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The current rise of neurodevelopmental disorders poses a critical need to detect risk 
early in order to rapidly intervene. One of the tools pediatricians use to track development 
is the standard growth chart. The growth charts are somewhat limited in predicting 
possible neurodevelopmental issues. They rely on linear models and assumptions of 
normality for physical growth data – obscuring key statistical information about possible 
neurodevelopmental risk in growth data that actually has accelerated, non-linear 
rates-of-change and variability encompassing skewed distributions. Here, we use new 
analytics to profile growth data from 36 newborn babies that were tracked longitudinally 
for 5 months. By switching to incremental (velocity-based) growth charts and combining 
these dynamic changes with underlying fluctuations in motor performance – as the 
transition from spontaneous random noise to a systematic signal – we demonstrate a 
method to detect very early stunting in the development of voluntary neuromotor control 
and to flag risk of neurodevelopmental derail.

Keywords: neural development, micro-movements, stochastic analysis, wearable sensors, inertial measurement 
units, accelerometers, babies, neural control of movement

inTrODUcTiOn

Neurodevelopment follows an extremely dynamic trajectory (1–4), with each infant experienc-
ing a range of unique changes, driven by both the infant and their own environment. During 
the early stages of neurodevelopment, the infant’s body and head grow at an accelerated rate 
(e.g., see Figure A1), and the nervous systems of the infant must rapidly develop in tandem to adapt 
to, and to compensate for, these changes. Due to the variable nature of biological systems, these 
day-to-day fluctuations in physical growth follow a non-uniform, non-linear process, with some 
babies changing at slower rate than others at certain times. Likewise, the fast-changing nervous 
systems underlying the fast-growing physical body must develop rapidly to create the foundation 
for purposeful controlled actions. In the face of such highly variable neurodevelopmental processes, 
it may be important to switch from the “one-size-fits-all” model currently in use (Figure 1A) to a 
personalized statistical approach (Figure 1B). In particular, the use of a personalized approach is 
more adequate to individually fit, and thus “capture,” the true nature of the adaptive processes of the 
early stages of a newborn’s life.

The physical growth of the baby’s body can be easily monitored; indeed, this is often tracked 
with regular visits to a pediatrician. The pediatrician will utilize a range of standardized tools, 
such as standardized population growth charts, that have been created and produced by both 
the Center for Disease Control (5) and the World Health Organization (6) to track progress. 
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FigUre 1 | statistical platform for the personalized analyses of natural behaviors: (a) the prevalent “one-size-fits-all” model currently in use to 
analyze kinematics data. The example shows epochs of temporal speed profiles aligned and averaged under the assumption of normality. The assumed 
(theoretical mean) and the assumed variance are then used to characterize the motor behavior, thus leaving out important fluctuations in motor performance 
(considered as noise or a nuisance). (B) Our proposed platform extracts waveforms of variations in motor performance and estimates the underlying family of 
probability distributions. This method characterizes the individual and the rate of change in PDFs as the noise (dispersion) decreases, and the signal becomes 
well-structured and systematic (predictable).
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Although not intended as diagnostic tools, pediatricians often 
use such charts to infer general aspects related to neurodevel-
opmental progress. Yet, such methods are imprecise (7, 8) (see 
Appendix). This imprecision may mask early signs of neurode-
velopmental delay or difficulty. Besides physical growth, proper 
neurodevelopment includes the emergence of voluntary control 
of the developing brain over the changing body. One way to 
track the maturation of this form of neuromotor control more 
precisely is by longitudinally registering physical motions and 
examining the emerging trends of the individual’s physiological 
signatures. More specifically, one can track the baby’s develop-
ment of neuromotor control by statistically characterizing the 
stochastic fluctuations in motor performance as the nervous 
system adapts to the accelerated physical growth. Indeed, as 
the bodily rhythms evolve and transition from spontaneously 
random to well-coordinated movements, the corresponding 
changes in their statistical patterns may reveal the signatures 
of voluntary control.

The relevance of bodily rhythms and the infant’s ability to 
self-organize and synchronize them with external environmental 
rhythms should perhaps be more seriously considered in con-
temporary pediatrics. Indeed, it has been reported that newborn 
infants naturally entrain their bodily rhythms with those of the 
adult’s speech (9); an ability that is compromised in individuals 
that go on to receive a diagnosis of a neurodevelopmental dis-
order (10). Related perinatal research points at the intertwined 
relations between respiration, sucking patterns, and speech (11, 
12). Such work highlights the importance of well-functioning 
orofacial sensory–motor structures to scaffold the production of 
motoric rhythms (11, 13), the later emergence of spoken language 
abilities, and their potential role as precursors of other cognitive 
and social capacities.

The bodily rhythms are under different levels of control and 
involve different structures throughout the nervous systems with 
different phylogenetic order of maturation Figures 2A,B. Such 
orderly anatomically structured and layered systems begin with 
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FigUre 2 | Proposed taxonomy of neuromotor control. (a) Different layers of control across the nervous systems appear in phylogenetic order from the 
bottom up. Information in each level can be registered non-invasively with modern instrumentation. The maturation of each layer of control transfers to the next layer 
as the baby develops. Their intertwined balance scaffolds the development of voluntary control of the bodily rhythms at will (volition). This (we posit) is a necessary 
ingredient to develop cognitive abilities. (B) Schema adapted from (16) showing the autonomic and sensory–motor systems and the necessary interactions for 
further neurodevelopment and the well-functioning of all aspects of social interactions.
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autonomic functions and reflexes that soon evolve in the neonate; 
or not as in the cases where neurodevelopmental disorders were 
later found (14, 15). Indeed, the proper functioning of autonomic 
systems and reflexes from an early stage of life seem to be critical 
to survive, while also providing the foundations for the develop-
ment of autonomy and self-control of the peripheral nerves by the 
central cerebrocortical structures. We believe that at these early 
stages important organizational maps involving sensory inputs 
and nervous systems’ reactions to external and internally gener-
ated stimuli begin to form. Gradual adaptation of these maps may 
eventually lead to the formation of new modifiable-on-demand 
maps of sensory consequences of impending actions. As such, 
monitoring the early evolution of bodily rhythms in the neonate, 
as they transition from spontaneous random noise to detectable 
signals may be relevant. In this sense, describing the ranges of 
variability of some of those rhythms may help characterize norma-
tive vs. atypical trends of neonatal adaptation of nervous systems 
performance in response to physical bodily growth (Figure 2B).

The various degrees of variability associated with the various 
layers of neuromotor control in Figure 2A have different noise-
to-signal ratios (17–19). This type of information, echoed back to 

the brain through reafferent loops (20), may play a critical role in 
early stages of neurodevelopment. More specifically, we posit that 
the rates of change in the stochastic signatures of bodily rhythms, 
particularly in the neonatal stages of development, may help fore-
cast the adaptive capacity of the developing nervous systems. As 
such, it is our hypothesis that the degree of congruence between 
the rates of adaptation of noise-to-signal transitions in kinematics 
variables reflecting higher levels of control and those of physical 
growth must be a good indicator of typical neurodevelopment 
in the newborn. The failure of this congruence to appear may 
flag risk of neurodevelopmental stunting. Thus, this work offers 
an operational account providing empirical evidence for this 
hypothesis.

MaTerials anD MeThODs

Participants
Twelve infants with typical development (8 females, 4 males) 
forming a control group (CT) and 24 infants (9 females, 15 
males) pre-labeled clinically at risk (CAR) for developmental 
delay participated. Infants with typical development were from 
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the Portland, OR, USA, metropolitan area. Infants at risk for 
developmental delay were from the Los Angeles, CA, USA, 
metropolitan area and were identified as at risk according to 
the clinical definition of the state of California (21). This group 
includes, for example, infants born preterm, with traumatic 
birth experiences, or with congenital heart defects. From this 
CAR group, it is anticipated that approximately half will have 
poor neuromotor outcomes (a diagnosis of developmental 
delay at 24  months), while half will have good neuromotor 
outcomes (no diagnosis of developmental delay at 24 months). 
Our target developmental period was birth to walking onset 
(defined as onset of three independent steps). Infants with typi-
cal development started the study between 1 and 8 months of 
chronological age while infants at risk started between 1 and 
15  months chronological age. All infants except for two were 
measured three times with ~2  months between visits, span-
ning 5  months of their early development. These two infants 
were only measured twice as they started walking before the 
third scheduled measurement. The study was approved by the 
Institutional Review Boards (IRB) of Oregon Health & Science 
University and the University of Southern California. Parents 
signed an informed consent form for their infants’ participation. 
Rutgers University IRB approved data sharing agreements to 
properly examine the de-identified data.

Data collection
At each visit, the Alberta Infant Motor Scale (AIMS) (22) was 
administered to the babies in order to quantify motor develop-
ment status. Additionally, physical growth parameters were 
registered, including measurements of body length, body weight, 
and head circumference. Inertial measurements units in wearable 
sensors (Opals, APDM, Inc., Portland, OR, USA) were placed in 
each leg using knee socks or custom leg warmers with pockets 
(Figure S1A in Supplementary Material). If knee socks were 
used, sensors were firmly attached with Velcro® to the bottom 
layer knee sock, proximal to each ankle joint and secured with 
a second knee sock. They synchronously collected triaxial accel-
eration, triaxial gyroscopic motions, and temperature at 20 Hz 
continuously for 8–13 h. Visits took place in the morning, and 
the sensors remained in place during all typical activities of the 
day until bedtime; this was 8–13 h after placement, when parents 
were instructed to remove them. Data were stored in the sensor’s 
internal memory and downloaded later for analyses. The data 
analyzed here include all hours of continuous motions.

statistical analyses
The time-series data from the inertial measurement units (IMUs) 
attached to the legs of the infants were analyzed using new 
techniques that estimate the family of probability distributions 
best characterizing the continuous random process underlying 
the spontaneous movements of the babies. These time series 
from the IMU-wearables are transformed into time series of the 
acceleration peaks. A waveform derived from these time series 
is then used to represent a continuous random process under 
the general rubric of Poisson random process (PRP). To be 
more precise, we treat the spikes in acceleration as spike trains 
of random amplitudes and random times. To model them, we 

build on previous research whereby the amplitudes and inter-
spike interval times are modeled as independent and identi-
cally distributed (iid) random variables following a Gamma 
distribution (18, 19, 23, 24). As such, the spike trains are the 
input to a Gamma process and the empirically estimated Gamma 
parameters are dynamically tracked on various parameter spaces 
to uncover self-emerging patterns. In particular, on the Gamma 
parameter plane, we use the median values of the two parameters 
of interest (the shape and the dispersion of the distributions) to 
define quadrants. We track the jumps of the parameters from 
the quadrant of low dispersion (low noise-to-signal ratio, NSR) 
and symmetric shapes [denoted right lower quadrant (RLQ)] 
into the quadrant of high NSR and skewed shapes with limiting 
case of the most random (memoryless) exponential distribution 
[denoted left upper quadrant (LUQ)].

By tracking the frequency and amplitude of the shifts in prob-
ability distribution functions between the LUQ and the RLQ, 
these data-driven methods automatically determine the indi-
vidualized transitions from spontaneous random noise to well-
structured, systematic signals in relation to the rate of physical 
growth of each baby. The detailed explanation of the methods 
and figures illustrating them can be found in Supplementary 
Material. Their use has been amenable to computational trac-
tability of Big Data collected over the course of several hours 
(17). Moreover, they facilitate statistical inference and further 
interpretation of the results in light of clinical scores.

summary or roadmap of the analyses
There are three types of analyses presented in the paper. First, we 
compute the ensemble behavior of each clinical group of the typi-
cal babies and the group at risk according to their a priori given 
clinical label (CAR). We report outcomes from non-parametric 
statistical tests. Since the two groups had disparate sizes (CT 
12) and (CAR 24), we randomly chose 12/24 with no replace-
ment until we exhausted the CAR group and report the average 
p-value obtained from the non-parametric rank-sum Wilcoxon 
test or the Kruskal–Wallis test comparing equal-size CT and CAR 
groups. Using these clinically pre-labeled groups, we examined 
the temperature fluctuations in each group and the physical 
growth parameters reported for each baby in each group. We also 
examined the stochastic signatures and their shift or lack thereof. 
The results from these analyses are presented in the Figures S6 
and S7 in Supplementary Material.

The second set of analyses was performed on the whole 
ensemble in data-driven mode, i.e., without considering the 
clinical labels (CT and CAR). The motivation here was to unveil 
automatically self-emerging clusters based on the objective 
physical growth data in order to guide the classification of the 
underlying noise-to-signal data extracted from the motion sen-
sors registering leg movement rhythms. The resulting data-driven 
groups were then examined to see which babies came from the 
clinically pre-labeled groups born with or without complications.

This second layer of analysis was completed through a number 
of steps. First, we obtained the physical parameters for each indi-
vidual baby (i.e., body length, body weight, head circumference) 
along with the parameters rate of change for each individual. 
This rate of change was computed by dividing the value of the 
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parameter on each visit by the number of days since birth until 
the day of the visit. Examining the rate of change of the param-
eters rather than the absolute number of days since birth was 
important because the babies in the CAR group did not start the 
study at the same time as the babies in the CT group. Similarly, we 
examined the rate of change of the AIMS total scores. The median 
for each of the three dimensions of the rate of change in physical 
parameters was calculated and used to rank the data. Using the 
median criterion is a standard procedure and is most appropriate 
for skewed data, such as that generated by the incremental data 
used here. The three-dimensional median vector determined the 
cutoff of the first group of babies, those babies with the highest 
rate of change in each of the parameters of physical growth. This 
group had the highest median value for body length, weight, and 
head circumference. The same operation was performed on the 
remaining group and a second subgroup obtained, again ranked 
according to the median cutoff of that remaining group. This 
median-cutoff selection was completed once more, resulting in 
a total of four ranked groups. Second, a Delaunay triangulation 
(25) was performed on the scatter of each group to draw the cor-
responding surfaces and examine the underlying changes in the 
amplitude and the frequency of the noise-to-signal transitions. 
This individualized analysis also entailed examination of the rates 
of change in total AIMS scores so as to gain insight into the motor 
readiness of each ranked group and to help visualize the physical 
growth rate of change data.

The third set of analyses comprised the use of the stochastic 
signatures of acceleration obtained within each temperature 
range. The averaged ΔN in a visit was expressed as a rate of change 
(by dividing the ΔN by the number of days since birth until the 
day of the visit of each baby). This quantity was expressed as a 
function of the averaged Δphysical growth parameter, also taken 
as a rate of change across visits. The latter included averaged 
Δbody-length across visits (centimeters per day); Δbody weight 
across visits (kilograms per day); averaged Δhead circumference 
across visits (centimeters per day). This analysis automatically 
yielded a group of babies statistically at high risk (denoted HR). 
The median statistic to rank that data was the only heuristic 
applied. This method was appropriate given the skewed nature of 
the families of probability distributions underlying both the rates 
of change in physical growth and the rates of change in the noise-
to-signal transitions of the motor fluctuations data. We denoted 
babies in the first ranked group typically developing data-driven 
TD, based on the statistical ranking (rather than on the clinical 
criteria). Those in the second and third groups merged into the 
partially at risk group (PAR) and the remaining last ranked group 
HR. The data-driven PAR group was comprised by babies ranked 
2 and 3 according to the median-ranking criterion for the rate of 
change in physical growth.

resUlTs

Babies automatically group according to 
Their rates of change in Physical growth
Iterative ranking of the median values attained data-driven clus-
tering across all rates of change in physical growth parameters 

(see Materials and Methods). This yielded four groups sorted 
from highest to lowest rate of change in all three physical growth 
parameters. Babies in the first group were the most advanced in 
their rate of growth. Babies in the last group were those with the 
slowest rate of change, i.e., growth. Delaunay triangulation on 
the scatter of each median ranked group was used to determine 
the surface best fitting each cluster. Figure 3A illustrates the four 
clusters (referred to as Rank 1–4) arranged using the Delaunay 
surfaces with the x-axis representing the rate of change in weight 
(kilograms per day), the y-axis representing the rate of change in 
body length (centimeters per day), and the z-axis representing 
the rate of change of the total AIMS scores per day. The figure 
also contains the information on the rate of change in the head 
circumference (centimeters per day) plotted as the size of the 
marker. Markers colored in blue represent CT babies, while 
markers colored in red are from CAR babies.

Figure 3A indicates that the surface representing the babies 
with the fastest rate of physical growth is oriented differently 
from the other surfaces representing the other clusters of babies. 
Indeed, when examined with the clinical labels, the last cluster 
representing the lowest rate of change of physical growth across 
all parameters was composed primarily of CAR babies and one 
CT baby. This data-driven cluster is oriented nearly orthogonal 
to the Rank 1 surface (ranked according to the median ranking 
methodology) and is comprised of statistically at HR babies. The 
data-driven PAR babies are those in Rank 2 and Rank 3, whereas 
Rank 1 are denoted the data-driven TD group. The composi-
tions of each group along with the ranges of the rates of change 
of physical growth for each group and the temperature ranges 
are reported in Table S3 in Supplementary Material.

To help visualize the scatter data, a surface was fit across all 
points in the scatter. The surface was colored according to the rate 
of change of the AIMS total score. This is shown in Figure 3B 
with the line connecting the babies in Group 1 (Ranked 1) traced 
from left to right in the order of the rate of change of the AIMS 
total score. In this panel, babies with the higher rate of growth in 
head circumference (represented by the size of the marker) lead 
the group. The two babies at the tail of this path are two CAR 
babies that made the ranked median cutoff above the rest and 
into the Rank 1-TD group. These two babies (twins) began this 
process with delayed development following premature birth. 
However, they seem to have “caught up,” which is appreciated at 
the rate of change level. In contrast, when examining the absolute 
value of the parameters only, these two babies seemed similar to 
the other CAR babies.

These results prompted us to assess the fluctuations in motor 
performance and the noise-to-signal transitions underlying 
these rates of physical growth. Figure 3C shows the results from 
these analyses as we estimated the signatures of neuromotor 
control by integrating output in motor and temperature fluctua-
tions. The panels of Figure 3D show the estimated probability 
distribution function corresponding to the Gamma parameters 
on the log–log Gamma plane in Figure  3C. Each dot repre-
sents the median values of each baby across a large number of 
estimated parameters from 8 h of continuous recordings (see 
Supplementary Material). The color (as in Figures S3 and S4 
in Supplementary Material) represents the median temperature 
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FigUre 3 | automatic clustering of all babies obtained from the median-ranking of the rate of change data drawn from physical growth and 
fluctuations in motor performance. (a) The mean value of the rate of change in physical growth across visits was obtained for each one of the 36 babies. Then 
the median of each physical growth parameter was obtained for the entire group (see axes labels). Babies were median-ranked according to the rates of physical 
growth Rank 1–4 (see Materials and Methods). (B) A Delaunay triangulation surface was used to fit each of the four ranked scatters, whereby the size of each circle 
in the scatter denotes the rate of change in head circumference. The surface is further colored by the rate of change in AIMS score per days since birth to visit. The 
black line indicates the Group 1 babies sorted by the AIMS score from lowest to highest. The color bar denotes the average ΔAIMS score across visits. (c) Median 
values of the estimated shape and scale parameters (as in Figures S3B,C in Supplementary Material) colored according to the temperature regime of the micro-
motions in the acceleration and (D) the corresponding PDFs for each child. Color bar shows the temperature values.
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associated with each set of motor fluctuations. Babies in the 
Rank 1 group are found to have a trend toward higher tempera-
ture values as time progresses, which due to the design of this 
sensor technology is indicative of higher levels of actively self-
generated motions (draining more battery energy than passive 
motions and therefore heating the sensor more). These active 
motions are also mirrored in shifted physiological signatures 
that gradually move down and to the right on the Gamma 
parameter plane. From visit to visit, these shifts in temperature 
values and Gamma parameter values are more pronounced in 
the Rank 1 than in the Rank 4 groups. Indeed, in the Rank 1 
group, from visit 1 to visit 3, the drop in noise from higher 
to lower and the change in shape from skewed to symmetric 
are significant (rank-sum Wilcoxon test p < 0.01) but not so in 
Rank 4 babies (p < 0.9). Note: the right panel of the figure shows 
the estimated PDFs corresponding to the Gamma parameters 
in the right panel.

We next assessed these signatures as rates of change (divid-
ing them by the number of days since birth) and to quantify the 
frequency of noise-to-signal transitions that each baby under-
went each visit, and the average transitions across visits for each 
statistically ranked Group.

high inner-Quadrant and inter-Quadrant 
Frequency of noise-to-signal Transitions 
Mark Typical neurodevelopment
For each of the individual members of each ranked group, 
we examined the minute fluctuations in motor performance. 
To this end, we used the methods described in Figure S5 in 
Supplementary Material and characterized the stochastic 
signatures of these fluctuations as they transitioned from 
the LUQ to the RLQ of the Gamma parameter plane, i.e., 
the probability distribution functions transitioning to low 
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FigUre 4 | Frequency of noise-to-signal transitions distinguishes babies at high risk from typically developing babies. (a) Stationary (inner-quadrant) 
transitions sorted according to the proportion of times fluctuating within each quadrant before crossing to the other quadrant. Each dot represents a baby (up 
triangles are TD, circles are PAR and down triangles are HR). Inset is the median across each group. (B) Non-stationary (inter-quadrants) transitions sorted 
according to the proportion of times crossing across quadrants from the RLQ to the LUQ. The same index used to plot the opposite direction of transitions shows 
higher variability when crossing from the LUQ the RLQ. Inset shows the median values/group. (c) Median values of noise-to-signal transitions/group during the first 
visit already distinguish the groups in both the stationary and the non-stationary cases.
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noise-to-signal ratio and distribution shapes shifting toward 
symmetric distributions.

The signatures of fluctuations in motor performance of the 
babies in Rank 1 group transitioned far more frequently from 
higher to lower noise and from highly skewed to more sym-
metrically shaped PDFs than those of babies in the other groups. 
This is depicted in Figure 4A for the stationary case where the 
transitions remain within the LUQ or within the RLQ. In this 
case, the babies are ranked according to the proportion of times 
that their signatures remained in a “steady-state” within one 
quadrant or the other. The inset of the Figure 4A depicts the 
three data-driven groups from the median ranked parameters 
of physical growth in Figure 3A. Specifically, babies in the first 
group (data-driven TD) have the highest proportion of remain-
ing steady in the LUQ or the RLQ on average. The data-driven 
PAR group falls intermediate to data-driven TD and HR groups. 
The HR group has the lowest proportion of “steady-state” in 
LUQ or RLQ.

The non-stationary noise-to-signal inter-quadrant transitions 
shown in Figure 4B right panel were characterized by multiple 
shifts between the LUQ and RLQ. Their proportions also showed – 
for each individual baby – patterns that distinguish the TD from 
both the PAR and HR groups. Here, the transitions to the RLQ 
were ranked by proportion (individualized rates for each baby 
obtained relative to the overall total frequency of transitions of 
each baby) and systematically decreased according to the group 
type. In contrast, the transitions of the LUQ were highly variable 
across the three groups. The inset shows the differences in average 
proportion taken across all members of each group. Here, the fre-
quency in dynamically transitioning across the quadrants clearly 
separates those TD babies from the PAR and the HR babies.

Figure  4C shows the median values of the stationary and 
non-stationary transitions for the first visit. This result shows that 
differences in neuromotor developmental trajectories associated 
with the rates of change of physical growth can be detected within 
the first months of infancy.
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FigUre 5 | index of risk uncovered to automatically flag neurodevelopmental derail or stagnation very early on. (a–c) Linear relation is found between 
the rates of change in physical growth and the rates of change in the neural control of movements measuring the maximal amplitude of the transition from the LUQ 
to the RLQ (see main text reporting the goodness of fit parameters for each scatter). The relation degrades and the slope flattens as the baby’s body grows slower 
and does not undergo changes in the signatures of sensory–motor noise derived from fluctuations in motor performance. HR, red scatter (Rank 4 Group G3); PAR, 
gray scatter (Rank 2, Rank 3 G2); and TD, blue scatter (Rank1 G1).
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steady rate of growth in Physical 
changes corresponding to steady  
rate of change in Transitions from  
noise-to-signal Mark Typical 
neurodevelopment
In addition to the frequency in noise-to-signal transitions, the 
magnitude of the maximal shift between the LUQ and the RLQ 
was significantly higher in the data-driven TD group of babies 
(p  <  0.01 rank-sum Wilcoxon test). To further quantify this, 
we aimed at finding a relationship between the maximal noise-
to-signal transitions per day and the change in physical growth 
parameter per day across the abovementioned three groups. 
The scalar denoting the average across the visits for each of the 
neuromotor control and physical growth domains was plotted for 
each baby on a parameter plane and a line through the scatter 
corresponding to each group was fit.

Figure  5 shows the results of this fitting for each of three 
groups (TD, PAR, and HR). The TD (Group 1 comprised of Rank 
1 babies) displayed linear relation with positive slope (R2 0.89, 
0.89, 0.83) for body length, weight, and head circumference, 
respectively, and change in sensory–motor noise – i.e., transi-
tions. This trend was followed by a weaker relation (R2  0.52, 
0.40, 0.10) between parameters for the PAR group – Group 2, 
formed by Rank 2 and Rank 3 babies. The babies in the HR 
group – Group 3 formed by Rank 4 babies, characterized with 
the slowest rates of change in growth – had a flat slope (R2 0.19, 
0.16, 0.06) indicating stagnation in the rate of change of noise-
to-signal transitions toward motions under volitional control. 
These HR babies, classified as such with respect to the rate of 
change of physical growth, are also at risk of neurodevelopmen-
tal derail because noise-to-signal transitions were absent or did 
not evolve within each of the three visits. When examined longi-
tudinally, their rates of change were stagnated in both frequency 

and amplitude. They did not evolve these metrics of neuromotor 
control from visit to visit.

DiscUssiOn

This work set to uncover an index of risk for the early detection 
of neurodevelopmental stunting in newborns. To this end, we 
examined 36 newborn babies longitudinally, over the span of 
6  months and 3 visits. We performed statistical analyses of 
two groups with an a  priori-given clinical label of control 
(CT) vs. CAR groups. The CT group was composed of babies 
typically born full-term without complications and the CAR 
group was composed of babies with complications at birth. 
These analyses confirmed marked statistical differences on 
the classical growth parameters and other parameters from 
wearable sensors hinting at less overall motion in the babies at 
risk. In addition, data-driven analyses were completed, without 
the a  priori given clinical labels to identify any babies born 
without complications that do undergo subsequent stunting 
in neurodevelopment.

For each individual baby, we examined the rates of change 
in physical growth in tandem with the rates of change in the 
empirically derived statistical signatures of neuromotor control. 
A gradient of values emerged across the cohort characterizing the 
relationship between physical growth and neuromotor control 
development. At one end of this gradient were babies that grouped 
according to congruent rates along these two dimensions. This 
group had a higher regression coefficient (adjusted R2 closer to 1) 
between the rate of change of physical growth parameters and 
those characterizing sensory–motor control than babies with 
stunted neurodevelopment – characterized by the group that 
emerged at the opposite extreme of this quantification process. 
Indeed, babies in the group that demonstrated neurodevelop-
mental stunting did not significantly change from visit to visit. 
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Unlike the cluster of TD babies with congruent rates of change 
in both of these parameters, the group at HR did not show cor-
respondence between the evolution in the stochastic signatures of 
acceleration and those of physical growth. Specifically, the transi-
tions from high noise-to-signal ratios into well-structured signals 
showed very little change from visit to visit for the group at HR. 
Likewise, the rate of physical growth in this group of babies was 
significantly slower than that in the developing group (as shown 
in Figures 3A,B).

The shift into high signal content and statistical regularities 
conducive of a predictable and controllable neural code was absent 
from the fluctuations in motor performance of these HR babies. 
Furthermore, their AIMS scores were significantly lower than 
those in the TD group. Importantly, the stunting in neuromotor 
control development was detectable as early as the first visit in 
the study and persisted 4 months later. This finding is particularly 
relevant as clinical scoring systems: (1) rely on visual identifica-
tion of problems, and thus must wait until signs are visible to the 
naked eye of the clinician administering the inventory, and (2) are 
sporadically administered. In contrast, the indexes derived from 
the wearable sensing data can begin to be obtained right after 
birth and continuously monitored during the first months of life 
when the baby changes at an accelerated rate (e.g., Figure A1 for 
typical and Figure A2 for preterm cases).

From these results, we propose to use the uncovered relation-
ship between the rates of change in physical and neuromotor 
control growth as an index of neurodevelopment so as to detect 
risk of stunting in neonates. Specifically, typical neurodevelop-
ment should manifest in linear congruence with high R2-value 
between the rates of change of physical and neuromotor control 
growth. Absence of this relation should flag stunting in neonatal 
neurodevelopment.

implications for Mobile health and 
Precision Medicine in Pediatrics
The present results have implications for m-Health in the areas of 
neonatal care. The advent of wearable wireless sensing technol-
ogy calls for new analytics that enable personalized assessment 
and continuous monitoring. Neonatal care is one area where it 
will be possible to utilize objective and automated assessments 
of the kinds presented here, thus opening the possibility of trans-
ferring the daily monitoring from the clinical settings into the 
home environment. This will be a transformative step in clinical 
and research areas that will enable uncovering, at a very early 
stage of life, critical aspects of the non-linear, highly dynamic 
and stochastic features of neurodevelopment. Following initial 
screening, this technology may enable easy remote monitoring 
of infants who are perceived as at risk of neuromotor devel-
opmental delay. Through this process – combining wearable 
sensing technology with bespoke analytics to process longitu-
dinal, yet non-linear data – parents may provide pediatricians 
and health-care providers with rich continuous information 
to guide informed medical advice and decisions, rather than 
relying on relatively short and sporadic clinical visits. Indeed, 
the marked increase in the prevalence of neurodevelopmental 
disorders worldwide calls for such transformative changes in 

the interactions between parents and clinicians as well as those 
between clinicians and researchers.

implications for neurodevelopmental 
research
The analytical methods presented in this paper enable exami-
nation of neurodevelopment through the lens of the classical 
kinesthetic reafference principle, thus connecting in closed 
loop the neurodevelopment of the PNS and the CNS. This 
principle states that “Voluntary movements show themselves to 
be dependent on the returning stream of afference which they 
themselves cause” (20). By examining the baby’s self-produced 
bodily (leg) motions at the periphery and longitudinally 
monitoring the transitions from spontaneous random noise to 
well-structured signals, we were able to characterize the initial 
stages of acquiring (or not, as the case may be in HR infants) 
central voluntary control. This is the first time that we can 
characterize such transitions using an index that depends on 
the evolution of both physical and neuromotor control growth. 
In this sense, the present work opens the possibility of drafting 
a new type of (dynamic) growth chart showing, not only the 
curves of incremental physical growth but also showing the 
curves of incremental neuromotor control growth along with 
the correspondence index between the two. Deviations from the 
coupled linear relation uncovered by this work could thus flag 
risk of stunting along either one or both of these (objective) 
physical parameters. Furthermore, using subjective clinical 
inventories of functional milestones (e.g., the AIMS, among 
others) can help complement these newly proposed dynamic 
charts and provide a more complete profiling of the fast-growing 
and fast-developing newborn infant.

Looking ahead in neurodevelopment, we may want to con-
sider the infant’s brain transitioning into voluntary (volitional) 
control over the physical body as a precursor of representational 
volition and intentional thoughts reflecting decisions to be 
made based on estimated sensory consequences from impend-
ing actions. This form of prospective motor control would lead 
to deliberate autonomy of the brain over the body, a key element 
scaffolding the emergence of timely cognitive representations of 
the body and its surroundings. In this sense, the present results 
concerning the quantification of noise transitioning to signal, 
and the failure to do so, could also flag risk of slowing down the 
development of important foundational components of cogni-
tive and social axes. Here, we posit that sensory  reafference – 
whether arising internally from self-generated movements or 
externally from other senses – ought to be considered as a 
key ingredient for the development of cognitive and social  
abilities.

Disruption in the evolution and maturation of motor output, 
taken as a form of kinesthetic reafference in the newborn, should 
therefore raise a flag for risk of neurodevelopmental stunting 
concerning volitional control. This in turn should alert us of 
potentially negative future consequences hindering the emer-
gence of intentional cognition. Here, we characterize the lack of 
neurodevelopmental maturation in terms of noise-to-signal tran-
sitions. We propose that such principles should be systematically 
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researched and validated to permit incorporation of the present 
indexes into early clinical criteria for neurodevelopmental disor-
ders at large.

Data-Driven vs. clinically informed 
approaches
The assessments performed in the present work were of two 
kinds. In one case, we used the clinical labels that the data came 
with originally to examine the groups of babies accordingly. In 
the other case, we performed the analyses without pre-classifying 
according to clinical labels and rather let the variability inherently 
present in the data reveal self-emerging groups of babies.

The case where we used clinical labels was informative as 
it helped us gain a general sense of the potential differences 
that may be detectable already by observation by the clinician. 
Here, our analysis confirmed that babies born with such com-
plications did indeed differ on average (with marked statistical 
significance) from typically born babies. Interestingly, this 
was particularly so when the data were examined through an 
incremental, first-derivative lens. However, when absolute 
scores were used these differences were missed. These results 
underscored the importance of considering the incrementally 
changing data reflecting the dynamic and non-linear nature of 
neonatal development.

In the data-driven approach case, we first examined the 
data without grouping by clinical labels and only afterward 
compared the outcome of data-driven analyses to the clinical 
labels. Using the data variability we let stochastic patterns 
self-emerge then a posteriori, we were able to see within each 
self-emergent group which babies of the self-emergent clusters 
had been typically born vs. born with complications. Notably, 
this approach revealed that two of the babies that fell in the 
statistically TD data-driven group (i.e., with congruent physical 
and neuromotor growth) had in fact been born with compli-
cations and thus clinically defined as such. These babies had 
received intensive physical therapy. This result confirmed the 
importance of early intervention when the nervous system is 
rapidly changing and very likely at its highest degree of plastic-
ity. Likewise, we identified cases where individual babies were 
clinically labeled as typically born, and thus at no risk, yet 
were in fact lagging behind in their physical and neuromo-
tor control rates of growth. This again confirms the variable 
nature of neurodevelopment and illustrates the importance of 
identifying a type of risk that no parent would want to miss. 
Indeed, many babies that are typically born go on to receive a 
diagnosis involving at least one neurodevelopmental disorder 
later, generally after 3 years of age.

In summary, even though the data from the babies came with 
clinical labels, by examining their patterns while using data-
driven strategies, we were able to automatically identify cases of 
babies that were labeled as clinically at no risk of developmental 
delay and yet stunted vs. cases of babies that were labeled at 
risk from birth complications and yet recovered and went on 
to form part of the self-emerging data-driven TD group. By 
examining the data without assigning a  priori clinical labels 
and then comparing it a posteriori with the clinical labels, we 
were able to identify patterns that we would have missed had we 

exclusively relied on the a  priori clinically labeled data. These 
overall results underscore the importance of incorporating data-
driven approaches in clinical settings in general but in particular, 
in neonatal Pediatrics.

limitations of the Present study
The present work has several limitations. One is the relatively low 
number of infants (36) we had access to for the longitudinal assess-
ment. The other is the frequency of the assessments. Despite high 
power for the estimation process (each sensory–motor estimate 
includes thousands of data measurements for each individual), 
and the fact that under this framework each individual is its own 
control; it would have been ideal to have access to a larger num-
ber of infants to track longitudinally. Under such conditions, 
it may have been possible to uncover self-emerging patterns 
across various populations of premature infants and infants born 
normally, within ideal conditions. Moreover, the present study 
tracked each infant across a span of 6 months, measuring growth 
and fluctuations in motor performance every 2 months. The first 
visit ranged from 8 months in typical group or 1–18 months in 
the group CAR. Based on the results that we quantified in the 
first visit (Figure 3C), we believe that if these measurements had 
been performed every day for the first month of life, we may 
have been able to uncover signs of neurodevelopmental stunting 
even earlier.

We used the waveforms output by temperature and motion 
sensors because they were accessible to us in non-intrusive ways. 
However, it would have been ideal to use them in combination 
with other rhythms of the newborn’s nervous systems. For 
example, the same statistical platform that we used here could 
have been applied to time series of waveforms from respiratory 
or feeding (sucking) rhythms (11, 12, 26) easy to harness in the 
NICU or in typically newborn infant wards (27). Feeding and 
non-feeding sucking patterns require precise motor control from 
orofacial structures. As such, they can be a precursor of voluntary 
control that the nervous systems of the newborn may come to 
self-discover and transfer to the control of bodily rhythms at 
large. This is a testable hypothesis using the present individual-
ized statistical methods.

Finally, a striking limitation lies in the lack of transparency 
that we encountered when trying to reproduce the growth charts 
produced by the WHO (see Appendix). As clearly illustrated 
within the WHO methodological paper, data used for the for-
mulation of these charts were ultimately obtained, transformed, 
and smoothed before conforming to the normal distribution. 
Although we used the rate of change version of these data to 
be congruent with the skewed distributions of our empirical 
data (shown in Figure S7 in Supplementary Material), we have 
no way of recovering the original data reported in such charts. 
Thus, we utilized the reported Box–Cox power transformation 
parameter L (Figure A1C) to assess the evolution in the skew-
ness of the underlying distributions, and as such the failure 
of the underlying data to be normally distributed. We also 
examined the median parameter to estimate growth variables 
(e.g., weight in  Figure  A1) and its variability according to the 
reported generalized coefficient of variation S. The latter was not 
explained with sufficient clarity in the methods searched, and 
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so we are not exactly sure about the lengths of the confidence 
intervals and/or whether additive or multiplicative statistics were 
considered in such estimations.

The ability to blindly reproduce published results is a corner-
stone principle of basic science, thus the ambiguity surround-
ing the production of such charts is concerning – particularly 
given the core critical use of such clinical charts at present. In 
this case, though we tried hard, we failed to find the proper 
ways to reproduce the published data because critical informa-
tion to that end was not available (see Appendix for details). 
To build Figure  A1, we utilized data available to the public. 
Notwithstanding these limitations, the message that Figure A1 
conveys is clear: refrain from imposing normality and linearity 
in data that is inherently otherwise.

conclusion and general implications 
of These results for early 
intervention Programs
In sum, this work illustrates the importance of preserving and 
respecting the underlying statistical nature of the data we register 
and of the non-linear features of the phenomena that we set to 
study. Enforcing assumptions of normality or linearity on the 
data to simplify our research task will only deter us from truly 
understanding and resolving the problem at hand. With the epi-
demic proportion of neurodevelopmental disorders worldwide, 
the current practices in basic science and clinical settings may 
have to change and be subject to more public scrutiny to improve 
patient care. Indeed, early infancy is a critical time, when the 
individual grows and develops at a uniquely fast rate – which is 
currently, overlooked using traditional methods. Through the 
investigation of standardized growth charts and kinematic data, 

we have highlighted that neurodevelopmental risk can be detected 
at a very early stage – a step currently masked by insistence on 
measuring this highly complex, stochastic non-linear dynamical 
system, as a simple, deterministic, linear, static one.
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aPPenDiX

Standardized population growth charts have been created 
and produced by both the Center for Disease Control (5) and 
the World Health Organization (6). Given discrepancies and 
variation in data collection and thus chart formulation, clinical 

guidelines suggest the adoption of the WHO charts (28). These 
growth charts have been adjusted for breast-feeding, race, sex, and 
other important parameters that the WHO has considered (28, 
29). Since 2006, the standard charts have been adopted by over 
140 nations, including the United States (US), and remain the gold 
standard to assess mortality indexes and determine milestones of 

FigUre a1 | What we are missing in our clinical assessments and basic research (data obtained from publicly available records registered to build 
the WhO charts). Stochastic, non-linear, dynamic processes clearly underlie the existing data that is at present enforced to be deterministic, linear, and static. 
(a) Progression of the change in weight day by day in male and female newborn babies according to the median weight summary drawn from 26,985 babies/
summary point (13,623 girls, 13,362 boys). Babies were longitudinally tracked for 24 months upon which cross-sectional data were used to build the charts up to 
5 years of age (28, 30). Inset highlights the initial drop in weight. Several inflection points in this curve have the potential to reveal additional information, particularly 
the first one that separates males from females in early stages of neurodevelopment. (B) Inflection points in the curve tracking the generalized coefficient of variation 
from the weight data. Female babies reach the significant minimum at 224 days, almost a month earlier than male babies at 252 days. Left-top inset zooms in the 
data for the first month, showing that the two groups separate in the first week after birth. Right-bottom inset shows the non-linear nature of the rate of change in 
median weight (zooming into the first month as well). (c) The skewed nature of the probability distributions underlying the physical growth parameters can be 
captured by tracking the L parameter (the Box–Cox transformation power value to enforce symmetry in skewed probability distributions (31), see also Appendix 
quoting the Methods paper (30) “The assumption is that, after the appropriate power transformation, the data are closely approximated by a normal distribution”). 
Notice that as in all other parameters the required transformation power L is different for male and female babies, denoting different families of probability 
distributions underlying their physical growth (in this case specifically the weight). Points mark the days when the generalized coefficient of variation reached 
inflection points, thus marking critical significant departures in variability in males vs. females. Inset zooms into the 1-month period to highlight the first of such 
inflection points as early as the first week of life. (D) Tracking the median weight over the first 5 years of life. Points mark the change in the underlying variability 
according to the inflection point in the generalized coefficient of variation. Inset zooms into the first month of life to also highlight the days when the inflection points 
in the underlying variability were attained in the first week of life.
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physical growth. Although not intended to be used as diagnostic 
tools, these charts are often used by pediatricians to infer general 
aspects related to neurodevelopmental progress. Despite the 
statistical rigor they conform to (30, 31), the use of incremental 
(velocity-dependent) values to better capture the rates of change 
of the infant, and the use of a handful of motor milestones to track 
progress, these charts alone may not necessarily capture the true 
nature of early neurodevelopment –  particularly those aspects 
of neurodevelopment pertaining to the type of neural control of 
movements reached by 4–5 years of age, also the limiting age of 
the growth charts.

Total number of Babies/Trait
Reported by the WHO:

weight: 26,985 (13,623 girls, 13,362 boys);
length: 27,334 (13,783 girls, 13,551 boys);
head circumference: 27,339 (13,798 girls, 13,541 boys).

From Table A1: number of observations used in construction 
of WHO child growth standards.

longitudinal/cross-sectional
Head circumference for boys and girls: longitudinal samples 
used until 24 months; start incorporating cross-sectional at 
around 18–20 months.

FigUre a2 | Data from premature babies superimposed on the data from typical babies obtained from the WhO growth charts (weight parameter in 
Figure a1). Each circle represents the summary median data for a week taken across 25,000 premature babies (no sex is reported). The log of the median and its 
rate of change are used for clarity. (a) Graph reflects the actual median weight (kilograms) across days 150–350 (top panel) and corresponding generalized 
coefficient of variation (CV). (B) Graph reflects the daily rate of change in the median weight across days 150–350 (top) panel and corresponding generalized CV 
bottom panel enclosed in the box. Stars mark inflexion points according to the generalized CV.

Length for boys and girls: longitudinal samples used until 
24  months; start incorporating cross-sectional at around 
18–20 months.
Weight for boys and girls: longitudinal samples used until 
24  months; start incorporating cross-sectional at around 
18–20 months.

Quoted Methods
The methods from (30) are quoted here given their critical 
importance for reproduction of results and the hurdles that we 
encountered in our attempt to understand why/how the data were 
enforced to be normally distributed.

To avoid the influence of unhealthy weights for 
length/height, observations failing above +3 SD and 
below -3SD of the sample median were excluded prior 
to constructing the standards  …  The data were split 
into two sets: one set with all points above the median 
and another with all points below the median. For each 
of the two sets, mirror values were generated to create 
symmetrically distributed values around the median for 
the upper and lower sets …

The distributions of some anthropometric data used 
in the growth charts are skewed. To remove skewness, 
a power transformation can be used to stretch one 
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tail of the distribution while the other tail is shrunk. 
A Box-Cox transformation can make the distribution 
nearly normal (32). The assumption is that, after the 
appropriate power transformation, the data are closely 
approximated by a normal distribution (33). The 
transformation does not adjust for kurtosis, which is 
a less important contributor to non-normality than 
skewness (34).

In the LMS technique, three parameters are esti-
mated: the median (M), the generalized coefficient of 
variation (S), and the power in the Box-Cox transfor-
mation (L). The L reflects the degree of skewness. The 
LMS transformation equation is:

 X M LL= + ≠( ) /1 LSZ 1 0  

 X M L= =e SZ( ) 0  
where X is the physical measurement and Z is the 
z-score that corresponds to the percentile.

The key task of the transformation was to estimate 
parameters L, M, and S.

With estimates of L, M, and S, values of X are con-
nected to the values of Z through the above equation. 
The percentile is obtained from a normal distribution 
table where the z-score corresponds to the percentile of 
interest. For example, a z-score of 0.2019 corresponds 
to the 58th percentile. In the case of growth charts, with 
the L, M, and S parameters, it is possible to evaluate any 

single measure in a population as an exact z-score or 
percentile.

Unfortunately, since the original underlying distributions 
are skewed and the distributions of the rates of change of the 
physical growth parameters are also skewed, it is not clear how to 
interpret the generalized coefficient of variation S above, derived 
from the skewed-to-normal transformed data; or even how S 
was obtained in the first place given the different options for 
additive and multiplicative cases (35–37). This information is 
critical to obtain an estimate of the growth parameters and their 
summary statistics. For example, we can gain some sense on the 
evolution of skewness by looking into the reported L param-
eter (Figure  A1C). Yet, we do not know how kurtosis of the 
underlying probability distributions may change with age and 
development, given that the power transformation to enforce 
normality on the data does no adjust for kurtosis. Likewise, the 
inherent variability to the original data is lost when applying 
such transformations.

It is not that the statistical methods are flawed. They are 
sound under the assumptions made. The problem rather lies in 
the assumptions made, as they are not empirically justified. They 
go entirely orthogonal to the true nature of the empirical data at 
hand. As such, they erase the very information that we need in 
order to detect risk for neurodevelopmental derail in the very 
early stages of life. The information we are searching for is right 
in front of our eyes, but we are looking at it through the wrong 
lenses.
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