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1 Modal monism and anti-exceptionalism

A widespread philosophical view about modality holds that there exists only
one kind of necessity and possibility, to which all other kinds are to be
reduced. The view is often called modal monism, and it has been expressed
perhaps most famously by Wittgenstein in the Tractatus: “The only necessity
that exists is logical necessity” (6.37). “Just as the only necessity that
exists is logical necessity, so too the only impossibility that exists is logical
impossibility” (6.375). According to this view, that is physically possible
which is logically consistent with the laws of nature.

A similar view, according to which metaphysical and physical modal-
ity “stand or fall” together, has been more recently defended by Timothy
Williamson (2016): “In given circumstances, a proposition is nomically
possible if and only if it is metaphysically compossible with what, in those
circumstances, are the laws of nature (their conjunction is metaphysically
possible)” (p. 455). Thus, nomical or physical possibility cannot be explained
independently of metaphysical possibility.

It seems natural to take modal monism to provide support to Williamson’s
anti-exceptionalism about metaphysics, in general, and about the metaphysics
of modality, in particular, which is expressed in the following way: “We
should not treat the metaphysics and epistemology of metaphysical modality
in isolation from the metaphysics and epistemology of the natural sciences.”
(Williamson, 2016, p. 453). For if physical modality is explained in terms of
metaphysical modality, then this anti-exceptionalist requirement is arguably
satisfied.
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In an earlier book, wherein Williamson mounts a defense of a meta-
physical view he calls necessitism, i.e., the view that necessarily everything
is such that necessarily something is identical with it, he similarly affirms
anti-exceptionalism, which is here expressed somewhat differently: “We will
be guided throughout this book by a conception of theories in logic and meta-
physics as scientific theories, to be assessed by the same overall standards
as theories in other branches of science” (Williamson, 2013, p. 27).1 These
anti-exceptionalist declarations are meant to stand on their own, with no
support from modal monism, which does not seem to be part of the picture
yet: “Metaphysical possibility will not be assumed to be metaphysically
basic, or fundamental, or irreducible, or perfectly natural, or anything like
that” (Williamson, 2013, p. 3, footnote 4).

Adopting scientific standards for the assessment of the metaphysics of
metaphysical modality might be enough to ensure that this is not treated
in isolation from the metaphysics of physical modality. The present paper
argues, however, that modal monism should stay out of the picture, for it
cannot add anything to support such treatment. The reason for this is that
modal monism is false.

To be sure, modal monism has its own detractors within the field of
analytic metaphysics (see, e.g., Fine, 2005, for an argument in favor of modal
pluralism). Here I will construct an argument against modal monism based
on a technical result in the metatheory of quantum logic that has implica-
tions for our understanding of what quantum mechanics deems physically
possible. To show that modal monism is false, I provide a counterexample
to Williamson’s reduction of physical possibility to metaphysical possibility.
That is, I argue that there are propositions that quantum mechanics deems
physically possible, but which are not metaphysically compossible with what
in some circumstances are the laws of nature.

I start by providing some details about the quantum logical interpretation,
or as I shall call it (following Stairs, 2015) the quantum logical reconstruction
of quantum mechanics, enough to make intelligible the presentation of a
technical result (due to Pavičić & Megill, 1999) that establishes the non-
categoricity of quantum logic (where a logic will be called categorical with
respect to an isomorphism class of structures if and only if all its models are
in that class).

1The point is recalled towards the end of the book: “[T]he methodology of this book is
akin to that of a natural science. . . . The theories are judged partly on their strength, simplicity,
and elegance, partly on the fit between their consequences and what is independently known”
(Williamson, 2013, p. 423).
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Afterwards I discuss the connection between this metatheoretical result
and what quantum mechanics reveals about modality, suggesting an account
of physical possibility that is independent of metaphysical possibility. Then
I come back to modal monism to explain why I believe it is false, but
also to reject an objection that might be raised against my argument, an
objection that insists against taking the laws of quantum logic as laws of
nature. An elaboration and defense of modal pluralism in the context of
quantum mechanics will, however, be deferred to another paper.

2 Quantum logic and orthomodular lattices

This section briefly introduces the standard approach to quantum logic and
its semantics constructed in terms of orthomodular lattices. In doing so, it
assumes the standard Hilbert space formalism of quantum mechanics. Thus,
as is usual, the pure states of a quantum system are taken to be represented
by unit vectors in an associated Hilbert space that represents the state space
of the system, and quantum properties to be represented by linear closed
subspaces of the Hilbert space.2

Let QL be a formal language that contains an infinite set of formulas,
p, q, . . . , and three symbols for logical connectives, ∼,∧,∨ (that is, for
negation, conjunction, and disjunction, respectively) such that if p and q are
sentences in QL, then ∼ p, p ∧ q, and p ∨ q are also in QL.3 The semantics
of this formal language is typically given by an ortholattice, which can be
defined as an algebraic structure LA, i.e., a set of elements, a, b, . . . (which
are precisely the linear closed subspaces of a Hilbert space) together with the
operations ′,∩,∪ (for orthocomplementation, join, and meet, respectively),
such that any elements a, b, c in that set satisfy conditions like the following:

a ∩ b = b ∩ a
a ∩ (b ∩ c) = (a ∩ b) ∩ c

a ∩ (a ∪ b) = a
a = a′′

(a ∩ a′) ∩ b = a ∩ a′

a ∪ b = (a′ ∩ b′)′

2For reference, see any standard introduction to quantum mechanics and its logical-algebraic
formalism, e.g., (Beltrametti & Cassinelli, 1981).

3One can also define a variety of implication connectives. For a brief review, see (Pavičić,
2016). The first to define different quantum implications was Weyl (1940).
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One further defines a supremum 1 := a ∪ a′, an infimum 0 := a ∩ a′,
and a partial order a ≤ b := a ∩ b = a, a ≤ b := a ∪ b = b, as well as an
equivalence relation a ≡ b := (a∩ b)∪ (a′∩ b′). Then, an ortholattice LA is
said to be a model of QL if and only if for any sentences p, q in QL and any
elements a, b of LA there is a map h : QL −→ LA, such that the following
three conditions are satisfied:

h(∼ p) = h(p)′ = a′

h(p ∨ q) = h(p) ∪ h(q) = a ∪ b
h(p ∧ q) = h(p) ∩ h(q) = a ∩ b

The map h is a homomorphism, i.e., it preserves operational structure,
by mapping negation to orthocomplementation, disjunction to join, and
conjunction to meet. Thus, the algebraic relations between linear closed
subspaces of the Hilbert space (i.e., the equations involving the ortholattice
operations) are expressed by sentences of the formal language QL, and are
typically taken to represent compatibility relations between the properties of a
quantum system (i.e., their co-measurability). But, of course, not all algebraic
relations will do so, since in quantum mechanics not all properties of a system
are co-measurable. In particular, distributivity, that is, the law according to
which, for any elements a, b, c ∈ LA, a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), is
usually taken to fail in quantum mechanics. As a result, weaker versions of
distributivity have been considered, one of which is modularity.

A lattice is modular if and only if the law of modularity holds: if a ≤ c,
then a∩ (b∪ c) = (a∩ b)∪ (a∩ c). As von Neumann first realized, however,
modularity requires a finite dimensional Hilbert space, which he thought
was improper for a truly general quantum logic.4 A further weakening of
distributivity leads to orthomodularity. A lattice is orthomodular if and
only if the law of orthomodularity holds: if a ≤ b, then b = a ∪ (a′ ∩ b).
Orthomodular lattices give the standard algebraic semantics of the quantum
logical calculus QL. Thus, the homomorphism h, as defined above, maps
sentences from QL to compatibility relations between the elements of an
orthomodular structure of quantum properties.

4This is the reason von Neumann came to give up the Hilbert space formalism several years
after he had introduced it. See the quotation at the end of the paper. For a detailed discussion,
see, e.g., (Rédei, 1996).
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3 Non-categoricity and physical possibility

Having described these basic facts about quantum logic and its algebraic
semantics, I turn now to a (so far unduly neglected) result in the metatheory
of quantum logic, which shows that quantum logic is non-categorical (Pavičić
& Megill, 1999, 2009). More precisely, it is non-categorical with respect
to the isomorphism class of orthomodular lattices, because one can show
that not all its algebraic models are in this class: “one of its models is an
orthomodular lattice, while others are nonorthomodular lattices” (Pavičić,
2016, p. 2).

Nonorthomodular lattices are those in which the law of orthomodularity
fails. Some of these nonorthomodular lattices, however, obey a weakened
form of orthomodularity, appropriately called weak orthomodularity. To see
what the law of weak orthomodularity states, consider an alternative definition
of orthomodularity: a lattice is orthomodular if and only if for any elements
a, b ∈ LA, a ≡ b = 1⇒ a = b. That is, two elements of an orthomodular
lattice are equivalent (in the sense of equivalence defined above) only if they
are the same element. A weakly orthomodular, nonorthomodular lattice is
then one in which for any a, b, c ∈ LA, a ≡ b = 1⇒ (a∪ c) ≡ (b∪ c) = 1.
In other words, such a lattice includes distinct elements that are indiscernible
via orthomodularity.5

What Pavičić and Megill have proved, more precisely, is that there exists
an orthomodular lattice, as well as a weakly orthomodular, non-orthomodular
lattice, such that the quantum logical propositional calculus is sound and
complete with respect to both.6 One interpretation, proposed by Pavičić, is
that quantum logic “can simultaneously describe distinct realities” (Pavičić,
2016, p. 2). What this means, I take it, is that quantum logic can associate
distinct compatibility structures of properties with one and the same quan-
tum system: both an orthomodular structure, and a weakly orthomodular,
nonorthomodular one.

5It might help to compare this to first-order Peano arithmetic: a nonstandard model includes
distinct elements—nonstandard numbers—that are indiscernible by the application of the rules
of the theory within its language.

6Related claims concerning the semantics of quantum logic were expressed first by Weyl,
who pointed out that Birkhoff and von Neumann’s quantum logic allows non-unique valuations
of disjunctive and conjunctive formulas (Weyl, 1940). For discussion, see (Toader, 2020b).
See (Hellman, 1980) for a proof that quantum logical connectives are not truth-functional.
For an application of the non-truth-functional semantics developed by Arnon Avron and his
collaborators (see, e.g., Avron & Zamansky, 2011) to the quantum logical formalism, see (Jorge
& Holik, 2020).
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This raises a couple of questions, which I better attempt to answer now
before I even formulate my argument against modal monism. First, one
may point out that non-categoricity is an artefact of the quantum logical
reconstruction of quantum mechanics, rather than a logical feature of the
physical theory itself. Secondly, one may insist that one should reject a
non-categorical theory as possessing an undesirable metatheoretical property.

To the first question: one should recall that the purpose of the quantum log-
ical reconstruction is to reveal the logical structure of quantum mechanics—
the very objective stated by Birkhoff and von Neumann already in 1936: “to
discover what logical structure one may hope to find in physical theories
which, like quantum mechanics, do not conform to classical logic” (Birkhoff
& von Neumann, 1936, p. 823; see also Suppes, 1966). Thus, to the extent
that quantum logic succeeded in at least approximating the logical structure
of quantum mechanics, and there is no serious reason to doubt that this is the
case, its non-categoricity entails that quantum mechanics associates distinct
compatibility structures of properties with a quantum system. In other words,
quantum mechanics tells us that physical reality can be either an orthomod-
ular ortholattice or a weakly orthomodular, nonorthomodular one. Despite
the fact that quantum logic cannot itself be considered a physical theory, it is
nevertheless physically salient because one of its metatheoretical properties
has implications for our understanding of what quantum mechanics deems
physically possible.7

To the second question: that one should characterize a non-categorical
theory as semantically defective, as possessing an undesirable metatheo-
retical property, seems justified. Witness the many attempts to prove that
theories like arithmetic and set theory are categorical, on the assumption
that non-categoricity is a liability, one that implies for example the semantic
indeterminacy of the languages of these theories, their inability to pick out
their intended semantics.8 However, from a metatheoretical perspective,
there is arguably a significant difference between non-physical theories and
physical ones like quantum mechanics. The categoricity of the latter has
been long rejected as a kind of undesirable rigidity that unduly constrains its
applicability.9

7The categoricity problem of quantum mechanics is discussed at length in (Toader, 2020a)
8See, for discussion, (Button & Walsh, 2018).
9Consider, e.g., the following view: “A categorical theory is one such that any two models

(true interpretations) of its underlying abstract formalism are isomorphic (structurally identical).
Now a necessary condition for theory isomorphism is that the corresponding sets be similar, i.e.,
that there be a one-to-one correspondence between them. But we do not want such a rigidity in
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More recently, non-categoricity appears to be considered as a theoretical
advantage of a physical theory: “A theory that underdetermines its own
interpretation is like a healthy breeding population: it has a shot at enough di-
versity to . . . meet the variety of demands its scientific environment places on
it” (Ruetsche, 2011, p. 355). One sometimes speaks, very aptly, of “intended
non-categoricity” (Rédei, 2014, p. 80) to characterize the intention of the
physicist to construct physical theories that allow for non-isomorphic models.

One fundamental idea underlying these evaluations of non-categoricity
is that the non-isomorphic models of a physical theory represent distinct
physical possibilities. This suggests a semantic account of physical modality,
according to which a proposition is physically possible if and only if it is true
in at least one model of a non-categorical physical theory. This idea, I submit,
should be understood as the basis for an independent account of physical
possibility, i.e., one that does not reduce physical possibility to another kind
of possibility, like metaphysical possibility.

4 Against Modal Monism

I think that everything is now in place for a presentation of my argument
against Williamson’s modal monism, an argument that draws, as already
announced, on the non-categoricity of the quantum logical formalism. So
let p be a sentence in QL that expresses a proposition h(p) which holds in
a weakly orthomodular, nonorthomodular structure of quantum properties,
and let’s assume that h(p) entails weak orthomodularity, but not the negation
of orthomodularity. Similarly, let q be a sentence in QL that expresses
a proposition h(q) which holds in an orthomodular structure of quantum
properties, and let’s assume that h(q) entails orthomodularity.

According to the independent account of physical modality, sketched
above, each of h(p) and h(q) is physically possible, for each is true in at least
one structure, i.e., h(p) is true in a weakly orthomodular, nonorthomodular
lattice, and h(q) is true in an orthomodular lattice. This situation obtains
because, as argued above, quantum logic is non-categorical, i.e., these two
mutually non-isomorphic ortholattices are provably in the class of its models.
From a quantum-mechanical point of view then, there is no reason to dismiss
either h(p) or h(q) as a physical impossibility.

physics for, even if two theories do have formally identical basic formulas (e.g., wave equations),
they may refer to entirely different kinds of physical systems, these kinds being conceptualised
as sets that need not be similar” (Bunge, 1973, p. 166).
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But recall that, according to Williamson’s modal monism, that is phys-
ically possible which is metaphysically compossible with what in some
circumstances are the laws of nature. So take the following circumstances:
an orthomodular structure of quantum properties—an orthomodular world,
as it were. On Williamson’s view, then, h(q) would be physically possible,
since it is logically consistent, and thus metaphysically compossible, with
the laws of an orthomodular world: by assumption, h(q) entails orthomod-
ularity. Furthermore, h(p) would be physically possible as well, since it is
logically consistent, and thus metaphysically compossible, with the laws of
an orthomodular world: by assumption, h(p) does not entail the negation of
orthomodularity.

So far, so good. Nevertheless, consider now the following, different cir-
cumstances: a weakly orthomodular, nonorthomodular structure of quantum
properties—a weakly orthomodular, nonorthomodular world, that is. On
Williamson’s view, h(p) would be physically possible, since it is logically
consistent, and thus metaphysically compossible, with the laws of a weakly
orthomodular, nonorthomodular world: by assumption, h(p) entails weak
orthomodularity. However, on the same view, h(q) would turn out to be phys-
ically impossible, because h(q) is not metaphysically compossible with the
laws of a weakly orthomodular, nonorthomodular world, since their conjunc-
tion is logically inconsistent: by assumption, h(q) entails orthomodularity.

But how can h(q) be physically possible? According to the indepen-
dent account of physical possibility suggested above, which draws on non-
categoricity, metaphysical compossibility with the laws of a weakly ortho-
modular, nonorthomodular world is neither necessary, nor sufficient for h(q)
to be physically possible. What is necessary and sufficient for h(q) to be
physically possible is that it be true in at least one of the non-isomorphic
models of the theory. Physical modality is dependent on the semantic proper-
ties of the physical theory, rather than on metaphysical modality. The fact
that h(q) entails orthomodularity renders it false in a nonorthomodular world,
but not physically impossible.

It follows from all this that there are propositions which quantum me-
chanics deems physically possible, but which according to Williamson’s
modal monism are not metaphysically compossible with what, in some cir-
cumstances, are the laws of nature. This, I think, constitutes a sufficient
reason for rejecting the reduction of physical possibility to metaphysical
possibility, which characterizes modal monism, at least in the version that
appears to be advocated by Williamson. Furthermore, insofar as it is actually

8



A Note on Williamson’s Modal Monism

based on modal monism, his anti-exceptionalism about the metaphysics of
metaphysical modality turns out to be improperly justified.

One may object that orthomodularity and weak orthomodularity cannot
be considered laws of nature (Mittelstaedt, 2012). If so, the above would
not really provide a counterexample to Williamson’s reduction of physical
possibility to metaphysical possibility. This objection raises, of course, a
more general question: what are the laws of nature according to quantum
mechanics? Typically, laws of nature are supposed to express relations
between the states of a physical system, relations that allow us to make
testable predictions about the states of a system. So the laws of nature are
typically dynamical laws, as they describe trajectories through the state space
associated with a system. But in quantum logic, of course, there are no
dynamical laws, there is no expression of Schrödinger’s equation.

This may be considered as a shortcoming of the quantum logical recon-
struction of quantum mechanics, but only if one assumes that any recon-
struction must describe the dynamics. This, however, has never been the
purpose of quantum logic. As mentioned above, that purpose was to uncover
the logical structure of quantum mechanics, the compatibility structure of
properties possessed by a quantum system. But a dynamical law does not
tell us anything about exactly what quantum properties are compatible (i.e.,
co-measurable). In the quantum logical reconstruction, as von Neumann
emphasized in a famous letter, the focus is not on the states of a system any
more, but on its properties: “I would like to make a confession which may
seem immoral: I do not believe absolutely in Hilbert space any more. . . .
Now we begin to believe, that . . . it is not the vectors which matter but the
lattice of all linear (closed) subspaces. Because: . . . the states are merely a
derived notion, the primitive (phenomenologically given) notion being the
qualities, which correspond to the linear closed subspaces.” (von Neumann
to Birkhoff, November 6, 1935)

Orthomodularity and weak orthomodularity are laws of nature in the
sense that they describe compatibility relations between quantum properties.
These are not dynamical laws, since they do not describe trajectories through
state space, but they allow us to predict what properties of a system are com-
patible in certain circumstances. The law of orthomodularity, for example,
tells us that no measurement undertaken in an orthomodular world can reveal
an instance of an nonorthomodular compatibility structure of properties. It
can furthermore be easily seen that such laws support counterfactuals. Thus,
the difference between orthomodular and weakly orthomodular, nonortho-
modular worlds is not merely factual, but nomological. So the objection fails.
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