credences and background corpus at that time.

Letting K represent a background corpus, and ck represent a probability
distribution informed by that corpus, Bayesian confirmation theory posits
that

E confirms H relative to ck just in case ck(H | E) > ck(H).

Bayesian confirmation is just positive probabilistic relevance relative to ck.
(Similarly, disconfirmation is usually defined as negative relevance relative
to ck.)

Though fairly simple, this theory of confirmation turns out to be surpris-
ingly subtle, powerful, and convincing. To illustrate—and fix the intended
notion of evidential support in the reader’s mind—suppose a fair die
has just been tossed, and you know nothing of the outcome. Perhaps in
accordance with the Principal Principle, some frequency principle, or even
the Principle of Indifference, you assign equal credence to each of the six
possible outcomes. Relative to your credence distribution and background
corpus, if you received evidence that the toss came up with a prime num-
ber, this would confirm for you that the toss came up odd. Why? Because
if you satisfy the Kolmogorov axioms and Ratio Formula, then you assign

2/3 = c(odd | prime) > c(odd) = 1/2. (21)

This doesn’t mean that prime evidence should make you certain the toss
came up odd, or even that it would justify you in believing the toss came
up odd. But if you update by Conditionalization, learning that the toss
came up prime would make you at least somewhat more confident that
the toss came up odd. Again, the confirmation here is incremental.

26 This contrasts with the way “confirms” is sometimes used in English, as when we speak
of a nominee’s being confirmed, or even a dinner reservation.

27 Notice that despite our suggestion in Section 1.7 that it might sometimes be interpreted
otherwise, I have gone back to treating credence 1 as representing certainty. To simplify
discussion, I will continue to do this going forward.
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This Bayesian theory of confirmation gives the confirmation relation
some interesting and intuitive formal properties.28

◦ If E �� E′ and H �� H′, then E confirms H just in case E′ confirms
H′.

◦ E confirms H just in case E disconfirms ∼H.

◦ If E & K � H but K 2 H, then E confirms H.

◦ If H & K � E but K 2 H, then E confirms H.

The first of these properties ensures that logical equivalents behave the
same within the confirmation relation. The second relates confirmation to
disconfirmation. The third and fourth properties29 specify how confirma-
tion relates to entailment. The third property tells us that entailment is a
form of confirmation; if E entails H jointly with K while K didn’t entail
H on its own, then E confirms H. As for the fourth property, it captures
the idea30 that a hypothesis which predicts an evidential observation (in
concert with one’s background corpus) is confirmed by that observation.

On the other hand, the Bayesian theory withholds from the confirmation
relation certain properties that are sometimes mistakenly ascribed to it.
Here are two examples.

◦ If E confirms both H and H′, then the set H, H′, K is logically consis-
tent.

◦ If X confirms Y and Y confirms Z, then X confirms Z.

The first of these properties is important to reject because we’re talking
about incremental confirmation. For example, in Jeffrey’s example in which
an agent inspects a piece of cloth by candlelight, his brief glimpse may
confirm that the cloth is green, while also confirming that it’s blue or
even that it’s violet. (Perhaps the glimpse disconfirms that the cloth is
red and disconfirms that it’s orange.) This is perfectly reasonable, despite
the fact that green, blue, and velvet are inconsistent hypotheses about the
color of the cloth. Similarly, in scientific settings the same observation may
confirm mutually exclusive theories from a partition, while at the same
time (perhaps) ruling others out.

The latter property is the supposed property of confirmation transitivity.
This is one of the most common mistakes made about confirmation, sup-
port, justification, and other related notions.31 Just because X confirms Y

28 In every one of these properties, the expressions “E confirms H” and “E disconfirms H”
should be followed by the phrase “relative to ck.” Going forward I’ll simplify locutions by
leaving the relativization to ck implicit whenever possible.

29 Both of which require a side-condition that the set {E, K, H} is logically consistent.
30 Familiar from hypothetico-deductivism (Crupi, 2016, Section 2).
31 Correcting this mistake has been a theme of the epistemology literature about epistemic

and justificatory closure. See, e.g., Dretske (1970), Davies (1998) and Wright (2003).



24 michael g . titelbaum

and Y confirms Z does not mean that X confirms Z—even in the special
case when Y entails Z! To see why, imagine a card has been drawn at
random from a standard playing card deck. Information that the card is
a spade confirms (incrementally!) that the card is the Jack of Spades. But
information that the card is a spade does not even incrementally confirm
that the card is a jack.

Another common mistake is to conflate what Carnap (1962) called
“firmness” and “increase in firmness” accounts of confirmation.32 The
Bayesian account we’ve been discussing is an increase in firmness account.
A firmness account, on the other hand, says that E confirms H relative
to ck just in case ck(H | E) is high (where the necessary height may be
influenced by, say, contextual parameters). Among many other problems,
the firmness account errs by maintaining that E confirms H in cases when
ck(H | E) is high simply because the prior ck(H) is high. In fact, a firmness
account may say that E confirms H relative to ck even though ck(H | E) is
lower than ck(H) (as long as ck(H | E) is nevertheless high)! The Bayesian
account focuses on the relation between E and H—how E would alter the
agent’s opinion of H—rather than just on where that opinion would land
were E taken into account.

We can provide more information about E’s effect on the agent’s opinion
of H by measuring the degree of incremental confirmation. The simplest
way to measure confirmation is to calculate ck(H | E)− ck(H); this mea-
sure simply asks how much conditionalizing on E would increase the
agent’s confidence in H. Yet as a measure of E’s bearing on H, this simple
difference has some drawbacks. For example, the degree to which E can
confirm H will be limited by the value of ck(H). If, say, ck(H) = 0.99, then
even if E entails H, the maximal degree to which it can confirm H will
be 0.01. Bayesian confirmation theory thus has a considerable literature
proposing and assessing alternative measures of confirmational strength;
see Crupi (2016, Section 3.4) for a recent summary and references.

One upshot of the literature on measuring confirmation is a new ap-
proach to “solving” traditional paradoxes of confirmation. For example,
we usually think that universal generalizations are confirmed by their
positive instances. The hypothesis that all ravens are black is typically
confirmed by the evidence that a particular raven is black.33 In symbols,
(∀x)(Rx ⊃ Bx) is confirmed by Ra & Ba. But now suppose we discover an
item that is a non-black non-raven. The evidence ∼Ba &∼Ra is a positive

32 Carnap was well-acquainted with this mistake, having made it himself in the first 1950

edition of his Logical Foundations of Probability.
33 I say “typically” because it is possible to generate a deviant background corpus against

which it would be reasonable for the observation of a black raven to disconfirm that all
ravens are black. (For examples, see Swinburne, 1971, and Rosenkrantz, 1977, Chapter 2.)
The generation of the paradox doesn’t rely on such deviant corpora, so we will set them
aside for the rest of the discussion.
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instance of the generalization (∀x)(∼Bx ⊃ ∼Rx), so it should confirm that
generalization. Yet the latter generalization is (by contraposition) logically
equivalent to our former one. So by the first property of confirmation
I endorsed above, ∼Ba &∼Ra should confirm that all ravens are black.
This is Hempel’s (1945) famous “Paradox of the Ravens,” which seems to
generate the absurd conclusion that a hypothesis about the color of ravens
may be confirmed by the observation of a white shoe.

Recently, a number of Bayesian confirmation theorists have conceded
that perhaps a white shoe does confirm that all ravens are black—it’s
just that observing a white shoe confirms this hypothesis much less than
observing a black raven would.34 Fitelson and Hawthorne (2010), for
instance, specify conditions on ck such that as long as these conditions are
met, evidence of a black raven will confirm the ravens hypothesis much
more strongly than evidence of a non-black non-raven, on virtually every
proposed measure of confirmation in the literature. It’s highly plausible
that most of us in the real world have credence distributions satisfying
Fitelson and Hawthorne’s conditions, accounting for our intuitions about
the asymmetry of favoring in this case. Similar approaches have been taken
to the problem of irrelevant conjunction (Hawthorne & Fitelson, 2004) and
Goodman’s (1955) grue paradox (Chihara, 1981; Eells, 1982).

2.2 Decision Theory

Since this handbook contains an extensive article on decision theory
(Thoma, this volume), I will give only a brief sketch here. In formal
decision theory, an agent is confronted with a decision problem, repre-
sented by a partition of acts she may perform. Once she performs an
act, some outcome will occur, and the agent values different outcomes to
different degrees. These valuations are represented by a utility function,
which assigns real-number utilities to each possible outcome. (The key
assumption about utilities is that they measure value uniformly—the agent
takes each added unit of utility to be as valuable as the next. The same is
not true of money; your first dollar may be much more valuable to you
than your billionth.)

So what’s difficult about that—shouldn’t the agent just choose the act
leading to the most valuable outcome? The trouble is that the agent may
be uncertain which acts will lead to which outcomes. Put another way,
the agent may be unsure what state the world is in, and the outcome that
follows her decision may depend both on the act she chooses and on the
remaining state of the world. For example, suppose I’m trying to decide
whether to go into my office tomorrow. I know that if I go, it may be quiet

34 Though the idea dates all the way back to Hosiasson-Lindenbaum (1940).
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and peaceful there, in which case I’ll get a great deal of writing done,
which is an outcome I highly value. On the other hand, there may be loud
construction happening outside my office window, in which case I’ll dally
on the internet and get no writing done, an outcome to which I assign little
utility. Since I don’t know the state of construction around my building
tomorrow, it’s unclear to me which available act (go into the office, stay
home) correlates with which outcomes, complicating my decision.

The standard solution to this problem is to have the agent assign an
expected value to each available act. An agent’s expected value for an act
is her expectation for the amount of utility that will accrue if she performs
the act—calculated using her credences that various states of the world
obtain. Given a decision between two acts, a rational agent prefers the act
to which she assigns the higher expected value (and is indifferent in case
of ties). We can thus use her credence and utility assignments to develop a
preference ordering over the acts available to her in any decision problem.

For example, suppose I assign a utility of 100 to a day of peaceful writing
at my office, but a utility of 0 to spending the day there with construction
going on. If I’m 40% confident there’ll be no construction tomorrow, my
expected utility of going into the office is

EU(go to office) = c(no construction) · u(peaceful writing)

+ c(construction) · u(wasted day)

= 0.40 · 100 + 0.60 · 0
= 40,

(22)

where the function u designates the amount of utility I assign to a given
outcome. Given this expected utility for going to the office, I should prefer
to stay home only if I expect doing so to yield me a utility greater than 40.

We can prove that if an agent sets her preferences by maximizing
expected utility, her preference ordering over acts will satisfy various
intuitive conditions, commonly known as the “preference axioms.” For
example, her preferences will be asymmetric (she never prefers both A to
B and B to A) and transitive (if she prefers A to B and B to C, then she
prefers A to C).

As I said, I’m going to avoid the many subtleties of developing a full-
blown decision theory. One crucial concern is cases in which the agent’s
act may be correlated with the state of the world. Evidential decision
theorists (Jeffrey, 1965) respond by working with the agent’s credence in a
state conditional on her performing a particular act, while causal decision
theorists (Gibbard & Harper, 1978; Lewis, 1981; Joyce, 1999; Weirich, 2012)
consider the agent’s credence that her act will cause a particular state to
obtain. Another concern is modeling risk-averse agents—such as an agent
who prefers a guaranteed payout with utility 1 to a fair coin flip on which
heads yields a prize with utility 3 (Allais, 1953; Buchak, 2013).
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There is, however, one more notion from decision theory that we’ll need
in what follows: fair betting price. Consider a proposition P and a betting
slip that guarantees its possessor $1 if P turns out to be true. How much is
that betting slip worth to you? That depends how confident you are that P
obtains. If you’re certain of P, that slip is worth $1 to you. If you’re certain
P is false, the slip is worth nothing. In between, the more confident you
are of P, the more value you assign to the betting slip.

To be more precise, your expected value in dollars of the fair betting
slip is c(P) · $1. We call this your fair betting price for this gamble on P. In
general, if a bet pays out $X dollars when P is true, your fair betting price
for the bet is

c(P) · $X. (23)

What does it mean to say this is your fair betting price? Suppose someone
offers to sell you a betting slip that pays off on P. Your fair betting price
is the price at which you’d expect to break even on such an investment.
Assuming you value money linearly (so that each additional cent confers
the same amount of additional utility on you), decision theory says that
you should be willing to purchase the betting slip for any amount lower
than your fair betting price, and indifferent about buying it at exactly your
fair betting price. Conversely, if you possess such a slip, you should be
willing to sell it for any amount above your fair betting price.

2.3 Other Applications

Historically, confirmation and decision theory have been major drivers
of Bayesianism’s development and the two most common applications to
which the approach has been put. But the Bayesian theory of credences
has been applied to many other philosophically significant topics as well.
Here are a few examples.

◦ Probabilities have been used to measure when the propositions in a
set cohere. Coherentism about justification has then been evaluated
by asking whether coherence among propositions makes it rational
to invest a higher credence in each of them. See Shogenji (1999),
Bovens and Hartmann (2003), Huemer (2011), and Olsson (2017).

◦ It’s been debated whether an agent who updates by conditional-
ization will thereby increase her credence in the hypothesis that
best explains evidence observed. Van Fraassen (1989) argues that
Bayesianism is incompatible with Inference to the Best Explanation.
Replies have been offered by, inter alia, Okasha (2000), Lipton (2004),
Weisberg (2009), and Henderson (2013).
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◦ Elga (2007) argues that when an agent discovers that an epistemic
peer has assigned different credences than her based on the same
evidence, that agent should move her credences closer to her peer’s.
A great deal of debate has ensued about whether such conciliation-
ism is the rational response to peer disagreement. Christensen (2009)
presents a useful survey that is unfortunately now outdated; Chris-
tensen and Lackey (2013) is a more recent collection. (Though plenty
has been published on the subject since then!)

◦ The peer disagreement controversy intersects with broader questions
about the rational response to higher-order evidence—evidence con-
cerning whether one has responded rationally to one’s evidence. New
essays on higher-order evidence and its connection to disagreement
may be found in Rasmussen and Steglich-Petersen (forthcoming).

◦ Peer disagreement is also an aspect of social epistemology, which has
considered for decades how groups and individuals should combine
the opinions of multiple experts to form a coherent single view. The
literature on probabilistic opinion pooling dates back at least to Boole
(1952). More recent discussions, with copious additional references,
include Bradley (2007), Russell, Hawthorne, and Buchak (2015), and
Easwaran, Fenton-Glynn, Hitchcock, and Velasco (2016).

3 arguments for credal constraints

Many of the constraints on credences presented in Section 1 have an
intuitive claim on being rationally required. It’s just plausible that the
more confident you are it will rain tomorrow, the less confident you should
be that it won’t rain. But can we provide arguments for the various rational
constraints? Here I’ll survey three historically-significant approaches to
arguing for rational constraints on credence.

3.1 Representation Theorem Arguments

In Section 2.2 I suggested that if an agent has credence and utility functions,
decision theory can combine these to determine her rational preferences
among acts. But decision theory can also work in the opposite direction.
Suppose I observe an agent make a number of decisions over her life-
time. Assuming these choices express her preferences among acts, I can
construct credence and utility functions for her that would rationalize
such preferences if she is an expected utility maximizer. I might then use
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these credence and utility functions to predict choices she’ll make in the
future.35

We can prove that as long as an agent’s preferences are rational, she can
be represented as maximizing expected utility by combining credence and
utility functions. More precisely, a representation theorem shows that given
a preference ordering over acts satisfying certain preference axioms, there
exists a utility function and a probabilistic credence function on which
those preferences maximize expected utility. Since there are many different
versions of decision theory, there are many sets of preference axioms, and
so many different representation theorems.36 But typically the preference
axioms can be divided up into two sorts: substantive constraints such
as the asymmetry and transitivity requirements I mentioned earlier; and
what Suppes (1974) calls “structure axioms” specifying that the preference
ordering is complete, has acts available at a variety of levels of preference,
etc. (Structure axioms are usually considered a convenience to make the
theorems cleaner and the proofs easier.)

Representation theorems can be highly useful. For instance, economists
engaged in rational choice theory often model market participants as
maximizing expected utility based on a utility function and a probabilistic
credence function. A representation theorem assures us that as long as
an agent remains rational—in the sense of making choices that satisfy
the preference axioms—her behavior will continue to conform to such a
model.

Yet there’s a big step from arguing that rational agents can be modeled as
employing a probabilistic credence function to arguing that rational agents
actually possess probabilistic credence functions (Hájek, 2009; Meacham &
Weisberg, 2011). We can begin to see the problem by noting that an agent’s
preferences will often underdetermine her utility and credence distribu-
tions. That is, if all we know is an agent’s preferences, there are (infinitely)
many different pairs of utility and credence functions that will generate
that preference ordering by maximizing expected utility. Moreover, many
of those pairs feature credence functions that don’t satisfy the probability
axioms. Standard representation theorems prove only that if an agent’s
preferences satisfy the axioms, there exists a corresponding credence/utility
pair in which the credence function satisfies the probability rules. This
hardly shows that rationality requires probabilistic credences.

35 We can think of this as a formalization of the folk deployment of a “theory of mind.”
I watch what you do, I surmise what you want and what you believe, then I let that
information guide my interactions with you going forward.

36 Representation theorems were inspired by early, suggestive results in Ramsey (1931). The
first rigorous representation theorem of the type we’re discussing is in Savage (1954).
(Though see also von Neumann and Morgenstern, 1947.) A representation theorem for
evidential decision theory appears in Jeffrey (1965), while Joyce (1999) proves one for
causal decision theory.
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Matters can be improved with a representation theorem based on some
ideas Lara Buchak and I came up with together. (A sketch of a proof
appears in the Appendix.) This theorem shows that if an agent’s pref-
erences satisfy various preference axioms, and she maximizes expected
utility, then her credence function must be a positive scalar transformation
of a probability distribution. In other words, her credences will be non-
negative, they will be finitely additive, they will assign the same value to
every tautology, and that value will be greater than the value assigned
to contradictions. A credence function like this will have all the same
properties as a probabilistic function, except that the maximal value it
assigns to tautologies may be some positive number other than 1. Yet
nothing substantive hangs on whether we measure credence on a 0 to 1
scale or instead, say, a percentage scale from 0 to 100.

Still, even the improved theorem assumes that the agent’s credences
and utilities interact with preferences through the maximization of ex-
pected utility. Zynda (2000) notes that there are many other mathematical
quantities combining credence and utility that an agent could choose to
maximize. So to argue for probabilism (or something close to it) using one
of these representation theorems, we need to assume not only that ratio-
nality requires satisfying the preference axioms, but also that it requires
maximizing expected utility.

3.2 Dutch Book Arguments

As with representation theorems, an inspiration for Dutch Book arguments
can be found in Ramsey’s (1931), in which he commented,

These are the laws of probability, which we have proved to be
necessarily true of any consistent set of degrees of belief. . . .
If anyone’s mental condition violated these laws, his choice
would depend on the precise form in which the options were
offered him, which would be absurd. He could have a book
made against him by a cunning better and would then stand
to lose in any event. (p. 84)

Suppose, for instance, that I am both 0.7 confident that I will go to
my office tomorrow and 0.7 confident that I will not. Now consider two
betting slips—one that pays a dollar if I go to the office, and another that
pays a dollar if I don’t go to the office. Given my credences, my fair betting
price for each of these slips is $0.70. That means I’m willing to pay up to
$0.70 for each of them. So suppose I buy both, at a price of $0.70 each. I’ve
now spent a total of $1.40, and no matter what happens tomorrow, I will
only make $1. My non-probabilistic credence distribution has made me
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susceptible to a combination of bets on which I will lose $0.40, come what
may!

De Finetti (1937/1964) proved that if an agent’s credences violate the
probability axioms, a set of bets exists such that if the agent purchases
each of them at her fair betting price, she will lose money in every possible
world. For unknown reasons, such a set of bets is called a “Dutch Book.”
The proof works by going through each of the axioms one at a time, and
showing how to construct a Dutch Book against an agent who violates
the relevant axiom. Moreover, we can establish what Hájek (2009) calls
a “Converse Dutch Book Theorem,” showing that if an agent satisfies the
probability axioms, no Dutch Book of the types described in de Finetti’s
proof can be constructed against that agent.

Other proofs show how to construct Dutch Books against agents who
violate the Reflection Principle (van Fraassen, 1984), the Principal Principle
(Howson, 1992), Regularity (Kemeny, 1955; Shimony, 1955), and Countable
Additivity (Adams, 1962). We can also construct what is known as a “Dutch
Strategy” against any agent who violates Conditionalization (Teller, 1973,
reporting a result of David Lewis’) or Jeffrey Conditionalization (Armendt,
1980; Skyrms, 1987b). A Dutch Strategy is not strictly speaking a particular
set of bets guaranteed to give the agent a sure loss; instead, it’s a strategy
for placing bets with the agent in which certain bets are placed at an initial
time, then future bets are placed depending on what the agent learns after
that time. Still, the idea of a Dutch Strategy is that no matter what happens
(and no matter what the agent learns), if she purchases the bets at her fair
betting prices when they’re offered, she’ll face a net loss come what may.

Avoiding Dutch Books and Dutch Strategies seems an important advan-
tage for the probabilistic agent. Still, can we argue that rationality forbids
susceptibility to Dutch Strategies and Books? One problem is that the
negative effects of violating probabilism highlighted by Dutch Books seem
oddly practical. We might have thought that the Kolmogorov axioms pro-
vided constraints of theoretical (rather than practical) rationality on agents’
credences. Yet here we’re arguing for those axioms by pointing to financial
consequences of violating them. Moreover, it’s unclear how seriously we
should take those potential consequences. Are non-probabilistic agents
ever really going to face the precise set of bets that would expose them to a
Dutch Book? And what if the non-probabilistic agent has read about Dutch
Books, and decides that instead of changing her credences, she’ll just be
more cautious in her betting behavior? In the example above concerning
my going to the office, I might pay $0.70 for the bet that pays off if I go
into the office, but then refuse to buy the second bet because I see a Dutch
Book coming. In that case I’ll still have non-probabilistic credences, but
will manage by practical strategizing to avoid the prospect of a sure loss.
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Taking a cue from the second sentence of the Ramsey quote above, a
number of authors have tried to “depragmatize” Dutch Book arguments.
Skyrms writes that “For Ramsey, the cunning bettor is a dramatic device and
the possibility of a dutch book a striking symptom of a deeper incoherence”
(Skyrms, 1987a, p. 227, emphases mine). For these authors,37 susceptibility
to Dutch Book merely brings out an underlying inconsistency in the agent’s
credences—the inconsistency of evaluating the same thing different ways
depending on how it’s presented.

Return to my bets on whether I’ll go into the office tomorrow. Given my
0.7 confidence that I’ll go, my fair betting price for a bet that pays $1 if I go
and nothing otherwise is $0.70. So I value that bet at $0.70; if I’m offered
the opportunity to purchase that bet at any lower amount—say, $0.50—I’d
consider that a favorable deal. On the other hand, my 0.7 confidence that I
won’t go gives me a fair betting price of $0.70 for a bet that pays $1 if I
don’t go and nothing if I do. So I would consider it unfavorable to sell that
bet at any price less than $0.70—for instance, $0.50. Yet buying the first
bet at $0.50 and selling the second bet at $0.50 are the exact same transaction;
each one would net me $0.50 if I go to the office and lose me $0.50 if I
don’t. So do I view that transaction favorably or not? One of my credences
suggests I view it favorably, while the other demands I don’t. How those
credences evaluate those bets reveals the conflict between them.38

Still, even depragmatized Dutch Book arguments make potentially con-
troversial assumptions. First, we’re assuming that a rational agent’s fair
betting prices equal her expected payouts—an assumption that might fail
for risk-averse agents. And second, to construct a Dutch Book against some
violations of Finite Additivity, we need to assume a “package principle”—
that a rational agent’s fair betting price for a combination of two bets
equals the sum of her betting prices for each bet considered singly. Each of
these assumptions would follow easily if we assumed that rational agents
always choose to maximize expected utility. But if we could assume that,
we’d already have a representation-theorem argument for something very
close to probabilism (Section 3.1).39 So it’s unclear why the detour through
cunning bettors would be required.

37 See also Armendt (1992), Christensen (2004), and Howson and Urbach (2006).
38 Notice that I wouldn’t have this problem if I satisfied the probability calculus by, say,

assigning credence 0.7 that I’ll go and credence 0.3 that I won’t. In that case I’ll look
favorably on buying the first bet at $0.50 and also look favorably on selling the second one
at $0.50, so my evaluations will harmonize.

39 In fact, the representation theorem proof in the appendix closely mirrors the structure of
traditional Dutch Book theorems for probabilism.
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3.3 Accuracy Arguments

In his 1998, James M. Joyce sets out to provide a “nonpragmatic vin-
dication of probabilism” that would explicitly avoid invoking practical
consequences in its defense of the probability axioms as rational con-
straints on credence. His work builds on mathematical results from de
Finetti (1974) and Rosenkrantz (1981), but uses those results to construct a
new kind of argument.

Joyce’s key idea is that from a point of view of pure theoretical rationality,
agents should aim to make their credences as accurate as possible. How
might we measure the accuracy of a credence function? Historically, one
option had been to focus on calibration. Function c is perfectly calibrated
if, for every 0 ≤ x ≤ 1, when we look at all the propositions in L to which
c assigns credence x, the fraction of those propositions that are true is
exactly x. If I’m perfectly calibrated, exactly half of the propositions to
which I assign credence 1/2 are true, exactly a third of the propositions to
which I assign credence 1/3 are true, etc.

Van Fraassen (1983) and Shimony (1988) argue for probabilism by show-
ing that in order for a credence distribution to be embeddable in larger and
larger systems approaching perfect calibration, that credence distribution
must satisfy the probability axioms. This might stand as a good argument
for probabilism, except that calibration has some intuitively undesirable
features as a measure of accuracy. For example, consider two agents who
assign credences to four propositions as in Table 1. I hope you’ll agree

A B C D

Agent 1 0.5 0.5 0.5 0.5

Agent 2 1 1 0.01 0

Truth-values T T F F

Table 1: Two credence assignments

that intuitively, Agent 2’s credences are much more accurate (close to the
truth) than Agent 1’s. Yet Agent 1 is perfectly calibrated—exactly half the
propositions to which she assigns credence 1/2 are true—while Agent 2 is
not.

Our intuitions about accuracy work by looking at each credence assign-
ment one at a time, assessing how accurate that credence is given the
truth-value of the proposition, and then aggregating those local accuracy
assessments across all the propositions. Yet calibration works with global
features of a probability distribution, which (as we’ve just seen) can lead
to distorting effects.
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So Joyce uses a gradational accuracy approach instead. On this approach,
we select a scoring rule to measure how far each individual credence
assignment to a proposition is from the truth about that proposition.
Intuitively, when proposition P is true, higher credences in P are more
accurate; when P is false, lower credences are better. We can formalize
this by having a function I that assigns 1 to P if it’s true and 0 if it’s false,
then measuring how far c(P) is from I(P). Historically, it’s been popular
to measure this distance as

(I(P)− c(P))2. (24)

Notice that this measurement increases the farther you are from the truth;
so it’s a measure of credal inaccuracy. A rational agent aiming to be
as accurate as possible should look to minimize this quantity for each
proposition. Globally, she should look to minimize the sum of this quantity
across all the propositions she entertains. (This sum is commonly known
as the Brier score, named for meteorologist George Brier’s discussion of it
in his 1950.)

Joyce shows that if we use the Brier score to measure accuracy, then
any non-probabilistic credence distribution will be accuracy-dominated
by another, probabilistic distribution over the same set of propositions.
That is, if you take an agent whose credences over some language vio-
late the probability axioms, there will be another, probabilistic credence
distribution over the same language that has a more accurate Brier score
than hers in every possible world. When the nonprobabilistic agent considers
that alternative distribution, she will know that it’s more accurate than
hers, even without knowing anything about which possible world is actual.
Joyce argued that for an agent to maintain her nonprobabilistic distribu-
tion, despite this information that another distribution was certainly more
accurate, would be irrational. And since the same situation will confront
any agent whose credences violate the probability axioms, this constitutes
an argument for probabilism.40

Related accuracy arguments have been offered for a variety of other
Bayesian norms: Conditionalization (Greaves & Wallace, 2006; Briggs &
Pettigrew, forthcoming), the Principal Principle (Pettigrew, 2013), the
Principle of Indifference (Pettigrew, 2014), Reflection (Easwaran, 2013),
and Conglomerability (Easwaran, 2013).

There are two main concerns in the literature about these accuracy
arguments. First, there’s a general concern about assessing the rationality
of credences by measuring their distance to the truth. The gradational
accuracy approach evinces a sort of epistemic consequentialism, in which

40 Importantly, the same kind of argument cannot be run against probabilism. A credence
function that satisfies the probability axioms will not be accuracy-dominated in the manner
Joyce describes by any other function (probabilistic or otherwise).
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attitudes aim for some outcome (in this case, truth), and are evaluated by
how well they approximate that goal. Just as teleological approaches to
normativity have aroused suspicion in ethics and other areas of philosophy,
the gradational accuracy program has been criticized by such authors as
Greaves (2013), Berker (2013), and Carr (2017).

Second, among those who accept the gradational accuracy program,
there’s a concern about how to select an appropriate scoring rule for
measuring accuracy. Maher (2002) suggests that instead of using the Brier
score, we might gauge the distance between an individual credence c(P)
and a truth-value I(P) by calculating

|I(P)− c(P)|. (25)

Historically, the Brier score was favored over this absolute-value score
because the former is a “proper” scoring rule while the latter is not. To
understand the difference, suppose a six-sided die has just been rolled,
and we have two characters who do not yet know the outcome. Our
first character, Chancey, assigns credence 1/6 to each of the possible
outcomes. Our second character, Pessimist, assigns credence 0 to each
outcome. Chancey’s credence function satisfies the probability axioms,
while Pessimist’s does not.

Now suppose each of our characters calculates an expected inaccuracy
value for herself and for the other person. To give an example of how this
works, suppose Chancey calculates an expected inaccuracy value for her
own distribution using the Brier score. To do so, Chancey considers each of
the six possible worlds available (that is, each of the six possible outcomes
of the die roll), evaluates what her Brier score would be in that possible
world, multiplies by her credence that that possible world is actual, then
sums across all the possibilities. If, for instance, the die roll comes up 3,
Chancey’s Brier score will be

(I(1)− c(1))2 + (I(2)− c(2))2 + (I(3)− c(3))2

+ (I(4)− c(4))2 + (I(5)− c(5))2 + (I(6)− c(6))2

= (0− 1/6)2 + (0− 1/6)2 + (1− 1/6)2

+ (0− 1/6)2 + (0− 1/6)2 + (0− 1/6)2

= 1/36 + 1/36 + 25/36 + 1/36 + 1/36 + 1/36

= 30/36

= 5/6.

(26)

A bit of reflection will show that this is Chancey’s Brier score in each
of the six possible worlds. So her expected Brier score across all those
worlds is also 5/6. In the meantime, I’ll leave it to the reader to calculate
that Pessimist’s expected Brier score is 1. Since higher scores mean more
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inaccuracy—and less accuracy—Chancey expects her credences to be more
accurate than Pessimist’s when the Brier score is used to calculate accuracy.

Exactly the opposite happens if we use the absolute-value measure.
Again, I’ll leave it to the reader to calculate that Chancey’s expected
absolute-value score is 5/3, while Pessimist’s is again 1. So by the lights
of the absolute-value score, the nonprobabilistic Pessimist is expected to
be more accurate than the probabilistic Chancey.

Proper scoring rules are rules on which a probabilistic agent will never
expect some other agent to be more accurate than herself. The Brier
score is one of many proper scoring rules, while the absolute-value score
is improper. In general, it seems irrational for an agent to hold onto a
credence distribution when she expects some other agent’s credences
to be more accurate than her own (Lewis, 1971). So a theorist who has
already accepted that probabilistic distributions are rational has good
reason to work with proper scoring rules rather than improper ones. The
accuracy-based arguments for Conditionalization, the Principal Principle,
the Indifference Principle, etc. mentioned above all confine themselves to
working with proper scoring rules.

Predd et al. (2009) show that Joyce’s accuracy-dominance argument
for probabilism could be run using any proper scoring rule. Yet in the
context of an argument for probabilism, favoring proper scoring rules over
improper ones seems question-begging. Proper scoring rules are defined
as those on which probabilistic distributions are rated more expectedly
accurate than the alternatives. Unless you have an antecedent reason to
think probabilistic distributions should come out looking better than the
alternatives, this is no reason to prefer a proper score.41

4 arguments against credal constraints

Having surveyed some arguments in favor of various rational constraints
on credences, what are the arguments against these constraints? Of course
there are many, and they multiply over time. Here I will focus on a
handful that have generated insightful discussion and interesting positive
responses.

4.1 The Problem of Logical Omniscience

Savage (1967) famously considered the plight of “a person required to
risk money on a remote digit of π.” His concern was that according to
the Normality axiom, an agent is required to assign certainty to every
tautology in her language L. Arguably, the fact that a given digit of π

41 Though there may be other reasons. See, e.g., Joyce (2009) and Pettigrew (2016).
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takes a particular value is a tautology.42 So according to probabilism, a
rational agent should be certain of all the digits of π. Yet this seems too
much for rationality to demand of any real agent.

Savage’s discussion initiated a literature on what is known as “the
problem of logical omniscience.” I actually think there are multiple, related
problems here, which we might label as follows.43

Credal Completeness. Probabilism requires an agent to assign a cre-
dence to each proposition in her language.

Logical Discernment. Probabilism forbids an agent from assigning a
credence other than 1 to any tautology.

Logical Learning. A probabilistic agent will never pass from a lower
credence in a tautology to a higher credence.

The problem of Credal Completeness is that the probability axioms
require an agent to assign a credence to every proposition in her language.
For instance, Non-Negativity says that every X ∈ L receives some non-
negative credence value. Even in a language with finitely many atomic
propositions, closure under truth-functional connectives will generate a
language of infinite size. Yet it seems not only impossible for a finite agent
to assign that many credences, but also inadvisable under Harman’s (1986)
principle of Clutter Avoidance.

Clutter Avoidance. One should not clutter one’s mind with trivialities.

Yet we can slightly alter our formalism so that it no longer demands credal
completeness and evades clutter avoidance concerns. The idea is to require
not that an agent’s credence distribution actually satisfy the probability
axioms, but only that it be extendable to a distribution that does. In other
words, we permit an agent to adopt a partial credence distribution that
assigns numerical values to only some of the propositions in L, but we
require that there be some possible way of assigning values to the rest of
L so that the resulting full distribution satisfies the axioms. This approach
recovers intuitive results such as the stricture that if an agent assigns
credences to both P and ∼P, those credences must sum to 1. But it will
not fault an agent if she fails to adopt attitudes towards P, ∼P, or both.

Moving to partial distributions avoids the problem of Credal Com-
pleteness, but leaves the problem of Logical Discernment intact. It seems

42 If your views about logicism in the philosophy of mathematics entail that facts about
digits of π are not tautologies, we can always substitute in a conditional whose antecedent
is various arithmetic axioms and whose consequent reports a digit of π. Or we can work
instead with some highly complex logical truths.

43 The “Logical Learning” label is common in the literature; I invented the other two labels
for our discussion here.
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perfectly rational for me to assign credence 1/10 that the trillionth digit of
π is a 2. Yet any credence distribution—partial or complete—containing
that assignment is not extendable to a probabilistic distribution. It’s either
a tautology that the billionth digit is a 2, or it’s a tautology that the billionth
digit isn’t, so probabilism either demands that I assign that proposition a
credence of 1 or demands that I assign it a credence of 0. Whichever is the
true demand, it seems a bit too demanding, since I don’t have any good
way to figure out which demand it is.

Before considering responses to this problem of Logical Discernment,
let’s quickly consider Logical Learning. The following credal sequence
seems quite reasonable: I assign credence 1/10 that the trillionth digit
of π is a 2, Talbott (1991) tells me that it is indeed a 2, so my credence
that it is dramatically increases (perhaps all the way to 1). It seems in
this case that I have learned a logical truth, and my credal increase is
a rational response to that learning episode. Yet a traditional Bayesian
system will not approve of this response, or be able to usefully model it,
since a probabilistic system countenances only credence distributions (at
any time) that assign that proposition a value of 1.

If we solved the Logical Discernment problem by building a Bayesian
theory that allowed rational credences in tautologies other than 1, pre-
sumably that theory would also allow increases and decreases in such
credences. So there’s hope that a solution to Logical Discernment would
open up a solution to Logical Learning.

How, then, might we model a Bayesian agent without perfect logical
discernment? Responding to Savage, Hacking (1967) suggests we identify
a proposition as “personally possible” for an agent if the agent doesn’t
know it’s false. We then adjust Normality to demand certainty only in
propositions whose negations are personally impossible, and Finite Ad-
ditivity to apply only when P & Q is personally impossible. This allows
an agent to be ignorant of arbitrarily many logical truths, and therefore
less-than-certain of those truths.

Yet this approach creates three problems. The first is formal. Hacking
works with credence distributions over sentences, and he’s free to treat
whatever sentences he wants as personally possible or impossible. But if
we think of those sentences as representing underlying propositions, and
those propositions in turn as representing underlying sets of possibilities,
it seems natural to ask what possibilities an agent entertains when she
entertains as personally possible that which is logically impossible. To
address this sort of gap, Hintikka (1975) constructs a semantics admit-
ting of logically impossible worlds, which can enter into the content of
propositions in just the manner of classical possible worlds.

A second, intuitive problem is that Hacking’s approach allows for arbi-
trarily large amounts of logical non-omniscience—nothing in Hacking’s
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formalism indicts an agent who assigns less-than-certainty to P ∨ ∼P,
as long as that agent doesn’t know the proposition is true. Bjerring and
Skipper (manuscript) complain Hacking’s formalism is so permissive that
in sacrificing logical omniscience, it fails to capture any rational require-
ment of basic logical competence. They make similar complaints about a
framework from Garber (1983), and various formalisms developed using
Hintikka’s semantics.

Finally, it’s important to see what a Bayesian system loses when it’s
redefined in terms of personal rather than logical possibility. If an agent
fails to know that P &∼P is impossible, then by Hacking’s lights she need
not apply Finite Additivity to P and ∼P. As a result, such an agent may
assign P and ∼P credences summing to more than 1. She may increase her
credence in P without decreasing her credence in ∼P. In our relevance-
based theory of confirmation, she may not see P as disconfirming ∼P. And
when she selects actions by maximizing expected epistemic utility, she
may violate the preference axioms in a variety of ways. In other words, the
very features and applications that make Bayesianism a plausible picture
of rationality begin to dissolve once logical discernment requirements are
loosened.

So perhaps we should go in the other direction? A number of theorists
have begun to wonder if logical omniscience requirements are not an
annoying side-effect of our epistemic formalisms, but instead a hint from
those formalisms about the underlying normative domain. Smithies (2015)
argues that certainty in logical truths is in fact a requirement of rationality;
Titelbaum (2015) and Littlejohn (2018) advocate related positions.

4.2 The Problem of Old Evidence

Clark Glymour initiated the Old Evidence debate with a famous example.

Scientists commonly argue for their theories from evidence
known long before the theories were introduced. . . . The ar-
gument that Einstein gave in 1915 for his gravitational field
equations was that they explained the anomalous advance of
the perihelion of Mercury, established more than half a cen-
tury earlier. Other physicists found the argument enormously
forceful, and it is a fair conjecture that without it the British
would not have mounted the famous eclipse expedition of 1919.
Old evidence can in fact confirm new theory, but according to
Bayesian kinematics, it cannot. (Glymour, 1980, pp. 306–7)

We’ve already seen (Section 1.3 and Section 1.4) that a traditional Bayesian
models evidence acquisition as the gaining of certainties, which are then
retained. At the same time (Section 2.1), confirmation is understood as
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positive relevance. Combining these two approaches, we have a problem:
once an evidential proposition has been learned, it receives credence 1.
When c(E) = 1, c(H | E) = c(H) for any H ∈ L. So once an agent learns
something, that piece of information is confirmationally inert ever after.

Given these basic facts about Bayesianism, we can identify two chal-
lenges in Glymour’s story about Einstein. Christensen (1999) calls them the
“synchronic” and “diachronic” problems of old evidence.44 The diachronic
problem is about changes in credence. Over the course of 1915, Einstein
increased his confidence in the General Theory of Relativity (GTR), and
we think this had something to do with the perihelion of Mercury. Yet
it can’t be that Einstein increased his confidence because he learned of
the anomalous advance—he already knew about that well before 1915. So
what changed his opinion, and how can we reflect it in a Bayesian system?

The synchronic problem of old evidence comes up after 1915, when the
perihelion of Mercury has already had its effect on Einstein’s attitudes
toward GTR. Presumably even after 1915, Einstein would have cited the
perihelion advance of Mercury as a crucial piece of evidence supporting
GTR. Yet relative to Einstein’s credence function at that time—which
assigns 1 to the perihelion facts—those facts are not positively relevant to
GTR. So how can a Bayesian about confirmation interpret that evidential
support?

Proposals to solve the synchronic problem usually work by relativizing
confirmation to some probability function other than the agent’s current
credence distribution. Since the agent currently assigns c(E) = 1, E can’t
confirm anything relative to that current distribution. So we look for some
other relevant distribution that doesn’t assign 1 to E. For instance, we
might adopt a “historical backtracking” approach on which we look back
to some time when the agent wasn’t yet certain of E, and ask whether E
was positively relevant to H in her credence distribution at that time. But
this approach is limited for a number of reasons. For instance, Einstein
probably knew about the perihelion of Mercury long before he ever con-
sidered GTR. So if we backtrack to a time well before 1915 when he wasn’t
yet certain of E, we won’t be able to find any conditional or unconditional
credences he assigned to the relevant H at that time. And so we won’t be
able to say that E confirms H for Einstein now because at some time in
the past he assigned c(H | E) > c(H).

In light of this and other difficulties, Howson and Urbach (2006) ad-
vocate a “counterfactual backtracking” approach. Instead of looking to a
time in the past when the agent didn’t know E, we look to a close possible
world in which the agent knows everything she knows now except E. Well,

44 I’m using Christensen’s terminology because I find it the most helpful. But earlier, related
disambiguations of the problem of old evidence can be found in Garber (1983), Eells (1985),
and Zynda (1995).
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not quite everything—we will probably also want a world in which she
doesn’t know logical equivalents to E, immediate entailments of E, etc. But
Howson and Urbach (p. 300) have a technical proposal for identifying the
propositions that should be subtracted out. Setting the technical details
aside, Earman (1992, p. 123) worries this counterfactual approach will
suffer from similar defects to other counterfactual analyses; moving to a
non-actual world may have side-effects that spoil the analysis. For example,
the historical record suggests that Einstein was motivated to formulate
GTR in part to explain Mercury’s anomalous advance. So the closest possi-
ble world in which Einstein doesn’t know E yet still assigns credences to
H may be very far—and very different from our own—indeed.

Perhaps the best approach is to say that when an agent explains the
evidence supporting some hypothesis, the support she’s describing may be
relative not to her own personal credences but to some other probabilistic
distribution. That distribution may be one assumed pertinent by her
audience, or by a particular scientific community. Or if we are Objective
Bayesians (Section 1.5), it may be the objective distribution that determines
how all rational agents should set their credences. Maher (1996), for
instance, develops a proposal of the latter sort. Yet many details remain to
be resolved. For example, how does either a scientific community or an
objective rational distribution assign a prior probability to the proposition
that GTR expresses the physical laws of our universe?45

As for the diachronic problem of old evidence, the typical response is to
identify something other than learning of Mercury’s perihelion advance
that gave Einstein new confidence in GTR over the course of 1915. For
one, Einstein might have discovered sometime in 1915 not that Mercury’s
perihelion advances anomalously, but that GTR predicts such an anoma-
lous advance. Since it’s a logical fact that GTR (along with other empirical
information of which Einstein was already aware) entails the details of
the advance, this would be an instance of logical learning. So a Bayesian
implementation of this explanation will depend on the logical omniscience
issues discussed in Section 4.1.

Another possibility is that Einstein’s high confidence in GTR at the end
of 1915 was new because he hadn’t had any attitude towards GTR at the
beginning of 1915. Perhaps Einstein hadn’t yet conceived of GTR at the
beginning of 1915, so the language over which he assigned credences
at that time didn’t contain a proposition expressing GTR’s truth. This
approach would certainly explain why Einstein had a new, high credence
at the end of the year that he didn’t have at the beginning. But it probably
doesn’t generalize to all cases of confirmation by old evidence (and may not

45 Even if we wanted to use an Indifference Principle (Section 1.5) here, we’d need a partition
to divide our credence evenly across, and it’s difficult to determine what alternative sets
of physical laws should go into such a partition.
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even be historically accurate in Einstein’s case). Moreover, cases in which
agents add new propositions to their cognitive language pose another
challenge for Bayesianism. All of the updating norms we have considered
(Conditionalization, Jeffrey Conditionalization) work over a language
that remains fixed over time. The so-called “problem of new theories”
challenges us to build a formalism that allows an agent’s language to
change over time, and that places reasonable constraints on how the
agent’s credences should evolve across such changes.

Finally, we might focus on the fact that both versions of the problem
of old evidence seem to arise because Conditionalization treats acquiring
evidence as gaining certainties. If newly-acquired evidence didn’t go to
(and remain at) a credence of 1, then we wouldn’t have the problem that old
evidence always has credence 1 and therefore can’t be positively relevant to
anything. Suppose we adopt the Regularity principle (forbidding certainty
in empirical propositions), and mandate Jeffrey Conditionalization as the
rational updating scheme. Then evidence acquisition will increase credence
in particular propositions, but never send it to 1, and the problem of old
evidence will never arise.

Christensen (1999) pursues this approach and finds much to recommend
it, but eventually encounters a new difficulty. The problem of old evidence
is that acquiring a piece of evidence shouldn’t rob it of its ability to
confirm hypotheses. Generalizing this idea, we should agree that becoming
more confident in a piece of evidence shouldn’t affect the degree to which
it confirms a hypothesis. So Christensen seeks a confirmation measure
(Section 2.1) on which Jeffrey Conditionalizations that change c(E) don’t
affect E’s level of confirmation of H. He is unable to find a measure that
satisfies this constraint, meets other plausible formal conditions, and works
intuitively in examples.

4.3 Memory Loss and Context-sensitivity

Certainty acquisition and retention also pose other problems for a
Conditionalization-based updating framework. For instance, many of
us have the experience of gaining a piece of evidence one day and then
forgetting it a short time later. Yet if we are constant conditionalizers,
a proposition that achieves credence 1 at some time may never sink
to a lower credence later. So Conditionalization deems memory loss
irrational.46

46 Or at least, the version of Conditionalization we’ve been discussing deems memory loss
irrational, because it governs an agent’s updating across any arbitrary interval of times ti
to tj. One might embrace a more limited version of Conditionalization (compare Titelbaum,
2013a, Chapter 6) that applies only across intervals during which the agent’s information
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While this problem was recognized at least as far back as Levi (1987),
Talbott (1991) puts it particularly forcefully. He considers the response
that Bayesian rules are meant to model ideally rational agents—not ev-
eryday agents—“and an ideally rational agent would not be subject to
the fallibility of human memory.” (p. 141) For what it’s worth, I don’t see
why elephantine recall should make one agent more rational than another
(though see Carr, 2015), but the whole question may be sidestepped by an
ingenious example due to Arntzenius (2003). While I won’t work through
the details here, the upshot of Arntzenius’s example is that Conditionaliza-
tion indicts not only agents who actually forget evidence, but also agents
who suspect they might have forgotten evidence (even if they actually
haven’t). Surely we can’t require of ideally rational agents certainty in
the empirical proposition that they have never forgotten anything in their
lives!

Can we alter Conditionalization to allow for certainty loss? One popular
approach is to take advantage of a feature traditional Conditionalization
already displays. Suppose we have an agent who conditionalizes through-
out her entire life. As she gains evidence, she will accumulate certainties;
the total set of certainties she possesses at any time will represent her total
evidence at that time. Let’s refer to the proposition expressing the conjunc-
tion of all the agent’s evidence/certainties at time ti as Ei. If the agent is a
faithful conditionalizer, there will exist at least one regular47 probability
distribution ph such that for any time ti at which that agent assigns cre-
dences, and any proposition X in her language L, ci(X) = ph(X | Ei). In
other words, there exists a single function ph relating to every moment in
the agent’s life, such that her credence distribution at any moment can be
recovered by conditionalizing ph on her total evidence at that moment.

I’ll refer to this distribution ph as the agent’s hypothetical prior; it is
sometimes also called an “ur-prior” or an “initial credence distribution.”
This last moniker comes from thinking of ph as representing the agent’s
credences at some earliest moment in her life when she lacked any empiri-
cal certainties. Because conditionalization is cumulative and commutative,
if an agent did have such an initial moment in her life—before her first
update by Conditionalization—the credences she assigned at that time
would relate to her later opinions in the way that ph relates to ci. Yet it’s
difficult to imagine that any actual agent has ever had a moment when
she entirely lacked empirical information.

So I prefer to think of an agent’s hypothetical prior as a convenient
tool for separating out two influences on her credences. On the one hand,

strictly increases. In that case the problem would be that rather than deeming memory loss
irrational, the limited updating rule fails to give any guidance in memory loss cases at all.

47 By saying the distribution is “regular,” we mean that it assigns credence 1 only to logical
truths.
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there’s her evidence; on the other, there are her epistemic standards, which
encapsulate her principles and tendencies for interpreting evidence. The
agent’s total evidence changes over time, and is represented at time ti by Ei.
Yet as her evidence changes, she may retain a constant set of standards for
interpreting evidence, represented by her hypothetical prior ph. Applying
these standards to the agent’s total evidence at ti—by conditionalizing ph
on Ei—yields her credence distribution ci.48

This generally attractive picture is entailed by Conditionalization: if an
agent conditionalizes at every update, then her credences throughout her
life will be representable as faithful to a constant hypothetical prior. Yet
interestingly, the entailment does not run in the opposite direction. That
is, an agent may maintain fealty to a constant hypothetical prior even if
her updates do not always satisfy Conditionalization. For instance, it’s
possible that an agent could both gain and lose certainties between two
times ti and tj, and yet there still exists a single hypothetical prior ph such
that for every X ∈ L, ci(X) = ph(X | Ei) and cj(X) = cj(X | Ej).

We can therefore achieve a plausible diachronic model of agents who
both gain and lose certainties by generalizing Conditionalization not to
demand that an agent conditionalize between each earlier time ti and later
time tj, but instead to demand (whatever happens to her certainties) that
she set her credences in line with a constant hypothetical prior throughout
her life. This new diachronic norm generates plausible results for a number
of forgetting stories, such as those featured by Talbott. In cases where an
agent does strictly gain certainties between two times, it mimics the effects
of traditional Conditionalization. And in cases where an agent strictly loses
certainties between times, it gives us reverse-temporal Conditionalization.
That is, the agent’s earlier unconditional credences will equal her later
credences conditional on the information she lost. Thus forgetting becomes
like learning backwards in time.

Unfortunately, shifting to this new diachronic norm does not suffice
alone to address another problem with Conditionalization: the way it
treats context-sensitive information. Here I refer to “self-locating” claims
that change their truth-values across times, persons, and locations—such
as “Today is Tuesday,” “I am a sailor,” and “We are in Detroit.” For one
thing, to model these sorts of claims in our formalism we will need to
add to our language L something like what Lewis (1979) called “centered
propositions.” But even then, Conditionalization will face challenges. It
may be rational right now to be certain that it’s Tuesday, but that certainty
will not remain rational into perpetuity.

The context-sensitivity challenge is sometimes described as yet another
problem with Conditionalization’s certainty-retention. But even when
we shift to a diachronic norm that requires fealty only to a constant

48 Compare Schoenfield (2014) and Meacham (2016).
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hypothetical prior (and therefore allows for certainty loss), problems still
remain. This is because the Bayesian system was designed to model agents
whose evidence changed over time, but who used that evidence to evaluate
hypotheses with truth-values that were fixed targets.49 Adding in another
level of shiftiness generates complications for Conditionalization, Jeffrey
Conditionalization, and hypothetical priors.

A number of formal frameworks have been proposed to model credence
updates in context-sensitive propositions. Some retain Conditionalization,
some make use of hypothetical priors, but in every case new, additional
norms are required to capture the full range of phenomena. There isn’t
space to survey the various approaches here.50 But I will note that solving
the problem of updating self-locating beliefs may have important conse-
quences beyond fun philosophical thought-experiments like the Sleeping
Beauty Problem (Elga, 2000). For instance, fine-tuning arguments for the
existence of the multiverse, and debates about the proper interpretation
of quantum mechanics, may both turn on how agents should manage
credences in context-sensitive propositions.51

5 other confidence formalisms

In closing, I should note that there are a number of alternative formalisms
for modeling agents’ varying levels of confidence in claims. First, we can
think simply about whether an agent is more confident in one proposition
than another. Composing these comparisons together yields a confidence
ordering that may float free of any numerical assignments (see Konek,
this volume). A second approach, called “ranking theory” (Spohn, 2012;
Huber, this volume), attaches numbers to the confidence ranking but
works only with the structure of non-negative integers. Third, we can
employ a formal structure even richer than the reals. For instance, instead
of representing an agent’s levels of confidence at a given time with a
single probability distribution, we may represent them with a set of such
distributions (Mahtani, this volume). Or we may have one real-valued
function to track the agent’s attitudes and a separate (though related) one
to track her evidence. This yields a fourth approach, commonly called
“Dempster-Shafer Theory” (Dempster, 1966; Shafer, 1976).

Each of these approaches may be supported by some of the argument-
types described above, and each is plagued by some of the problems above
as well. Some allow formal structures more flexible and expressive than

49 In philosophy of science applications, for instance, scientific hypotheses about the physical
laws of the universe or the evolutionary origins of hominids do not typically change their
truth-values over time.

50 Titelbaum (2016) provides a big-picture summary with copious references.
51 For these applications and others, see Titelbaum (2013b).



46 michael g . titelbaum

Bayesianism, while some trade expressive power for added psychological
plausibility. I will not attempt to choose a favorite here. But it’s worth
noting that among all the formalisms for representing disparate confidence
levels, none is currently more studied or more often applied than the real-
valued credal approach.52

6 appendix

Here’s a proof sketch for the representation theorem mentioned in Section
3.1. We will assume that in the decision theory of interest, the following
hold.

◦ Structural axioms ensuring that betting acts with various structures
(as described in the proof below) are always available to the agent.

◦ Weak dominance principle: when acts are independent of states, if
there is no state in which act A yields a greater utility than act B,
then A is not preferred to B.

◦ Strong dominance principle: when acts are independent of states,
if act A yields a greater utility than act B in every state, then A is
preferred to B.

◦ For any acts A and B, the agent prefers A to B just in case EU(A) >

EU(B), where EU is calculated as described in the main text.

The dominance principles above employ a notion of act/state indepen-
dence, and the relevant notion will vary depending on which decision
theory (evidential, causal, etc.) is in play. So fleshing out the proof below
for a given decision theory will require showing that the acts and states
appearing in each step of the proof are independent in the relevant sense.
Given the types of acts involved, that should be fairly straightforward.

Notice that the following is a corollary of the weak dominance principle.

◦ Equivalence principle: when acts are independent of states, if two
acts yield the same utility as each other in every possible state, the
agent is indifferent between them.

The argument is simply that if A and B yield the same utility in every
possible state, then by weak dominance A is not preferred to B and
B is not preferred to A. So the agent is indifferent between them, and
EU(A) = EU(B).

52 Thanks to the editors, Richard Pettigrew and Jonathan Weisberg, and especially to the
latter for detailed comments and many citation suggestions. Much of the material in this
piece has been adapted from my forthcoming book (Titelbaum, forthcoming), which covers
almost all of the topics here in much greater depth.
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To show that any credence function c appearing in a decision theory
with the features above must be a positive scalar transform of a probability
function, we need to prove that it satisfies four conditions.

1. Every tautology in L receives the same c-value.

Proof. Suppose for reductio we have two tautologies T1,T2 ∈ L such
that the agent assigns a credence of x to the first and a different
credence y to the second. Consider an act that pays 1 util on T1

and 0 utils otherwise, and an act that pays 1 util on T2 and 0 utils
otherwise. The agent will assign the first act an expected utility of x,
the second act an expected utility of y. Since x and y are different,
the agent will prefer one act to the other. Yet the two acts each yield
the same payout (1 util) in every possible state, so we’ve violated the
equivalence principle (and therefore weak dominance).

2. For any tautology and contradiction T,F ∈ L, c(T) > c(F).

Proof. Suppose for reductio we have a T and F such that c(T) ≤ c(F).
Now consider an act that pays 1 util on T and 0 utils otherwise, and
another act that pays 1 util on F and 0 utils otherwise. Given the
supposition, the agent will assign the first act an expected utility no
greater than the second. Yet the first act yields a greater utility than
the second in every possible state, so by strong dominance the first
act must receive a higher expected utility.

3. For any mutually exclusive X, Y ∈ L, c(X ∨Y) = c(X) + c(Y).

Proof. First consider the act of purchasing a bet that pays 1 util on X, 1
util on Y, and 0 utils otherwise. Since X and Y are mutually exclusive,
we may partition the possible states into X, Y, and ∼X &∼Y. Using
this partition, the expected utility of this act is

c(X) · u(X) + c(Y) · u(Y) + c(∼X &∼Y) · u(∼X &∼Y)

= c(X) · 1 + c(Y) · 1 + c(∼X &∼Y) · 0
= c(X) + c(Y).

(27)

Now consider the act of purchasing a bet that pays 1 util on X ∨Y,
and 0 utils otherwise. Partitioning the states into X∨Y and∼(X∨Y),
the expected utility of this act is

c(X ∨Y) · u(X ∨Y) + c(∼[X ∨Y]) · u(∼[X ∨Y])

= c(X ∨Y) · 1 + c(∼[X ∨Y]) · 0
= c(X ∨Y).

(28)

These two acts have the same payout in every possible state, so
to satisfy the equivalence principle the agent must be indifferent
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between them. This means that their expected utilities are equal, so
c(X ∨Y) = c(X) + c(Y).

4. For any X ∈ L, c(X) ≥ 0.

Proof. First, we show that there can be no Y,T ∈ L such that T is a
tautology and c(Y) > c(T). Suppose for reductio that we had such
two such propositions Y and T. Now consider an act that pays 1 util
if Y is true, and 0 utils otherwise, and an act that pays 1 util if T is
true, and 0 utils otherwise. The first act has expected utility c(Y),
while the second has expected utility c(T). By our supposition, the
agent prefers the first act. But since T is true in every state, there is
no state in which the first act yields a greater utility than the second.
So we have violated weak dominance.

Now to the main result. Assume for reductio that there exists an
X ∈ L such that c(X) < 0. Since X and ∼X are mutually exclusive,
c(X ∨ ∼X) = c(X) + c(∼X) by (3) above. If c(X) < 0, then c(X ∨
∼X) < c(∼X). But X ∨∼X is a tautology, so this is impossible.
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