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Abstract

Evidential support is often equated with confirmation, where evidence

supports hypothesis H if and only if it increases the probability of H.

This paper argues against this received view. As I show, support is

a comparative notion in the sense that increase-in-probability is not.

A piece of evidence can confirm H, but it can confirm alternatives

to H to the same or greater degree; and in such cases, it is at best

misleading to conclude that the evidence supports H. I put forward an

alternative view that defines support in terms of measures of degree of

confirmation. The proposed view is both sufficiently comparative and

able to accommodate the increase-in-probability aspect of support.

I conclude that the proposed measure-theoretic approach to support

provides a superior alternative to the standard confirmatory approach.
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1 Introduction

When does a piece of evidence support a hypothesis? As the evidence rarely

renders an empirical hypothesis certain, any adequate account of support

should be probabilistic, not deductive. A standard positive X-ray test for

tuberculosis (TB) does not entail that a patient has TB, but it may still

provide good evidence for the presence of the disease.

Following Carnap (1962), epistemologists distinguish two notions of prob-

abilistic support. One is about how firm or probable a hypothesis is on the

available evidence. The firmness of a hypothesis can be stated qualitatively:

“on the present evidence, it is likely that a patient has the disease” or quanti-

tatively: “the test indicates that the probability of disease in 85%”. Support

as firmness expresses the static notion of support, which is solely concerned

with how probable a hypothesis is on the present evidence.

By contrast, there is also the dynamic notion of support, which is about

how a piece of evidence changes or impacts the initial, or prior probability

of a hypothesis. So, while the static notion of support is about the absolute

probability of a hypothesis, the dynamic notion is about the relationship

between the prior and posterior probability of the hypothesis, relative to

some piece of evidence. For instance, when we have the dynamic notion of
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support in mind, we can see why a positive X-ray test provides evidence for

the presence of TB; as the evidence makes the presence of the disease more

probable than before.

This paper is solely about the dynamic notion of support. The focus is on

finding a general condition (or a set of conditions), which, if satisfied, would

license us to conclude that a piece of evidence supports a hypothesis, in the

dynamic sense.

The dominant probabilistic view of (dynamic) support appeals to the

notion of confirmation, where a piece of evidence, E, supports a hypothesis,

H, if and only if E confirms (i.e., increases the probability of) H.1 In the above

diagnostic example, the positive X-ray result is evidence for the presence of

TB because it increases the probability of the disease. I call the view that

defines the support relation in terms of increase in probability “Support-IP”

(IP for Increase in Probability). More fully and precisely:

Support-IP: E supports H relative to probability measure P iff

P (H|E) > P (H).2

Support-IP is so ingrained in contemporary formal epistemology that the

terms “support” and “confirmation” are often used interchangeably.3

1 I will usually omit the modifier “dynamic”, as I won’t be discussing the static notion
of support.

2 Strictly speaking, confirmation is not a two-term relation involving just E and H,
but a three-term relation between E, H, and body of background evidence K. But, in
our discussion, this third parameter will not play any role. Therefore, for the sake of
readability and simplicity, I will omit K from our notation.

3 Here are some representative quotes (when necessary, the quoted passages contain
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But, certainly, not everybody accepts Support-IP. For instance, Achin-

stein (1978, 1983, 2000, 2001, 2004, 2013) has been arguing against Support-

IP for over 30 years. His main objection is that Support-IP fails to connect

the notion of evidence with the notion of acceptance or belief. For Achin-

stein, if E is evidence for H, then E provides good reason to believe H. And,

as I’ve already explained, E can increase the probability of H without turning

H sufficiently probable or believable.

Achinstein’s arguments fail to convince most.4 The common response is

that Support-IP is not supposed to guide belief in the first place. After all,

epistemologists distinguish two notions of support – static and dynamic. If

one is interested in whether a proposition is believable on the evidence, one

should appeal to the static notion of support – not the dynamic one; or so

the standard reply goes.5

some notational changes, for the sake of notational consistency):

“E confirms (supports, is evidence for) H iff P (H|E) > P (H)” (Horwich
1982/2016, 48).

“By confirmation I mean the relation that holds between E and H when E
is evidence for H” (Maher 1996, 149).

“E confirms or supports H just in case P (H|E) > P (H)” (Howson and
Urbach 1993/2006, 92).

4 For Replies to Achinstein, see Bar-Hillel and Margalit (1979), Maher (1996), and
Roush (2004). See Logins (2020) for a detailed discussion and analysis of the debate
between Achinstein and his critics.

5 Achinstein has responded to this response. Briefly, he denies that there are two
notions of support: static and dynamic. This paper won’t call this standard distinction
into question. Instead, and in agreement with most formal epistemologists, I take the
distinction for granted.
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Another line of criticism against Support-IP comes from the so-called

Likelihoodist framework.6 According to Likelihoodism, support is inherently

relational: support is not a two-term relation between evidence and a hy-

pothesis, but a three-term relation between evidence and two competing

hypotheses. The Likelihoodist view of support is expressed by the so-called

Law of Likelihood (LL) which roughly says that for any two competitor hy-

potheses H1 and H2, E supports H1 more strongly than H2 iff E is more

likely on the supposition that H1 than on the supposition that H2. More

precisely:

LL: For any two competitor hypotheses H1 and H2, E supports

H1 over H2 iff H1 confers greater probability on E than H2 does:

P (E|H1) > P (E|H2).

The Likelihoodist analysis of support also has not attracted many sup-

porters. This is due to several distinct reasons that I cannot go into in this

paper. Suffice it to mention two reasons. Firstly, Likelihoodists only offer a

theory of comparative support; as LL is restricted to the pairwise compar-

isons between hypotheses, it cannot, in itself, provide an answer to what a

piece of evidence supports simpliciter. And, secondly, Likelihoodists sharply

distinguish the question of support from the question of confirmation: E can

6 The statistician Richard Royall (1997) gave a prominent statement and defence of
the Likelihoodist program in statistics. Within epistemology and philosophy of science,
Royall’s overall approach has been developed by Sober (2008) and Bandyopadhyay et al.
(2016).
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support H1 over H2 (according to LL), but confirm neither of the hypotheses.

As most would think that confirmation is at least necessary for support, the

analysis of support in terms of LL seems overly weak to capture what a piece

of evidence supports.

In this paper, I also argue against Support-IP and propose its alternative.

But unlike Achinstein, I do not claim that the dynamic notion of support

should guide belief. Instead, and in agreement with Likelihoodists, I argue

that support is a comparative notion in the sense that increase-in-probability

is not: E can confirm H, but E can confirm some available alternative to H

to the same or greater degree. In such situations, it’s at best misleading to

say that E supports H. However, unlike Likelihoodists, I don’t think that the

question of support can be independent of confirmation. The alternative to

Support-IP that I propose defines support in terms of measures of confirma-

tion. The view – which I call “Support-MDC” (MDC for Maximal Degree of

Confirmation) – roughly says the following:

Support-MDC: E supports H iff the degree to which E confirms

H is greater than the degree to which E confirms the alternatives

to H.

As I show, Support-MDC is both sufficiently comparative and accommodates

the increase-in-probability aspect of Support-IP. My overall conclusion is that

Support-MDC is a superior alternative to Support-IP.

The paper runs as follows. The next section discusses what I believe

to be, the main shortcoming of Support-IP, which is that the increase-in-
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probability relation is not sufficiently comparative. Section 3 introduces

Support-MDC and provides its three different explications, in terms of three

standard measures of degree of confirmation. The superiority of Support-

MDC over Support-IP is argued in Section 4. Section 5 discusses and an-

swers, what I take to be, the main worry about Support-MDC: the problem

of measure sensitivity. I conclude in Section 6 that Support-MDC should be

favoured over Support-IP.

2 Support-IP is not Sufficiently Comparative

In this section, I argue that Support-IP is too weak for capturing what a given

body of evidence supports. The problem, as we shall see, is that the increase-

in-probability relation is not sufficiently comparative: a piece of evidence, E,

can confirm H, but E can also confirm some alternative to H to the same or

greater degree.

To illustrate this, let’s first consider the following simple diagnostic ex-

ample:

Diagnostic Example

Suppose you are a physician who wants to determine whether

a patient, Eve, has one of the three diseases – d1, d2, and d3.

Initially, you consider that the presence of each of the diseases is

equally likely. You soon acquire new evidence, denoted by “e”,

containing various chest X-ray images. Based on the extensive
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medical records, you know what type of X-ray image to expect

on the condition that Eve has one of these diseases. These medical

records suggest the following likelihood distribution: P (e|d1) =

0.99, P (e|d2) = 0.6, P (e|d3) = 0.03.

Via Bayes’ theorem, the priors and likelihoods enable you to calculate the

probability that you are interested in; the posterior probability of a given dis-

ease – that is, how probable is the presence of a disease given the data/evidence.7

The complete probabilistic description of the example is given in the following

table:

Priors Likelihoods Posteriors
d1 = 1/3 P (e|d1) = 0.99 P (d1|e) ≈ 0.61
d2 = 1/3 P (e|d2) = 0.6 P (d2|e) ≈ 0.37
d3 = 1/3 P (e|d3) = 0.03 P (d3|e) ≈ 0.02

Table 1: Diagnostic Example

As we see, by Bayes’ theorem we have P (d2|e) ≈ 0.37. Hence, e confirms

d2 in a sense that P (d2|e) > P (d2). However, even though e confirms d2, it

seems, at best, misleading to claim that e supports d2. This is so because

there is a hypothesis, d1, and e supports d1 much better than d2. After all,

7 For instance, by Bayes’ theorem P (d2|e) equals P (e|d2)
P (e) ∗ P (d2); and by the law of

total probability: P (e) = P (e|d1) ∗P (d1)+P (e|d2) ∗P (d2)+P (e|d3) ∗P (d3); by plugging
the numbers: P (d2|e) = 0.6

0.54 ∗ 1/3 ≈ 0.37.
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both the posterior probabilities and likelihoods are higher relative to d1 than

relative to d2.

The example, I believe, illustrates a simple but often overlooked feature of

evidential support: that support is a comparative notion. The sole fact that

E confirms some hypothesis H does not mean that E supports H, as there

might be an available alternative to H that is equally or better confirmed by

E. I’ll develop a comparative view of support in detail in the next section.

However, before I do this, it will be instructive to compare Diagnostic

Example to another, better-known counterexample to Support-IP that has

been discussed by Achinstein (2001). As I shall argue, the problem in both

cases is similar: Support-IP is unable to capture which one of the two con-

firmed hypotheses is confirmed to a greater degree by the evidence. I quote

Achinstein (ibid., 69) example verbatim:

Lottery Example

b: On Monday all 1000 tickets in a lottery were sold, of which

John bought 100 and Bill bought 1. One ticket was drawn at

random on Wednesday.

e: On Tuesday all the lottery tickets except those of John and Bill

were destroyed, and on Wednesday one of the remaining tickets

was drawn at random.

Achinstein asks us to consider the following two hypotheses:

WJohn: John won the lottery.
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WBill: Bill won the lottery.

Simple calculations show how the probabilities of WJohn and WBill change in

light of the evidence:

P (WJohn) =
100
1000

< (WJohn|e) = 100
101

P (WBill) =
1

1000
< (WBill|e) = 1

101

As we see, e increases the probability of both WJohn and WBill. But Achin-

stein contends that e supports WJohn and not WBill. While I agree with

Achinstein on his verdict, I do so for a very different reason. As I’ve already

explained, Achinstein thinks that support should, at least, turn a hypothesis

sufficiently probable; as the probability of WJohn is quite high, he concludes

that the evidence supports WJohn and not WBill.

Achinstein’s diagnosis of the lottery example conflicts with the standard

assumption about dynamic support: as we have seen from the TB example,

support, in the dynamic sense, does not imply that the supported hypothesis

is sufficiently probable. Hence, simply citing the high posterior probability

of WJohn does not imply that the piece of evidence, e, supports WJohn.

By contrast, I accept the standard assumption about (dynamic) support.

For this reason, I don’t think that the correct analysis of the lottery example

should simply appeal to the high posterior probability of WJohn. Instead,

the problem with Support-IP that the lottery example uncovers is the prob-

lem that the diagnostic example uncovers. In both cases, Support-IP fails to
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capture that one hypothesis is confirmed to a greater degree than its alter-

native.8

To capture the comparativeness of support, I propose to define support

in terms of measures of degree of confirmation. This view, which I call

Support-MDC (MDC for Maximal Degree of Confirmation), roughly says

that evidence supports a proposition iff the evidence confirms it to a greater

degree than its alternatives. As we shall see, Support-MDC easily avoids the

discussed counterexamples but won’t commit us to Achinstein’s controversial

view that support should always turn a proposition sufficiently probable.

This is so because a hypothesis which is confirmed to a greater degree than

its alternatives can still have a quite low posterior probability. Hence the

account that I offer respects the traditional distinction between the static

and dynamic notions of support.

Now, let us proceed to the positive proposal of this paper.

8 Logins (2020), in response to Achinstein’s lottery example, grants that Support-
IP is false. Still, he suggests a more restrictive version of Support-IP, which is solely
concerned with comparative claims of the following type: “H is more supported given E
than it is without E”. He proposes and defends the view he calls the positive probabilistic
relevance view about comparative evidential support (PRCE, for short), which says that
“[If] P (H|E) > P (H), then H is more supported given E than it is without E” (ibid., 9).
I don’t disagree with Logins. But, this paper is not concerned with such narrow com-

parative claims about evidence and hypothesis, which is the sole focus of PRCE. Instead,
this paper is concerned with dynamic support in general: whether E supports/is evidence
for H and not whether H is more supported given E than it is without E. So while my
proposed theory of support (Support-MDC) is compatible with Logins’ proposal (PRCE),
the latter, unlike the former, does not answer the question of the paper: when does a piece
of evidence support a hypothesis? For this reason, I won’t be concerned with PRCE in
this paper.
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3 Explicating Support-MDC

I begin by giving the first, rough statement of Support-MDC which will be

clarified and explicated shortly.

Support-MDC: E supports H iff the degree to which E confirms

H is greater than the degree to which E confirms the alternatives

to H.

Support-MDC involves two unspecified terms: “the degree to which E

confirms H” and “alternatives to H”. Starting from the latter, I’ll specify each

of these terms respectively. If support is a comparative notion, then it is not

a two-term relation between evidence E and hypothesis H. Instead, support

is a three-term relation between E, H, and competitors to H. I call this third

relatum “Hyp”, which denotes a set of exhaustive and mutually exclusive

hypotheses. For simplicity, I assume that Hyp is finite. But, Support-MDC

can also be extended to apply to an infinite set of hypotheses (by using a

probability density function, instead of a probability mass function). I won’t

be dealing with a set of infinitely many competitors in this paper.

To make the parameter Hyp explicit, we can restate the definition of

Support-MDC as follows:

Support-MDC: E supports H relative to a set (of mutually ex-

clusive and exhaustive hypotheses) Hyp (with H ∈ Hyp) iff the

degree to which E confirms H is maximal with respect to Hyp:

i.e., for every x in Hyp − {H} (Hyp without H), the degree to
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which E confirms H is greater than the degree to which E confirms

x.

Now, we also need to define the notion of “the degree to which E confirms

H”. A common way to define the degree of confirmation relation is to intro-

duce a function, c, that takes a hypothesis and a piece of evidence as inputs

and outputs a real number; formally: c(H,E) = n, where n is some real

number. Plausibly, function c must be related to the probability function, P,

in a specific way; so that, if we let t be some threshold value, then function

c must satisfy the following conditions:

c(H,E) > t iff P (H|E) > P (H)

c(H,E) = t iff P (H|E) = P (H)

c(H,E) < t iff P (H|E) < P (H)

Trivially, there are infinitely many functions that satisfy the above three

conditions.9 But, only a dozen or so functions have been seriously consid-

ered and defended in the literature. Here are some popular, representative

measures of confirmation:

Difference: D(H,E) =df P (H|E)− P (H) (Carnap 1962)

9 These three conditions, in themselves, do not commit to a substantive view about
how exactly we ought to measure the degree of confirmation. They only articulate the
idea shared by all contemporary confirmation measures; that a function for measuring the
degree of confirmation must be associated with some value that demarcates the positive
degree of confirmation from the neutral and negative degree of confirmation.
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Ratio: R(H,E) =df
P (E|H)
P (E)

(Milne 1996)

Likelihood-Ratio: L(H,E) =df
P (E|H)
P (E|¬H)

(Good 1950; Fitelson

2006)

On measure D, the degree of confirmation between H and E is the differ-

ence between the posterior and prior probability of H. Trivially, if P (H|E) >

P (H), then the difference between P (H|E) and P (H) is a positive real num-

ber. This means that on D the threshold or neutrality value would be 0. For

instance, if D(H,E) > 0, then P (H|E) > P (H).

On R and L we also have a neutrality value, but, instead of 0, the neu-

trality value is 1. So, for instance, E confirms H iff R(H,E) > 1. (If we wish,

we can transform the neutrality value of R and L from 1 to 0, by taking log-

arithms of these function. But we won’t do this, for the sake of readability

and simplicity.)

Now, as the notion of degree of confirmation is appropriately specified,

we can provide the following schematic explication of Support-MDC, which

I call MDCC .

MDCC : E supports H relative to Hyp (with H ∈ Hyp) iff

c(H,E,Hyp) is maximal, denoted as “cMax(E,Hyp) = H”: i.e.,

for every x in Hyp− {H}, c(H,E) > c(x,E).

MDCC is a schematic principle with one unspecified parameter, c; meaning

that we get a specific version of Support-MDC once we plug a measure of
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confirmation in MDCC , instead of c. For instance, if we plug measure L in

MDCC we get:

MDCL: E supports H relative to Hyp iff LMax(E,Hyp) = H.

But How can we think about the support relation if no hypothesis in Hyp

receives a maximal degree of support from the evidence? Firstly, in such a

case, we should not categorically assert that the evidence supports some

particular hypothesis. For instance, if c(H1, E,Hyp) = c(H2, E,Hyp), and

if for every x in Hyp where x ̸= H1 ̸= H2, c(H1, E,Hyp) > c(x,E,Hyp),

then we should say that E supports H1 and H2 equally well relative to

their alternatives. In general, giving the complete ordering of competing

hypotheses according to some instance of MDCC would convey the whole

information about what the evidence supports (relative to a fixed measure

of support).

Now, an important thing to note is that Support-MDC is an ordinal

principle, meaning that for any two measures x and y, if x and y impose the

same orderings over a given Hyp, then MDCx = MDCy. So, the specific

numerical value of c(H,E,Hyp) is unimportant. What is important is the

ordering that a measure of support imposes on a set of competing hypotheses.

It is well-known that measures D, R, and L are not ordinally equivalent

in general; in many cases, they would impose different orderings over a set

of competing hypotheses. I’ll postpone the discussion of measure sensitivity

of Support-MDC and the potential worries that it might raise until Section

5.
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First, I’m going to argue that Support-MDC is a superior alternative to

Support-IP. I show this by applying Support-MDC to the diagnostic example.

Achinstein’s example (the lottery example) is more complex and requires a

more subtle analysis which I provide in Section 5.

4 Support-MDC is Superior to Support-IP

Support-IP and Support-MDC agree with respect to cases where a piece of

evidence confirms just one hypothesis from the set of competing hypotheses.

This immediately follows from the feature that all contemporary measures of

confirmation have. As we have seen, all measures of confirmation postulate

some threshold value t, such that:

c(H,E) > t iff P (H|E) > P (H)

Hence, if H is the only confirmed hypothesis, then cMax(E,Hyp) = H.

Now, Support-IP and Support-MDC can give conflicting verdicts where a

piece of evidence confirms more than one competing hypotheses. This section

argues that, irrespective of choice of measure of confirmation, Support-MDC,

unlike Support-IP, provides intuitively correct answers when applied to cases

with certain general probabilistic features. We shall say that Support-MDC

provides a robust verdict when applied to a case iff the verdict is insensitive to

choice of measure of confirmation. Hence, what I will show is that, in certain

cases, the application of Support-MDC gives correct and robust results.
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This can be illustrated by applying Support-MDC to our diagnostic exam-

ple. Remember, in this diagnostic example we are working with the following

probability distribution:

Priors Likelihoods Posteriors
d1 = 1/3 P (e|d1) = 0.99 P (d1|e) = 0.61
d2 = 1/3 P (e|d2) = 0.6 P (d2|e) = 0.37
d3 = 1/3 P (e|d3) = 0.03 P (d3|e) = 0.02

Simple calculations show that, the degree to which e supports d1 is maximal

on all considered measures, D, R, and L.10 More than that, these measures

are ordinally equivalent with respect to the diagnostic example: that is, they

impose the same orderings over Hyp. On all these measures:

c(d1, e) > c(d2, e) > c(d3, e)

This is in line with the intuitively plausible ordering of these hypotheses.

Hence, no matter which of the three measures we choose, Support-MDC,

contrary to Support-IP, justifies the intuitively correct verdict that e supports

d1.

10 As an example, consider measure D:

D(d1, e) = P (e|d1)− P (d1) = 0.61− 1/3 ≈ 0.27

D(d2, e) = P (e|d2)− P (d2) = 0.37− 1/3 ≈ 0.036

D(d3, e) = P (e|d3)− P (d3) = 0.02− 1/3 ≈ −0.31

As we see, d1 receives the maximal degree of confirmation by e.
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Interestingly, there is a certain structural feature that this diagnostic

example has, such that, if the probability distribution has that feature, then

the evidence would support the same hypothesis according to Support-MDC,

relative to all contemporary measures of confirmation (not only relative to the

three considered measures).To explain this result, first, we need to introduce

the following principle:

The Weak Law of Likelihood (WLL): E supports H1 to a greater

degree thanH2, if P (E|H1) > P (E|H2) and P (E|¬H1) ≤ P (E|¬H2).

Like the Law of Likelihood (LL), WLL is a principle of comparative support:

it applies to cases where we want to compare the impact of a piece of evidence

on a pair of competing hypotheses. As its name suggests, WLL is strictly

logically weaker than LL. LL entails WLL, but not the other way around. We

can restate WLL more succinctly by using our measure-theoretic notation:

WLL: c(H1, E) > c(H2, E), if P (E|H1) > P (E|H2) and P (E|¬H1) ≤

P (E|¬H2).

On the face of it, WLL seems highly plausible. Both conjuncts of the an-

tecedent of WLL, taken independently, speak in favour of E supporting H1

over H2. And if both conjuncts hold simultaneously, this seems to conclu-

sively establish that E supports H1 over H2. Here is how Joyce (2003, 8)

motivates WLL:11

11 As before, the cited passage contains some notational changes. Instead of WLL,
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[WLL] captures one core message of Bayes’ theorem for theories of confir-

mation. Let’s say that H1 is uniformly better than H2 as predictor of E’s

truth-value when (a)H1 predicts E more strongly thanH2 does, and (b) ¬H1

predicts ¬E more strongly than ¬H2 does. According to WLL, hypotheses

that are uniformly better predictors of the data are better supported by the

data.

WLL certainly enjoys a great deal of intuitive appeal. But what might

come as a surprise is that WLL is true relative to all contemporary measures

of confirmation (Fitelson 2007, 479). To explain this result in detail, first,

let’s define the following schematic principle of comparative support, CSc

(CS for Comparative Support and subscript c is an unspecified measure of

degree of confirmation):

CSc: E supports H1 over H2 iff c(H1, E) > c(H2, E).

When we plug in a specific measure of support instead of parameter c we get

a concrete view of comparative support. Now, the surprising fact mentioned

above is that, CSc entails WLL relative to the dozens of measures of support

that have been defended in the relevant literature. For instance, if we take

our three representative measures, D, R, and L, then WLL can be derived

from CSc, by plugging in one of these measures instead of c (the proofs will

be given in the appendix).

Joyce refers to the principle as the “Weak Likelihood Principle”. I follow Fitelson (2007)
in using the term “WLL”.
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Given this surprising fact that CSc entails WLL relative to all contem-

porary measures of confirmation, we have the following interesting result: if

H is a uniformly better predictor of E than any of its alternatives, then E

supports H on Support-MDC relative to any contemporary measure of con-

firmation. More fully and precisely, the result can be stated via the following

theorem:

The Uniformly Better Predictor Theorem

Let H ∈ Hyp and let support be defined as in Support-MDC.

Then for every x in Hyp− {H}:

if P (E|H) > P (E|x) and P (E|¬H) ≤ P (E|¬x), then E supports

H on all contemporary measures of confirmation.

What this theorem shows is that, if a probability model includes a hypothesis,

H, and H is the uniformly better predictor of E, then Support-MDC would

provide a robust verdict that E supports H. So, no matter which contempo-

rary measure of confirmation we choose, E would still support its uniformly

better predictor.12

Our diagnostic example includes the uniformly better predictor hypoth-

esis: for every competitors x, P (E|d1) > P (E|x) and P (E|¬d1) ≤ P (E|¬x).

Hence, Support-MDC gives a robust verdict when applied to the diagnostic

example.

12 I’ll only state the proofs relative to three representative measures. The proofs are
given in the appendix.
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Unfortunately, there are many cases in which Support-MDC does not

give robust verdicts. The uniformly better predictor condition does not hold

in general; and in such cases, different measures of confirmation can impose

different orderings on a set of competitors. For instance, it is well-known

that measures D, R, and L are not ordinally equivalent, meaning that they

can license opposite comparative judgements in some cases. This makes

Support-MDC a measure-sensitive view, where the choice between measures

of support can change what a piece of evidence supports.

The next section discusses the measure-sensitivity of Support-MDC and

the worry associated with it. I propose and evaluate three strategies for

addressing the worry. My overall conclusion will be that measure sensitivity

does not pose a serious challenge to Support-MDC.

5 Measure Sensitivity of Support-MDC

There are many measures of confirmation which are ordinally non-equivalent:

given the same probability distribution, these measures can impose different

orderings on a corresponding set of competing hypotheses. Focusing on our

three measures, we can illustrate this by considering the following likelihood

distribution over three hypotheses, with an undefined prior probability dis-

tribution:
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Priors Likelihoods Posteriors
d1 = x P (e|d1) = 0 P (d1|e) =?
d2 = y P (e|d2) = 1 P (d2|e) =?
d3 = 1− (x+ y) P (e|d3) = 0.8 P (d3|e) =?

Table 2: Likelihood Distribution

Interestingly, even without knowing the prior distribution over these hypothe-

ses, we can still determine that on measure R, e supports d2; asRMax(e,Hyp) =

d2. Here is how we know this. Table 2 defines the likelihood distribution over

the given hypotheses; that is, we know the value of each P (e|di). However,

in order to determine the value of R(di, e) we also need to know the value

of P (e); as R(di, e) = P (e|di)
P (e)

. But, the value of P (e), in part, depends on

the prior distribution, which is not specified in Table 2. Hence P (e) is not a

well-defined quantity in this example. However, given measure R, we do not

need to know the value of P (e) to impose an ordering on Hyp. This is so

because of the following simple theorem:

Simple Theorem

R(H1, E) > R(H2, E) iff P (E|H1) > P (E|H2)
13

13 Here is a simple proof. By definition, for any two propositions H1 and H2, we have:

R(H1, E) > R(H2, E) iff P (E|H1)
P (E) > P (E|H2)

P (E)

By algebra (and assuming that P (E) ̸= 0), P (E) cancels out on the right-hand-side. And
we have:

R(H1, E) > R(H2, E) iff P (E|H1) > P (E|H2)

In words: in evaluating inequality R(H1, E) > R(H2, E), the expectedness of evidence,
P (E), cancels out. Therefore, the inequality, R(H1, E) > R(H2, E), is well-defined even
without defining the value of P (E).
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As this simple theorem makes it explicit, analysing the notion of com-

parative support in terms of measure R gives us nothing but the familiar

Law of Likelihood (LL). Hence, Likelihoodist theory of comparative support

is equivalent to analysing the comparative support with Bayesian measure R

(Fitelson 2007, 478). Now, given Simple Theorem, R imposes the following

ordering on the considered likelihood distribution (as given by Table 2):

c(d2, e) > c(d3, e) > c(d1, e)

Therefore, on MDCR, e supports d2.

By contrast, on measures D and L, the support relation over these hy-

potheses is undefined. On D and L, if Hyp contains more than two hypothe-

ses, then it is not generally possible to impose an ordering on Hyp without

defining the prior distribution first.14

The above discussion illustrates that the considered measures can be dis-

tinguished by citing the property of prior-sensitivity ; where R is a prior

insensitive measure, while D and L are prior sensitive measures. What this

means is that a set of hypotheses, Hyp, can be ordered by R without defin-

ing the prior probability over Hyp; but the same thing cannot be done via

measures L and D, as they are prior sensitive measures of confirmation.

This said, L and D are not prior sensitive in the same way. If we fix the

likelihood distribution over Hyp, then L would impose the same ordering as

14 The sole exception is when all hypothesis except one has the likelihood of 0 on the
evidence. But we won’t be dealing with such probability models.
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R more often than D. Hence, L is less prior sensitive than D. To visualise

the degree of prior sensitivity of these measures, let’s fix the likelihood dis-

tribution as in Table 2, and graph the set of all prior distributions relative

to which these measures support either d2 or d3. We get the following graph

where the blue curve represents measure D and the yellow curve – measure

L; and the points (i.e., prior distributions) above a given curve render the

judgement that c(d2, e) > c(d3, e):

0.2 0.4 0.6 0.8
P(d1)

0.2

0.4

0.6

0.8

P(d2)

Figure 1: Visualising Prior Sensitivity of D and L

The large black dot in the graph represents the equiprobable distribution;

and as we see, on the equiprobable distribution e supports d2 relative to both
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measures D and L. However, on some prior distributions, D and L license

different judgements. For instance, if we let P (d1) = 0.25 and P (d2) = 0.2,

then:

L(d2, e) > L(d3, e)

D(d2, e) < D(d3, e)

And, in general, measure L agrees with prior-insensitive measure R more

often than measure D. Hence, L is less prior sensitive than D.

Now, the measure sensitivity of Support-MDC comes into play when we

apply Support-MDC to Achinstein’s example (the lottery example). To re-

mind the reader, in the lottery example, we have 1000 tickets from which 1

ticket will win. John has 100 tickets, while Bill has just one ticket. Then we

get a new piece of evidence, e, that all except John’s and Bill’s tickets had

been destroyed. So, now we know that 1 out of these 101 remaining tickets

will win. We have two hypotheses:

WJohn: John won the lottery.

WBill: Bill won the lottery.

The new evidence that we received does not change the relative plausibilities

of WJohn and WBill. Both before and after receiving evidence e, WJohn is 100

times more likely than WBill. However, after receiving evidence e, we exclude

the possibility that neither John nor Bill won. Hence, WJohn simply becomes

100 times more likely than ¬WJohn. This means that evidence e does not
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change the relative plausibility ofWJohn vis-à-visWBill. However, the absolute

probabilities of WJohn and WBill change significantly. But this changes in

absolute probabilities are solely due to difference in prior probabilities of

WJohn and WBill. As R is a prior insensitive view, using this measure won’t

give us the verdict that e supports WJohn over WBill.
15

By contrast, as measures D and L are prior sensitive measures, they give

us the intuitively correct verdict that e supports only WJohn. The results of

applying these measures to the lottery example are summarised below:

D(WJohn, e) ≈ 0.89 > D(WBill, e) ≈ 0.0089

R(WJohn, e) ≈ 9.9 = R(WBill, e) ≈ 9.9

L(WJohn, e) = 900 > L(WBill, e) = 9.99

As we see, Support-MDC agrees with Achinstein’s verdict relative to mea-

sures D and L. However, on measure R, e is equally good evidence for both

hypotheses.

The above discussion illustrates that the choice between R, L, and D can

have a significant effect on what a piece of evidence supports. This result

gives rise to the following worry:

If the available evidence is such that it supports different hy-

potheses relative to different measures, then how should we think

15 Via Simple Theorem, we saw that analysing comparative support with measure R is
logically equivalent to the Law of Likelihood (LL). Therefore, interestingly, Achinstein’s
lottery example seems to provide a counterexample to LL, if one shares the intuition that
the relevant evidence supports WJohn over WBill.
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about the support relation in such cases?

Now, there are three overall strategies to approach the worry of measure sen-

sitivity. The first strategy is to endorse the uniqueness thesis about measures

of confirmation. On this view, there is but one true measure of confirmation.

And if this kind of uniqueness thesis is true, then the problem of measure

sensitivity simply disappears.

While some (e.g., Good 1950; Milne 1996; Fitelson 2006) have defended

versions of such uniqueness thesis, most contemporary epistemologists have

pluralistic attitudes towards measures of confirmation. This is not a place

to go into the debate on the uniqueness thesis about measures of confirma-

tion. Suffice it to say, such uniqueness thesis is an extremely strong and

contentious view. So, the appeal to “one true measure of confirmation” is

not a very promising strategy for answering the measure sensitivity problem

for Support-MDC.

The second strategy is to endorse, what I call, the qualified pluralism

about measures of confirmation. On this approach, we can grant that no sin-

gle measure of support is adequate for all cases. Instead, the choice between

measures should be made on a case-by-case basis : so that, some evidential

situations license the use of a unique measure (or a set of ordinally equivalent

measures), while some other situations license the use of a different measure.

To illustrate the idea behind this qualified pluralism, let’s reconsider Achin-

stein’s lottery example. With respect to this lottery case, it seems that one

can justifiably favour measure D or L over measure R. Here is why. In the
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lottery example, the relative probabilities of the competing hypotheses re-

main the same after we update on the new evidence. Hence, the probabilistic

asymmetry between these hypotheses is due to their absolute probabilities

(i.e., their prior and posterior probabilities). Now, it seems that, in this spe-

cific example, the absolute probabilities are relevant to what the given piece

of evidence supports. Hence there is a good reason for favouring measures D

and L over measure R, in this particular case. And as D and L impose the

same ordering over the relevant competing hypotheses, the choice between

them is inconsequential in this case. In making this argument, one can grant

that, in some cases, absolute probabilities may be irrelevant or less relevant;

still, one may contend that Achinstein’s example is not such a case.

Now, the argument for narrowing a set of permissible measures to an

ordinally equivalent set of measures might work with respect to Achinstein’s

lottery example. But, at this point, we have no reason to think that the

same strategy would work in general. Hence, such qualified pluralism is not

sufficiently motivated to alleviate the worries about measure sensitivity of

Support-MDC.

The third and last considered strategy in the face of the measure sen-

sitivity worry is to endorse some form of pluralism about measures of con-

firmation. On this strategy, we have to grant that, if there is no robust

confirmation-theoretic analysis of a given evidential situation, then there is

simply no fact of the matter about what this evidence supports. No “ab-

solute” support relation obtains in such cases; we can only make relational
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claims about what the evidence supports relative to, say, measure R or mea-

sure L.

On the supposition that the first two strategies for answering the measure-

sensitivity problem (for Support-MDC) are unsuccessful, it seems that plu-

ralism about support is the only available option for us to take. Hence, we

have to concede that, in some cases, no “absolute” support relations obtain.

I expect that some readers might not be happy with this conclusion, and

look back to Support-IP as a superior alternative to Support-MDC. After

all, it seems as if Support-IP is not susceptible to the measure-sensitivity

problem: if a hypothesis is confirmed on evidence, then it is confirmed no

matter how we measure the degree of confirmation.

But this alleged advantage of Support-IP is illusory. As we’ve already

seen, Support-IP is most plausible when the evidence confirms just one hy-

pothesis from the set of competing hypotheses. But such cases are easily

handled by Support-MDC as well; relative to all contemporary measures,

if evidence confirms just one hypothesis, then the evidence supports this

hypothesis relative to any measure of confirmation. In contrast, Support-

MDC can deliver robust and intuitively correct results in cases which seem

to provide counterexamples to Support-IP (e.g., the diagnostic example).

Therefore, even if one is unhappy about accepting a measure-sensitive view

of support, the appeal to Support-IP won’t help one to mitigate the worry;

as Support-IP cannot even discriminate one confirmed hypothesis from the

other. So, instead of addressing the measure sensitivity problem, Support-IP
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would indiscriminately judge each confirmed hypothesis to be supported by

the evidence. This surely cannot be considered a successful dissolution of the

measure sensitivity problem.

In summary: even if one is concerned with the measure sensitivity prob-

lem, Support-MDC should still be favoured over Support-IP. This concludes

the overall argument of the paper.16

6 Conclusion

The notion of confirmation is tremendously useful in epistemology. Impor-

tant epistemic concepts, such as probabilistic relevance, conditional indepen-

dence and others are defined in terms of confirmation.

However, as I’ve argued, the relation of support cannot simply be equated

with confirmation. This is for the simple reason that support is a comparative

notion in the sense that confirmation is not; a piece of evidence can confirm

H, but it also can confirm an alternative to H to the same or greater degree.

To accommodate the comparativeness of support, I’ve proposed to define

16 Besides the problem of measure-sensitivity, one might point out the following po-
tential problem: Support-MDC is sensitive to how we conceptualise the set of competing
hypotheses. This is because, on Support-MDC, evidence E can support H relative to one
partition, but, E can support some competitor to H relative to a different partition.
While I grant that Support-MDC is partition sensitive in the above sense, I do not

consider this to be a shortcoming. After all, Support-IP is also a partition sensitive view.
For instance, consider the diagnostic example. If we exclude hypothesis d3 from the outset,
then the available evidence would no longer confirm d2. Hence, the partition sensitivity is
not an idiosyncratic feature of Support-MDC.
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support in terms of measures of confirmation.

This proposed view, Support-MDC, can easily handle some of the coun-

terexamples against the increase-in-confirmation account of support (Support-

IP). However, there are cases where Support-MDC is not as easy to apply:

the cases where choice of measure of confirmation becomes important.

While I do not think that any adequate theory of support can completely

escape the problem of measure sensitivity, the project of articulating a more

robust theory of support (compared to Support-MDC) is very well motivated.

Whether this project succeeds or not, the conclusion of the paper would still

be the same: Support-MDC is a superior alternative to Support-IP.

It is also worth noting that Support-MDC has an important practical

advantage over Support-IP: the former, unlike the latter, helps us to avoid

overestimating the epistemic significance of confirmation. As we have seen,

a piece of evidence can confirm H, but the same evidence might not support

or “speak in favour” of H. For this reason, one should not attach too much

weight to the increase-in-probability relation, unless one has evaluated the

evidence with respect to a set of relevant competing hypotheses.
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7 Appendix

In this appendix we will prove the Uniformly Better Predictor Theorem by

using measures D, R, and L. The theorem states the following:

The Uniformly Better Predictor Theorem

Let H ∈ Hyp and let support be defined as in Support-MDC.

Then for every x in Hyp− {H}:

if P (E|H) > P (E|x) and P (E|¬H) ≤ P (E|¬x), then E supports

H on measures D, R, and L.

Now, according to Support-MDC, E supports H relative to Hyp iff the degree

to which E confirms H is maximal (denoted as cMax(E,Hyp) = H). So, to

prove this theorem for some measure of confirmation c, we need to show that:

if P (E|H) > P (E|x) and P (E|¬H) ≤ P (E|¬x), then cMax(E,Hyp) =

H
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This is exactly what we are going to demonstrate with respect to measures

D, R, and L.

The theorem is trivially true for measures R and L. To simplify the ex-

position, let X be some arbitrary member of Hyp, where H ̸= X. And let A

denote P (E|H) > P (E|X) and B denote P (E|¬H) ≤ P (E|¬X). Now, by

logic we have:

(A ∧B) ⇒ A (1)

And by definition:

R(H,E) > R(X,E) ⇐⇒ A (2)

As X can be any competitor to H, we conclude that for every competitors x:

P (E|H) > P (E|x) and P (E|¬H) ≤ P (E|¬x) ⇒ RMax(E,Hyp) = H (3)

Hence, the proof of the theorem with respect to measure R.

Regarding measure L: it is trivial that:

(A ∧B) ⇒ L(H,E) > L(X,E) (4)

And given that X can be any competitor to H, (4) is already equivalent to:

P (E|H) > P (E|x) and P (E|¬H) ≤ P (E|¬x) ⇒ LMax(E,Hyp) = H (5)

Hence, the proof of the theorem with respect to measure L.
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For measure D, the theorem is a bit more cumbersome to prove. As before,

we assume that all relevant conditional probabilities are well-defined; so, for

the relevant hypotheses H and X and evidence E, the following quantities

are non-zero: P (H), P (X), P (¬H), P (¬X), P (E). Now we will prove that,

if P (E|H) > P (E|X) and P (E|¬H) ≤ P (E|¬X), then P (H|E) − P (H) >

P (X|E) − P (X); so, if the conditions of the theorem are satisfied, then

D(H,E) > D(X,E). Here is one way to prove it.

By the axioms of probability (and the definition of conditional probabil-

ity), if we multiply P (E|H) > P (E|X) by P (H)P (X) we get:

P (H ∧ E)P (X) > P (X ∧ E)P (H) (6)

Similarly, multiply P (E|¬H) ≤ P (E|¬X) by P (¬H)P (¬X) to get:

P (¬H ∧ E)P (¬X) ≤ P (¬X ∧ E)P (¬H) (7)

Via the axioms of probability, remove complements (e.g., substitute P (¬H ∧

E) with P (E)− P (H ∧ E)):

(P (E)− P (H ∧ E))(1− P (X)) ≤ (P (E)− P (X ∧ E))(1− P (H)) (8)
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Multiply out and rearrange equation (8):

P (H∧E)P (X) ≤ P (H∧E)−P (X∧E)+P (E)(P (X)−P (H))+P (X∧E)P (H)

(9)

Now, given equations (6) and (9), we have:

P (H∧E)−P (X∧E)+P (E)(P (X)−P (H))+P (X∧E)P (H) ≥ P (H∧E)P (X) > P (X∧E)P (H)

(10)

And subtract P (X ∧ E)P (H) from equation (10):

P (H∧E)−P (X∧E)+P (E)(P (X)−P (H)) ≥ P (H∧E)P (X)−P (X∧E)P (H) > 0

(11)

From equation (11):

P (H ∧ E)− P (X ∧ E) + P (E)P (X)− P (E)P (H) > 0 (12)

By algebra:

P (H ∧ E)− P (E)P (H) > P (X ∧ E)− P (E)P (X) (13)

Finally, divide equation (13) by P (E) (and via the definition of conditional

probability):

P (H|E)− P (H) > P (X|E)− P (X) (14)

Hence, the theorem is proved with respect to measure D as well.
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